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REBUTTAL TO REVIEWER AC2P

Summary. We sincerely thank the reviewer for the appreciation of eva and the constructive
feedback. We have made every effort to throughly address the concerns. Specifically, we have:

• added experiments on implementing different evolving methods and discussed relevant
strengths and weaknesses in § D.1;

• added visualization on the learning curriculum in § E;
• provided detailed discussion on scaling up eva with million-level data on larger-scale seed

sets and/or inference-time scaling for synthesizing prompts.

Q1 (Choice of the Evolving Method): Could you explain more about the particular choice of
evolution algorithm used in your implementation of eva and different potential strengths and
weaknesses related to this choice?

TL;DR: We use EvolInstruct (Xu et al., 2023a) as it is among the most easy-to-implement methods.
We added new experiments w/ other methods, including SelfInstruct (Wang et al., 2022), EvolQuality
and EvolComplexity (Liu et al., 2023b), and show that eva remains to be effective in § D.1.

Answer: As an addition to Table 1, we have experimented with three different evolve(·) methods:

• SelfInstruct (Wang et al., 2022): Given seed prompts, variations are created based on criteria
such as verb diversity and style blending (mixing interrogative and imperative styles). Unlike
EvolInstruct (Xu et al., 2023a), which generates prompt variations sequentially, this approach
generates independently. We follow the one-shot implementation in self instruct.py of
distilabel==1.4.1 and modified the instruction on conciseness so that newly generated
prompts have similar lengths compared to the seed prompts.

• EvolQuality and EvolComplexity (Liu et al., 2023b): The two methods use the same
evolutionary approach (i.e., sequential generation), but with slightly different meta-
instructions for prompt generation, where EvolQuality asks to improve the quality
(i.e., helpfulness, relevance, etc) of the seed prompt and EvolComplexity asks to im-
prove the complexity (i.e., increased reasoning steps, etc) of the seed prompt. We follow
the implementation in evol quality/utils.py and evol complexity/utils.py of
distilabel==1.4.1.

Model Family (↑) GEMMA-2-9B-IT

Benchmark (↑) Arena-Hard
Method (→) / Metric (↑) WR (%) avg. len
ω0: SFT 41.3 544

ω0→1: DPO 51.6 651
ω1→1̃: + eva (evolve(·) = EvolInstruct) 60.1 733
ω1→1̃: + eva (evolve(·) = EvolQuality) 58.7 721
ω1→1̃: + eva (evolve(·) = EvolComplexity) 60.6 749
ω1→1̃: + eva (evolve(·) = SelfInstruct) 57.2 725

Table 23: Results of using different evolving methods.

eva is effective under different evolving methods. As shown in Table 10, our method brings
strong performance gain without training with additional human prompts. Among the experimented
methods, we find EvolComplexity shows better results.

We believe the main strength of such method is its simplicity. Viewing the evolving process
as x↓ ↔ pω(· | x, meta prompt), one can easily tune the meta prompt in natural language for
improved performance. However, such simplicity comes at a price: (i) the main weakness is that
the default method does not take environmental feedback into account (e.g., rewards received,
verbal critique on responses, etc) and relies on the pre-defined meta prompt, thus the evolving may
be less directional; we encourage practitioners to consider incorporating richer feedback during
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evolving (one way to formulate this is by generative optimization (Yuksekgonul et al., 2024; Cheng
et al., 2024; Nie et al., 2024)); (ii) another weakness is that existing method is single-shot (i.e., we
evolve based on a single x each time), thus the diversity of the generation may be limited – we
anticipate future works improving this with multi-shot evolving by graph-based sampling or including
diversity-related rewards in generation. In this regard, the evolving process can be viewed as
{x↓}Ni=1 ↔ pω(· | {x}Mi=1, meta prompt, env feedback).

Q2 & Q3 (Empirical Evidence on Learning Progress and Curriculum): Do you see empirical
evidence of your intuition about learning progress discussed in section 3.4? It seems like some of
these claims are directly testable. Could you visualize the curriculum learned in your experiments
with eva? It would be very nice to get an intuition for why performance improves and what the
heuristic prioritizes over time.

Answer: We thank the reviewer for the constructive suggestions on empirically validating the
intuition. We have revised the manuscript with additional visualization on potential curriculum
learned in § E. In general, we observe the creator prioritizes learning in math and coding, which
brings gradual improvement on benchmark performance on relevant categories over iterations. We
have attached the bar plot and radar figure here for the reviewer’s reference:

Figure 11: Training distributions. The prompt
distribution of Table 11 for evolved prompts by
zero-shot classification. eva creates a curricu-
lum that prioritizes math / coding prompts.

Figure 12: Benchmark performance. The radar
figure for ratings on MT-Bench (Zheng et al.,
2023), where each category contains ten prob-
lems. eva prioritizes and gradually improves
on coding, math and reasoning over iterations,
implicitly reflecting a learned curriculum.

We further evaluate the complexity and quality of the prompt distributions. As in Table 24, there is a
gradual improvement of prompt complexity and quality over iterations with eva.

Prompt Set (→) / Metric (↑) Complexity (1-5) Quality (1-5)

UltraFeedback (seed) 2.90 3.18
UltraFeedback-eva-Iter-1 3.84 3.59
UltraFeedback-eva-Iter-2 3.92 3.63
UltraFeedback-eva-Iter-3 3.98 3.73

Table 24: eva improves prompt quality and complexity.

Implementation notes: We sample 10K prompts per iteration, and use the below prompts modified
from Liu et al. (2023b) for the complexity and quality evaluation, with gemini-1.5-flash as the
generative scorer:

Rank the following questions according to their quality. Your evaluation should consider the following
factors: Helpfulness, Relevance, Accuracy, Depth, Creativity, and Level of detail.ω→

Score each response from 1 to 5: 1: Poor quality, 2: Below average, 3: Average, 4: Good, 5: Excellent.

Ranking the following questions according to their difficulty and complexity. Use a fixed scoring system: 1:
Very simple, 2: Simple, 3: Moderate, 4: Difficult, 5: Very difficultω→
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Q4 (Scaling): When discussing future directions, the authors write further scaling up w/ million-
level data. Can you clarify what this means? Seems like some important context is missing?

TL;DR: We consider (i) applying eva when the seed set contains million-level or more prompts; or
(ii) using eva to robustly generate million-level or more prompts when the seed set is limited.

Answer: (i) The current paper uses the UltraFeedback (Cui et al., 2023) as the seed prompt set,
which is a ten-thousands level dataset; in training practically useful large language models (Brown
et al., 2020; Team et al., 2024a; Singh et al., 2023), the seed prompt set is usually much larger
than such a level. We believe it is an interesting direction to explore the data scaling properties
of eva on larger seed prompt sets, in combination with our on-policy variants. (ii) On the other hand,
when the seed prompt set contains only limited data (this issue is particularly concerning in hard
reasoning tasks like math (Yang et al., 2024)), can we still follow the data generating curriculum and
synthesize million-level prompts/problems to help training, and how to robustly verify the generated
prompts/problems? Beyond training-time scaling, there is also a recent trend in inference-time
scaling (Snell et al., 2024), however these works only consider scaling in the Y space, not the X or
the joint (X ,Y) space. We believe synthetically scaling up the joint (X ,Y) space to a much more
larger magnitude under eva’s game-theoretic design presents a new direction worth investigating.

Final remarks. We thank the reviewer once again for spending time providing constructive
feedback that helps improve eva. Please let us know if there is any other concerns or questions,
and we are more than grateful to have the opportunity to learn from and discuss with you.
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REBUTTAL TO REVIEWER ZXTK

Summary. We sincerely thank the reviewer for all the constructive feedback helping improving
the eva method. In response, we have provided:

• experiments on more iterations in § D.2;
• extended discussions on the regret objective and the proxy in § G;
• evidence on distinction of advantage-based metrics and variance-based ones in § F;
• revised illustration of the method in § 3, and evidence on evolving prompt distributions

(to answer it cannot “cheat by selecting easier prompts”) in § E.

We appreciate the chance to address the reviewer’s comments and have made every effort to thoroughly
address the concerns and revise our manuscript accordingly. We hope that these revisions meet the
reviewer’s expectations and would be grateful if the reviewer could kindly consider revise the score.

W1 (Running for More Iterations): The number of iterations in the main results is 2, with only
one EVA step in each experiment, which is a little different from what the demonstration in Figure
3 shows. If the eva step is performed multiple times, would the results be better or worse? What
is performance like when you access all data in UltraFeedback?

TL;DR: We added experimental result on running more iterations with more data, and eva remains
to be effective. We have added § D.2 in the manuscript to incorporate the reviewer’s suggestion.

Rebuttal: As an addition to § 4.2.4, we have experimented with the following settings:

• 10K prompts per iteration with 3 iterations.
• 20K prompts per iteration with 3 iterations (i.e., all seed prompts are used).
• 60K prompts per iteration with 2 iterations (i.e., all seed prompts are used).

Due to time constraints, we did not perform an extensive hyper-parameter search; however, we believe
the results presented below sufficiently demonstrate the performance gains achieved by eva.

Model Family (↑) GEMMA-2-9B-IT

Benchmark (↑) Arena-Hard
Method (→) / Metric (↑) WR (%) avg. len
ω0: SFT 41.3 544

ω0→1: DPO (10k) 51.6 651
ω1→2: DPO (10k) 59.8 718
ω2→3: DPO (10k) 61.2 802
ω1→1̃: + eva (10k) 60.1 733
ω1̃→2̃: + eva (10k) 62.0 787
ω2̃→3̃: + eva (10k) 62.2 774

Table 25: Results of using 10k prompts per iteration.

Model Family (↑) GEMMA-2-9B-IT

Benchmark (↑) Arena-Hard
Method (→) / Metric (↑) WR (%) avg. len
ω0: SFT 41.3 544

ω0→1: DPO (20k) 53.2 625
ω1→2: DPO (20k) 47.0 601
ω2→3: DPO (20k) 46.8 564
ω1→1̃: + eva (20k) 59.5 826
ω1̃→2̃: + eva (20k) 60.0 817
ω2̃→3̃: + eva (20k) 61.4 791

Table 26: Results of using 20k prompts per iteration.
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Model Family (↑) GEMMA-2-9B-IT

Benchmark (↑) Arena-Hard
Method (→) / Metric (↑) WR (%) avg. len
ω0: SFT 41.3 544

ω0→1: DPO (60k) 58.9 717
ω1→1̃: + eva (60k) 59.6 725
ω1̃→1̃↑ : + eva (60k) 61.9 792

Table 27: Results of using 60k prompts per iteration.

eva can bring robust gains with multiple iterations. As shown in Table 25, 26, and 27, our
method presents persistent performance gain over iterations, and concretely surpasses the performance
by default DPO training with true human prompts.

However, there exist diminishing marginal gains in iterative off-policy training. We ground eva in
the iterative (off-policy) preference alignment paradigm due to its efficiency and ease of integration.
However, such paradigms inherently face diminishing returns, where performance gains decrease
with successive iterations, as previously observed in (Wu et al., 2024; Setlur et al., 2024; Yuan et al.,
2024; Nikishin et al., 2022). While the generative data schedule in eva mitigates these challenges
and extends beyond default training with human prompts (see also §4.2.4), the gains can weaken
over iterations. We summarize potential reasons as: (i) the off-policy signal decay – as the number
of examples increases, signals from the off-policy data become weaker due to distributional shift;
(ii) the loss of plasticity, where the agent’s ability to learn good policies decreases in continuing
training with more iterations (Nikishin et al., 2022); (iii) the ability of the solver – as we evolve more
harder prompts, it is harder for the solver to produce preferred response (thus more explicit reasoning
techniques may be needed); (iv) the ability of the reward model to correctly provide reward signals
to responses and thus informativeness signals to prompts, as there may exists distributional mismatch.

Thus, we envision future work to build on eva by: (i) exploring its integration with on-policy RLHF
(e.g., instead of evolving prompts in iterations, one may evolve in batches); (ii) enhancing solver
capabilities, such as sampling more responses during inference or leveraging meta-instructions to
guide deeper reasoning; (iii) online training of RM to co-evolve with the creator and the solver.

Bonus experiments on adding rewriter in the solver step. This is beyond the current paper, and
we present the basic idea here for practitioners to build upon eva. The motivation comes from the
hypotheses derived from § D.2: as the prompts gets harder by evolving, there may be greater demands
on the solver’s capabilities compared to earlier iterations. As such, the solver may not be naively
treated the same. One may address this by either inference-time scaling on responses or introducing
meta-instructions to explicitly enhance the solver’s reasoning.

We hereby design a proof-of-concept experiment w.r.t the latter by adding rewriter in eva’s solver
step. Previously, as in Algo. 1 and § 3.3.2, for each prompt x, we generate multiple responses, and
choose the best as y+ and the worst as y↑ for preference optimization. Now, we add one more
rewriting step that attempts to enhance y+ to be y↓

+, by applying a rewriting instruction (Liu et al.,
2023b) that asks the solver to alter y+ with imporved helpfulness, relevance, reasoning depths,
creativity and details while keeping the similar length. We then train with (x,y↓

+,y↑) for preference
optimization. Table 14 shows that adding the rewriter yields concrete performance gains over the
default method, while keeping training budgets and only slightly increasing response generation cost.

Model Family (↑) GEMMA-2-9B-IT

Benchmark (↑) Arena-Hard
Method (→) / Metric (↑) WR (%) avg. len
ω0: SFT 41.3 544

ω0→1: DPO 51.6 651
ω1→1̃: + eva 60.1 733
ω1→1̃: + eva with rewriter 61.9 741

Table 28: Results of adding rewriter in the solver step.
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W2 (Connection in Minimax Regret and The Algorithm): The connection between the minimax
regret objective and the algorithm is a somehow vague. The regret concerns the performance gap
with the optimal policy. It’s not reflected by the informativeness proxy.

TL;DR: We have added § G to address the reviewer’s concern in detail. (i) In the current algorithm,
the solver explicitly minimizes the regret by plug-in preference optimization algorithms (e.g., DPO),
while the creator implicitly maximizes the regret by first finding high-regret prompts and generate
variations as new prompt distributions for training. (ii) The informativeness proxy is an advantage-
based estimate of the regret; similar variants have been used in prior literature like Jiang et al. (2021b);
Parker-Holder et al. (2022); as the policy optimizes, the proxy can approximate the true regret better.

Rebuttal: For the rebuttal to be self-contained, we extract contents from § G.3 here. We feel § G
offers a better overview – it would be great if you could take some time to review § G when feasible.

KL-regularized regret. In the RLHF setting at fixed prompt distribution, the objective is:

max
εω

Ex↔εε(·),y↔εω(·|x)


r(x,y)


↓Ex↔D


ω · ϱς(·)KL

[
ϱω(y | x) ↗ ϱSFT(y | x)

]
.

The optimal policy of the above KL-constrained objective is:

ϱ↼
KL(y | x) = 1

Z(x)
ϱSFT(y | x) exp

(
1

ω
· r(x,y)

)
,

where the partition function is defined as Z(x) =


y ϱref(y | x) exp
(

1
ω r(x,y)

)
.

We can now formally define the regret with regard to ϱ↼
KL(· | x) as:

RegretKL(x,ϱω) = Ey↔εω(·|x)

[
r(x,y)

]
↓ Ey↔εϑ

KL(·|x)

[
r(x,y)

]
. (18)

Regret Minimization for the Solver. It is rather straightforward/trivial to understand the objective
of the solver ϱω(· | x) as regret minimization, since the goal is to align the policy ϱω(· | x) with
the KL-optimal solution ϱ↼

KL(· | x), which directly minimizes the KL-regularized regret by design.
This formulation allows flexibility in the plug-in preference optimization algorithms for the solver’s
step in Algorithm 1, and ensures the alignment problem is well-defined. In practice, we use Direct
Preference Optimization (DPO) and its variants, which approximate the KL-optimal solution by
iteratively adjusting ϱω to reflect preference differences.

