21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

54
55
56
57
58

Supplementary Material for UrbanCross: Comprehensive Analysis
of Text Generation, Image Segmentation, and Geo-Tags Insights

Anonymous Authors

1 INTRODUCTION

This supplementary document complements the primary findings
presented in the UrbanCross framework by elaborating on the nu-
anced methodologies and additional analyses not covered in the
main paper. Here, we delve into the intricacies of text generation,
image segmentation, and geo-tags, which are pivotal for enhanc-
ing the performance of satellite image-text retrieval systems. Each
section of this document is designed to further explore these com-
ponents, providing a deeper understanding of their impact on the
retrieval accuracy and semantic richness of the metadata. By dis-
secting these elements, the supplementary material aims to solidify
the foundation laid by UrbanCross and expand the potential appli-
cations and improvements derived from our research.

2 TEXT GENERATION ANALYSIS

2.1 LMM Selection Evaluation

The efficacy of Large Multimodal Models (LMMs) in generating
textual descriptions from images is pivotal to the success of cross-
modal systems. To identify the most effective LMM for our research,
we conducted a comparative analysis of prominent open-source
models, as shown in Table 1. This evaluation centered on the Per-
ceptionScore, an innovative metric that quantifies the perceptual
alignment of text with corresponding visual elements [6].

The PerceptionScore integrates CLIPScore [7], which leverages
the robust zero-shot capabilities of CLIP [10] for text quality assess-
ment, and the CycleScore. This latter metric is designed to capture
the visual recall of text, ensuring a comprehensive representation
of all salient image details. The PerceptionScore metric enables com-
prehensive evaluation of textual descriptions by focusing on the
absence of specific image elements, thereby promoting precise
alignment between the generated text and the image content.

Table 1: Perception score of representative LMMs.

Models Average Generated Caption Scores
LLaVA-v1.5 [9] 0.674
mPLUG-Owl [11] 0.662
LLaMA-Adapter V2 [5] 0.698
MiniGPTv2 [1] 0.693
ShareGPT4V [2] 0.714
InstructBLIP [3] 0.758

Our experimental data, outlined in Table 1, indicates that Instruct-
BLIP [3] surpasses other models with the highest PerceptionScore.
Consequently, we adopted InstructBLIP as our primary Image-to-
Text model, due to its superior ability to generate perceptually co-
herent and contextually rich descriptions, a fundamental attribute
for advancing text-image alignment in our UrbanCross framework.

2.2 Prompt Design Comparison

As shown in Figure 1, we conduct a comparison of various prompt
designs aimed at providing a comprehensive overview of a specific
location depicted in satellite imagery. We present two straightfor-
ward methods for prompt design: one involves prompting the LMM
to generate its visual interpretation, while the other directs its at-
tention toward geological features. However, both of these initial
prompts lack the capacity to elicit nuanced information from the
LMM. To address this limitation, we incorporate geo-tags informa-
tion into our prompt, tailoring it to each individual satellite image.
As a result, the location description becomes sufficiently detailed
to discern diverse semantic nuances within the image itself.
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Figure 1: Prompt cases for location description generation.

2.3 LMM Limitation Analysis

As illustrated in Figure 2, our comprehensive analysis identifies
specific scenarios where the Large Multimodal Models (LMMs) may
exhibit suboptimal performance in generating text. This detailed
investigation is designed to deepen our understanding of the LMM’s
capabilities as well as its limitations. Within this context, we have
pinpointed three distinct scenarios that illustrate these challenges.

Bad Case 1 ~
Image Name: w893942687 FI_16.jpg

Title: a satellite image of road of track, tracktype is grade2

‘Title Multi Objects: a satellite image of road of track with tracktype is grade2
Coordinate: (26.502287552857005°N, 66.2643519114331°E)

Output: 5 and length is

Bad Case 2 ~
Image Name: a339298287_FI_20.jpg

‘Title: a satellite image of golf driving range

‘Title Multi Objects: a satellite image of golf driving range, surrounded by landuse of
grass with golf fairway; golf hole; piste type is nordic with piste difficulty of novice

and piste classic lanes of 2

Coordinate: (24.673407394466405°N, 60.31972556916123°E)

Output: 5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0

Bad Case 3 -

Image Name: w1180102515_ES_16.jpg

‘Title: a satellite image of road of track, tracktype is grade4

‘Title Multi Objects: a satellite image of road of track with tracktype is grade4
Coordinate: (-3.7627159726159958°E, 40.495773500675256°E)

Output: 5 and trackwidth is

Figure 2: Bad examples of geo-tags enhanced text description
generated by InstructBLIP.
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e Case 1. When the Title Multi Objects contain elements outside
the LMM’s pretraining data (e.g., "tracktype is grade2"), there is
a risk of generating nonsensical descriptions.

o Case 2: When a term within the Title Multi Objects is polysemous
(e.g., "driving range"), the LMM may misinterpret its meaning,
resulting in incorrect text generation.

o Case 3: If the satellite image itself presents complexities that are
difficult for human interpretation, particularly when accompa-
nied by misleading geo-tags information, the resultant descrip-
tions can be significantly degraded.

