
Published as a conference paper at ICLR 2025

RELATION-AWARE DIFFUSION FOR HETEROGENEOUS
GRAPHS WITH PARTIALLY OBSERVED FEATURES

Daeho Um∗

AI Center, Samsung Electronics
daeho.um@samsung.com

Yoonji Lee
Samsung Electronics
yj811.lee@samsung.com

Jiwoong Park
Department of Electrical and Computer Engineering
Texas A&M University
ptywoong@gmail.com

Seulki Park
University of Michigan
seulki@umich.edu

Yuneil Yeo
Department of Civil and Environmental Engineering
UC Berkeley
yuneily@berkeley.edu

Seong Jin Ahn
KAIST
sja1015@kaist.ac.kr

ABSTRACT

Diffusion-based imputation methods, which impute missing features through the
iterative propagation of observed features, have shown impressive performance in
homogeneous graphs. However, these methods are not directly applicable to het-
erogeneous graphs, which have multiple types of nodes and edges, due to two key
issues: (1) the presence of nodes with undefined features hinders diffusion-based
imputation; (2) treating various edge types equally during diffusion does not fully
utilize information contained in heterogeneous graphs. To address these chal-
lenges, this paper presents a novel imputation scheme that enables diffusion-based
imputation in heterogeneous graphs. Our key idea involves (1) assigning a virtual
feature to an undefined node feature and (2) determining the importance of each
edge type during diffusion according to a new criterion. Through experiments, we
demonstrate that our virtual feature scheme effectively serves as a bridge between
existing diffusion-based methods and heterogeneous graphs, maintaining the ad-
vantages of these methods. Furthermore, we confirm that adjusting the importance
of each edge type leads to significant performance gains on heterogeneous graphs.
Extensive experimental results demonstrate the superiority of our scheme in both
semi-supervised node classification and link prediction tasks on heterogeneous
graphs with missing rates ranging from low to exceedingly high. The source code
is available at https://github.com/daehoum1/hetgfd.

1 INTRODUCTION

Missing data is a prevalent problem in the real world, caused by various factors including measure-
ment failures and cost constraints during data collection (Allison, 2009). This poses a challenge for
various machine learning techniques, as they typically assume complete (fully observed) input data.
To address this problem, traditional imputation methods such as zero or mean imputation are widely
utilized to fill in missing values (Armitage et al., 2015). However, in situations with high missing
rates, traditional imputation methods show limitations in maintaining the performance of machine
learning techniques in downstream tasks (Rossi et al., 2022). Moreover, missing data problem be-
comes more challenging when handling graph-structured data, which contain internal relations.

To address this problem in graph-structured data, recently, imputation methods based on graph dif-
fusion (Rossi et al., 2022; Um et al., 2023; 2025b) have been proposed, which iteratively propagate
observed features to missing features without training neural networks. These diffusion-based meth-
ods have attracted great attention due to their various advantages: exceptional performance in down-
stream tasks, fast imputation time, and being agnostic to downstream network design. Diffusion-

∗Corresponding author

1

https://github.com/daehoum1/hetgfd

Published as a conference paper at ICLR 2025

based methods assume that given data are homogeneous graphs, where all nodes are of the same
type and all edges represent the same types of relations. However, there are various objects and rela-
tions in real-world scenarios. Heterogeneous graphs, containing multiple types of nodes and edges,
have been widely studied due to their ability to model the diverse and complex nature of real-world
scenarios, such as wireless networks with various devices and link types (Zhang et al., 2019).

Figure 1: An example of a real-world
heterogeneous graph.