Regret Maximization for the Creator. As discussed previously, while it is often trivial for the
solver to minimize the regret through direct policy optimization, the optimal policy remains unknown
during the optimization process, thus we cannot directly calculate the regret – we must approximate
it when using it as the utility for the creator. Similarly to heuristics proposed by prior works (Jiang
et al., 2021b;a; Parker-Holder et al., 2022), we use the advantage-based estimate:

| ˆRegret(x,ϱω)| ↔ infoω(x) := r(x,y+)↓ r(x,ybaseline), (19)

where
y+ := argmaxyi

r(x,y), (20)
ybaseline := argminyi

r(x,y) or ybaseline := avgyi
r(x,y), (21)

and {yi}i=1 is a set of responses sampled from ϱω(· | x) and r(·, ·) is the reward oracle. We
use argminyi

r(x,y) by default due to its simplicity and efficiency (see also § 3.4 for additional
interpretation) and consistent strong empirical gains we observed in vast experiments. As the
policy optmizes, the proxy should approximate the regret better. We leave exploration of other
informativeness proxy designs in eva to future work.

For new environment generation, as illustrated in § 3.3.1, we start from the seed prompt set, choose
those high-regret prompts and generate variations upon them by EvolInstruct, then mixing with a
buffer of the original set to form the new training distribution at each iteration.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Q1 (Advantage v.s. Variance): The informativeness proxy seems to be similar to the variance of
the rewards because they all concern the diversity of the generated responses. However, in lines
393-395, the results show using variance leads to poor performance. How to interpret this?

Rebuttal: To explain, (i) variance does not directly capture the learning potential in preference
optimization, while advantage-based informativeness proxy is better aligned to the learning objective;
(iii) we empirically show that variance and advantage are only weakly correlated thus will likely
result in different sampling. We have added § F to incorporate the reviewer’s suggestion.

Figure 13: The probability density dis-
tributions of informativeness metrics in
Table 3 – they show different patterns.

Figure 14: The correlation plot for re-
ward advantage (ours) and reward vari-
ance – they are only weakly correlated.

In eva, we assign each prompt an informativeness value, which the creator will use as the weight to
sample from the seed prompts for prompt synthesis. In § 4.2.1, we have shown that traditional methods
like reward mean and reward variance are less effective as our advantage-based informativeness proxy.
The intuition is simple: advantage/regret-based proxy aligns better with the preference optimization
objective. We here further illustrate that they are statistically different from other choices:

• Figure 13: The distribution of informativeness values shows that reward variance is heavily
concentrated at lower values, reward mean is more uniformly scattered, and reward advantage
achieves a better balance, providing a broader yet also focused sampling range.

• Figure 14: The weak correlation between reward variance and reward advantage shows that
variance cannot serve as a substitute for advantage as a proxy for informativeness.

We have discussed the contrastive curriculum hypothesis in § 3.4 to support using reward advantage
in the sense that the induced samples tend to decrease the loss the most in the contrastive optimization.
Furthermore, assuming the optimization algorithm can converge to the more optimal responses,
neither reward mean nor variance directly capture the learning potential of such responses – one may
easily construct cases with identical variance yet differ much in reward range – thus variance fails to
distinguish such scenarios. By contrast, reward advantage estimate inherently captures the relative
improvement towards better response, and is sensitive to differences in reward range; variants of
advantage estimate are commonly used in literature, and we discuss underlying principles in § G.

Q2 (Open-Ended Objective): In Line 1399 (authors’ note: should be around Line 880 - 886
in the main OpenReview PDF), why is this objective ideal? Optimizing the prompt distribution
seems like cheating by selecting easier prompts for a higher reward.

TL;DR: No – the whole design (we impose the KL to the open-ended reference in principle, and
its approximation by the creator through regret maximization) is to avoid cheating! We also present
empirical evidence showing eva helps create more complex prompts.

Answer: To start with, we quote the conceptual objective below:

max
ε,ω

Ex↔εε(·),y↔εω(·|x)

[
r(x,y)

]
↓ ω · DKL

[
ϱς(x) · ϱω(y | x) ↗ pref(x) · ϱSFT(y | x)

]
.

Another way to express the principled objective (with refined coefficients) is:

maxε,ω Ex↔εε(·)

[
Ey↔εω(·|x)

[
r(x,y)

]
↓ ω1 · DKL

[
ϱφ(y | x) ↗ ϱSFT(y | x)

]

︸ ︷︷ ︸
solver ↑ “regret minimization”

]
↓ ω2 · DKL

[
ϱς(x) ↗ pref(x)

]

︸ ︷︷ ︸
creator ↑ “regret maximization” (implicit)

.
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Conceptually, the cheating will happen when the reference distribution is narrow or wrongly defined.
It is important that in our case pref(x) represents an underspecified, potentially intractable probability
distribution over possible tasks (instantiated via prompts) in the wild, as a realizable open-ended
reference that covers the full diversity and complexity of tasks agents may encounter, not the initial
static prompt set D. The joint regularization towards ϱref(x,y) captures the objective for agents to
generalize on alignment in pref(x) with broader open-ended prompts, while being close to the SFT
policy ϱSFT(y|x). In brief, the definition of the conceptual pref(x) and the regularization avoids
collapsing to distributions with easier prompts.

Practically, we do not directly optimize this principle, rather we design a creator-solver game to
implicitly and iteratively achieve this. It is important that we use regret as the objective and its
approximation by the estimate of the optimal reward advantage, which avoids selecting easy prompts
by design as well. See also § 3.4 on auto-curricula and learning potential for prompt selection, and
§ G for more connection between the objective and the algorithm.

For empirical evidence, as in Table 29, there is a gradual improvement of prompt complexity and
quality over iterations with eva. We also observe the creator auto-prioritizes learning in problems
like math and coding in Fig. 15, which are initially hard for it as in Fig. 16. Thus the creator also
practically does not select easier prompts in the eva game. Details can be found in § E.

Prompt Set (→) / Metric (↑) Complexity (1-5) Quality (1-5)

UltraFeedback (seed) 2.90 3.18
UltraFeedback-eva-Iter-1 3.84 3.59
UltraFeedback-eva-Iter-2 3.92 3.63
UltraFeedback-eva-Iter-3 3.98 3.73

Table 29: eva improves prompt quality and complexity.

In addition, the whole literature of curriculum RL, open-ended learning and so on are about designing
the right metric for the agents to learn increasingly complex and general capabilities, and we
summarize at § H for the reviewer’s reference.

Figure 15: Training distributions. The prompt
distribution of Table 11 for evolved prompts by
zero-shot classification. eva creates a curricu-
lum that prioritizes math / coding prompts.

Figure 16: Benchmark performance. The radar
figure for ratings on MT-Bench (Zheng et al.,
2023), where each category contains ten prob-
lems. eva prioritizes and gradually improves
on coding, math and reasoning over iterations,
implicitly reflecting a learned curriculum.

Remarks. We thank Reviewer zxTK for the constructive feedback. We have made careful
efforts to address all the weaknesses and questions raised. We would be grateful if the reviewer
may kindly consider again the rating for eva, also with regard to its strong performance gain,
theeasy-to-implement method, as well as the new principle and the tractable algorithm. If there
are additional concerns, we are more than happy to discuss and revise our manuscript further.
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REBUTTAL TO REVIEWER I9KX

Summary. We thank the reviewer for the thoughtful and detailed feedback. In response, we have:

• provided a point-by-point rebuttal fully addressing each suggested weakness and question;
• revised definitions for the regret and the informativeness proxy in § 3;
• added a detailed review on Bi-Level RLHF and open-ended learning in § I and § H;
• added detailed illustration on the method, from the principle to the asymmetric game setting,

then to the regret minimization by the solver and maximization by the creator in § G;
• added new experiments on empirical gains and prompt evaluation of eva in § D and § E.

To avoid repetition, we reorganize the questions and group related answers into a single response.

Q5 (Intuition on Open-Ended RLHF): Can you provide intuitions behind equation 7, on the KL
divergence between the joint policy for both prompt and response? Is it even tractable to estimate
or approximate this KL?
W2 (Regret and KL): The optimization is over ϱ in Eq. 9 for solving the minimax regret.
However, its not absolutely clear how the KL divergence plays a role here and how it is ensured
that the response and prompt distributions are close to reference. Without that, the alignment
problem is ill-defined. Please provide concrete justifications in theory and empirical results.
W1 (Proxy Tractability): How is Eq. 10 tractable and being solved? Any heuristic of sampling
and approximating should result in sub-optimality which is not clear where its accounted.

TL;DR: We have added § G to fully address related concerns. Regarding specific concerns:

• Q5 - Intuition. The joint regularization towards ϱref(x,y) captures the objective for agents
to generalize on alignment in pref(x) with broader open-ended prompts, while being close to
ϱSFT(y|x). Note that pref(x) is the underspecified open-ended reference, not the initial static
prompt set D. We can reformulate the principle to Eq. 8, while the KL on SFT response
policy is tractable, we need to approximate the KL on the open-ended reference pref(x). One
way to achieve this heuristically is by iteratively creating a sequence of prompt distributions.

• Q2 - KL. We have revised Eq. 9 so that the regret is the difference in the reward of the
current policy and the KL-optimal policy (thanks for catching this). For the solver, by design,
preference optimization would be equivalent to regret minimization, thus the alignment
problem remains to be correctly defined. For the creator, the distribution matching to the
open-ended reference is implicitly achieved by prompt curriculum construction, and we
present empirical evidence in § E to justify that prompts are evolving towards broader tasks
with higher complexity.

• W1 - Proxy. We have revised Definition 2 for better readability. It is estimated by sampling
multiple responses from the stochastic policy and calculating the reward range (or other
advantage-based proxy). This approximation will result in sub-optimality for creator’s regret
maximization process, and we present more discussion in § G.2.

Rebuttal: For the rebuttal to be self-contained, we extract contents from § G here.

First, we re-present the open-ended RLHF principle, and discuss the intuition under the KL regular-
ization. Next, we show heuristic approaches in open-ended learning to approximate this objective,
with a focus on minimax game formulation. Finally, we formalize the regret objective in our RLHF
setting, and discuss the regret minimization for the solver and the regret maximization for the creator.

J.1 THE CONCEPTUAL OPEN-ENDED RLHF FORMULATION

Classical RLHF optimizes over a static prompt set:

max
ω

Ex↔D,y↔εω(·|x)

[
r(x,y)

]
↓Ex↔D

[
ω · DKL

[
ϱω(y | x) ↗ ϱSFT(y | x)

]]
.
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We propose to drop the static prompt set assumption, and jointly update the prompt distribution via a
creator policy for Open-Ended RLHF, with the ideal objective below:

max
ε,ω

Ex↔εε(·),y↔εω(·|x)

[
r(x,y)

]
↓ ω · DKL

[
ϱς(x) · ϱω(y | x) ↗ pref(x) · ϱSFT(y | x)

]
.

This generalizes RLHF (Eq. 1). We can rewrite Eq. 7 with modified coefficients for precision:

maxε,ω Ex↔εε(·)

[
Ey↔εω(·|x)

[
r(x,y)

]
↓ ω1 · DKL

[
ϱφ(y | x) ↗ ϱSFT(y | x)

]

︸ ︷︷ ︸
solver

]
↓ ω2 · DKL

[
ϱς(x) ↗ pref(x)

]

︸ ︷︷ ︸
creator

.

The newly proposed pref represents an underspecified, potentially intractable probability distribution
over possible tasks in the open-ended world (instatiated via prompts) – it is not the initial static
training prompt distribution (which is only the seed set for the creator to evolve upon); it can be seen
serve as a conceptual guide to steer the prompt distribution.

To further clarify, there are two types of regularization in open-ended RLHF:

• DKL [ϱφ(y | x) ↗ ϱSFT(y | x)]: this is the classical regularization on the response policy, en-
suring that no matter how the training distribution over prompts evolves during optimization,
the response policy remained anchored to the supervised fine-tuned (SFT) policy.

– This KL (and preference optimization) is explicitly achieved in plug-in algorithms
(e.g., DPO) in Algo. 1. We later show how it relates to solver’s regret minimization.

• DKL
[
ϱς(x) ↗ pref(x)

]
: this probability matching term captures the intuition on optimizing

ϱς(x) to approach the conceptualized pref(x), in the sense that a language model optimizes
itself by adapting its training distributions with newly generated prompts for self-training to
develop increasingly general capabilities, directing its learning towards informative, new
tasks (Jiang, 2023), instead being constrained in a static, pre-defined set of tasks.

– This conceptual KL is implicitly achieved by the creator step in the current eva setting
by training on a sequence of informative prompt sets. We later show how it relates
to creator’s regret maximization. As illustrated in § 3.3.1, we start from the seed
prompt set, choose those high-regret prompts and generate variations upon them by
EvolInstruct, then mixing with a buffer of the original set to form the new training
distribution at each iteration. This approach resembles classical open-ended learning in
§ G.2, and we hope it can serve as a small step for future works to build upon.

– A common misunderstanding among readers may be to confuse the open-ended ref-
erence pref(x) with the initial seed prompt distribution D, which is static. In contrast,
pref(x) represents a broader space of tasks (e.g., user prompts in the real wild world),
as a conceptual target derived from the underspecified distribution (Dennis et al., 2020),
i.e., an environment with free parameters that control. Let’s use an illustrative example
with Fig. 6: the prompt distribution may be defined along several dimensions (e.g., the
number or complexity of coding problems); a potential creator can be designed to
modify these dimensions, steering the initial D to new training distributions, by certain
decision rules (e.g., minimax regret, which offers worst-case guarantees) that forms a
sequence of informative prompts for training.

This joint optimization objective only serves as a general principle. In the next, we discuss how
existing works implicitly achieve the open-ended learning objective through two-player games.

J.2 APPROACHING OPEN-ENDED LEARNING BY UNSUPERVISED ENVIRONMENT DESIGN

J.2.1 THE ASYMMETRIC GAME FORMULATION FOR UNSUPERVISED ENVIRONMENT DESIGN

While we cannot directly train the agent with the intractable pref(x) of the open-ended world, it is
possible to curate a curriculum of prompt distributions to improve over the static distribution
and support the continual training of the policy ϱω(·|x), for it to keep improving and succeed over
the full task space, thus conceptually approaching pref(x). This is often framed as an asymmetric
two-player game.
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Dennis et al. (2020) first formally define this problem as Unsupervised Environment Design (UED).
The idea is that while the real-world environments are inexhaustible and hard to tract, there may
exist some free parameters (e.g., height and roughness in a maze) which one may control to generate
new environments; UED then concerns about designing a distribution of those free parameters
(i.e., settings) to create new fully specified environments, that can be used to train the agents.

In this setup, one player, the creator, generates new environments based on some specific decision
rules (see the following), while the other player, the solver, optimizes its policy within these training
environments, and the process continues iteratively. Common heuristic strategies include:

• Randomization: environments are generated uniformly and independently of the solver’s
current policy. This method is simple but less effective (Tobin et al., 2017).

• Maximin: the creator generates environments that minimize the solver’s maximum possible
reward, which can often lead to unsolvable scenarios (Khirodkar and Kitani, 2018).

• Minimax regret: The creator targets environments that maximize the solver’s regret, defined
as the difference between the optimal return achievable and that of the solver’s current
policy (Beukman et al., 2024b). The regret is often conceived as the creator’s utility.

Among them5, the minimax regret approach presents a sweet spot where the creator can create
hard yet solvable environments, and is often empirically better. The minimax regret strategy also
implies that the agent’s policy is trained to perform well under all levels/settings, thus enjoys a
worst-case guarantee. However, while it is often straightforward for the solver to minimize the regret
(e.g., through direct policy optimization, as we discuss in § G.3), the optimal policy remains unknown
during the optimization process, thus regret as the decision signal is often intractable to the creator
– which requires approximation (as an amusing side note, this is described as the Achilles’ heel of
those curriculum RL methods by Parker-Holder et al. (2022)).

J.2.2 APPROXIMATING THE REGRET AND GENERATING NEW ENVIRONMENTS

In general, the creator design in this line of research contains two steps:

1. identifying high-regret levels using different (often heuristic) regret approximation;
2. generating new environments by making variations or retrieving from buffers on those

high-regret levels.

We hereby review major works on regret approximation and environment generation as follows:

Dennis et al. (2020) propose joint training for the creator and two competing solvers.

• Regret approximation: here, two solver policies are trained, with the regret approximated
as the difference in their returns. During each optimization step, one solver maximizes
this regret, the other minimizes it, and the creator maximizes it.