The causes of the aforementioned issues can be summarized
as follows. Firstly, certain details in satellite images pose inherent
challenges for human perception. Additionally, there is the issue of
"hallucination" within the LMM itself, constrained by the capacity
limitations of multimodal foundational models.

3 IMAGE SEGMENTATION ANALYSIS
3.1 Image Segmentation and Text Enhancement

The integration of image segmentation and geo-tags enrichment
is essential for generating semantically rich text descriptions that
align precisely with visual data. Figure 3 presents a set of illustrative
examples demonstrating this intricate interplay. In the top image,
we observe a school area, where segmentation and corresponding
geo-tags annotations such as "natural: scrub”, "building: school", and
"leisure: park" provide a detailed textual narrative. This enriching
process allows for the precise capture of the surrounding environ-
ment, highlighting not just the main amenity but also peripheral
elements such as adjacent roads and recreational areas.

Similarly, the bottom image showcases a healthcare facility marked
by geo-tags indicating a "healthcare: laboratory" and "leisure: pitch",
offering valuable insights into the facility’s functionality and lay-
out. These geo-tags are instrumental in guiding the segmentation
algorithm to prioritize and detail salient features within the scene,
such as parking amenities and service roads, which are pivotal for
a comprehensive understanding of the landscape.

f','\§4

The satellite image shows )
. The school is
located in a , with a natural scrub
and a building of kindergarten nearby.
Additionally, there is a leisure land of park, and a
road of footway in the vicinity of the school.

@
[{'natural': 'scrub'}, {'building": 'kindergarten'},

, {!leisure": 'park'}, {'I

, {'surface": 'asphalt, 'oneway": 'yes',
R

The satellite image shows
with a temporary health post, aleisure land of a
pitch, and an amenity of parking face
of gravel. There is also a road of path and a road
of service visible in the image.

1}
6 ', 'amenity'
‘health_post'}, {'highway': ‘path’, 'trail_visibility':
‘poor’}, {'highway': 'service', 'service's
‘driveway'}, {amenity” ‘parking’. ‘parkin

urface, 'surface’: 'gravel’}, {'leisure': ‘pitch'}]

Figure 3: Illustrative examples of our image segments and
geo-tags enhanced descriptions.

By integrating geo-tags information, we not only refine the im-
age segmentation but also enable the generation of text that cap-
tures a more granular and accurate depiction of the scene. This

Anonymous Authors

synergy between visual segmentation and textual enrichment is par-
ticularly evident when dealing with complex scenes where multiple
objects or features must be precisely identified and described.
However, our methodology extends beyond simple annotation
of images with geo-tags. It involves an iterative refinement where
image segmentation informs the geo-tag-based text generation,
and vice versa, leading to a fine-grained alignment that is greater
than the sum of its parts. Such alignment is crucial for applications
requiring detailed and context-aware descriptions of geographical
spaces, as it allows for a nuanced interpretation of the environment,
which is critical for accurate satellite image-text retrieval tasks.

3.2 Fine-tuning Segmentation Parameters

Our methodical calibration of the image segmentation process has
conclusively established that six segments (num_seg = 6) provide the
optimal representation of scenes for our modeling purposes. This
specific number of segments was meticulously selected to adeptly
capture the inherent complexity of diverse landscapes while avoid-
ing the overburdening of the model with extraneous, non-essential
details. The solid rationale behind this particular parameter choice
is vividly demonstrated and well-supported by the statistical distri-
butions, which are thoroughly illustrated in Figure 4.

Distribution of Tag Count Distribution of Word Count
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0.02 0.005 (
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Tag Count ‘Word Count

Figure 4: Statistical distribution of tag count and word count
of descriptions in our dataset, illustrating the optimal bal-
ance of information richness and brevity.

The histogram on the left displays the frequency distribution
of tag counts across our dataset. The majority of images have a
tag count that clusters between four and ten, with a peak at six.
This peak indicates that six tags often provide enough information
to describe the essential elements of a scene without introducing
noise through over-segmentation. The histogram on the right com-
plements this finding by showing the word count distribution of
the corresponding text descriptions. The majority of descriptions
average approximately 54 words, achieving a balance between con-
ciseness and detail necessary to comprehensively represent the
scene for algorithmic processing and user interpretation.