Although both heterogeneous graphs and the problem of
missing data hold important positions in real-world applica-
tions, imputation for heterogeneous graphs is very challeng-
ing due to the complex relations between various objects. In
most real-world heterogeneous graph datasets, only nodes
of a certain type possess features. Figure 1 demonstrates
an example of a real-world heterogeneous graph. As shown
in the figure, only ‘Movie’ nodes have features (i.e., are
attributed) while ‘Actor’ and ‘Director’ nodes do not have
features (i.e., are non-attributed). However, in real-world
heterogeneous graphs, missing data can occur even within
features of attributed nodes as ‘Movie’ nodes in Figure 1.
While several studies have been proposed to address unde-
fined features for non-attributed nodes (Jin et al., 2021; Wang et al., 2022), they are based on the
strong assumption that all features in attributed nodes are fully observed. To the best of our knowl-
edge, missing feature imputation within attributed nodes is underexplored. We tackle this problem in
heterogeneous graphs, where both undefined features for non-attributed nodes and missing features
within attributed nodes coexist, presenting a challenging but practical scenario.
When attempting to apply diffusion-based methods (Rossi et al., 2022; Um et al., 2023; 2025b) to
missing feature imputation within attributed nodes on heterogeneous graphs, there are two challeng-
ing issues. (1) Attributed nodes often lack direct connections to each other, hindering imputation via
diffusion. Since diffusion-based impute methods fill in missing values by aggregating features in
neighboring nodes, missing features cannot be filled in without direct connections among attributed
nodes. (2) In a heterogeneous graph, each edge type represents a distinct relation. For instance, in
Figure 1, an ‘Actor’ and a ‘Movie’ node are connected via an ‘is starred in’ relation, while a ‘Movie’
node and a ‘Director’ node are connected via an ‘is directed by’ relation. Thus, simply treating all
edge types equally cannot fully utilize the relational information contained in heterogeneous graphs.
To tackle these challenges in heterogeneous graphs, we present HetGFD (Heterogeneous Graph
Feature Diffusion), a novel diffusion-based imputation method for heterogeneous graphs. Our key
idea involves (1) generating virtual features for non-attributed nodes and (2) ranking edge types
according to a new criterion called edge-type-wise homophily. For issue (1), virtual features on non-
attributed nodes are initialized to zero values, and enable diffusion-based imputation by acting as real
features. To address issue (2), during the diffusion process, we leverage our proposed edge-type-wise
homophily to enable relation-aware distance encoding, leading to relation-aware diffusion. Through
experiments, we verify that these methods successfully maintain their effectiveness in heterogeneous
graphs. Furthermore, extensive experimental results demonstrate the superiority of our HetGFD
over state-of-the-art methods in both semi-supervised node classification and link prediction tasks
on benchmark datasets. We also show the applicability of HetGFD to the biomedical domain. We
confirm that HetGFD performs well even with an extreme missing rate of 99.5%.
Our key contributions are summarized as follows: 1) To the best of our knowledge, this work is the
first attempt to leverage diffusion-based feature imputation for heterogeneous graphs and to design
relation-aware distance encoding. 2) Our virtual feature scheme enables the use of diffusion-based
imputation methods and successfully transfers their effectiveness to the heterogeneous graph do-
main. 3) We define a new measure, edge-type-wise homophily, to adjust the influence of each edge
type during diffusion. By utilizing edge-type-wise homophily, HetGFD, tailored to heterogeneous
graphs, outperforms state-of-the-art methods across various domains, including the biomedical do-
main, by treating multiple edge types differently.

2 RELATED WORK

Handling Missing Features in Graphs. The problem of missing data has been extensively studied
in the literature (Allison, 2009; Loh & Wainwright, 2011). However, in cases where the rate of
missing features is substantial, accurate reconstruction becomes challenging. Besides, achieving

2

Published as a conference paper at ICLR 2025

Figure 2: A brief overview of Heterogeneous Graph Feature Diffusion (HetGFD). Virtual features
generated for non-attributed nodes enable diffusion-based imputation. Since the calculation of edge-
type-wise homophily requires a complete feature matrix without missing features, we first impute
missing features via the preliminary diffusion stage. Subsequently, using these pre-imputed fea-
tures, edge types are ranked according to edge-type-wise homophily. A final output is obtained via
relation-aware diffusion where the edge-type ranking plays an important role.

accurate reconstruction does not necessarily guarantee high performance in downstream tasks (Um
et al., 2023). Thus, recent research directions of feature imputation in graphs focus on enhancing
performance on downstream tasks rather than achieving perfect restoration. While GCN (Kipf &
Welling, 2016a)-variant methods (Jiang & Zhang, 2020; Taguchi et al., 2021) utilize new GNN
architectures to enhance the performance in downstream tasks with missing features, diffusion-based
methods (Rossi et al., 2022; Um et al., 2023) (different from generative diffusion models (Ho et al.,
2020; Dhariwal & Nichol, 2021; Yeo & Um, 2025)) have significantly improved the performance by
imputing missing features through the diffusion of known features. However, as most methods for
addressing missing features in graphs focus on homogeneous graphs, they cannot handle complex
graphs with multiple node and edge types. Recently, several approaches have been proposed to learn
representations for non-attributed nodes in heterogeneous graphs (He et al., 2022; Jin et al., 2021;
Wang et al., 2022). However, these studies commonly assume that all nodes in an attributed node
type have all their features intact, which can cover only limited missing scenarios. In contrast, we
aim to handle the presence of missing features within attributed nodes, which makes the problem
more challenging. While Zhang et al. (2023) is related to our work, it targets spatio-temporal graphs.
Similarly, Gupta et al. (2023) is relevant; however, it does not consider multi-type nodes or edges.

Heterogeneous GNNs. While GNNs (Kipf & Welling, 2016a; Veličković et al., 2017; Lim et al.,
2021; Um et al., 2025a) have proven to be a powerful approach for learning graph representations,
most GNNs have primarily focused on homogeneous graphs. Hence there have been considerable
efforts to extend the advantages of GNNs to heterogeneous graphs (Zhang et al., 2019; Wang et al.,
2019; Fu et al., 2020; Hu et al., 2020b). For example, Heterogeneous Graph Transformer (HGT) (Hu
et al., 2020b) adopts the architecture design of Transformer (Vaswani et al., 2017) to learn node rep-
resentations before message passing. Additionally, Guo et al. (2023) proposes a meta-path-induced
metric to quantify the degree of homophily. However, it can only deal with meta-paths between
nodes of the same type. Unlike the homophily we define, this metric is measured based on pre-
defined meta-paths rather than actual edges.