• Environment generation: the system directly sample the parameter from the creator policy
and use that to specify the environment.

Jiang et al. (2021b) propose to random sampling on high-regret levels.

• Regret approximation: as a heuristic, the authors use positive value loss, which is a function
of Generalized Advantage Estimate (Schulman et al., 2015) (which itself is a function of the
TD error – the difference between the expected and the actual returns) as the creator’s utility.

• Environment generation: the creator have a rolloing buffer of highest-regret levels by
random searching on relevant configurations.

Jiang et al. (2021a) further propose a double-creator setting based on (Jiang et al., 2021b), where one
creator is actively generating new environments, and the other is retrieving from the buffer.

Parker-Holder et al. (2022) propose to sample high-regret levels and generate new environments by
making edits on existing ones. The regret approximation is the same as (Jiang et al., 2021b) – the

5We have implemented variants of these in § 4.2.1, and show minimax regret is empirically better.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

positive value loss. For the environment generation, the authors suggest a general editing/mutation
mechanism, where the creator chooses from high-regret levels and make small variations within an
edit distance, which by heuristics will lead to the discovery of more high-regret environments. There
is an additional filtering step: they do not directly train on the newly generated levels, but evaluate on
those levels first, then add only the high-regret ones to the training buffer.

Note the solvers are often directly trained with PPO (Schulman et al., 2017) under the environments.

J.3 REGRET FORMULATION FOR OPEN-ENDED RLHF

Next, we discuss the regret minimization and maximization in our setting for alignment. Specifically,

• Regret minimization for the solver: we avoid calculating regret and use direct policy
optimization (e.g., DPO) to equivalently achieve regret minimization.

• Regret maximization for the creator: similarly to (Jiang et al., 2021b; Parker-Holder et al.,
2022), we first find an approximation of regret, then curate new environments for the solver
to train on by (i) sampling from a replay buffer of existing prompts, and (ii) making variations
(through EvolInstruct (Xu et al., 2023a)) on those high-regret prompts. Specifically, we
use advantage-based estimates of the current policy, as summarized in Table 2.

This asymmetric two-player game serves as one potential modeling choice to implicitly achieve the
open-ended RLHF principle that we proposed in Definition 1. We look forward to exploring more
principled solutions in the future.

KL-regularized regret. In the RLHF setting at fixed prompt distribution, the objective is:

max
εω

Ex↔εε(·),y↔εω(·|x)


r(x,y)


↓Ex↔D


ω · ϱς(·)KL

[
ϱω(y | x) ↗ ϱSFT(y | x)

]
.

The optimal policy of the above KL-constrained objective is:

ϱ↼
KL(y | x) = 1

Z(x)
ϱSFT(y | x) exp

(
1

ω
· r(x,y)

)
.

In our current setting, we assume there is an oracle preference model for the preference pair labeling.

We can now formally define the regret with regard to ϱ↼
KL(· | x) as:

RegretKL(x,ϱω) = Ey↔εω(·|x)

[
r(x,y)

]
↓ Ey↔εϑ

KL(·|x)

[
r(x,y)

]
. (22)

Regret Minimization for the Solver. It is rather straightforward/trivial to understand the objective
of the solver ϱω(· | x) as regret minimization, since the goal is to align the policy ϱω(· | x) with
the KL-optimal solution ϱ↼

KL(· | x), which directly minimizes the KL-regularized regret by design.
This formulation allows flexibility in the plug-in preference optimization algorithms for the solver’s
step in Algorithm 1, and ensures the alignment problem is well-defined. In practice, we use Direct
Preference Optimization (DPO) and its variants, which approximate the KL-optimal solution by
iteratively adjusting ϱω to reflect preference differences.

Regret Maximization for the Creator. As discussed previously, while it is often trivial for the
solver to minimize the regret through direct policy optimization, the optimal policy remains unknown
during the optimization process, thus we cannot directly calculate the regret – we must approximate
it when using it as the utility for the creator. Similarly to heuristics proposed by prior works (Jiang
et al., 2021b;a; Parker-Holder et al., 2022), we use the advantage-based estimate:

| ˆRegret(x,ϱω)| ↔ infoω(x) := r(x,y+)↓ r(x,ybaseline), (23)

where
y+ := argmaxyi

r(x,y), (24)
ybaseline := argminyi

r(x,y) or ybaseline := avgyi
r(x,y), (25)
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and {yi}i=1 is a set of responses sampled from ϱω(· | x) and r(·, ·) is the reward oracle. We
use argminyi

r(x,y) by default due to its simplicity and efficiency (see also § 3.4 for additional
interpretation) and consistent strong empirical gains we observed in vast experiments. As the
policy optimizes, the proxy should approximate the true regret better. We leave exploration of other
informativeness proxy designs in eva to future work.

For new environment generation, as illustrated in § 3.3.1, we start from the seed prompt set, choose
those high-regret prompts and generate variations upon them by EvolInstruct, then mixing with a
buffer of the original set to form the new training distribution at each iteration.

W3 (Understanding the Iterative Algorithm): As described in Algorithm 1, informativeness is
evaluated and a prompt subset is created based on current policy estimate and then the policy is
updated based on the prompt subset. However, this causes an inter-dependence between the two
which leads to nested structure, which is not clearly explained. Specifically, while computing the
informativeness score for the prompts, it depends on ↼↼(xt↑1) , i.e., optimal parameter for the
previous distribution. Provide clear explaination on the same.

TL;DR: (i) We revised Algo. 1 with updated subscripts to reflect the training process – please take a
look in our main paper. Given a current model checkpoint, we evaluate the prompt informativeness
based on it, and evolve a new prompt set more informative to the current checkpoint, and use the
new prompt set for continual training. (ii) We intend to use an iterative best-response framework to
approximate equilibrium in expectation, balancing computational efficiency and practicality.

Rebuttal: The iterative updates in eva, as described in Algo. 1, are based on a best-response-to-best-
response framework. Specifically, the creator updates the prompt distribution based on the solver’s
current policy, and the solver then optimizes its policy over the updated prompts, and the process
repeats. This sequential structure approximates a Nash equilibrium in expectation over iterations,
inspired by works such as Freund and Schapire (1999); Wu et al. (2024), which establish convergence
to optimal policies on average through iterative optimization.

We intentionally avoid simultaneous joint optimization as it would significantly increase computa-
tional and memory overhead, making it less practical for integration into current RLHF pipelines.

W4 (Understanding Reward Models): While iterating, every new prompt distribution will
require generating new response, how is the evaluation coming from which reward model? Is the
ground reward available, if not please explain how the preference is obtained and how does it
affect suboptimality? Also: Q3 (RM Availability): What’s the reward model availability? Is the
true reward model available?

TL;DR: We assume a preference oracle provided by an external, pre-trained reward model, which
is practically used in many real-world LLM training scenarios (Team et al., 2023).

Rebuttal: As discussed in the beginning of the experimental setting in § 4, we assume the availability
of a pre-trained, fixed reward model. This approach is practically adopted in industry (Team et al.,
2023; 2024a;b) and is also commonly used in academia works (Xu et al., 2023b; Meng et al., 2024;
Wu et al., 2024). The reason is more on efficiency concerns. For example, in GEMMA-2 training, the
reward model is an order of magnitude larger than the policy (Team et al., 2024b); it would thus be
impractical or the gain may only be marginal if we update the reward model on-the-fly.

Nevertheless, it is possible to incorporate the online RM training within eva – we have shown in
§ 4.2.3 (ablation studies) that eva scales with quality of reward models, thus integrating online RM
training may further enhance performance and address the potential distribution mismatch problem.
We believe this is an interesting direction to pursue, and have listed it in § 6 (future works) on adding
more players including rewarders in the self-play loop.

W5 (Improvement of Sub-Optimality): Overall, which expression/Theorem guides us in under-
standing the improvement of prior suboptimality is not clear? Can you please point out/highlight
how the current method improves upon the prior suboptimality due to static prompt distribution?
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TL;DR: The improvement of sub-optimality is guided by the minimax regret objective (Remark 1)
through its iterative implementation. While this work does not explicitly derive suboptimality bounds,
our approach has demonstrated strong empirical gains over the training by static distributions, as
shown in § 4 (main experiments), § E (benchmark performance), and § D.2 (alignment gains over
iterations).

Rebuttal: In general, the improvement of prior suboptimality due to static prompt distributions is
guided by the minimax game outlined in Remark 1. This expression forms the basic foundation
for our iterative algorithm, where the creator updates prompts to maximize informativeness (proxy
for regret), and the solver minimizes regret (through direct preference optimization). This iterative
process ensures the solver and creator adapt to each other, implicitly forming a curriculum and
addressing sub-optimality in static prompts. We also added § G to help illustrate the intuition behind.

In general, the empirical results in § 4 (main results), § E (curriculum effect and benchmark improve-
ment), and § D.2 (alignment gains over iterations) demonstrate that the dynamic prompt distribution
improves solver performance and alignment metrics, thereby mitigating suboptimality. While the
current package does not explicitly derive sub-optimality bounds (as would be typical in formal
RL/bandit theory papers) and emphasizes practicality and usability as a methodology paper, we
would love to learn if the reviewer has any suggestions for this as the future work.

W6 (Prompt Distribution): It is extremely crucial to show the prompt distribution and demon-
strate its perplexity to ensure its not generating some meaningless or irrelevant prompts, since its
not very evident on the KL divergence in the prompt space and its relation with the informative
measure. Please provide detailed explanation to clarify that.

TL;DR: We have (i) added experimental results in § E (prompt distribution visualization) and § J
(prompt examples) to verify that eva evolves meaningful and relevant prompts with improved
complexity and quality; (ii) added explanation in § G (detailed illustration of method) on the KL
regularization in the prompt space and the implicit approximation by the creator.

Rebuttal: (This rebuttal also addresses Reviewer ac2p’s concerns on curriculum.)

We have revised the manuscript with additional visualization on potential curriculum learned in § E.
In general, we observe the creator prioritizes learning in math and coding for the generated prompt
distribution, which brings gradual improvement on benchmark performance on relevant categories
over iterations. In other words, eva effectively shifts focus towards harder yet learnable categories.
We have attached the bar plot and radar figure here for the reviewer’s reference:

Figure 17: Training distributions. The prompt
distribution of Table 11 for evolved prompts by
zero-shot classification. eva creates a curricu-
lum that prioritizes math / coding prompts.

Figure 18: Benchmark performance. The radar
figure for ratings on MT-Bench (Zheng et al.,
2023), where each category contains ten prob-
lems. eva prioritizes and gradually improves
on coding, math and reasoning over iterations,
implicitly reflecting a learned curriculum.

We have added Table 16 providing qualitative examples for evolved prompts. Also, as noted in § G,
the solver maintains KL regularization during optimization, ensuring that the response distribution
remain close to the reference policy; in the this work, we do not explicitly add KL regularization in
the prompt distribution since we do not directly conduct parameter update for the creator (which we
empirically find to bring training instability); rather, we use meta instructions and buffer sampling
to constrain the prompt generations (as described in § 3.3, § A and § D.1), which is empirically very
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effective, and introduces only minimal changes to existing pipeline thus can be easily applied. As
noted in § 6, we look forward to future works on making the creator policy differentiable.

Regarding the relation with the informativeness measure, our current proxy is an efficient proxy
among many possibilities. We have provided detailed discussions in § G to help interpret it. There
could be other proxies – one interesting direction is to completely remove the dependence on the
reward model and directly use model likelihoods to make the prompt selection.

We note that perplexity is not commonly used or not the most preferred measure for data quality
in practical training of large language models (Team et al., 2023; Fang et al., 2024), and can be
computationally heavy to measure. We have added experiments in § E.1 which we follow Liu et al.
(2023b) to generatively measure the complexity and quality of prompt distributions. As in Table 30,
there is a gradual improvement of prompt complexity and quality over iterations with eva. We hope
this would address the reviewer’s concerns.

Prompt Set (→) / Metric (↑) Complexity (1-5) Quality (1-5)

UltraFeedback (seed) 2.90 3.18
UltraFeedback-eva-Iter-1 3.84 3.59
UltraFeedback-eva-Iter-2 3.92 3.63
UltraFeedback-eva-Iter-3 3.98 3.73

Table 30: eva improves prompt quality and complexity.

Q1 and Q2 (KL in the Solver Loop): Since equation 7, can’t be directly solved, and is solved in
an asymmetric fashion, then in the solver loop the KL should be over the response distribution
and not joint right? How is the KL divergence w.r.t reference policy for the algorithm? Please
provide detailed ablation.

Answer: (i) Yes, in the solver loop, the KL regularization is applied over the response distribution,
not the joint distribution, as shown in Line 5 of Algo. 1. (ii) The KL divergence w.r.t. reference policy
is determined by the plug-in solver (e.g., DPO, SimPO, ...), which is orthogonal to our framework.
We have added detailed explanation in § G to illustrate the whole process.

Q4 (Literature): There is a recent line of works on Stacklberg and Bilevel RLHF which deals
with the entanglement in a leader-follower setting. Although not specific to updating prompt dist,
but can be trivially applied. Provide a detailed comparison with the literature around that [1,2,3].

TL;DR: We thank the reviewer for this nice suggestion. Please see below for a detailed review on the
relevant literature, highlighting the unique contribution of eva. We have added § I in the manuscript.

Rebuttal: Bi-level optimization refers to optimization problems where the cost function is defined
w.r.t. the optimal solution to another optimization problem (Grosse, 2022). There is a recent line
of works applying bi-level optimization to RLHF. While they all rely on a fixed dataset of prompts,
eva propose to dynamically update the prompt set, as in § 1. We present a detailed comparison
of eva with Ding et al. (2024); Shen et al. (2024); Makar-Limanov et al. (2024). We thank the
anonymous reviewer for the kind references, and welcome suggestions for any other works we may
have missed.

Ding et al. (2024) formulate iterative online RLHF as a bi-level optimization problem, where the
upper-level represents the reward learning, and the lower-level represents the policy optimization.
Leveraging reward re-parameterization tricks in Rafailov et al. (2023), Ding et al. (2024) reduces the
problem to a single-level objective with regard to the policy. The differences of this work and our
work lie in the prompt distribution and preference oracle: (i) eva features by dynamic prompt set
generation for Open-Ended RLHF, whereas (Ding et al., 2024) remains using a static prompt set;
(ii) we assume the existence of the preference oracle (as discussed in § 4), while Ding et al. (2024)
consider online training of reward models and ablate on self-rewarding by the current LLM policy.
Our usage of a pre-trained reward model follows from industrial practices (Team et al., 2023; 2024b),
which is also commonly used by prior works in academia (Meng et al., 2024; Wu et al., 2024).
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Makar-Limanov et al. (2024) provide an interesting exploration on formulating RLHF as a leader-
follower game, where the language model (LM) policy is the leader and the reward model (RM) policy
is the follower, and the solution is Stackelberg equilibrium (von Stackelberg, 1934; Rajeswaran et al.,
2020), where the leader does not likewise best respond to the follower’s strategy. Here, following
the curriculum RL literature (Dennis et al., 2020; Parker-Holder et al., 2022), we seek the Nash
equilibrium (Nash et al., 1950) between the creator for prompt generation and the solver for response
generation. In the current setting of eva, the goal is to search for an optimal solver policy with a
best supporting prompt distribution, and an optimal prompt distribution with a best supporting solver
policy. Nevertheless, the LM-RM iterative optimization may be added on top of eva’s framework,
and we look forward to future works exploring the leader-follower re-formulation of eva.

Shen et al. (2024) present a rigorous theoretical work (though it does not directly involve practical
post-training of large language models). The authors propose to reduce the bi-level problem to
a single-level problem with a penalty-based reformulation, and apply it in the setting of LM-RM
optimization within a fixed environment, whereas eva focuces on dynamic prompt generation and
practically train large language models with extensive empirical experiments conducted. We believe it
would be interesting to adapt similar first-order optimization techniques to solve Open-Ended RLHF.

