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A SKETCH OF PRIVACY ENHANCEMENT

Here, we briefly outline how our multi-architectural distillation approach may enhance privacy by
leveraging differential privacy (DP) concepts. Differential privacy ensures robustness against the
inclusion or exclusion of any single data point. Formally:

Definition (Differential Privacy): A randomized algorithm M is (ϵ, δ)-DP if for any adjacent
datasets D,D′ differing by one element and all subsets S:

P (M(D) ∈ S) ≤ eϵP (M(D′) ∈ S) + δ.

We can formalize the intuition behind the privacy enhancement by drawing a strong parallel to the
established framework of Private Aggregation of Teacher Ensembles (PATE) Tran et al. (2021). In
the PATE framework, an ensemble of ”teacher” models, trained on disjoint data partitions, provides
privacy guarantees by aggregating their predictions. Noise is added to the aggregated vote to satisfy
differential privacy. Our approach can be viewed as a novel variant of PATE where, instead of
partitioning the data, we partition the architectural prior. The ”noise” required for privacy is not
explicitly added but arises organically from the inherent disagreement between the gradients of two
distinct model architectures.

In more detail, we propose distillation with two distinct architectures ϕ and θ. Due to differing
inductive biases, their gradients naturally diverge, introducing architectural noise (ηarch) that masks
individual data contributions, enhancing privacy.

Consider synthetic data point sj optimized using gradients from two teachers (ϕ, θ). Gradient updates
become:

g(sj , T ) =
1

|T |
∑
xi∈T

(α∇xsL(sj , xi;ϕ) + (1− α)∇xsL(sj , xi; θ)) ,

for dataset T . For adjacent datasets T, T ′ = T ∪ {x′}, the gradient difference is:
∆g = g(sj , T

′)− g(sj , T ),

dependent on x′. Unlike single-teacher settings, dual-architecture setups introduce architectural
noise:

∇total ≈ ∇ϕ + ηarch,

where ηarch emerges naturally from architectural differences. Thus, each teacher acts as a privacy-
inducing noise source, analogous to PATE (Tran et al., 2021), implicitly enhancing privacy.

B MORE TRAINING DETAILS & EXPERIMENTS

A brief overview of all the settings used during validation and recovery for ImageNet-1K is provided
in Table 1a and Table 1b. To better contrast our settings with those of related work, we provide
Table 2. In Table 3, we also summarize the influence of the min. crop size for the randomly resized
crop augmentation during relabeling and validation, which resulted in a found optimal value of 0.25.
in Table 4, we summarize our experiments on different batch sizes during the recovery stage, which
resulted in keeping 100 as the optimal batch size. However, there is a trend of increased performance
with increasing batch size, so we expect even higher performance if more VRAM is available for
larger batch sizes. We assume that increased batch size leads to a better mean and variance estimation
of the global feature statistics for the batch normalization alignment.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Summary of our different configurations used in our distillation experiments.

(a) Validation settings

config value

optimizer AdamW
base learning rate 0.001 (all)
weight decay 0.01

batch size
50 (IPC 10)
100 (IPC 50)
100 (IPC 100)

learning rate schedule dec. cosine decay
training epoch 300

augmentation RandomResizedCrop
RandomHorizontalFlip

(b) Recovery settings

config value

αBN 0.01
optimizer Adam
base learning rate 0.05
momentum β1, β2 = 0.5, 0.9
batch size 100
learning rate schedule cosine decay
recovery iteration 4,000
augmentation RandomResizedCrop

Table 2: Configurations of various dataset distillation methods compared to ours (PRISM).
Different colors in each row highlight the differences.

Config SRe2L RDED CDA DWA D4M EDC G-VBSM DELT PRISM (ours)
Batch Size (Relabel) 1024 100 128 128 1024 100 1024 IPC depend. IPC depend.

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW
LR Scheduler cosine cosine cosine cosine cosine decayed cosine cosine cosine decayed cosine

Loss Function (Relabel) KL KL KL KL KL MSE MSE KL MSE
Teacher Model single single single single single ensemble ensemble single single, BN ensemble

CropRange (Recovery) 0.08, 1.0 0.5, 1.0 0.08, 1.0 0.08, 1.0 0.08, 1.0 0.5, 1.0 0.08, 1.0 0.08, 1.0 0.08, 1.0
CropRange Schedule (Recovery) Uniform Uniform Cosine Uniform Uniform Uniform Uniform Cosine Uniform

PatchShuffle No Yes No No No Yes No No No

Table 3: Performance comparison for different min. crop size for the randomly resized crop
augmentation during relabeling and validation on ImageNet-1k, IPC=10.