This dual analysis of tag and word count distributions allows
us to tailor our segmentation to align closely with the amount of
detail that can be effectively described in texts, optimizing both the
accuracy of image descriptions and the efficiency of our model. This
fine-tuning ensures that each segment adds meaningful information
to the generated description, facilitating a high level of detail in
the semantic understanding of the scene, which is crucial for tasks
such as image-text retrieval and scene comprehension.
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Geo-tags Wordcloud for Spain

Geo-tags Wordcloud for Germany
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Geo-tags Wordcloud for Finland
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Figure 5: Geo-Tags Word Cloud: Visualizing the Most Frequent Tags for Spain (a), Germany (b), and Finland (c); and Geo-Tags
Clusters: Spatial Distribution Based on PCA for Spain (e), Germany (f), and Finland (g) across three countries.

3.3 Future Segmentation Challenges

While current segmentation approaches yield substantial improve-
ments in text-image alignment, several challenges remain. These
include poor segmentation performance for small objects, a lack
of quantified metrics for assessing text quality, and the absence of
an automatic refinement mechanism for the segmentation process.
Addressing these issues will be crucial for future advancements.
In subsequent iterations, tags could play a more pivotal role in
guiding the joint training of image-text pairs [8]. Moreover, the
adoption of a Chain-of-Thought mechanism [4], which leverages
feedback based on segmentation ratios, could enhance text quality
further. These strategies offer promising avenues for improving the
functionality and efficiency of our segmentation techniques.

4 GEO-TAGS ANALYSIS
4.1 Geo-Tags Distribution and Cluster Insights

In exploring geospatial metadata, geo-tags serve as critical tools for
extracting geographical semantics embedded within satellite im-
agery. This analysis employs frequency analysis of geo-tags sourced
from satellite images across three distinct European regions: Fin-
land, Germany, and Spain. Utilizing word clouds and PCA cluster-
ing, this study visually represents the distribution and frequency of
these tags, thereby highlighting the most prominent geographical
features captured within the imagery.

Word clouds and PCA clustering diagrams provide dual modal-
ities for in-depth visual analysis. Word clouds are particularly ef-
fective for quickly identifying the most frequent and prominent
geo-tags, with larger font sizes indicating higher frequencies. This

visualization technique is augmented by PCA clustering, which
groups geo-tags based on the similarity of their occurrences across
various images, revealing underlying patterns that may not be im-
mediately evident from the word clouds alone.

For instance, word clouds for Finland, Germany, and Spain show-
case a distinct predominance of tags such as "natural”, "building”,
and "waterway", amongst others. However, the PCA clustering dia-
grams further elucidate the relationships between these tags. In the
case of Finland, the PCA clustering diagram shows that geo-tags
associated with "piste:type" and "winter_service" cluster together
separately from common tags, highlighting the distinctive winter
sports environment in the area.

The clustering technique used in this analysis involves a multi-
step process. Initially, the frequency of geo-tags is computed from
the dataset, and a high-dimensional vector space is created. This
space is then simplified to two principal components through PCA,
capturing the most significant variances among the geo-tags. Sub-
sequently, the clustering algorithm subsequently divides these tags
into coherent clusters, each marked by a unique color.

4.2 Semantic Insights of Geo-Tags

The insights from the word cloud and PCA clustering analyses
significantly enhance our understanding of image-text alignment in
cross-modal retrieval tasks. Specifically, PCA clustering illustrates
the semantic proximity of geo-tags within their clusters, indicating
potential shared functionalities or relationships. These insights
not only emphasize the diverse geographical semantics inherent
to the studied countries but also have profound implications for
cross-modal retrieval tasks.
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By leveraging clustering insights, searches for "recreational ar-

"o

eas" could, for instance, pull images tagged with "leisure”, "park”,
and "natural", knowing these tags share semantic relationships.

In summary, the frequency and cluster analysis of geo-tags not
only lay a foundational layer for semantic comprehension but also
illustrate distinct geographical semantics across different countries,
which is essential for enhancing cross-modal retrieval tasks. The
refined analytical methods in this study pave the way for extract-
ing more detailed and context-rich insights from geo-tagged data,
enriching the narratives that satellite imagery can offer.

5 CONCLUSION

The analyses conducted in this supplementary material underscore
the critical role of detailed component examination in advancing
the UrbanCross framework. Through rigorous investigation into
text generation, image segmentation, and geo-tags clustering, we
have identified several key areas for enhancement and potential
pitfalls that may impede performance. The insights derived from
these studies not only refine our current understanding but also
pave the way for future research, particularly in enhancing cross-
modal retrieval accuracy and the semantic alignment of geo-spatial
metadata. Moving forward, these findings will guide the further de-
velopment of the UrbanCross framework, ensuring its adaptability
and efficacy in handling diverse and complex geo-spatial datasets.
This document not only serves as a testament to the depth of our
analysis but also as a blueprint for ongoing and future innovations
in the field of satellite imagery retrieval.
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