In summary, existing bi-level RLHF works focus on online optimization of both the RM and the
LM (as the response policy), all with fixed prompt/state distribution. eva presents an orthogonal
direction on dynamic prompt generation for Open-Ended RLHF, with an empirical algorithm which
attains state-of-the-art performance with large language models on a variety of benchmarks. It is
possible to incorporate the online RM training within eva – we have shown in § 4.2.3 that eva
scales with quality of reward models, thus integrating online RM training may further enhance
performance and mitigate potential distributional mismatch problems as we evolves for more prompts.
This direction may have not been widely adopted in real-world training of language models, due
to concerns about practicality (Team et al., 2023; 2024a;b; Adler et al., 2024). We look forward to
future works exploring efficient variations unifying eva and existing bi-level RM-LM frameworks.

Final Remarks. We thank the reviewer for the precious time and efforts on the eva method. We
value all those opinions, and have made every effort to thoroughly address the concerns raised
and revise our manuscript accordingly. Regarding the rejection, we hope the reviewer may kindly
consider the points that we have summarized at the beginning of this rebuttal, on the strong
empirical alignment gain brought by the simple design of eva, also on judging the merit of
a work (cf., (Castro, 2021)) w.r.t. the practicality and how the community may easily build on
top of the principle and the method we proposed (cf., (Hamming, 1986)), which we are confident
are valuable to the broader alignment community. We look forward to any future discussion, and
would be grateful if the reviewer may consider revising the score if the revision is satisfactory.
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APPENDIX

The appendix is organized as follows:

• § A - Details On Reproducibility
• § B - Plug-In Loss Functions Used In Main Results
• § C - Extended Results for Experiments in the Main Paper
• § D - Additional Experiments
• § G - Illustration on Methodology
• § E and § J - Illustrations on Prompts, Responses and Relevant Distributions
• § H and § I - Additional Literature Review

A DETAILS ON REPRODUCIBILITY

Our code is built based on many open-source packages, and we sincerely thank every developer and
contributor of these projects for their efforts and contributions to the community.

Code release. We hope to open-source all codes, generated data and trained models, upon approval
– before then, we are more than happy to provide any clarification to help re-implement eva and
replicate our results. In general, our code base is made to be simple to use for practitioners, requiring
only a creator module addition within the commonly adopted Alignment Handbook pipeline.

Hyperparameter settings. We follow the original hyperparameter settings as in (Hong et al., 2024;
Meng et al., 2024; Wu et al., 2024), default to be:

Hyperparameter (→) / Loss (↑) DPO ORPO SimPO SPPO
learning rate 5e-7 5e-7 8e-7 5e-7
learning rate scheduler cosine cosine cosine linear
ω 0.05 / 10 0.001
ε / / 5 /
ϑ / 0.5 / /
no. epochs per iter 2 1 1 6
warmup ratio per iter 0.1 0.1 0.1 0.1
effective batch size 8 8 32 8
max length 2048 2048 2048 1024
max prompt length 1024 1024 1024 512
optimizer adamw adamw adamw rmsprop

Iterative Training Settings. By default (Tran et al., 2023; Yuan et al., 2024), we train with equal-
size prompt subset in each iteration. Unless otherwise specified, we use 10K prompts from the
UltraFeedback dataset (Cui et al., 2023) per iteration. The incremental training proceeds as follows:

• ω0 : Base SFT model.
• ω0→1 : initialize with ω0; then train with the prompt split X1 by self-generated responses

from the initial model ω0.
• ω1→2 : initialize with ω0→1; trained with the prompt split X2 via by self-generated responses

from the initial model ω0→1.

For evolving prompts (e.g., evolving X1 to X1̃), with the calculated informativeness metric for
each prompt, we normalize them as the weight to do weighted sampling for a 25% informative
subset to get X info

1 . We then iterate over in X info
1 and call EvolInstrut (Xu et al., 2023a)

as the plug-in evolving method (with the number of evolutions as 4) using the default mutation
templates for (i) in-depth evolving (constraints, deepening, concretizing, increased reasoning steps)
and (ii) in-breadth evolving (extrapolation) as implemented in tasks/evol instruct/utils.py
of distilabel==1.3.2. Next we uniformly select 80% prompts from this evolved dataset and
20% from the original dataset (i.e., the buffer) to form X1̃. We do not seek extensive parameter
search (e.g., the number of evolutions, the evolving ratio) in this stage and encourage future works on
exploring this and other plug-in evolving methods. For solver we generate 6 responses per prompt.
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Software environments. All experiments are conducted on 8xNVIDIA H100 SXM GPUs. Our
codebase primarily relies on transformers==4.40.0. For the response generation of GEMMA
models at the training stage, we use vllm==0.5.4 with flashinfer backend for CUDA 12.4 and
torch 2.4. For evolving prompts, we use distilabel==1.3.2, and use LiteLLM to serve Gem-
ini (default to be gemini-1.5-pro) and transformers models (default to be gemma-2-9b-it).
For evaluation on all benchmarks, we use sglang==0.2.10 and openai==1.35.14, with
gpt-4-1106-preview as the judge model and gpt-4-0314-preview as the baseline model.
Specifically for AlpacaEval 2.0, we use alpaca eval gpt4 turbo fn as the annotator config. We
use 42 as the random seed.

B PLUG-IN LOSS FUNCTIONS USED IN MAIN RESULTS

With Reference Model

DPO (Rafailov et al., 2023) ϖω(ϱω) = ↓ log
[
ς
(
ω ·!x

εω ;εref

)]
:= ↓ log

[
ς
(
ω · log εω(y+|x)

εref(y+|x) ↓ ω · log εω(y→|x)
εref(y→|x)

)]

SPPO (Wu et al., 2024) ϖω(ϱω) = ↓ log

[
ς

((
ω · log εω(y+|x)

εref(y+|x) ↓
1
2

)2
+
(
ω · log εω(y→|x)

εref(y→|x) +
1
2

)2
)]

Without Reference Model

SimPO (Meng et al., 2024) ϖω,ϑ(ϱω) = ↓ log
[
ς
(
ω ·!x

ε1/|y|
ω ;1

↓ φ
)]

:= ↓ log
[
ς
(

ω
|y+| log ϱω(y+|x)↓ ω

|y→| log ϱω(y↑|x)↓ φ
)]

ORPO (Hong et al., 2024) ϖϖ(ϱω) = ↓ log
[
ς
(
ϑ ·!x

oddsω ;1

)]
:= ↓ log

[
ς
(
ϑ · log oddsω(y+|x)

oddsω(y→|x)

)]
, where oddsω = εω

1↑εω

Table 6: Direct preference alignment algorithms used in the main experiments. In parameter tuning,
we include an additional negative log-likelihood loss for chosen responses (i.e., ϱ

|y+| log ϱω(y+|x)).

C ADDITIONAL EXPERIMENTAL RESULTS FOR THE MAIN PAPER

In general, eva maintains the accuracy on downstream tasks and is robust on those reasoning-heavy
tasks, and the scaling with reward models is more prominent on AlpacaEval, possibly due to the
training sources for such reward models.

Method (→) / Dataset (↑) MUSR-TA TruthfulQA-Gen WMDP GSM8K GSM-Plus MMLU-Pro
ω0: SFT 38.80 34.76 58.62 24.64 18.62 52.08

ω0→1: DPO 38.40 34.76 58.45 24.56 18.50 52.63
ω1→1̃: + eva 38.40 34.15 58.40 24.26 17.96 53.03
ω0→1: SPPO 40.80 34.15 58.72 24.79 18.42 52.70
ω1→1̃: + eva 41.20 34.64 58.94 25.40 18.88 52.47

Table 7: Performance on Downstream tasks.

Model Family (↑) GEMMA-2-9B-IT

Benchmark (↑) MT-Bench Arena-Hard AlpacaEval 2.0
Method (→) / Metric (↑) avg. score 1st turn 2nd turn WR (%) LC (%) WR (%)

ω0→1: DPO 8.66 9.01 8.32 51.6 55.01 51.68
ω1→1̃: + eva-i (ARMO-8B) 8.90 9.04 8.75 60.1 55.35 55.53
ω1→1̃: + eva-i (SKYWORKRM-27B) 8.75 9.07 8.43 60.3 56.12 56.40

Table 8: Effect of (pointwise) reward models.

Model Family (↑) GEMMA-2-9B-IT

Benchmark (↑) MT-Bench Arena-Hard AlpacaEval 2.0
Method (→) / Metric (↑) avg. score 1st turn 2nd turn WR (%) LC (%) WR (%)

ω0→1: SPPO 8.62 9.03 8.21 55.7 51.58 42.17
ω1→1̃: + eva-i (PAIRRM-0.4B) 8.78 9.11 8.45 58.9 51.86 43.04
ω1→1̃: + eva-i (PAIRRM-8B) 8.89 9.08 8.70 60.2 52.71 44.52

Table 9: Effect of (pairwise) reward models.
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D ADDITIONAL EXPERIMENTAL RESULTS (AS EXTENSIONS)

D.1 EXPERIMENTS ON DIFFERENT evolve(·) METHODS

As an addition to Table 1, we have experimented with three different evolve(·) methods, including:

• SelfInstruct (Wang et al., 2022): Given seed prompts, variations are created based on criteria
such as verb diversity and style blending (mixing interrogative and imperative styles). Unlike
EvolInstruct (Xu et al., 2023a), which generates prompt variations sequentially, this approach
generates independently. We follow the one-shot implementation in self instruct.py of
distilabel==1.4.1 and modified the instruction on conciseness so that newly generated
prompts have similar lengths compared to the seed prompts.

• EvolQuality and EvolComplexity (Liu et al., 2023b): The two methods use the same
evolutionary approach (i.e., sequentially generating), but with slightly different meta-
instructions for prompt generation, where EvolQuality asks to improve the quality
(i.e., helpfulness, relevance, etc) of the seed prompt and EvolComplexity asks to im-
prove the complexity (i.e., increased reasoning steps, etc) of the seed prompt. We follow
the implementation in evol quality/utils.py and evol complexity/utils.py of
distilabel==1.4.1.

Model Family (↑) GEMMA-2-9B-IT

Benchmark (↑) Arena-Hard
Method (→) / Metric (↑) WR (%) avg. len
ω0: SFT 41.3 544

ω0→1: DPO 51.6 651
ω1→1̃: + eva (evolve(·) = EvolInstruct) 60.1 733
ω1→1̃: + eva (evolve(·) = EvolQuality) 58.7 721
ω1→1̃: + eva (evolve(·) = EvolComplexity) 60.6 749
ω1→1̃: + eva (evolve(·) = SelfInstruct) 57.2 725

Table 10: Results of using different evolving methods.

eva is effective under different evolving methods. As shown in Table 10, our method brings
strong performance gain without training with additional human prompts. Among the experimented
methods, we find EvolComplexity shows better results.

We believe the main strength of such method is its simplicity. Viewing the evolving process as
x↓ ↔ pω(· | x, meta prompt), one can easily tune the meta prompt in natural language for improved
performance. However, such simplicity comes at a price: (i) the main weakness is that the default
method does not take environmental feedback into account (e.g., rewards received, verbal critique
on responses, etc) and relies on the pre-defined meta prompt, thus the evolving may be less directional;
we encourage practitioners to consider incorporating more richer feedback during evolving (one way
to formulate this is by generative optimization (Yuksekgonul et al., 2024; Cheng et al., 2024; Nie
et al., 2024)); (ii) another weakness is that existing method is single-shot (i.e., we evolve based on
a single x each time), thus the diversity of the generation may be limited – we anticipate future
works improving this with multi-shot evolving by graph-based sampling. In this regard, the evolving
process can be viewed as {x↓}Ni=1 ↔ pω(· | {x}Mi=1, meta prompt, env feedback).

D.2 EXPERIMENTS ON NUMBER OF ITERATIONS

As an addition to § 4.2.4, we have experimented with the following settings:

• 10K prompts per iteration with 3 iterations.
• 20K prompts per iteration with 3 iterations (i.e., all seed prompts are used).
• 60K prompts per iteration with 2 iterations (i.e., all seed prompts are used).

Due to time constraints, we did not perform an extensive hyper-parameter search; however, we believe
the results presented below sufficiently demonstrate the performance gains achieved by eva.
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Model Family (↑) GEMMA-2-9B-IT

Benchmark (↑) Arena-Hard
Method (→) / Metric (↑) WR (%) avg. len
ω0: SFT 41.3 544

ω0→1: DPO (10k) 51.6 651
ω1→2: DPO (10k) 59.8 718
ω2→3: DPO (10k) 61.2 802
ω1→1̃: + eva (10k) 60.1 733
ω1̃→2̃: + eva (10k) 62.0 787
ω2̃→3̃: + eva (10k) 62.2 774

Table 11: Results of using 10k prompts per iteration (DPO + length-penalized NLL loss).

Model Family (↑) GEMMA-2-9B-IT

Benchmark (↑) Arena-Hard
Method (→) / Metric (↑) WR (%) avg. len
ω0: SFT 41.3 544

ω0→1: DPO (20k) 53.2 625
ω1→2: DPO (20k) 47.0 601
ω2→3: DPO (20k) 46.8 564
ω1→1̃: + eva (20k) 59.5 826
ω1̃→2̃: + eva (20k) 60.0 817
ω2̃→3̃: + eva (20k) 61.4 791

Table 12: Results of using 20k prompts per iteration (DPO + length-penalized NLL loss).

Model Family (↑) GEMMA-2-9B-IT

Benchmark (↑) Arena-Hard
Method (→) / Metric (↑) WR (%) avg. len
ω0: SFT 41.3 544

ω0→1: DPO (60k) 58.9 717
ω1→1̃: + eva (60k) 59.6 725
ω1̃→1̃↑ : + eva (60k) 61.9 792

Table 13: Results of using 60k prompts per iteration (DPO + length-penalized NLL loss).

eva can bring robust gains with multiple iterations. As shown in Table 11, 12, and 13 below, our
method presents persistent performance gain over iterations, and concretely surpasses the performance
by default DPO training with true human prompts.

However, there exist diminishing marginal gains in iterative off-policy training. We ground eva in
the iterative (off-policy) preference alignment paradigm due to its efficiency and ease of integration.
However, such paradigms inherently face diminishing returns, where performance gains decrease
with successive iterations, as previously observed in (Wu et al., 2024; Setlur et al., 2024; Yuan et al.,
2024; Nikishin et al., 2022). While the generative data schedule in eva mitigates these challenges
and extends beyond default training with human prompts (see also §4.2.4), the gains can weaken
over iterations. We summarize potential reasons as: (i) the off-policy signal decay – as the number
of examples increases, signals from the off-policy data become weaker due to distributional shift;
(ii) the loss of plasticity, where the agent’s ability to learn good policies decreases in continuing
training with more iterations (Nikishin et al., 2022); (iii) the ability of the solver – as we evolve more
harder prompts, it is harder for the solver to produce preferred response (thus more explicit reasoning
techniques may be needed); (iv) the ability of the reward model to correctly provide reward signals
to responses and thus informativeness signals to prompts, as there may exists distributional mismatch.

Thus, we envision future work to build on eva by: (i) exploring its integration with on-policy RLHF
(e.g., instead of evolving prompts in iterations, one may evolve in batches); (ii) enhancing solver
capabilities, such as sampling more responses during inference or leveraging meta-instructions to
guide deeper reasoning; (iii) online training of RM to co-evolve with the creator and the solver.
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D.2.1 BONUS EXPERIMENTS ON rewriter(·) IN THE LOOP

Though beyond the current package, we present the basic idea here for practitioners to build upon. The
motivation comes from the hypotheses derived from § D.2: as the prompts gets harder by evolving,
there may be greater demands on the solver’s capabilities compared to earlier iterations. As such, the
solver may not be naively treated the same. One may address this by either inference-time scaling on
responses or introducing meta-instructions to explicitly enhance the solver’s reasoning.

We design a proof-of-concept experiment w.r.t the latter by adding rewriter in eva’s solver step.
Previously, as in Algo. 1 and § 3.3.2, for each prompt x, we generate multiple responses, and choose
the best as y+ and the worst as y↑ for preference optimization. Now, we add one more rewriting
step that attempts to enhance y+ to be y↓

+, by applying a rewriting instruction (Liu et al., 2023b) that
asks the solver to alter y+ with imporved helpfulness, relevance, reasoning depths, creativity and
details while keeping the similar length. We then train with (x,y↓

+,y↑) for preference optimization.
Table 14 shows that adding the rewriter yields concrete performance gains over the default training
method, while keeping the training budget and slightly increasing cost for offline data generation.