Distance Encoding. Based on feature homophily, we assign the importance of each feature during
diffusion by measuring the shortest path distance between the feature and known features. Distance
encoding for graphs generates auxiliary node features calculated by the distance from designated
nodes to another node. These generated features are then utilized to perform a given task. For in-
stance, nodes are assigned new features based on the distances to target nodes (Zhang & Chen, 2018;
Zhang et al., 2021). Position-aware graph neural network (P-GNN) (You et al., 2019) leverages the
distance between a given target node and sampled anchor node sets. To enhance the expressive
power of graph neural networks, an additional node feature called distance encoding is proposed (Li
et al., 2020). While distance encoding-based heterogeneous graph neural network (DHN) (Ji et al.,
2021) extends distance encoding to heterogeneous graphs, DHN does not consider different edge
types during the distance measurement. In contrast to previous approaches in distance encoding, we
propose relation-aware distance encoding, considering multiple edge types.

3

Published as a conference paper at ICLR 2025

3 PROBLEM SETTING

A heterogeneous graph is denoted by G = (V, E , T ,R) where V = {vi}Ni=1 is the set of N nodes,
E is the set of edges, T is the set of node types, R is the set of edge types, and |T | + |R| > 2. To
express nodes linked by an r-type edge, we let (vi, r, vj) denote an r-type edge connecting vi and
vj , i.e., (vi, r, vj) ∈ E . We let R = {r1, . . . , r|R|} to indicate each edge type in R. Er denotes the
set of edges of type r where r ∈ R so that ∪r∈REr = E . We introduce A ∈ {0, 1}N×N to denote an
adjacency matrix. A representative dataset for a heterogeneous graph G is the DBLP dataset which
consists of four node types (paper, author, term, and conference) and three edge types (paper-author,
paper-term, and paper-conference).
The t+-type nodes with partially known features are called attributed nodes and the other nodes
where features are undefined are called non-attributed nodes. V+ denotes the set of attributed nodes.
V− denotes the set of non-attributed nodes. N+ and N− denote |V+| and |V−|, respectively, where
|V| indicates the cardinality of a node set V . Letting F be the number of feature channels of each
node in V+, X ∈ RN+×F denotes the node-feature matrix for V+.

Attributed nodes with partially known features mean that the node-feature matrix X ∈ RN+×F has
missing elements. V(d)

u denotes a set of nodes with unknown features in d-th channel, where the
nodes correspond to the rows with missing elements in the d-th column of X. The set of remaining
nodes with known features in the d-th channel is denoted by V(d)

k . Thus V(d)
u and V(d)

k become a
partition of V+.
Under the above setting, we tackle the problem of learning on a heterogeneous graph with missing
node features. The problem is to learn a function that produces desired output Y of a given task (e.g.,
semi-supervised node classification or link prediction) on G with partially known node features. To
this end, we aim to design an imputation scheme for missing features in X of V+, which maximizes
the performance of a downstream GNN for a given task.

4 PROPOSED METHOD

4.1 OVERVIEW OF HETGFD

Figure 2 provides a brief overview of the proposed scheme called heterogeneous graph feature diffu-
sion (HetGFD). HetGFD consists of two diffusion stages: preliminary diffusion and relation-aware
diffusion. For relation-aware diffusion, distinct importance for each edge type is required. Thus,
the preliminary diffusion stage first assumes equal importance for all edge types and generates a
pre-imputed matrix. This pre-imputed matrix is then used to determine the importance of each edge
type. The importance of each edge type enables relation-aware diffusion, which produces the final
imputed matrix.

4.2 PRELIMINARY DIFFUSION

Diffusion-based methods (Rossi et al., 2022; Um et al., 2023) developed for homogeneous graphs
update unknown features and utilize the unknown features as pathways to spread known features si-
multaneously. However, in a heterogeneous graph with non-attributed nodes, the diffusion is blocked
by the absence of features. To tackle this challenge, we define virtual features filled with zeros for
every non-attributed node in V−, where the dimension of the virtual features is set to the same
dimension of features in the attributed node (i.e., F). These virtual features are then iteratively up-
dated through the preliminary diffusion propagating known features, enabling the missing features
at attributed nodes in V+ to be updated via diffusion across all nodes in both V− and V+. While we
assume a single attributed node type, HetGFD can handle not only G with a single attributed node
type but also G with multiple node types with different attribute distributions (e.g., different feature
dimensions). In such cases, we can impute missing features in each node type by applying HetGFD
independently.
In our design, we adopt a channel-wise formulation with d-th channel. For notational convenience,
we reorder all nodes in V in the order of V(d)

k , V(d)
u , and V−. According to the order of the reordered

nodes, the feature vector and the r-type adjacency matrix can be written as:

x(d) =

x(d)
k

x
(d)
u

x
(d)
−

 , A(d,r) =

A
(d,r)
kk A

(d,r)
ku A

(d,r)
k−

A
(d,r)
uk A

(d,r)
uu A

(d,r)
u−

A
(d,r)
−k A

(d,r)
−u A

(d,r)
−−

 , (1)

4

Published as a conference paper at ICLR 2025

where x(d)
k , x(d)

u , and x
(d)
− are column vectors that denote d-th channel feature vectors concatenated

for all nodes in V(d)
k , V(d)

u , and V(d)
− , respectively. Here, V(d)

k is referred to as source nodes. x
(d)
−

consists of virtual feature values. Similarly, A(d,r) ∈ RN×N is composed of nine sub-matrices
related to V(d)

k , V(d)
u , and V−. E(d) denotes the edge set of the reordered nodes for d-th channel.

