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A PROOFS

For completeness, we include the proofs of the main results in Carlier et al. (2016) with slight
modifications in the statements and proofs to fit our variation of the problem.
Theorem 2 (Carlier et al. 2017). Assume U ∈ Rd is random vector with distribution µ, (X,Y ) ∈
Rm ×Rd is random vector with joint distribution ν. Furthermore, assume E(X|U) = E(X) = 0.
If there exists smooth function ϕ : Rd → R and smooth function b : Rd → Rm such that ϕx(u) =
ϕ(u) + b(u)>x is convex for Law(X)-almost every value of x such that Y = ∇ϕ(U) +∇b(U)>X ,
then U solves the correlation maximization problem (7).

Proof. Let ΦX(U) = ϕ(U) + b(U)>X and define V with Law(V ) = µ and E(X|V ) = 0. From
the Fenchel-Young inequality,

V >Y ≤ ΦX(V ) + Φ∗X(Y ). (15)

By assumption, Y = ∇ΦX(U) implying Y ∈ ∂ϕX(U). The Fenchel-Young inequality satisfies
equality if and only if Y ∈ ∂ϕX(U), thus U>Y = ΦX(U) + Φ∗X(Y ). Taking the expectation of
both sides of the equality, U is optimal by the Strong Duality Theorem.

Theorem 3 (Carlier et al. 2017). Let ν be an absolutely continuous probability measure overRm×
Rd with density g. Assume the support of ν is Ω̄ where Ω is an open bounded convex subset of
Rm ×Rd, and g is bounded on Ω and bounded away from zero on compact subsets of Ω. Then, the
dual problem admits at least one solution.

Proof. Let us denote the barycenter of ν as (x̄, ȳ) ≡ (0, ȳ). Clearly we have (0, ȳ) ∈ Ω. Otherwise,
by convexity of Ω, ν would be supported on ∂Ω contradicting the assumption that ν ∈ L∞(Ω).

Recall that ψ satisfies,

ψ(x, y) = sup
u∈Rd

{u>y − ϕ(u)− b(u)>x}. (16)

We can choose ψ to be 1-Lipschitz convex w.r.t. y such that,

|ψ(x, y)− ψ(x, ȳ)| ≤ ‖y − ȳ‖. (17)

The minimizer to our problem does not change up to additive constant C and so we choose C such
that ψ(0, ȳ) = 0. Combining this into our constraint,

ϕ(t) ≥ tȳ − ψ(0, ȳ) ≥ −|ȳ|. (18)

Combining ψ(x, ȳ) ≥ 0 with (17),

ψ(x, y) ≥ −‖y − ŷ‖ ≥ −C, (19)

where the last inequality comes from the boundedness of Ω. Let us take a minimizing sequence
(ψn, ϕn, bn) ∈ C( ¯Ω,R)×C(Rd,R)× (Rd,RN ) s.t. all the aforementioned properties are satisfied
for all n. Note that ψn, ϕn are bounded sequences in L1 as ϕn ≥ −|y| and ψn ≥ −C and the
sequence is minimizing. Set z := (x, y) ∈ Ω and r > 0 such that Br(z) is the set of all points at
least distance r away from ∂Ω. There exists α > 0 s.t. g ≥ α on Br(z) as we assumed g is bounded
away from zero on compact subsets of Ω. We chose ψn to be convex, thus

−C ≤ ψn(z) ≤ 1

|Br(z)|

∫
Br(z)

ψn ≤
1

α|Br(z)|

∫
Br(z)

|ψn|g ≤
1

α|Br(z)|
‖ψn‖L1(ν) (20)

=⇒ ψn is locally bounded. Furthermore, the following inequality also holds due to convexity,

‖∇ψn‖L∞(Br(z)) ≤
2

R− r
‖ψn‖L∞(BR(z)), (21)

for R > r, BR(z) ⊂ Ω. This suggests ψn is locally uniformly Lipschitz as well. By the Arzelà-
Ascoli theorem, there exists a subsequence of ψn that converges uniformly to ψ.
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Now, take r > 0 s.t. B2r(0, ȳ) ∈ Ω. ∀ x ∈ Br(0) and any t ∈ Rd,