Model Family (↑) GEMMA-2-9B-IT

Benchmark (↑) Arena-Hard
Method (→) / Metric (↑) WR (%) avg. len
ω0: SFT 41.3 544

ω0→1: DPO 51.6 651
ω1→1̃: + eva 60.1 733
ω1→1̃: + eva with rewriter 61.9 741

Table 14: Results of adding rewriter in the solver step.

E CURRICULUM VISUALIZATION OVER ITERATIONS

We now present initial observations supporting the intuition in § 3.4, where eva brings auto-curricula
and the creator is incentivized to create new prompts that are both learnable and worth-learning.

Figure 6: Training distributions. The prompt distribution of Table 11 for evolved prompts by zero-
shot classification. eva creates a curriculum that prioritizes math / coding prompts over iterations.

Figure 7: Benchmark performance. The radar figure for ratings on MT-Bench (Zheng et al., 2023),
where each category contains ten problems. eva prioritizes and gradually improves on coding, math
and reasoning over iterations, implicitly reflecting a learned curriculum.
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E.1 COMPLEXITY AND QUALITY OF PROMPTS OVER ITERATIONS

Prompt Set (→) / Metric (↑) Complexity (1-5) Quality (1-5)

UltraFeedback (seed) 2.90 3.18
UltraFeedback-eva-Iter-1 3.84 3.59
UltraFeedback-eva-Iter-2 3.92 3.63
UltraFeedback-eva-Iter-3 3.98 3.73

Table 15: eva improves prompt quality and complexity.

As in Table 15, there is a gradual improvement of prompt complexity and quality over iterations
with eva. We sample 10K prompts per iteration, and use the below prompts modified from Liu et al.
(2023b) for the complexity and quality evaluation, with gemini-1.5-flash as the scorer:

Rank the following questions according to their quality. Your evaluation should consider the following
factors: Helpfulness, Relevance, Accuracy, Depth, Creativity, and Level of detail.ω→

Score each response from 1 to 5: 1: Poor quality, 2: Below average, 3: Average, 4: Good, 5: Excellent.

Ranking the following questions according to their difficulty and complexity. Use a fixed scoring system: 1:
Very simple, 2: Simple, 3: Moderate, 4: Difficult, 5: Very difficultω→

F VISUALIZATION ON PROMPT SELECTION METRIC

Figure 8: The probability density distributions
of informativeness metrics compared in Ta-
ble 3 – they show different patterns.

Figure 9: The correlation plot for reward ad-
vantage (ours) and reward variance – they are
only weakly correlated.

In eva, we assign each prompt an informativeness value, which the creator will use as the weight to
sample from the seed prompts for prompt synthesis. In § 4.2.1, we have shown that traditional methods
like reward mean and reward variance are less effective as our advantage-based informativeness proxy.
The intuition is simple: advantage/regret-based proxy aligns better with the preference optimization
objective. We here further illustrate that they are statistically different from other choices:

• Figure 8: The distribution of informativeness values shows that reward variance is heavily
concentrated at lower values, reward mean is more uniformly scattered, and reward advantage
achieves a better balance, providing a broader yet also focused sampling range.

• Figure 9: The weak correlation between reward variance and reward advantage shows that
variance cannot serve as a substitute for advantage as a proxy for informativeness.

We have discussed the contrastive curriculum hypothesis in § 3.4 to support using reward advantage
in the sense that the induced samples tend to decrease the loss the most in the contrastive optimization.
Furthermore, assuming the optimization algorithm can converge to the more optimal responses,
neither reward mean nor variance directly capture the learning potential of such responses – one may
easily construct cases with identical variance yet differ much in reward range – thus variance fails to
distinguish such scenarios. By contrast, reward advantage estimate inherently captures the relative
improvement towards better response, and is sensitive to differences in reward range; variants of
advantage estimate are commonly used in literature, and we discuss underlying principles in § G.
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G EXTENDED ILLUSTRATION ON THE METHODOLOGY

This is an extended version of § 3. In § G.1, we re-present the open-ended RLHF principle in
Definition 1, and discuss the intuition under the KL regularization. In § G.2, we show heuristic
approaches in open-ended learning to approximate this objective, with a focus on minimax game
formulation. In § G.3, we formalize the regret objective in our RLHF setting, and discuss the regret
minimization for the solver and the regret maximization for the creator.

G.1 THE CONCEPTUAL OPEN-ENDED RLHF FORMULATION

Classical RLHF optimizes over a static prompt set:

max
ω

Ex↔D,y↔εω(·|x)

[
r(x,y)

]
↓Ex↔D

[
ω · DKL

[
ϱω(y | x) ↗ ϱSFT(y | x)

]]
.

We propose to drop the static prompt set assumption, and jointly update the prompt distribution via a
creator policy for Open-Ended RLHF, with the ideal objective below:

max
ε,ω

Ex↔εε(·),y↔εω(·|x)

[
r(x,y)

]
↓ ω · DKL

[
ϱς(x) · ϱω(y | x) ↗ pref(x) · ϱSFT(y | x)

]
.

This generalizes RLHF (Eq. 1). We can rewrite Eq. 7 with modified coefficients for precision:

maxε,ω Ex↔εε(·)

[
Ey↔εω(·|x)

[
r(x,y)

]
↓ ω1 · DKL

[
ϱφ(y | x) ↗ ϱSFT(y | x)

]

︸ ︷︷ ︸
solver

]
↓ ω2 · DKL

[
ϱς(x) ↗ pref(x)

]

︸ ︷︷ ︸
creator

.

The newly proposed pref represents an underspecified, potentially intractable probability distribution
over possible tasks in the open-ended world (instatiated via prompts) – it is not the initial static
training prompt distribution (which is only the seed set for the creator to evolve upon); it can be seen
serve as a conceptual guide to steer the prompt distribution.

To further clarify, there are two types of regularization in open-ended RLHF:

• DKL [ϱφ(y | x) ↗ ϱSFT(y | x)]: this is the classical regularization on the response policy, en-
suring that no matter how the training distribution over prompts evolves during optimization,
the response policy remained anchored to the supervised fine-tuned (SFT) policy.

– This KL (and preference optimization) is explicitly achieved in plug-in algorithms
(e.g., DPO) in Algo. 1. We later show how it relates to solver’s regret minimization.

• DKL
[
ϱς(x) ↗ pref(x)

]
: this probability matching term captures the intuition on optimizing

ϱς(x) to approach the conceptualized pref(x), in the sense that a language model optimizes
itself by adapting its training distributions with newly generated prompts for self-training to
develop increasingly general capabilities, directing its learning towards informative, new
tasks (Jiang, 2023), instead being constrained in a static, pre-defined set of tasks.

– This conceptual KL is implicitly achieved by the creator step in the current eva setting
by training on a sequence of informative prompt sets. We later show how it relates
to creator’s regret maximization. As illustrated in § 3.3.1, we start from the seed
prompt set, choose those high-regret prompts and generate variations upon them by
EvolInstruct, then mixing with a buffer of the original set to form the new training
distribution at each iteration. This approach resembles classical open-ended learning in
§ G.2, and we hope it can serve as a small step for future works to build upon.

– A common misunderstanding among readers may be to confuse the open-ended ref-
erence pref(x) with the initial seed prompt distribution D, which is static. In contrast,
pref(x) represents a broader space of tasks (e.g., user prompts in the real wild world),
as a conceptual target derived from the underspecified distribution (Dennis et al., 2020),
i.e., an environment with free parameters that control. Let’s use an illustrative example
with Fig. 6: the prompt distribution may be defined along several dimensions (e.g., the
number or complexity of coding problems); a potential creator can be designed to
modify these dimensions, steering the initial D to new training distributions, by certain
decision rules (e.g., minimax regret, which offers worst-case guarantees) that forms a
sequence of informative prompts for training.
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This joint optimization objective only serves as a general principle. In the next, we discuss how
existing works implicitly achieve the open-ended learning objective through two-player games.

G.2 APPROACHING OPEN-ENDED LEARNING BY UNSUPERVISED ENVIRONMENT DESIGN

G.2.1 THE ASYMMETRIC GAME FORMULATION FOR UNSUPERVISED ENVIRONMENT DESIGN

While we cannot directly train the agent with the intractable pref(x) of the open-ended world, it is
possible to curate a curriculum of prompt distributions to improve over the static distribution
and support the continual training of the policy ϱω(·|x), for it to keep improving and succeed over
the full task space, thus conceptually approaching pref(x). This is often framed as an asymmetric
two-player game.

Dennis et al. (2020) first formally define this problem as Unsupervised Environment Design (UED).
The idea is that while the real-world environments are inexhaustible and hard to tract, there may
exist some free parameters (e.g., height and roughness in a maze) which one may control to generate
new environments; UED then concerns about designing a distribution of those free parameters
(i.e., settings) to create new fully specified environments, that can be used to train the agents.

In this setup, one player, the creator, generates new environments based on some specific decision
rules (see the following), while the other player, the solver, optimizes its policy within these training
environments, and the process continues iteratively. Common heuristic strategies include:

• Randomization: environments are generated uniformly and independently of the solver’s
current policy. This method is simple but less effective (Tobin et al., 2017).

• Maximin: the creator generates environments that minimize the solver’s maximum possible
reward, which can often lead to unsolvable scenarios (Khirodkar and Kitani, 2018).

• Minimax regret: The creator targets environments that maximize the solver’s regret, defined
as the difference between the optimal return achievable and that of the solver’s current
policy (Beukman et al., 2024b). The regret is often conceived as the creator’s utility.

Among them4, the minimax regret approach presents a sweet spot where the creator can create
hard yet solvable environments, and is often empirically better. The minimax regret strategy also
implies that the agent’s policy is trained to perform well under all levels/settings, thus enjoys a
worst-case guarantee. However, while it is often straightforward for the solver to minimize the regret
(e.g., through direct policy optimization, as we discuss in § G.3), the optimal policy remains unknown
during the optimization process, thus regret as the decision signal is often intractable to the creator
– which requires approximation (as an amusing side note, this is described as the Achilles’ heel of
those curriculum RL methods by Parker-Holder et al. (2022)).

G.2.2 APPROXIMATING THE REGRET AND GENERATING NEW ENVIRONMENTS

In general, the creator design in this line of research contains two steps:

1. identifying high-regret levels using different (often heuristic) regret approximation;

2. generating new environments by making variations or retrieving from buffers on those
high-regret levels.

We hereby review major works on regret approximation and environment generation as follows:

Dennis et al. (2020) propose joint training for the creator and two competing solvers.

• Regret approximation: here, two solver policies are trained, with the regret approximated
as the difference in their returns. During each optimization step, one solver maximizes
this regret, the other minimizes it, and the creator maximizes it.

• Environment generation: the system directly sample the parameter from the creator policy
and use that to specify the environment.

4We have implemented variants of these in § 4.2.1, and show minimax regret is empirically better.
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Jiang et al. (2021b) propose to random sampling on high-regret levels.

• Regret approximation: as a heuristic, the authors use positive value loss, which is a function
of Generalized Advantage Estimate (Schulman et al., 2015) (which itself is a function of the
TD error – the difference between the expected and the actual returns) as the creator’s utility.

• Environment generation: the creator have a rolloing buffer of highest-regret levels by
random searching on relevant configurations.

Jiang et al. (2021a) further propose a double-creator setting based on (Jiang et al., 2021b), where one
creator is actively generating new environments, and the other is retrieving from the buffer.

Parker-Holder et al. (2022) propose to sample high-regret levels and generate new environments by
making edits on existing ones. The regret approximation is the same as (Jiang et al., 2021b) – the
positive value loss. For the environment generation, the authors suggest a general editing/mutation
mechanism, where the creator chooses from high-regret levels and make small variations within an
edit distance, which by heuristics will lead to the discovery of more high-regret environments. There
is an additional filtering step: they do not directly train on the newly generated levels, but evaluate on
those levels first, then add only the high-regret ones to the training buffer.

Note the solvers are often directly trained with PPO (Schulman et al., 2017) under the environments.

G.3 REGRET FORMULATION FOR OPEN-ENDED RLHF

Next, we discuss the regret minimization and maximization in our setting for alignment. Specifically,

• Regret minimization for the solver: we avoid calculating regret and use direct policy
optimization (e.g., DPO) to equivalently achieve regret minimization.

• Regret maximization for the creator: similarly to (Jiang et al., 2021b; Parker-Holder et al.,
2022), we first find an approximation of regret, then curate new environments for the solver
to train on by (i) sampling from a replay buffer of existing prompts, and (ii) making variations
(through EvolInstruct (Xu et al., 2023a)) on those high-regret prompts. Specifically, we
use advantage-based estimates of the current policy, as summarized in Table 2.

This asymmetric two-player game serves as one potential modeling choice to implicitly achieve the
open-ended RLHF principle that we proposed in Definition 1. We look forward to exploring more
principled solutions in the future.

Preliminaries. Let r(·, ·) be an oracle reward model. The (unregularized) optimal policy is:

ϱ↼ = argmax
ε

Ex↔D,y↔ε(·|x)

[
r(x,y)

]
.

We have the optimal advantage / the negated regret as:

A↼(x,y) = r(x,y)↓ Ey↑↔εϑ(·|x)

[
r(x,y↓)

]

= r(x,y)↓ V ↼(x,y).

Classical preference-based RL assumes a reward-based preference model, that is:

P
(
y+ ↘ y↑ =

exp
(
r (x,y+)



exp
(
r (x,y+)


+ exp

(
r (x,y↑)

 .

As a side note (Hejna et al., 2023), this is equivalent to the advantage/regret-based preference model,
due to the bandit setup in RLHF:

P
(
y+ ↘ y↑ =

exp
(
r (x,y+)↓ V ↼(x,y)



exp
(
r (x,y+)↓ V ↼(x,y)


+ exp

(
r (x,y↑)↓ V ↼(x,y)



=
exp

(
A↼ (x,y+)



exp
(
A↼ (x,y+)


+ exp

(
A↼ (x,y↑)

 .

In our current setting, we assume there is an oracle preference model for the preference pair labeling.
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KL-regularized regret. In the RLHF setting at fixed prompt distribution, the objective is:

max
εω

Ex↔εε(·),y↔εω(·|x)


r(x,y)


↓Ex↔D


ω · ϱς(·)KL

[
ϱω(y | x) ↗ ϱSFT(y | x)

]
.

The optimal policy of the above KL-constrained objective is:

ϱ↼
KL(y | x) = 1

Z(x)
ϱSFT(y | x) exp

(
1

ω
· r(x,y)

)
,

where the partition function is defined as Z(x) =


y ϱref(y | x) exp
(

1
ω r(x,y)

)
.

We can now formally define the regret with regard to ϱ↼
KL(· | x) as:

RegretKL(x,ϱω) = Ey↔εω(·|x)

[
r(x,y)

]
↓ Ey↔εϑ

KL(·|x)

[
r(x,y)

]
. (14)

Regret Minimization for the Solver. It is rather straightforward/trivial to understand the objective
of the solver ϱω(· | x) as regret minimization, since the goal is to align the policy ϱω(· | x) with
the KL-optimal solution ϱ↼

KL(· | x), which directly minimizes the KL-regularized regret by design.
This formulation allows flexibility in the plug-in preference optimization algorithms for the solver’s
step in Algorithm 1, and ensures the alignment problem is well-defined. In practice, we use Direct
Preference Optimization (DPO) and its variants, which approximate the KL-optimal solution by
iteratively adjusting ϱω to reflect preference differences.

Regret Maximization for the Creator. As discussed previously, while it is often trivial for the
solver to minimize the regret through direct policy optimization, the optimal policy remains unknown
during the optimization process, thus we cannot directly calculate the regret – we must approximate
it when using it as the utility for the creator. Similarly to heuristics proposed by prior works (Jiang
et al., 2021b;a; Parker-Holder et al., 2022), we use the advantage-based estimate:

| ˆRegret(x,ϱω)| ↔ infoω(x) := r(x,y+)↓ r(x,ybaseline), (15)

where
y+ := argmaxyi

r(x,y), (16)
ybaseline := argminyi

r(x,y) or ybaseline := avgyi
r(x,y), (17)

and {yi}i=1 is a set of responses sampled from ϱω(· | x) and r(·, ·) is the reward oracle. We
use argminyi

r(x,y) by default due to its simplicity and efficiency (see also § 3.4 for additional
interpretation) and consistent strong empirical gains we observed in vast experiments. As the
policy optimizes, the proxy should approximate the true regret better. We leave exploration of other
informativeness proxy designs in eva to future work.