The preliminary diffusion is performed by iterative propagation using a transition matrix for each
channel. Since the preliminary diffusion does not account for the importance of each edge type,
assigning equal weights to all nodes when constructing the transition matrix may seem a reasonable
approach. However, this approach can result in biased diffusion, where propagation predominantly
occurs along the majority edge type. To address this issue, we introduce a penalty for the majority
edge type when defining A(d,r) ∈ RN×N :

Ā
(d,r)
i,j =

{
|Er|−1 if A(d,r)

i,j ̸= 0

0 otherwise
(2)

We then sum A(d,r) over all edge types to construct A(d), i.e., Ā(d) =
∑

r∈R Ā(d,r).
Next, to ensure that each updated feature is generated as a weighted average of neighboring features, we nor-
malize Ā(d) to compute a a row-stochastic matrix M(d) ∈ RN×N . Formally, M(d) = (D(d))−1Ā(d) where
D

(d)
ii =

∑
j Ā

(d)
i,j . To preserve the known features x(d)

k during the preliminary diffusion, we replace the first

|V(d)
k | rows of M(d) with M̃(d) ∈ RN×N :

M̃(d) =

 I 0ku 0k−

M
(d)
uk M

(d)
uu M

(d)
u−

M
(d)
−k M

(d)
−u M

(d)
−−

 , (3)

where I ∈ R|V(d)
k

|×|V(d)
k

| is an identity matrix, and 0ku and 0k− are zero matrices.

Using M̃(d) as a transition matrix, the preliminary diffusion is defined by

x̃(d)(t) = M̃(d)x̃(d)(t− 1), t = 1, · · · ,K;

x̃(d)(0) =

x(d)
k
0u

0−

 ,
(4)

where x̃(d)(t) denotes an imputed feature vector after t propagation steps. Here, 0u and 0− are zero
column vectors with a length of |V(d)

u | and N−, respectively. As K → ∞, the recursion converges,
and x̃(d)(K) reaches a steady state. We prove the convergence in Appendix A. It is noteworthy that
we initialize the values with zeros based on this proof. The proof shows that initial values for x(d)

u

and x
(d)
− do not affect the steady state. With a sufficiently large K, we approximate the steady state

lim
t→∞

x̃(d)(t) to x̃(d)(K). Since the imputed feature x̃(d)(K) has different ordering from the original

one, we rearrange x̃(d)(K) to x̄(d)(K) in the original order. We then obtain a pre-imputed feature
matrix X̄ ∈ RN×F by concatenating {x̄(d)(K)}Fd=1 along the channels.

4.3 EDGE-TYPE-WISE HOMOPHILY

With the introduction of virtual features, pre-imputed features can be obtained for all nodes, en-
abling the comparison of features between attributed and non-attributed nodes. Feature homophily
is the working principle of diffusion-based imputation methods developed for homogeneous graphs.
However, in heterogeneous graphs, different edge types contribute to feature homophily in varying
degrees. For example, two papers written by an author may have more similar features compared
to two randomly chosen papers submitted to the same conference. Therefore, we aim to enhance
message passing along edge types that significantly contribute to feature homophily in the relation-
aware diffusion process. To quantify the contribution of each edge type, we define a new criterion
named edge-type-wise homophily, denoted by H.
Definition 1. Edge-type-wise homophily of edge type r for a given feature matrix X is defined by

H(r) =
|Er|−1

∑
(vi,r,vj)∈Er

sim(Xi,:,Xj,:)

Evn,vm∈V [sim(Xn,:,Xm,:)]
, (5)

where sim(·, ·) denotes cosine similarity between two row vectors, and Xz,: denotes the z-th row
vector of X. Evn,vm∈V [sim(Xn,:,Xm,:)] is calculated from randomly sampled node pairs in V .

5

Published as a conference paper at ICLR 2025

Figure 3: An illustrative example of relation-aware distance encoding. The shortest path distance
from source nodes (SPD-S) is utilized to calculate pseudo-confidence (PC), which indicates the
influence of each feature during diffusion. According to edge-type ranking based on H, edge weights
in W (d) are assigned using β. The key idea is to rapidly decrease PC of features that are connected
with observed features via low-ranking edges.

We calculate edge-type-wise homophily H(r) by using the pre-imputed feature matrix X̄ ∈ RN×F .
Then, we rank the edge types in descending order of H(r), i.e., H(r∗1) > . . . > H(r∗|R|), which
means that r∗k is the edge type with the k-th highest homophily. As a result, edge-type ranking is
prepared prior to the relation-aware diffusion.

4.4 RELATION-AWARE DIFFUSION

To build a transition matrix for relation-aware diffusion, we utilize the concept of pseudo-confidence
(PC) (Um et al., 2023). Pseudo-confidence (PC) represents the importance of each feature in the
diffusion process. As PC of a feature increases, the feature can propagate its value more strongly.
PC assumes that a missing feature located far from source nodes is more likely to be imputed with
an inaccurate value. Consequently, Um et al. (2023) decreases PC as the distance between a feature
and the nearest source nodes increases. PC is defined as:
Definition 2. Pseudo-confidence of X̄i,d is defined by ξi,d = αSi,d (0 < α < 1) where Si,d

denotes the shortest path distance between the i-th node and its nearest source node (SPD-S). α is
a hyperparameter.

Since PC is developed for homogeneous graphs, here Si,d ∈ {x ∈ Z|x ≥ 0}.