−b(t)>x ≤ ϕn(t)− t>ȳ + ‖ψn‖L∞(Br(0,ȳ)) ≤ C + ϕn(t) (22)

for some C > 0. By maximizing x ∈ Br(0), we get |bn(t)|>r ≤ C + ϕn(t). Since ϕn is bounded
on L1, then so is bn. By Komlo’s theorem, there exists a sub-sequence such that 1

n

∑n
k=1 ϕk → ϕ

and
∑n
k=1 bk → b almost-everywhere. Indeed, our constraint inequality is still satisfied. Since

the sequence (ψ̄n, ϕ̄n, b̄n) =
∑n
k=1

(ψk,ϕk,bk)
n is minimizing as well, we can use Fatou’s lemma to

arrive at,∫
Ω

ϕ(x, y)dν(x, y) +

∫
Rd

ϕ(u)dµ(u) ≤ lim inf
n

∫
Ω

ϕ̄(x, y)dν(x, y) +

∫
Rd

¯ϕ(u)dµ(u) (23)

= inf
ψ,ϕ,b

∫
Ω

ϕ(x, y)dν(x, y) +

∫
Rd

ϕ(u)dµ(u).

Theorem 4 (Carlier et al. (2017)). Let U ∈ Rd be a solution to (7) and let Ψ : Rm × Rd →
R, ϕ : Rd → R, b : Rd → Rm be solutions to the corresponding dual problem (13). Let ϕx(t) =
ϕ(t) + b(t)>x ∀(t, x) ∈ [0, 1]d × support(Law(X)). Then, ϕX(U) = ϕ∗∗X (U) and U ∈ ∂ϕ∗X(Y )
almost surely.

Proof. Define ΦX(U) = ϕ(U) + b(U)>X and ψX(Y ) = ψ(X,Y ). By the constraint ψX(Y ) +
ΦX(U) ≥ U>Y and by definition of ψ(y) := supU∈Rd{U>Y − ϕ(U) − b(U)>X} and order-
reversibility of the Legendre transformation,

ψX ≥ Φ∗X . (24)

By strong duality, we have ψX(Y ) + ΦX(U) = UY almost surely. Then, U>Y = ψX(Y ) +
ΦX(U) ≥ Φ∗X(Y )+ΦX(U) thus U>Y = Φ∗X(Y )+ΦX(U) and Φ∗∗X ≥ U>Y −Φ∗X(Y ) = ΦX(U).
Combining the above, we arrive at ΦX(U) = Φ∗∗X (U) and U>Y = Φ∗(Y ) + Φ∗∗X (U) which also
suggests U ∈ ∂Φ∗X(Y ) and Y ∈ ∂ϕ∗∗X (U) almost surely.

Proposition 1. If ϕx(U) : Rd → R is convex w.r.t. U ∈ Rd and Uk ≤ Vk, then [∇ϕx(U)]k ≤
[∇ϕx(V )]k for all k = 1, . . . , d.

Proof. Let Hϕx
denote the Hessian of ϕx. By convexity of ϕx, Hϕx

< 0 so the diagonal entries of
Hϕx

are non-negative. Otherwise if the ith diagonal entry is negative, let ei be the standard basis
at the ith coordinate, then e>i Hϕx

ei < 0, arriving at a contradiction. Consider the kth component
of ∇ϕx, (∇ϕx)k = ∂ϕx

∂Uk
, since Hϕx < 0 then ∂2ϕx

∂U2
k

= diag(Hϕx)k ≥ 0. Thus, (∇ϕx)k is
comonotonic w.r.t. U .

Proposition 2. For any continuous conditional quantile function Qx(u) we can find large n and
functions f(x) : Rm → Rn, ϕ(u) : Rd → R and b(u) : Rd → Rn such that the gradient of
ϕx(u) := ϕ(u) + b(u)>f(x) approximates Qx(u) uniformly over any compact region of (u, x).

Proof. Fixing x, the function u 7→ Qx(u) is the gradient of some convex function qx(u) =: q(x, u).
Thus, using results in Chen et al. (2019), we may approximate qx(u) with a Relu network g(x, u).
Using the standard compactness argument, we may approximate q(x, u) over any compact convex
region K by

∑n
i=1 qi(xi, u). Now we use the results of Chen et al. (2019) to approximate each

qi(xi, u) with a convex Relu network gi(u). Define f(x) = 1 and b(u) = [g1(u), . . . , gn(u)] we
then have b(u)>f(x) =

∑
i gi(u) which approximates q(x, u) uniformly over the compact region

K. Finally, we note that uniform approximation of a convex function also leads to approximation of
its gradient (Rockafellar, 1970).

We note that we can also modify the arguments of Chen et al. (2019) to provide a more direct and
possibly tighter proof.
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B EXPERIMENTAL DETAILS

B.1 PSEUDO-CODE OF DUAL OBJECTIVE

We present the pseudo-code for the correlation maximization dual objective below. Each tensor
is assumed to be two dimensional; first dimension is the batch axis and the second dimension is
the feature axis. Flatten all dimensions except the batch dimension to allow for vector dot product
otherwise.