For new environment generation, as illustrated in § 3.3.1, we start from the seed prompt set, choose
those high-regret prompts and generate variations upon them by EvolInstruct, then mixing with a
buffer of the original set to form the new training distribution at each iteration.

H EXTENDED LITERATURE REVIEW FOR OPEN-ENDED LEARNING

The design of our game-theoretic framework for language model post-training is inspired from many
prior works in open-ended learning. The central idea of open-ended learning is not to optimize for
a specific, static distribution, but to develop an agent that can generalize well across unseen, novel
environments, which are the environments that the agent has not been explicitly trained on. To achieve
this, unsupervised environment design proposes to generate environments that present a curriculum of
increasing complexity for the agent to evolve, which ensures that the agent’s learning is not narrow, but
broad enough to handle the diversity of complexity of future environments. In such curriculum, as the
agent solves simpler environments, it moves on to more difficult ones, thus progressively builds more
sophisticated strategies. Furthermore, by adopting a minimax regret framework, this approach adds a
layer of robustness by minimizing the agent’s performance gap in worst-case (i.e., most adversarial)
environments. In addition to distinctions discussed in § 5, we here list several foundational works in
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this line, and encourage the LLM community to explore with more rigor and depth: Schmidhuber
(1991) presents an initial investigation into open-ended learning via self-supervised curiosity-driven
exploration; Wang et al. (2019) emphasize co-evolution of environments and agent policies by training
a population of agents that adapt to and solve progressively complex challenges; Dennis et al. (2020)
formally introduce the notion of Unsupervised Environment Design (UED), where a protagonist and
antagonist agent pair simulates regret by competing in shared environments, driving the protagonist
(the main learner) to adapt to increasingly challenging scenarios; Jiang et al. (2021b) introduce
Prioritized Level Replay (PLR), which uses a rolling buffer of high-regret levels to dynamically
adjust the training curriculum, and selects levels with the higher learning potential; Parker-Holder
et al. (2022) further propose improvements by editing previously high-regret levels; Hughes et al.
(2024b) present a formal definition for open-ended system with respect to novelty and learnability,
that generalizes various systems, e.g., AlphaGo (Silver et al., 2016), AdA (Team et al., 2021), etc.

I EXTENDED LITERATURE REVIEW IN BI-LEVEL RLHF

Bi-level optimization refers to optimization problems where the cost function is defined w.r.t. the
optimal solution to another optimization problem (Grosse, 2022). There is a recent line of works
applying bi-level optimization to RLHF. While they all rely on a fixed dataset of prompts, eva propose
to dynamically update the prompt set, as in § 1. We present a detailed comparison of eva with Ding
et al. (2024); Shen et al. (2024); Makar-Limanov et al. (2024). We sincerely thank the anonymous
reviewer for the kind references, and welcome suggestions for any other works we may have missed.

Ding et al. (2024) formulate iterative online RLHF as a bi-level optimization problem, where the
upper-level represents the reward learning, and the lower-level represents the policy optimization.
Leveraging reward re-parameterization tricks in Rafailov et al. (2023), Ding et al. (2024) reduces the
problem to a single-level objective with regard to the policy. The differences of this work and our
work lie in the prompt distribution and preference oracle: (i) eva features by dynamic prompt set
generation for Open-Ended RLHF, whereas (Ding et al., 2024) remains using a static prompt set;
(ii) we assume the existence of the preference oracle (as discussed in § 4), while Ding et al. (2024)
consider online training of reward models and ablate on self-rewarding by the current LLM policy.
Our usage of a pre-trained reward model follows from industrial practices (Team et al., 2023; 2024b),
which is also commonly used by prior works in academia (Meng et al., 2024; Wu et al., 2024).

Makar-Limanov et al. (2024) provide an interesting exploration on formulating RLHF as a leader-
follower game, where the language model (LM) policy is the leader and the reward model (RM) policy
is the follower, and the solution is Stackelberg equilibrium (von Stackelberg, 1934; Rajeswaran et al.,
2020), where the leader does not likewise best respond to the follower’s strategy. Here, following
the curriculum RL literature (Dennis et al., 2020; Parker-Holder et al., 2022), we seek the Nash
equilibrium (Nash et al., 1950) between the creator for prompt generation and the solver for response
generation. In the current setting of eva, the goal is to search for an optimal solver policy with a
best supporting prompt distribution, and an optimal prompt distribution with a best supporting solver
policy. Nevertheless, the LM-RM iterative optimization may be added on top of eva’s framework,
and we look forward to future works exploring the leader-follower re-formulation of eva.

Shen et al. (2024) present a rigorous theoretical work (though it does not directly involve practical
post-training of large language models). The authors propose to reduce the bi-level problem to
a single-level problem with a penalty-based reformulation, and apply it in the setting of LM-RM
optimization within a fixed environment, whereas eva focuces on dynamic prompt generation and
practically train large language models with extensive empirical experiments conducted. We believe it
would be interesting to adapt similar first-order optimization techniques to solve Open-Ended RLHF.

In summary, existing bi-level RLHF works focus on online optimization of both the RM and the
LM (as the response policy), all with fixed prompt/state distribution. eva presents an orthogonal
direction on dynamic prompt generation for Open-Ended RLHF, with an empirical algorithm which
attains state-of-the-art performance with large language models on a variety of benchmarks. It is
possible to incorporate the online RM training within eva – we have shown in § 4.2.3 that eva
scales with quality of reward models, thus integrating online RM training may further enhance
performance and mitigate potential distributional mismatch problems as we evolves for more prompts.
This direction may have not been widely adopted in real-world training of language models, due
to concerns about practicality (Team et al., 2023; 2024a;b; Adler et al., 2024). We look forward to
future works exploring efficient variations unifying eva and existing bi-level RM-LM frameworks.
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J EXAMPLES ON PROMPTS AND MODEL GENERATIONS

Figure 10: The initial prompt distribution of AlpacaEval by bart-large-mnli with 0-shot classifi-
cation, which is imbalanced. For the reward distribution, the category with lowest average reward has
the highest reward gap (i.e., the default informativeness proxy), implying the potential to improve.

initial prompt↑ Write me the code for a distributed transaction manager.\nThink
step by step and use pseudo code first.\nThen, define interfaces
for all involved actors and entities.\nUse Rational Unified
approach for this part.\n\nOnly then move on to the actual
implementation, class-by-class, and method-by-method.\nMake the
code be implemented in C# and follow SOLID principles.

evolved #1 → Craft a suite of syntax for a distributed transaction coordinator.
Start with a sequential breakdown in pseudocode format. Following
that, establish the protocols for communication and interaction
amongst the various participants and components, incorporating
the Rational Unified Process methodology.\n\nProceed thereafter to
the concrete creation, detailing each class and function. Ensure
that the final C# code adheres to the precepts of SOLID and is
annotated for clarification and maintainability purposes.

evolved #2 → Devise a comprehensive set of directives and structures for a
distributed transaction coordinator architecture. Initiate by
formulating a step-by-step algorithmic decomposition in pseudocode.
Subsequently, delineate the frameworks for dialog and cooperation
between the numerous entities and elements, utilizing the tenets
of the Rational Unified Process methodology.\n\nContinue to the
actual generation of the code, meticulously detailing every class
and corresponding method. Guarantee that the culminating C# code
is in strict compliance with SOLID principles and is supplemented
with descriptive commentary to enhance future clarity and upkeep,
while also validating the code against a set of unit tests to
ensure robust functionality.

evolved #3 → Commence by constructing an algorithm in pseudocode that
meticulously breaks down the sequential stages for a distributed
transaction coordinator system. Progress by outlining the
communication protocols and collaborative mechanisms among the
myriad components, adhering to the Rational Unified Process
approach.\n\nAdvance to crafting the code in C#, ensuring each
class and method is elaborated with precision, aligning with SOLID
design principles. Integrate thorough comments for heightened
maintainability and conduct comprehensive unit testing for assured
operational integrity.

evolved #4 → Design a detailed flowchart that represents the intricate
steps of an orchestration engine for managing microservices
in a cloud-native environment. Begin by detailing the service
discovery, load balancing, and fault tolerance strategies, while
incorporating the DevOps philosophy.\n\nProceed by developing the
implementation in Java, focusing on clean, modular code following
object-oriented programming best practices. Accompany your
code with clear documentation for easy understanding and perform
rigorous integration testing to guarantee robustness.

Table 16: Examples of evolved prompts from AlpacaEval. We suggest practitioners to include
generated responses with oracle rewards and self-critique in the context for better prompt evolving,
which is helpful for mitigating the effect of potential self-consuming loops in synthetic data training.
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1st-turn prompt: When a number is divided by 10, the remainder is 4. What
is the remainder when twice the number is divided by 4?

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva
Here’s how to solve this problem:
1. Understand the first statement:

* "When a number is divided by 10,
the remainder is 4" means the number
can be represented as 10*k + 4,
where k is an integer.
2. Double the number:

* Twice the number is 2*(10*k + 4) =
20*k + 8
3. Divide by 4:

* (20*k + 8) divided by 4 is (20*k)/4
+ 8/4 = 5*k + 2
4. Find the remainder:

* Since 5*k is a multiple of 4, the
remainder when twice the number is
divided by 4 is 2.
Let me know if you’d like to try
another example!

Here’s how to solve this problem:
1. Understand the first statement:
- "When a number is divided by 10,
the remainder is 4" means the number
can be represented as 10*k + 4,
where k is an integer.
2. Double the number:
- Twice the number is 2*(10*k + 4) =
20*k + 8
3. Divide by 4:
- When (20*k + 8) is divided by 4,
the 20*k term is perfectly divisible
by 4.
- The remainder will be the same as
the remainder when 8 is divided by 4,
which is 0.
Therefore, the remainder when twice
the number is divided by 4 is 0.

2nd-turn prompt: What about when twice the number is divided by 5?

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva
Here’s how to solve that:
1. We know: Twice the number
is 20*k + 8 (from the previous
calculation).
2. Divide by 5: (20*k + 8) divided
by 5 is (20*k)/5 + 8/5 = 4*k + 1.6
3. Find the remainder: Since 4*k
is a multiple of 5, the remainder
when twice the number is divided by
5 is 1.
Let me know if you have any more
number theory puzzles!

Here’s how to solve that:
1. Twice the number: We know twice
the number is 20*k + 8 (from the
previous steps).
2. Divide by 5:

* 20*k is divisible by 5.

* 8 divided by 5 leaves a remainder
of 3.
Therefore, the remainder when twice
the number is divided by 5 is 3.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva
The assistant’s response is
incorrect. The assistant
incorrectly calculated the remainder
when twice the number is divided
by 5. The assistant calculated
the decimal part of the division
operation, not the remainder. The
correct calculation should be (20n +
8) % 5 = (20n % 5) + (8 % 5) = 0 + 3
= 3. Therefore, the remainder when
twice the number is divided by 5 is
3, not 1 as the assistant stated.

The corrected response would be:
1. We know: Twice the number
is 20*k + 8 (from the previous
calculation).
2. Divide by 5: (20*k + 8) divided
by 5 gives us a remainder of (20*k %
5) + (8 % 5) = 0 + 3 = 3.
3. Find the remainder: The
remainder when twice the number is
divided by 5 is 3.

Rating: [[3]], "score": 3, "turn":
2, "tstamp": 1722737011.7768948

The assistant’s answer is correct
and matches the reference answer.
The assistant correctly explains
that twice the number is 20*k + 8
and that when this is divided by 5,
the remainder is 3. The assistant’s
explanation is clear and easy to
understand, making it helpful for
the user. There are no mistakes to
correct.

Rating: [[10]], "score":
10, "turn": 2, "tstamp":
1722846518.5543818

Table 17: Comparison of model generations on examples from MT-Bench.
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1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

1st-turn prompt: Imagine you are writing a blog post comparing two popular smartphone models.

Develop an outline for the blog post, including key points and subheadings to effectively

compare and contrast the features, performance, and user experience of the two models. Please

answer in fewer than 200 words.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

## Smartphone Showdown: [Model A] vs.

[Model B]\n\n**I. Introduction**\n* Briefly

introduce the two smartphone models being

compared, highlighting their popularity and

target audience.\n* State the purpose of the

comparison: to help readers decide which phone

best suits their needs.\n\n**II. Design and

Display**\n* Physical dimensions, weight,

and build quality comparison.\n* Screen

size, resolution, and display technology

(e.g., OLED, LCD).\n* Design aesthetics and

user preferences.\n\n**III. Performance

and Specs**\n* Processor, RAM, and storage

comparison.\n* Benchmark scores and real-world

performance analysis.\n* Battery life and

charging capabilities.\n\n**IV. Camera

Capabilities**\n* Rear and front camera

specs (megapixels, aperture, features).\n*
Image quality comparison in various

lighting conditions.\n* Video recording

capabilities.\n\n**V. Software and User

Experience**\n* Operating system and user

interface comparison.\n* App ecosystem

and availability.\n* Software features and

customization options.\n\n**VI. Price and

Value**\n* Compare the price points of both

models.\n* Analyze the value proposition

based on features and performance.\n\n**VII.
Conclusion**\n* Summarize the key differences

and similarities.\n* Recommend the best

phone for specific user profiles (e.g.,

budget-conscious, photography enthusiasts,

gamers).

## iPhone 14 Pro vs. Samsung Galaxy S23:

Which Flagship Reigns Supreme?\n\n**I.
Introduction**\n* Briefly introduce both

smartphones and their position in the

market.\n* State the purpose of the comparison:

to help readers decide which phone best suits

their needs.\n\n**II. Design and Display**\n*
Physical dimensions, weight, and build quality

comparison.\n* Screen size, resolution,

refresh rate, and display technology (OLED

vs. Super AMOLED).\n* Design aesthetics and

unique features (e.g., notch vs. punch-hole,

color options).\n\n**III. Performance and

Camera**\n* Processor comparison (Apple

A16 Bionic vs. Snapdragon 8 Gen 2).\n*
RAM and storage options.\n* Camera specs:

megapixels, lens types, aperture, and special

features (e.g., telephoto, macro).\n* Image

quality comparison based on sample photos

and user reviews.\n\n**IV. Software and User

Experience**\n* Operating systems: iOS 16

vs. Android 13.\n* User interface comparison:

intuitiveness, customization options, and

app ecosystems.\n* Special features: Face

ID vs. in-display fingerprint sensor,

voice assistants.\n\n**V. Battery Life and

Charging**\n* Battery capacity and real-world

usage comparison.\n* Fast charging speeds and

wireless charging capabilities.\n\n**VI. Price

and Value**\n* Compare starting prices and

different storage configurations.\n* Assess

the overall value for money based on features

and performance.\n\n**VII. Conclusion**\n*
Summarize the key differences and strengths

of each phone.\n* Recommend the best phone

for specific user types (e.g., photography

enthusiasts, gamers, budget-conscious

consumers).

2nd-turn prompt: Take your previous response and rephrase it as a limerick.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

Two phones, a showdown so grand,\n[Model A]

and [Model B], hand in hand.\nDesign, specs,

and price,\nWe’ll analyze nice,\nTo help you

choose, understand?\n\nLet me know if you’d

like me to try filling in the bracketed parts

with specific model names!

\nTwo phones, a Pro and a Galaxy,\nFor
flagships, they truly are spacy.\nWith cameras

and screens,\nAnd processors keen,\nWhich one

wins? Read on, and be savvy! \nLet me know if

you’d like another limerick!

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s response is creative and

relevant to the user’s request. The user

asked the assistant to rephrase the previous

response, which was a detailed outline for a

blog post, into a limerick. The assistant

successfully did so, maintaining the essence

of the original response in a limerick format.