However, given the nature of heterogeneous graphs with multiple edge types, treating all edges
equally can result in information loss. We enhance PC by incorporating edge-type-wise distinctions.
We extend PC to weighted graphs, implying that Si,d ∈ {x ∈ R|x ≥ 0} unlike existing PC. To
obtain the weighted graphs where our new PC is calculated, we leverage the edge-type ranking.

Since PC and edge-type ranking are commonly based on feature homophily, the two concepts can
be naturally combined. The key idea is to rapidly decrease the PC of a feature when it is connected
to source nodes primarily through low-ranking edges (i.e., edges belonging to a low-H edge type).
Accordingly, we assign greater weights to low-ranking edges in the weighted graph W(d) used for
PC calculation.

Formally, a weighted adjacency matrix W(d,r) to obtain Si,d is defined as

W
(d,r)
i,j =

{
β−(k−1) if ψ((vi, r, vj)) = r∗k
0 otherwise

(6)

for (vi, r, vj) ∈ E(d), where β is a hyperparameter between 0 and 1 and ψ(·) is a numbering function
from edge type r to r∗a with a ranking a. We attain W(d) by summing W(d,r) for all edge type
r ∈ R.

Aligned with our key idea, as the ranking of edge type r drops (i.e., H(r) decreases or k increases),
the weights for r-type edges in W(d) increase by dividing by β, as defined in Eq. (6). To calculate
PC, defined as ξi,d = αSi,d , the shortest path distance from source nodes Si,d on W(d) is given by:

Si,d = SPD-S(vi|V(d)
k ,W(d)), (7)

6

Published as a conference paper at ICLR 2025

where SPD-S is a function that outputs the shortest path distance from the i-th node to the source
nodes (i.e., the nodes in V(d)

k) on W(d). By Definition 2, we can calculate PC of each feature value
with Si,d measured on W(d). In Figure 3, the calculation process of PC is illustrated. It is important
to note that W(d) is not a transition matrix for relation-aware diffusion but is exclusively utilized for
the calculation of PC.

In addition to PC for adjusting the importance of each feature during relation-aware diffusion, we
assign greater weights to high-ranking edges (i.e., edges belonging to a high-H edge type). To
construct a transition matrix for relation-aware diffusion, we define an asymmetric weight matrix
W̄(d,r) where element W̄(d,r)

i,j represents the weight of a directed edge from j-th node to i-th node,
defined by:

W̄
(d,r)
i,j =

{
βk−1 · ξj,d/ξi,d if ψ((vi, r, vj)) = r∗k
0 otherwise

(8)

for (vi, r, vj) ∈ E(d). The term βk−1 in Eq. (8) accomplishes an objective that the higher the
ranking of an edge becomes (k decreases), the higher the edge’s weight becomes. The term ξj,d/ξi,d
strengthens the message passing from high-PC features to low-PC features, indicating that high-PC
features propagate their values more strongly than low-PC features. If ξi,d is lower than ξj,d, the
term ξj,d/ξi,d is larger than 1, which strengthens the weight of a directed edge from the j-th node to
the i-th node.

We compute W̄(d) as W̄(d) =
∑

r∈R W̄(d,r). Next, we normalize W̄(d) to obtain a row-stochastic
transition matrix T(d), defined as T(d) = (D′(d))−1W̄(d), where D′(d)

ii =
∑

j W̄
(d)
i,j . To preserve

the known features, we replace the first |V(d)
k | rows of T(d) with T̂(d) as follows:

T̂(d) =

 I 0ku 0k−

T
(d)
uk T

(d)
uu T

(d)
u−

T
(d)
−k T

(d)
−u T

(d)
−−

 . (9)

The relation-aware diffusion for final imputation is defined by

x̂(d)(t) =T̂(d)x̂(d)(t− 1), t = 1, · · · ,K;

x̂(d)(0) =

x(d)
k
0u

0−

 , (10)

where x̂(d)(t) is an imputed feature vector in relation-aware diffusion through t propagation steps.
We use x̂(d)(K) with large enough K to approximate a steady state of x̂(d)(t). After obtain-
ing {x̂(d)(K)}Fd=1 via the channel-wise diffusion, we rearrange {x̂(d)(K)}Fd=1 in the original or-
der. Then, we attain an imputed feature matrix X̂ by stacking the originally ordered vectors in
{x̂(d)(K)}Fd=1 along the channels. Finally, we obtain X̂′ ∈ RN+×F by removing all rows corre-
sponding to V− from X̂. X̂′ is an output of HetGFD and is fed to GNNs for downstream tasks.