Algorithm 1: PyTorch-style code for computing the correlation maximization dual objective.
1 function loss (a, b);

Input: U , Ŷ , Y , X
2 ϕ, b = Ŷ
3 Y = Y.permute(1, 0)
4 X = X.permute(1, 0)
5 BX = torch.mm(b, X)
6 loss = torch.mean(α)
7 UY = torch.mm(U , Y )
8 ψ = UY − α−BX
9 sup, = torch.max(ψ, dim=0)

10 loss += torch.mean(sup)
11 return loss

B.2 MODEL ARCHITECTURE

Table 3: Summary of quantile network architecture used for each experiment. The hidden dimension
of the LSTMs are 4 times the input dimensions.

Experiment Input Dims ϕ Layers ϕ Units b Layers b Units f

Toy 2 3 128 1 128 Identity
MNIST (No VAE) 784 3 512 1 512 Identity

MNIST+VAE 5 3 128 1 128 Identity
CelebA+VAE 2048 3 4096 1 4096 Identity

Energy 28 3 128 1 128 2 Layer LSTM
Stocks 6 3 128 1 128 2 Layer LSTM
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Figure 4: Kolmogorov-Smirnov Test Ablation on High Dimensional Data. The target distribution
is a 2048-dimensional isotropic standard Gaussian. (a.) The KS statistic w.r.t. number of hidden
units per layer. (b.) The KS statistic w.r.t. the number of layers. Both ϕ and b are scaled evenly.
Lower KS statistic value is better.

C ADDITIONAL EXPERIMENTS AND RESULTS

C.1 HIGH DIMENSIONAL OPTIMAL TRANSPORT

Optimal transport approaches can suffer in high dimensional settings. Here, we study the effect of
high dimensions on our dual objective, and suggest a way we empirically found to mitigate the curse
of dimensionality. We set the target distribution as a 2048−dimensional isotropic standard Gaussian.
The baseline network is 3-layer ϕ : R2048 → R with a 2048-dimensional hidden layer.

We use the Kolmogorov-Smirnov test to compare the closeness of the generated distribution against
the target distribution. In particular, the statistic is given by,

Dn = sup
x
|Fn(x)− F (x)| (25)

where F is the cumulative distribution function of the distribution of X (where Xi assumed iid). In
essence, this statistic measures the largest variation of the empirical against the target distribution.

In particular, we find that scaling up depth of the network leads to no improvements on learning
the high dimensional target distribution, but scaling up the width leads to improvements. Figure 4
shows the effect of scaling width and scaling depth independently on fitting the high dimensional
Gaussian. A theoretical justification is left for future work.

C.2 INPUT CONVEX VS. SMOOTH NEURAL NETWORKS

Previous works (Makkuva et al., 2020; Huang et al., 2021) that construct a Brenier map between two
distributions parameterize their function as an ICNN. Doing so guarantees that the trained model is
convex w.r.t. the input data. Contrary to these works, our work demonstrates an ICNN parameter-
ization is not necessary and that the trained model is still convex w.r.t. the input as expected from
optimal transport theory. Here, we study the effect of restricting the model to be input convex a priori
against relaxing this assumption by using smooth neural networks to approximate convex functions.
Table 4 displays the results of on the two time-series datasets Energy and Stocks averaged over 5
runs 10 epochs each.

We notice slight improvements of a smooth parameterization compared to the convex parameteriza-
tion. We suspect this is due to the greater flexibility of smooth neural networks as the weights are
not constrained to be non-negative, thus enabling better fitting the optimal convex potential.
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Table 4: Performance evaluation on the multivariate time-series datasets Energy and Stocks. Re-
sults are averaged over 5 runs. Lower score is better. We use boldface for the lowest score.

Dataset Model MaxAE MeanAE QL50 QL90 RMSE sMAPE

Energy
ICNN 0.863 0.063 0.030 0.018 0.100 0.246
Smooth 0.624 0.051 0.026 0.038 0.091 0.210

Stocks
ICNN 0.739 0.024 0.014 0.009 0.040 0.205
Smooth 0.660 0.024 0.012 0.014 0.036 0.220

C.3 MORE CELEBA SAMPLES

Figure 5: Left. Unconditioned. Right. Conditioned on Blond, Young, Smiling, Female,
Mouth Slightly Open.
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Figure 6: Left. Conditioned on 5 O Clock Shadow, Male, No Beard, Straight Hair. Right. Condi-
tioned on Black Hair, Eyeglasses, Male, Smiling, Young.
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