The assistant also offered to further customize

the limerick by filling in the bracketed

parts with specific model names, showing a

willingness to provide additional detail if

needed. However, the limerick does not fully

capture the depth and detail of the original

response, which is understandable given the

constraints of the limerick format.

Rating: [[8]], "score": 8, "turn": 2,

"tstamp": 1722737024.0327556

The assistant’s response is creative and

relevant to the user’s request. The assistant

successfully rephrased the previous response,

which was a detailed outline for a blog

post comparing two smartphone models, into

a limerick. The limerick is playful and

engaging, and it maintains the essence of

the original response, which is to compare the

two phones and help the reader make an informed

decision. The assistant also offers to create

another limerick if the user wants, showing a

willingness to continue the interaction.

Rating: [[9]], "score": 9, "turn": 2,

"tstamp": 1722846542.9437995

Table 18: (Continued) comparison of model generations on examples from MT-Bench.
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1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
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1323
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1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

1st-turn prompt: Each problem consists of three statements. Based on the first two statements,

the third statement may be true, false, or uncertain.\n1. Oranges cost more than apples.\n2.
Oranges cost less than bananas.\n3. Bananas cost more than apples and bananas cost more than

orange.\nIf the first two statements are true, then the third statement is?

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

Here’s how to break down the logic:\n\n*
**Statement 1:** Oranges > Apples (Oranges

cost more than apples)\n* **Statement

2:** Oranges < Bananas (Oranges cost less

than bananas)\n\nThis means the price

order is: Bananas > Oranges > Apples\n\n*
**Statement 3:** Bananas > Apples AND Bananas

> Oranges\n\nStatement 3 is **partially

true**.\n\n* The part "Bananas > Apples" is

true based on our price order.\n* The part

"Bananas > Oranges" is also true based on our

price order.\n\n\nLet me know if you’d like to

try another one!

Here’s how to break down the logic:\n\n*
**Statement 1:** Oranges > Apples (Oranges

cost more than apples)\n* **Statement 2:**

Oranges < Bananas (Oranges cost less than

bananas)\n\nThese statements tell us that

bananas are the most expensive, then oranges,

and apples are the least expensive.\n\n*
**Statement 3:** Bananas > Apples AND Bananas

> Oranges\n\nSince bananas are indeed more

expensive than both apples and oranges,

statement 3 is **true**.\n\n\nLet me know

if you’d like to try another one!

2nd-turn prompt: If the third statement is true. Is the first statement true, false, or

uncertain? Please explain.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

If the third statement is true, the first

statement is **false**.\n\nHere’s why:\n\n*
**Statement 3:** States that bananas cost

more than both apples AND oranges.\n\nThis
means the price order is: Bananas > Oranges

> Apples.\n\n* **Statement 1:** States that

oranges cost more than apples.\n\nIf bananas

are the most expensive, and oranges are second,

then oranges cannot be more expensive than

apples.\n\n\nLet me know if you have any other

logic puzzles!

If the third statement is true, then the first

statement is **uncertain**.\n\nHere’s why:\n\n*
**Statement 3:** Bananas > Apples AND Bananas >

Oranges\n\nThis tells us bananas are the most

expensive, but it doesn’t explicitly state the

relative prices of apples and oranges.\n\n*
**Statement 1:** Oranges > Apples\n\nThis
statement claims oranges are more expensive

than apples.\n\nStatement 3 doesn’t contradict

statement 1, but it also doesn’t confirm it.

It’s possible that oranges *are* more expensive

than apples, but statement 3 alone doesn’t give

us enough information to be sure.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s response is incorrect. The

assistant states that if the third statement is

true, the first statement is false. However,

the third statement only establishes that

bananas cost more than both apples and

oranges. It does not provide information

about the relative costs of apples and oranges.

Therefore, the first statement could be true

(if oranges cost more than apples), false (if

oranges cost less than apples), or uncertain

(if oranges and apples cost the same). The

assistant’s explanation is flawed because it

incorrectly assumes that the order of costs

must be Bananas > Oranges > Apples, when

in fact the order could also be Bananas >

Apples = Oranges or Bananas > Apples > Oranges.

\n\nCorrected Assistant’s Answer: If the third

statement is true, then bananas cost more than

apples and bananas cost more than oranges.

This means that oranges could still cost more

than apples, making the first statement true.

However, it’s also possible that oranges and

apples have the same cost, which would make the

first statement false. Therefore, based on the

third statement alone, the first statement is

uncertain.

Rating: [[2]], "score": 2, "turn": 2,

"tstamp": 1722737017.2808955

The assistant’s response is correct and helpful.

The assistant explains that the first statement

is uncertain if the third statement is true,

which aligns with the reference answer.

The assistant provides a clear explanation

of why this is the case, stating that the

third statement doesn’t contradict the first

statement, but it also doesn’t confirm it.

Therefore, the assistant’s response is accurate

and informative.\n\nThe assistant’s response:

"If the third statement is true, then the

first statement is **uncertain**. Here’s why:

Statement 3: Bananas > Apples AND Bananas >

Oranges. This tells us bananas are the most

expensive, but it doesn’t explicitly state

the relative prices of apples and oranges.

Statement 1: Oranges > Apples. This statement

claims oranges are more expensive than apples.

Statement 3 doesn’t contradict statement 1,

but it also doesn’t confirm it. It’s possible

that oranges *are* more expensive than apples,

but statement 3 alone doesn’t give us enough

information to be sure.

Rating: [[10]], "score": 10, "turn": 2,

"tstamp": 1722846527.2339694

Table 19: (Continued) comparison of model generations on examples from MT-Bench.
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1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
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1372
1373
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1375
1376
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1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

1st-turn prompt: Implement a function to find the median of two sorted arrays of different sizes with O(1) space complexity and O(n)

time complexity.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

python\n\def find median sorted arrays(nums1, nums2):\n """\n

Finds the median of two sorted arrays of different sizes.\n\n

Args:\n nums1: The first sorted array.\n nums2: The second

sorted array.\n\n Returns:\n The median of the two sorted

arrays.\n """\n\n m, n = len(nums1), len(nums2)\n if m

> n:\n nums1, nums2, m, n = nums2, nums1, n, m # Ensure m

<= n\n\n imin, imax, half len = 0, m, (m + n + 1) // 2\n\n

while imin <= imax:\n i = (imin + imax) // 2\n j = half len

- i\n if i < m and nums2[j - 1] > nums1[i]:\n imin = i + 1 #

i is too small, increase it\n elif i > 0 and nums1[i - 1] >

nums2[j]:\n imax = i - 1 # i is too big, decrease it\n else:\n

# i is perfect\n\n if i == 0:\n max left = nums2[j - 1]\n

elif j == 0:\n max left = nums1[i - 1]\n else:\n max left

= max(nums1[i - 1], nums2[j - 1])\n\n if (m + n) % 2 == 1:\n

return max left\n\n if i == m:\n min right = nums2[j]\n

elif j == n:\n min right = nums1[i]\n else:\n min right =

min(nums1[i], nums2[j])\n\n return (max left + min right) /

2.0\n\n# Example usage\nnums1 = [1, 3]\nnums2 = [2]\nmedian =

find median sorted arrays(nums1, nums2)\nprint(f"The median of

{nums1} and {nums2} is: {median}")\n\n\n**Explanation:**\n\n1.

**Handle Unequal Lengths:**\n - If ‘nums1‘ is longer than

‘nums2‘, swap them to ensure ‘nums1‘ is always the shorter

array. This simplifies the logic.\n\n2. **Binary Search:**\n

- The core idea is to use binary search on the shorter array

(‘nums1‘).\n - ‘imin‘ and ‘imax‘ define the search range for

the partition point ‘i‘ in ‘nums1‘.\n - ‘half len‘ calculates

the desired total number of elements on the left side of the

partition (to find the median).\n\n3. **Partitioning:**\n - In

each iteration, ‘i‘ divides ‘nums1‘ into two parts: ‘nums1[0:i]‘

and ‘nums1[i:m]‘.\n - ‘j‘ is calculated to divide ‘nums2‘ so that

the total number of elements on the left side is ‘half len‘.\n\n4.

**Adjusting the Partition:**\n - We compare elements at the

boundaries of the partitions to see if ‘i‘ is in the correct

position:\n - If ‘nums2[j - 1] > nums1[i]‘, ‘i‘ is too small,

so we move ‘imin‘ to ‘i + 1‘.\n - If ‘nums1[i - 1] > nums2[j]‘,

‘i‘ is too large, so we move ‘imax‘ to ‘i - 1‘.\n\n5. **Finding

the Median:**\n - Once ‘i‘ is in the correct position, we

find:\n - ‘max left‘: The maximum element in the left partitions

of both arrays.\n - ‘min right‘: The minimum element in the

right partitions of both arrays.\n - If the total length is odd,

‘max left‘ is the median.\n - If the total length is even, the

median is the average of ‘max left‘ and ‘min right‘.\n\n**Time

Complexity:** O(log(min(m, n))) because we perform binary search

on the shorter array.\n\n**Space Complexity:** O(1) as we only

use a constant amount of extra space for variables.

python\n\def find median sorted arrays(nums1, nums2):\n """\n

Finds the median of two sorted arrays of different sizes.\n\n

Args:\n nums1: The first sorted array.\n nums2: The second

sorted array.\n\n Returns:\n The median of the two sorted

arrays.\n """\n\n m, n = len(nums1), len(nums2)\n if m

> n:\n nums1, nums2, m, n = nums2, nums1, n, m # Ensure m

<= n\n\n imin, imax, half len = 0, m, (m + n + 1) // 2\n\n

while imin <= imax:\n i = (imin + imax) // 2\n j = half len

- i\n if i < m and nums2[j - 1] > nums1[i]:\n imin = i + 1 #

i is too small, increase it\n elif i > 0 and nums1[i - 1] >

nums2[j]:\n imax = i - 1 # i is too big, decrease it\n else:\n

# i is perfect\n\n if i == 0:\n max left = nums2[j - 1]\n

elif j == 0:\n max left = nums1[i - 1]\n else:\n max left

= max(nums1[i - 1], nums2[j - 1])\n\n if (m + n) % 2 ==

1:\n return max left\n\n if i == m:\n min right = nums2[j]\n

elif j == n:\n min right = nums1[i]\n else:\n min right =

min(nums1[i], nums2[j])\n\n return (max left + min right) /

2.0\n\n# Example usage\nnums1 = [1, 3]\nnums2 = [2]\nmedian =

find median sorted arrays(nums1, nums2)\nprint(f"The median of

{nums1} and {nums2} is: {median}")\n\n\n**Explanation:**\n\n1.

**Handle Unequal Lengths:**\n - If ‘nums1‘ is longer than

‘nums2‘, swap them to ensure ‘nums1‘ is always the shorter

array. This simplifies the logic.\n\n2. **Binary Search:**\n

- The core idea is to use binary search on the shorter array

(‘nums1‘).\n - ‘imin‘ and ‘imax‘ define the search range for the

partition point ‘i‘ in ‘nums1‘.\n - ‘half len‘ calculates the

desired total number of elements on the left side of the partition

(to find the median).\n\n3. **Partitioning:**\n - In each

iteration, ‘i‘ divides ‘nums1‘, and ‘j‘ divides ‘nums2‘ such that

the total number of elements on the left side is ‘half len‘.\n\n4.

**Adjusting the Search Range:**\n - If ‘nums2[j - 1] > nums1[i]‘,

it means ‘i‘ is too small, so we need to move the partition

point in ‘nums1‘ to the right (‘imin = i + 1‘).\n - If ‘nums1[i

- 1] > nums2[j]‘, ‘i‘ is too large, so we move it to the left

(‘imax = i - 1‘).\n\n5. **Finding the Median:**\n - When the

correct partition is found (‘i‘ is in the right position), we

find:\n - ‘max left‘: The maximum element on the left side of

the partition.\n - ‘min right‘: The minimum element on the right

side of the partition.\n - If the total number of elements is

odd, ‘max left‘ is the median.\n - If even, the median is the

average of ‘max left‘ and ‘min right‘.\n\n**Time Complexity:**

O(log(min(m, n))) because we are performing binary search on the

shorter array.\n\n**Space Complexity:** O(1) as we are only using

a constant amount of extra space for variables.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s answer is correct and provides a detailed

explanation of the code. The assistant correctly states that the

time complexity is O(log(min(m, n))) and the space complexity is

O(1), which aligns with the reference answer. The assistant also

provides an example usage of the function, which is helpful for

understanding how to use it. The assistant’s code is a different

implementation than the reference answer, but it achieves the same

result and meets the same complexity requirements.

However, the assistant’s answer does not address the user’s

original question about achieving O(n) time complexity. The

assistant should have clarified that it’s not possible to find the

median of two sorted arrays of different sizes with O(1) space

complexity and O(n) time complexity, as stated in the reference

answer.

Rating: [[8]], "score": 8, "turn": 1, "tstamp":

1722737514.2011044

The assistant’s answer is correct and provides a detailed

explanation of the code. The assistant correctly states that

the time complexity is O(log(min(m, n))) and the space complexity

is O(1), which aligns with the reference answer. The assistant

also provides a step-by-step explanation of the code, which is

very helpful for understanding the logic behind the solution.

The assistant’s code is also correct and will correctly find the

median of two sorted arrays of different sizes. Therefore, there

are no corrections needed for the assistant’s response.

Rating: [[10]], "score": 10, "turn": 1, "tstamp":

1722846533.772981

Table 20: (Continued) comparison of model generations on examples from MT-Bench.
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1442
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Under review as a conference paper at ICLR 2025

1st-turn prompt: You are given two sorted lists of size m and n. Implement a function to find the kth

smallest element in the union of the two lists with linear complexity.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

‘‘‘python\n\def find kth smallest(list1, list2, k):\n

"""\n Finds the kth smallest element in the union

of two sorted lists.\n\n Args:\n list1: The first

sorted list.\n list2: The second sorted list.\n

k: The desired kth smallest element.\n\n Returns:\n

The kth smallest element in the union of the two

lists.\n """\n\n m, n = len(list1), len(list2)\n

i, j = 0, 0\n min heap = [] \n\n # Build a min-heap

with the first elements of both lists\n for x in

range(min(m, n)):\n heapq.heappush(min heap, (list1[x],

x, 0)) # (value, list index, position in list)\n

heapq.heappush(min heap, (list2[x], x, 1))\n\n #

Extract k smallest elements from the heap\n for in

range(k - 1):\n , , = heapq.heappop(min heap)\n\n #

The top element of the heap is the kth smallest\n

return heapq.heappop(min heap)[0]\n\n# Example

usage:\nlist1 = [2, 5, 8, 12]\nlist2 = [1, 3, 7, 9,

10]\nk = 5\nkth smallest = find kth smallest(list1,

list2, k)\nprint(f"The {k}th smallest element

is: {kth smallest}")\n\n\n**Explanation:**\n\n1.

**Initialization:**\n - ‘m‘ and ‘n‘ store the lengths

of the input lists.\n - ‘i‘ and ‘j‘ are pointers

to track the current position in each list.\n -

‘min heap‘ is a min-heap used to efficiently store

and retrieve the smallest elements encountered so

far.\n\n2. **Building the Min-Heap:**\n - The code

iterates through the first ‘min(m, n)‘ elements of

both lists.\n - For each element, a tuple ‘(value,

list index, position in list)‘ is pushed onto the

‘min heap‘. This tuple helps us keep track of

the element’s value, the list it belongs to, and

its original position.\n\n3. **Extracting k-1

Smallest Elements:**\n - The ‘for‘ loop runs ‘k -

1‘ times, effectively extracting the ‘k-1‘ smallest

elements from the ‘min heap‘.\n\n4. **Finding the kth

Smallest:**\n - After the loop, the top element of

the ‘min heap‘ contains the ‘k‘th smallest element.\n

- ‘heapq.heappop(min heap)‘ removes and returns this

element.\n\n**Time Complexity:**\n\n- Building the

min-heap: O(m + n)\n- Extracting k-1 elements: O(k *

log(k))\n- Overall: **O(m + n + k * log(k))**, which

is approximately **O(m + n)** since ‘k‘ is usually much

smaller than ‘m + n‘.\n\n\n\nLet me know if you have

any other questions!