In summary, our HetGFD framework addresses two critical challenges in heterogeneous graphs:
handling non-attributed nodes through virtual features and accounting for distinct relations via edge-
type-wise homophily H. Leveraging H, which aligns with the principles of diffusion-based impu-
tation, HetGFD controls the overall diffusion process at both the feature level and the edge level in
heterogeneous graphs. This dual control, with consideration of edge types, creates a significant gap
compared to PCFI, which simply utilizes PC computed on unweighted graphs. This enables the use
of information inherent in the edge types of heterogeneous graphs, resulting in imputed features that
are beneficial for downstream tasks in such graphs.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Data Setting. We conduct experiments on three widely used heterogeneous graph datasets (ACM,
DBLP, and IMDB) (Jin et al., 2021) from different domains. Detailed descriptions of these datasets
and their sources can be found in Appendix B.2. To conduct experiments on graphs with missing

7

Published as a conference paper at ICLR 2025

Figure 4: Performance averaged across the three datasets in semi-supervised node classification,
measured in terms of Macro-F1 (%) under structural-missing settings with varying missing rates
rm ∈ {0, 0.5, 0.9, 0.995}. HGNN-AC is consistently used as a downstream GNN. VF denotes our
virtual feature scheme. Figures highlighted in red indicate performance improvements over the most
competitive baseline across each setting.

features, we remove a fixed rate of features in the datasets. Note that in the original data, raw features
exist only for paper-type nodes in ACM and DBLP, and for movie-type nodes in IMDB. That is, only
nodes of a single specific type (attributed-node type) are given raw features that represent semantic
information. To compare the performance of imputation methods, we introduce missing values
into a feature matrix from an attributed node type. Specifically, we remove features according to a
missing rate, denoted as rm, ranging from 0 to 1. In the positions where features are removed, we
fill them with the value ‘NaN’. We remove features in two ways as suggested in Um et al. (2023):
(1) structural missing: After randomly selecting nodes with a ratio of rm among t+-type nodes, we
remove whole features from the selected nodes. That is, features in a node are either entirely known
(observed) or entirely unknown (missing). (2) uniform missing: After randomly selecting feature
values with a ratio of rm from the feature matrix X, we remove the selected features. That is, we
remove features uniformly across all t+-type nodes.
Given a missing rate rm, we randomly create 10 different binary masks of a feature matrix for each
dataset. These masks indicate the location where feature values are missing, with a rate of rm. We
evaluate imputation methods across 10 runs, using the generated masks. To non-attributed nodes,
we assign one-hot node features for each node type (e.g., author and subject in ACM) so that a fair
comparison of imputation methods for attributed nodes is enabled.

Baselines. We compare the performance of HetGFD with the following seven baselines: zero im-
putation, mean imputation, k-Nearest Neighbors (kNN) imputation (Troyanskaya et al., 2001), Iter-
ative SVD (Troyanskaya et al., 2001), GAIN (Yoon et al., 2018), GRAFENNE (Gupta et al., 2023),
FP+virtual features (FP+VF), PCFI (Um et al., 2023)+virtual features (PCFI+VF). It is noteworthy
that our virtual feature scheme enables the use of existing diffusion-based methods, including FP
and PCFI, on heterogeneous graphs.
Existing methods for attribute completion on heterogeneous graphs (He et al., 2022; Jin et al., 2021;
Wang et al., 2022) cannot be compared since all these methods focus on learning representations
for non-attributed nodes (i.e., V−) under the assumption of no missing features in t+-type nodes.
In real-world situations, as there is no guarantee that missing data occurs only in specific types, our
setting can be widely applied to various real-world applications. We demonstrate that HetGFD is
in a collaborative relationship with attribute completion methods by utilizing HGNN-AC (Jin et al.,
2021) as a downstream GNN.

Implementation Details. Except GRAFFENE which is a GNN framework, we feed a complete
feature matrix obtained by the imputation methods into downstream GNNs. For a fair compari-
son of imputation methods, we adopt HGT (Hu et al., 2020b) for downstream GNNs, which is a
state-of-the-art heterogeneous graph neural network. For link prediction, we utilize embeddings ob-
tained from a GNN with HGT layers. To predict a link between a pair of nodes, we adopt the dot
product of embeddings of the two nodes, as in Kipf & Welling (2016b); Lv et al. (2021). We fur-
ther conduct experiments on semi-supervised node classification using HGNN-AC as a downstream
GNN for the following two reasons: 1) to demonstrate the superiority of HetGFD across various
GNNs; 2) to demonstrate that HetGFD can be combined with existing methods for attribute com-

8

Published as a conference paper at ICLR 2025

Table 1: Semi-supervised node classification results (%) with rm = 0.995.

GNN Missing type Method ACM DBLP IMDB
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Full features 92.52± 0.41 92.48± 0.41 91.28± 1.11 91.98± 1.11 54.51± 4.74 56.38± 4.74

HGT

Structural
missing

Zero 82.75± 1.40 83.44± 1.21 90.11± 1.46 90.90± 1.33 44.29± 1.83 47.91± 0.89
Mean 83.25± 1.20 83.90± 1.20 89.88± 2.02 90.74± 2.02 45.38± 2.21 48.21± 2.21
kNN 82.67± 1.54 83.56± 1.32 90.37± 1.67 91.04± 1.59 44.88± 3.25 48.22± 1.53
SVD 82.71± 1.37 83.20± 1.15 90.11± 1.46 90.90± 1.46 44.28± 1.82 47.91± 1.82
GAIN 82.84± 1.50 83.58± 1.27 90.08± 1.25 90.85± 1.11 44.28± 1.82 47.91± 0.89
GRAFENNE 52.77± 7.28 65.49± 5.17 18.65± 3.13 27.73± 0.94 27.20± 2.73 36.12± 1.76
FP+VF 83.15± 0.91 83.60± 0.79 90.30± 1.25 91.07± 1.14 45.37± 3.61 48.30± 0.98
PCFI+VF 84.47± 1.22 85.06± 0.98 90.41± 1.23 91.14± 1.08 46.64± 1.51 49.69± 1.83
HetGFD (ours) 85.87± 0.81 86.10± 0.81 90.88± 0.79 91.53± 0.79 46.88± 2.13 49.81± 0.83