Min. Crop Size 0.1 0.15 0.2 0.25 0.3 0.4

Acc. [%] 45.0 45.1 45.3 45.7 45.4 45.1

Table 4: Performance comparison for different batch sizes during recovery on ImageNet-1k,
IPC=10.

Batch Size 40 80 100
Acc. [%] 44.8 45.2 45.7

C EXPERIMENTAL DETAILS ON TEACHER ALIGNMENT AND SELECTION

To isolate the impact of distinct distillation methods clearly, we adopt a simplified experimental setup
without employing soft-labeling or additional training augmentation techniques. Specifically, we
deviate from the original approach by reducing the batch size from 1024 to 256 and adopting an initial
learning rate of 10−1 instead of 10−3 for faster convergence. Moreover, we employ a linear learning
rate schedule rather than the conventional cosine annealing, and we limit the training duration to 90
epochs, compared to the original 300. Also, no relabeling was applied. The architectures employed
during multi-teacher selection were ResNet18, ResNet34, ShuffleNetV2 (x1.0), MNASNet1.0, and
EfficientNet-B0. These adjustments enable a concise yet rigorous assessment of the effects that each
modification independently exerts on the synthetic dataset training process.

D ALTERNATIVE REGULARIZATION

Motivated by recent developments such as Direct Ascent Synthesis (DAS; Fort & Whitaker (2025)),
we explored several alternative regularization strategies beyond conventional logit-based gradient
matching and batch normalization (BN) alignment. Specifically, we experimented with semantic
priors derived from CLIP embeddings and multi-resolution synthesis techniques as proposed in DAS.
Table 5 summarizes our findings from these experiments.
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We follow the same experimental setup as in ??. Despite the intuitive appeal of these alternative
regularizers, we observed that integrating various combinations of CLIP-based supervision and
multi-resolution synthesis strategies did not result in performance improvements. Indeed, these
configurations notably underperformed compared to our baseline SRe2L method. These results
suggest that the intrinsic characteristics of DAS-inspired methods, while effective in their original
context, may not directly transfer to DD scenarios without further adaptation or refinement. In
addition, using multi-resolution synthesis introduces additional parameters since we distill images at
multiple resolutions.

In addition, we also tried the varying time steps as proposed by Shen et al. (2025), but we also
observed a decline in performance with this optimization strategy.

Table 5: Study of direct ascent synthesis and varying time steps on ImageNet-1K, IPC≈1200: final
validation accuracy (%) of ResNet-18.

Variant Final val. acc. (%)
Baseline (real data) 70.0

SRe2L 17.9
+ CLIP 8.8
+ Multi-Resolution - DeepInversion 7.6
+ CLIP + Multi-Resolution - DeepInversion 5.2

E ALTERNATIVE SYNTHESIS APPROACHES

We further explored alternative data synthesis methods using popular text-to-image models, aiming to
assess their viability for DD tasks. Specifically, we evaluated several state-of-the-art models including
FLUX (Schnell), Stable Diffusion (SD) versions 1.0, 2.1, 3.5 Turbo, SDXL, and SDXL Turbo. We
follow the same experimental setup as in ??. Table 6 summarizes the anticipated results of these
experiments.

Preliminary observations suggest these text-to-image models, despite their high generative capabilities
in other contexts, are unlikely to surpass the baseline established by real datasets and conventional
DD methods. This indicates inherent limitations in directly applying text-to-image generative models
to distillation tasks without significant method modifications.

Table 6: Study of applying classical text-to-image models on ImageNet-1K, IPC≈1200 with
Text-To-Image Models: final validation accuracy (%) of ResNet-18.

Variant Final val. acc. (%)
Baseline (real data) 70.0

SRe2L 17.9
SD 1.0 17.1
SD 2.1 14.5
FLUX (Schnell) 9.8
SDXL 9.7
SD 3.5 Turbo 6.4
SDXL Turbo 4.7
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