‘‘‘python\n\def find kth smallest(list1, list2, k):\n

"""\n Finds the kth smallest element in the union

of two sorted lists.\n\n Args:\n list1: The first

sorted list.\n list2: The second sorted list.\n

k: The desired rank of the smallest element.\n\n

Returns:\n The kth smallest element in the union of

the lists.\n """\n\n i = 0 # Index for list1\n j =

0 # Index for list2\n merged = [] # Store the merged

elements\n\n while i < len(list1) and j < len(list2):\n

if list1[i] <= list2[j]:\n merged.append(list1[i])\n

i += 1\n else:\n merged.append(list2[j])\n j

+= 1\n\n # Add any remaining elements from list1\n

while i < len(list1):\n merged.append(list1[i])\n

i += 1\n\n # Add any remaining elements from list2\n

while j < len(list2):\n merged.append(list2[j])\n

j += 1\n\n return merged[k - 1] # Return the kth

element (index k-1)\n\n# Example usage:\nlist1

= [2, 5, 8, 12]\nlist2 = [1, 3, 7, 9, 10]\nk

= 5\n\nkth smallest = find kth smallest(list1,

list2, k)\nprint(f"The {k}th smallest element

is: {kth smallest}")\n\n\n**Explanation:**\n\n1.

**Initialization:**\n - ‘i‘ and ‘j‘ are index pointers

for ‘list1‘ and ‘list2‘ respectively, starting at

0.\n - ‘merged‘ is an empty list to store the merged

sorted elements.\n\n2. **Merging:**\n - The ‘while‘

loop continues as long as both ‘i‘ and ‘j‘ are within

the bounds of their respective lists.\n - In each

iteration, it compares the elements at ‘list1[i]‘

and ‘list2[j]‘.\n - The smaller element is appended

to ‘merged‘, and the corresponding index (‘i‘ or

‘j‘) is incremented.\n\n3. **Adding Remaining

Elements:**\n - After one list is exhausted, the

remaining elements from the other list are directly

appended to ‘merged‘.\n\n4. **Returning the kth

Element:**\n - Finally, ‘merged[k - 1]‘ is returned,

which represents the kth smallest element in the union

(remember that list indices start from 0).\n\n**Linear

Complexity:**\n\n- The algorithm iterates through each

element in both lists at most once during the merging

process.\n- The time complexity is therefore O(m + n),

which is linear in the total number of elements (m +

n), making it efficient for large lists.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s answer is incorrect. The user asked

for a solution with linear complexity, but the

assistant provided a solution with a time complexity

of O(m + n + k * log(k)), which is not linear. The

assistant’s solution uses a min-heap, which is not

necessary and adds unnecessary complexity to the

solution.

Rating: [[2]], "score": 2, "turn": 1, "tstamp":

1722737030.6411152

The assistant’s answer is correct and helpful. It

provides a Python function that implements the

two-pointer approach to find the kth smallest element

in the union of two sorted lists. The assistant’s

function is slightly different from the reference, but

it achieves the same goal. The assistant’s function

merges the two lists into a new list and then returns

the kth element from the merged list. The assistant

also provides a detailed explanation of how the

function works and confirms that the time complexity

is linear, which is what the user asked for. However,

the assistant’s function uses extra space to store

the merged list, which is not necessary and not as

efficient as the reference.

Rating: [[8]], "score": 8, "turn": 1, "tstamp":

1722846543.867601

Table 21: (Continued) comparison of model generations on examples from MT-Bench.
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2nd-turn prompt: Does there exist an algorithm with better time complexity? If so, implement it.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

You are absolutely right! There’s a more efficient algorithm

with a time complexity of **O(m + n)** without using a

heap.\n\nHere’s the implementation:\n\npython\n\def

find kth smallest optimized(list1, list2, k):\n """\n Finds

the kth smallest element in the union of two sorted lists\n with

O(m + n) time complexity.\n\n Args:\n list1: The first sorted

list.\n list2: The second sorted list.\n k: The desired kth

smallest element.\n\n Returns:\n The kth smallest element in the

union of the two lists.\n """\n m, n = len(list1), len(list2)\n i,

j = 0, 0\n result = []\n\n # Merge the lists while keeping track

of the kth smallest\n while len(result) < k:\n if i < m and j <

n:\n if list1[i] <= list2[j]:\n result.append(list1[i])\n

i += 1\n else:\n result.append(list2[j])\n j += 1\n

elif i < m:\n result.append(list1[i])\n i += 1\n else:\n

result.append(list2[j])\n j += 1\n\n return result[k - 1]\n\n#

Example usage:\nlist1 = [2, 5, 8, 12]\nlist2 = [1, 3, 7, 9,

10]\nk = 5\nkth smallest = find kth smallest optimized(list1,

list2, k)\nprint(f"The {k}th smallest element

is: {kth smallest}")\n\n\n**Explanation:**\n\n1.

**Initialization:**\n - ‘m‘ and ‘n‘ store the lengths of the

lists.\n - ‘i‘ and ‘j‘ are pointers for ‘list1‘ and ‘list2‘,

respectively.\n - ‘result‘ is a list to store the merged and

sorted elements.\n\n2. **Merging and Tracking:**\n - The ‘while‘

loop continues until ‘k‘ elements are in the ‘result‘ list.\n -

In each iteration, it compares the current elements from ‘list1‘

and ‘list2‘.\n - The smaller element is appended to ‘result‘,

and the corresponding pointer (‘i‘ or ‘j‘) is incremented.\n

- If one list is exhausted, the remaining elements from the

other list are appended to ‘result‘.\n\n3. **Returning the

kth Smallest:**\n - Finally, ‘result[k - 1]‘ contains the ‘k‘th

smallest element.\n\n**Time Complexity:**\n\n- The algorithm

iterates through both lists once, resulting in a time complexity

of **O(m + n)**.\n\n\n\nLet me know if you have any more

questions!

You are right to ask! While the previous algorithm has linear

time complexity, we can achieve an even better solution with

**O(log(min(m, n)))** time complexity using a slightly more

sophisticated approach.\n\nThe key idea is to leverage

the sorted nature of the lists and use a **binary search**

strategy.\n\nHere’s the implementation:\n\n\##\npython\n\def

find kth smallest optimized(list1, list2, k):\n """\n Finds

the kth smallest element in the union of two sorted lists with

O(log(min(m, n))) time complexity.\n\n Args:\n list1: The

first sorted list.\n list2: The second sorted list.\n k: The

desired rank of the smallest element.\n\n Returns:\n The kth

smallest element in the union of the lists.\n """\n m, n =

len(list1), len(list2)\n if m > n:\n list1, list2, m, n = list2,

list1, n, m # Ensure list1 is the shorter one\n\n left, right

= 0, m\n while left <= right:\n partitionX = (left + right) //

2\n partitionY = k - partitionX\n\n maxLeftX = list1[partitionX

- 1] if partitionX > 0 else float(’-inf’)\n minRightX =

list1[partitionX] if partitionX < m else float(’inf’)\n\n

maxLeftY = list2[partitionY - 1] if partitionY > 0 else

float(’-inf’)\n minRightY = list2[partitionY] if partitionY

< n else float(’inf’)\n\n if maxLeftX <= minRightY and maxLeftY

<= minRightX:\n if partitionX == 0:\n return list2[partitionY

- 1]\n elif partitionY == 0:\n return list1[partitionX - 1]\n

else:\n return max(list1[partitionX - 1], list2[partitionY

- 1])\n elif maxLeftX > minRightY:\n right = partitionX - 1

# Too many elements on the right side of list1\n else:\n

left = partitionX + 1 # Too many elements on the right side of

list2\n\n\n**Explanation:**\n\n1. **Shorten Lists:** If ‘list1‘

is longer than ‘list2‘, swap them to ensure ‘list1‘ is always

the shorter one. This simplifies the logic.\n\n2. **Binary

Search:**\n - ‘left‘ and ‘right‘ pointers define the search space

within ‘list1‘.\n - ‘partitionX‘ is the middle point in ‘list1‘,

and ‘partitionY‘ is calculated to divide the remaining elements in

‘list2‘ such that ‘partitionX + partitionY = k‘.\n - ‘maxLeftX‘,

‘minRightX‘, ‘maxLeftY‘, and ‘minRightY‘ represent the largest

element to the left and smallest element to the right of the

partitions in both lists.\n\n3. **Comparison and Adjustment:**\n

- If the ‘maxLeftX‘ is less than or equal to ‘minRightY‘ and

‘maxLeftY‘ is less than or equal to ‘minRightX‘, it means the kth

smallest element lies within the current partitions. We return

the larger of ‘maxLeftX‘ and ‘maxLeftY‘.\n - If ‘maxLeftX‘ is

greater than ‘minRightY‘, it indicates that we need to search

in the left subarray of ‘list1‘ (i.e., decrease ‘right‘).\n -

Otherwise, we search in the right subarray of ‘list1‘ (i.e.,

increase ‘left‘).\n\n4. **Termination:** The binary search

continues until ‘left‘ crosses ‘right‘, indicating the correct

partition has been found.\n\n**Time Complexity:**\n\n- The

binary search divides the search space in half at each step.\n-

Therefore, the time complexity is O(log(min(m, n))), which is

significantly faster than linear time for large lists where one

list is much smaller than the other.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s first response to the user’s question is

incorrect. The user asked for a function to find the kth smallest

element in the union of two sorted lists with linear complexity.

The assistant provided a function that uses a min-heap, which

has a time complexity of O(m + n + k * log(k)). This is not

linear complexity, as the user requested. The assistant’s second

response to the user’s question is also incorrect. The user

asked if there exists an algorithm with better time complexity

than linear. The assistant provided a function that has a

time complexity of O(m + n), which is linear, not better than

linear. The assistant should have provided a function that uses a

binary search approach, which has a time complexity of O(log(m) +

log(n)), as the reference answer correctly does.

Rating: [[2]], "score": 2, "turn": 2, "tstamp":

1722737031.5033472

The assistant’s response is correct and helpful. The assistant

provided a Python function that uses a binary search approach to

find the kth smallest element in the union of two sorted lists.

The assistant also provided a detailed explanation of how the

function works, including the time complexity of the function.

The assistant’s answer matches the reference answer in terms of

the algorithm used and the explanation provided. The assistant

also correctly identified that the binary search approach has

a better time complexity than the linear approach. However,

the assistant’s code has a minor issue. The assistant’s code

does not handle the case when ‘k‘ is greater than the sum of the

lengths of the two lists. In such a case, the code will raise

an ‘IndexError‘. This can be fixed by adding a check at the

beginning of the function to return ‘None‘ if ‘k‘ is greater than

the sum of the lengths of the two lists.

Rating: [[9]], "score": 9, "turn": 2, "tstamp":

1722846556.6828268

Table 22: (Continued) comparison of model generations on examples from MT-Bench.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pages 41–48, 2009.

Michael Beukman, Samuel Coward, Michael Matthews, Mattie Fellows, Minqi Jiang, Michael
Dennis, and Jakob Foerster. Refining Minimax Regret for Unsupervised Environment Design.
arXiv preprint arXiv:2402.12284, 2024a.

Michael Beukman, Samuel Coward, Michael Matthews, Mattie Fellows, Minqi Jiang, Michael
Dennis, and Jakob Foerster. Refining Minimax Regret for Unsupervised Environment Design.
arXiv preprint arXiv:2402.12284, 2024b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac
142f64a-Paper.pdf.

Seth Chaiklin et al. The zone of proximal development in Vygotsky’s analysis of learning and
instruction. Vygotsky’s educational theory in cultural context, 1(2):39–64, 2003.

Ching-An Cheng, Allen Nie, and Adith Swaminathan. Trace is the Next AutoDiff: Generative
Optimization with Rich Feedback, Execution Traces, and LLMs. arXiv preprint arXiv:2406.16218,
2024.

Eugene Choi, Arash Ahmadian, Matthieu Geist, Oilvier Pietquin, and Mohammad Gheshlaghi Azar.
Self-Improving Robust Preference Optimization. arXiv preprint arXiv:2406.01660, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Provably sample
efficient rlhf via active preference optimization. arXiv preprint arXiv:2402.10500, 2024.

Peter Dayan and Geoffrey E Hinton. Using expectation-maximization for reinforcement learning.
Neural Computation, 9(2):271–278, 1997.

45

https://arxiv.org/abs/2303.07507
https://arxiv.org/abs/2303.07507
https://arxiv.org/abs/2406.11704
https://arxiv.org/abs/2406.11704
https://arxiv.org/html/2402.14740v1
https://arxiv.org/html/2402.14740v1
https://arxiv.org/abs/1910.08475
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-39/issue-6/On-Pseudo-Games/10.1214/aoms/1177698023.full
https://ronan.collobert.com/pub/2009_curriculum_icml.pdf
https://arxiv.org/abs/2402.12284
https://arxiv.org/pdf/2402.12284
https://arxiv.org/abs/2005.14165
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://blogs.ubc.ca/vygotsky/files/2013/11/chaiklin.zpd_.pdf
https://blogs.ubc.ca/vygotsky/files/2013/11/chaiklin.zpd_.pdf
https://arxiv.org/abs/2406.16218
https://arxiv.org/abs/2406.16218
https://arxiv.org/abs/2406.01660
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2402.10500
https://arxiv.org/abs/2402.10500
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=628b80ac7952a67155d62e10dc2854ac8c04a6e4


2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 33:13049–13061, 2020.

Mucong Ding, Souradip Chakraborty, Vibhu Agrawal, Zora Che, Alec Koppel, Mengdi Wang, Amrit
Bedi, and Furong Huang. Sail: Self-improving efficient online alignment of large language models.
arXiv preprint arXiv:2406.15567, 2024.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Parash Rahman, A Rupam Mahmood, and
Richard S Sutton. Maintaining plasticity in deep continual learning. arXiv preprint
arXiv:2306.13812, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. RLHF Workflow: From Reward Modeling to Online
RLHF, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Ky Fan. Minimax theorems. Proceedings of the National Academy of Sciences, 39(1):42–47, 1953.

Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin Ding,
and Yisen Wang. What is Wrong with Perplexity for Long-context Language Modeling? arXiv
preprint arXiv:2410.23771, 2024.

Yoav Freund and Robert E. Schapire. (Adaptive Game Playing Using Multiplicative Weights). Games
and Economic Behavior, 29:79–103, 1999.

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John Hughes,
Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromov, et al. Is model collapse in-
evitable? breaking the curse of recursion by accumulating real and synthetic data. arXiv preprint
arXiv:2404.01413, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Roger Grosse. Bilevel Optimization and Generalization, 2022.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from online
ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and
Dorsa Sadigh. Contrastive prefence learning: Learning from human feedback without rl. arXiv
preprint arXiv:2310.13639, 2023.

46

https://arxiv.org/abs/2012.02096
https://arxiv.org/abs/2012.02096
https://arxiv.org/abs/2406.15567
https://arxiv.org/abs/2306.13812
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2304.06767
https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B
https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://www.jstor.org/stable/88653
https://arxiv.org/abs/2410.23771
https://cseweb.ucsd.edu/~yfreund/papers/games_long.pdf
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/1406.2661
https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2022/slides/lec12.pdf
https://arxiv.org/abs/2308.08998
https://arxiv.org/abs/2308.08998
https://openreview.net/forum?id=ZG3RaNIsO8
https://openreview.net/forum?id=ZG3RaNIsO8
https://arxiv.org/abs/2402.04792
https://arxiv.org/abs/2402.04792
https://arxiv.org/abs/2310.13639


2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2(4):5, 2024.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Edward Hughes, Michael Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar, Yuge
Shi, Tom Schaul, and Tim Rocktaschel. Open-Endedness is Essential for Artificial Superhuman
Intelligence. arXiv preprint arXiv:2406.04268, 2024a.

Edward Hughes, Michael Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar, Yuge
Shi, Tom Schaul, and Tim Rocktaschel. Open-Endedness is Essential for Artificial Superhuman
Intelligence. arXiv preprint arXiv:2406.04268, 2024b.

Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R Ganger,
Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton, et al. Accelerating deep
learning by focusing on the biggest losers. arXiv preprint arXiv:1910.00762, 2019.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Minqi Jiang. Learning Curricula in Open-Ended Worlds. arXiv preprint arXiv:2312.03126, 2023.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021a.
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