Uniform
missing

Zero 81.85± 1.81 82.67± 1.59 90.19± 1.47 90.99± 1.33 46.54± 1.59 48.49± 0.98
Mean 82.76± 1.31 83.48± 1.31 90.54± 1.62 91.32± 1.62 46.33± 1.49 48.32± 1.49
kNN 81.91± 0.85 82.43± 0.39 90.50± 1.69 91.20± 1.56 45.81± 2.30 48.70± 1.15
SVD 80.45± 2.22 81.52± 2.17 90.33± 1.46 91.07± 1.32 44.53± 6.42 48.38± 1.26
GAIN 82.98± 0.78 83.84± 0.78 90.02± 1.41 91.01± 1.41 46.54± 1.59 48.49± 1.59
GRAFENNE 73.04± 1.34 74.29± 1.06 17.80± 2.24 28.61± 0.91 36.51± 1.88 39.82± 1.60
FP+VF 83.89± 1.08 84.49± 1.08 90.15± 1.49 90.91± 1.49 45.58± 2.01 48.61± 2.01
PCFI+VF 86.26± 0.69 86.61± 0.63 90.49± 1.43 91.14± 1.35 47.25± 1.88 49.94± 1.38
HetGFD (ours) 88.14± 0.69 88.14± 0.66 90.65± 1.53 91.40± 1.24 48.57± 1.41 50.57± 1.66

Table 2: Link prediction results (%) with rm = 0.995. AUC denotes the ROC AUC score.

Missing type Method ACM DBLP IMDB
AUC AP AUC AP AUC AP

Full features 76.25± 1.20 77.64± 1.07 71.52± 0.51 66.92± 0.66 92.47± 1.06 86.94± 1.61

Structural
missing

Zero 71.65± 2.16 71.74± 3.55 72.49± 0.63 74.21± 0.60 92.48± 1.06 86.95± 1.60
Mean 71.64± 1.30 71.66± 1.33 72.49± 0.63 74.20± 0.60 91.78± 1.13 85.80± 2.12
kNN 72.04± 1.66 72.55± 2.11 71.96± 1.37 69.86± 1.89 91.10± 1.07 84.44± 1.97
SVD 71.49± 1.77 72.29± 2.13 72.49± 0.63 74.21± 0.60 92.48± 1.06 86.95± 1.60
GAIN 72.22± 1.19 73.21± 1.10 72.49± 0.63 74.20± 0.61 92.48± 1.06 86.95± 1.60
GRAFENNE 74.87± 6.71 67.60± 5.87 90.14± 7.26 76.53± 7.12 82.38± 5.75 69.72± 4.60
FP+VF 73.40± 0.75 74.03± 0.84 71.58± 0.85 70.01± 1.43 92.50± 1.04 86.99± 1.58
PCFI+VF 73.41± 1.16 73.22± 1.18 71.37± 0.55 66.78± 0.74 91.71± 1.33 85.37± 2.08
HetGFD (ours) 78.25± 1.34 78.62± 2.12 91.94± 0.67 91.88± 0.91 92.50± 1.04 86.99± 1.58

Uniform
missing

Zero 70.69± 1.48 70.17± 3.07 72.48± 0.62 74.20± 0.60 92.50± 1.04 86.99± 1.58
Mean 71.98± 1.02 72.02± 0.96 72.48± 0.62 74.20± 0.60 91.40± 1.14 85.33± 1.93
kNN 71.02± 1.49 72.49± 2.46 72.72± 1.85 70.29± 3.73 91.15± 1.09 84.50± 2.04
SVD 70.49± 2.11 70.70± 4.08 72.48± 0.62 74.20± 0.60 92.50± 1.04 86.99± 1.58
GAIN 71.92± 0.92 73.17± 1.09 72.48± 0.62 74.20± 0.60 92.50± 1.04 86.99± 1.58
GRAFENNE 74.76± 9.82 72.96± 9.71 63.78± 31.28 61.86± 28.14 80.69± 15.81 73.22± 14.33
FP+VF 73.18± 0.96 73.77± 0.82 71.86± 1.66 70.03± 1.97 91.52± 1.15 85.67± 2.14
PCFI+VF 74.94± 1.37 73.80± 1.63 70.76± 3.14 68.97± 3.85 91.54± 1.13 85.70± 2.08
HetGFD (ours) 76.96± 1.74 77.19± 1.98 92.17± 0.56 92.12± 0.53 91.95± 1.72 86.72± 3.40

pletion in heterogeneous graphs, which assume full features in t+-type nodes. We include further
details on experiments (e.g., hyperparameter tuning, baseline implementation, train/validation/test
splits, and training details) in Appendix B. Further experimental results, including ablation study,
time complexity, and qualitative results, can be found in Appendix D. Due to space limitations,
the experimental setup for the PPI dataset (Zitnik & Leskovec, 2017) in the biomedical domain is
described in Appendix B.5.

