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A Notations

Table 3: Meanings of notations.
Notation Meaning

G The graph space
Y The label space
W The weight space
A The architecture space
O The operation search space
L The loss function
G, Y A graph dataset and its corresponding labels
F A model mapping G → Y
H(l),h

(l)
i The node representation at the l-th layer (of node i)

m
(l)
i The message aggregated to node i at the l-th layer

x The node representation
A The adjacent matrix
f A layer in GNN F
ok An operation
w Model weight
α The architecture parameter
N The number of chunks
θ The trainable parameter in the soft task-collaborative module
p The parameter generated by Eq.(9)
p′ The parameter generated by Eq.(11), replacing p during curriculum training
δ The parameter to control graph structure diversity
γ The parameter to control task-wise curriculum training

∗Corresponding Authors.
†BNRist is the abbreviation of Beijing National Research Center for Information Science and Technology.
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B Proofs

Proposition 3.2. When using the overall loss function of multiple tasks L for gradient back-
propagation in our framework, the partial derivative of L with respect to wj′ is:
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Proof. Here we provide the detailed derivation process of Eq.(10). Firstly we use the chain rule:
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Then we use Eq.(9) to substitute ∂fi
∂wj′

:
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We adjust the summation order:
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Since we are considering the parameters of the j′-th chunk at the last layer, the items with other j
have no contributions. We omit the items about other j:
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C Experimental Settings

C.1 Dataset Statistics

Table 4: Dataset Statistics.

Dataset #Graphs Split(%) Avg. |V | Avg. |E| #Tasks #Classes Metric Type

MGL-ER 1 50/25/25 5,000 12,500 8 5 Accuracy Node classification
MGL-WS 1 50/25/25 5,000 15,000 8 5 Accuracy Node classification
MGL-BA 1 50/25/25 5,000 15,000 8 5 Accuracy Node classification
OGBG-Tox21 7,831 80/10/10 18.6 19.3 12 2 ROC-AUC Graph classification
OGBG-ToxCast 8,576 80/10/10 18.8 19.3 617 2 ROC-AUC Graph classification
OGBG-Sider 1,427 80/10/10 33.6 35.4 27 2 ROC-AUC Graph classification

C.2 Search Space and Hyper-parameters

Search space. We consider a search space of standard layer-by-layer architectures without sophisti-
cated connections such as residual or jumping connections, though our proposed method can be easily
generalized. We choose five widely used message-passing GNN layers as our operation candidate set
O, including GCN [4], GAT [9], GIN [10], SAGE [2], k-GNN [5], and ARMA [3]. Besides, we also
adopt MLP, which does not consider graph structures. We set the number of layers as 3 for synthetic
datasets, and 5 for real-world datasets.
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Hyper-parameters. Typically, the learning rates of w,α, θ are ηw = 0.0005, ηα = 0.12, ηθ = 0.05.
We set δ = 0.25. In addition, γ increases linearly from 0 to 1 during the searching procedure. The
settings of hidden dimension and the number of chunks are as follows: MGL: 128 with 8 chunks;
Tox21: 132 with 12 chunks; ToxCast: 128 with 16 chunks; Sider: 135 with 27 chunks. For ToxCast,
we use the cross-mixed head. For the other datasets, we use the task-separate head. The hidden
dimension is 339 for all baselines on all datasets.

D Experimental Results

D.1 Gereral Multi-task NAS as Baselines

In this part, we compare our method with the SOTA multi-task NAS methods in recent years, inlcuding
MTL-NAS [1], Sparse Sharing [7], Raychaudhuri et al. [6], AdaShare [8], and AutoMTL [11]. Since
these methods are for CV tasks, we modified them as little as possible to adapt them to multi-task
graph learning and our search space. The experiment results on OGBG datasets are shown in Table 5.

Table 5: The performance comparison with general multi-task NAS baselines on different datasets.

Variant Tox21 ToxCast Sider

MTL-NAS [1] 74.77±0.24 63.14±0.52 55.31±0.64

Sparse Sharing [7] 75.17±1.26 64.10±0.70 57.65±1.15

Raychaudhuri et al. [6] 75.86±0.55 62.85±0.24 55.90±1.25

AdaShare [8] 67.34±1.08 62.91±0.41 60.41±0.46

AutoMTL [11] 73.02±0.90 62.69±0.39 53.94±1.87

MTGC3 77.99±0.42 66.36±0.26 62.08±1.76

From the table, our method can outperform all the multi-task NAS baselines in the three datasets.
The results demonstrate the effectiveness of our method on multi-task graph learning.

D.2 Time Cost

Theoretical Analysis. Denote |V |, |E| as the number of nodes and edges in the graph, respectively,
and d as the dimensionality of hidden representations. We denote dS as the dimensionality of the
structure generation part, i.e., S is a matrix with the shape dS × d. The time complexity of typical
message-passing GNNs in our search space is O(|E|d + |V |d2). For each chunk, calculating the
graph structure by Eq.(7) costs O(|V |dSd+ |E|dS) time, and calculating all candidate operations
costs O(|O|(|E|d + |V |d2)) time. Calculating the soft task-collaborative module costs O(|O|d2)
time. The overall time complexity of our method is O(N(|O|d + dS)(|E| + |N |d)). In practice,
we use a small dS and |O|d ≥ dS . Therefore, our model costs O(N |O|(|E|d + |V |d2)) time. We
remark that using DARTS method in our search space has O(|O|(|E|d+ |V |d2)) time complexity.
Therefore, our method has the same time complexity as using DARTS to search for architectures for
different chunks separately.

Empirical Study. We measure the search time of DARTS×N (using DARTS to search for architec-
tures for different chunks separately) and our proposed method and show the results in Table 6. The
two models have comparable running times, indicating our model design does not bring too much
extra computational burden than DARTS×N on the searching phase. The results also confirm our
complexity analysis.

Table 6: Empirical search time (NVIDIA GeForce RTX 3090).

Dataset Tox21 ToxCast Sider

MTGC3 2334s 7326s 3201s
DARTS×N 2688s 6784s 1917s
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