5.2 SEMI-SUPERVISED NODE CLASSIFICATION RESULTS

Figure 4 shows the trend of Macro-F1 scores for the compared methods when HGNN-AC models are
used for downstream GNNs across all the methods. Macro-F1 tends to decrease across all methods
as the missing rate rm increases. Notably, the compared methods, except for the diffusion-based
methods, exhibit significant performance degradation. This result suggests that diffusion-based
methods are also effective in heterogeneous graphs. Among the diffusion-based methods, Het-
GFD outperforms both FP+VF and PCFI+VF. Moreover, the performance gain of HetGFD tends
to increase as rm increases. This is because when rm is low, the other methods can also maintain
a certain level of performance using remaining known features. However, when rm increases, the
importance of imputation becomes greater as the proportion of imputed values in an output ma-
trix increases. HetGFD demonstrates remarkable resistance to high rm, as evidenced by the results
obtained from different settings. Table 1 shows the overall results of semi-supervised node clas-
sification with rm = 0.995 when HGT is used as the downstream GNN (results for HGNN-AC
are provided in Appendix F). HetGFD shows superior performance compared to all other methods
regardless of a downstream GNN in all settings with rm = 0.995.

5.3 LINK PREDICTION RESULTS

The link prediction results under the missing settings with rm = 0.995 are shown in Table 2. During
the experiments, we observe that Zero, Mean, SVD, and GAIN impute values very close to 0 for
the missing features at rm = 0.995. We found that this observation leads to similar performance

9

Published as a conference paper at ICLR 2025

Table 3: Performance on the protein-protein interaction networks (PPI) dataset for different rm,
measured by accuracy (%). VF denotes our virtual feature scheme. ‘Impr.’ indicates performance
improvements over the most competitive baseline at each rm.

rm 0 0.5 0.9 0.995

Zero 98.49± 0.13 78.74± 1.01 64.15± 1.18 62.20± 0.24
Mean 98.49± 0.13 64.40± 1.97 64.40± 1.97 62.14± 0.15
kNN 98.49± 0.13 78.74± 1.01 64.15± 1.18 62.20± 0.24
SVD 98.49± 0.13 79.30± 1.15 64.10± 1.23 62.23± 0.26
GAIN 98.49± 0.13 78.85± 1.09 64.13± 1.09 62.20± 0.24
GRAFENNE 83.76± 9.15 63.97± 1.87 63.15± 1.31 62.26± 0.00
FP+VF 98.49± 0.13 80.44± 2.34 64.78± 1.51 62.20± 0.24
PCFI+VF 98.49± 0.13 80.75± 1.68 65.22± 2.19 62.14± 0.32
HetGFD (ours) 98.49± 0.13 81.57± 1.04 66.84± 1.92 63.20± 0.37

Impr. - +1.02% +2.48% +1.51%

among these four methods. On the IMDB dataset, the results show that the overall methods perform
similarly to when full features are used. This indicates that the information contained in the features
is not useful for link prediction on IMDB. HetGFD achieves state-of-the-art performance across all
settings except for IMDB with uniform missing. Features obtained by HetGFD contain rich struc-
tural information, taking edge types into consideration, which leads to performance improvement in
heterogeneous graphs.

5.4 APPLICABILITY TO THE BIOMEDICAL DOMAIN

To demonstrate the applicability of HetGFD to biomedical domain, we conduct an experiment on the
protein-protein interaction networks (PPI) dataset, which is used for analyzing biological relevance
and disease understanding. Table 3 shows the semi-supervised node classification performance of
different imputation methods on the PPI dataset, where structural missing is applied using different
rm. As shown in the table, the accuracy of all methods commonly decreases as rm increases.
However, our HetGFD consistently shows the best performance across various rm. Among type
A and type B edge types, we observe that type A exhibits higher edge-type-wise homophily, and
HetGFD assigns more importance to type A edges. We attribute the performance gains of HetGFD
to the correlation between the edge types and the class label. Unlike existing methods, HetGFD
differentiates between edge types, enabling it to more effectively utilize the information contained
within them.

6 COMPLEXITY ANALYSIS

The time complexity of HetGFD involves three main processes: two diffusion stages (O(|E|)), edge-
type-wise homophily calculation (O(F · |E|)), and PC calculation (O(N2)). In structural-missing
settings, a single PC calculation is needed (O(F · |E|+N2)), while in uniform-missing settings, F
PC calculations are required (O(F · |E|+ F ·N2)). Notably, PCFI, the most competitive baseline,
also involves PC calculation with O(N2). Compared to PCFI, HetGFD consistently demonstrates
superior performance across all experimental settings. A more detailed time complexity analysis is
provided in Appendix D.3.

7 CONCLUSION

In this paper, we introduce virtual features that enable the use of diffusion-based imputation on
heterogeneous graphs. Building on these virtual features, we propose a novel imputation method
called Heterogeneous Graph Feature Diffusion (HetGFD) tailored to heterogeneous graphs. Het-
GFD ranks each edge type according to edge-type-wise homophily, and this edge-type ranking
facilitates relation-aware distance encoding. By treating each edge type differently, HetGFD, us-
ing relation-aware diffusion, shows its superiority over state-of-the-art methods on semi-supervised
node classification and link prediction tasks across various domains. We further confirm that our
virtual feature scheme effectively transfers the advantages of existing diffusion-based methods to
the heterogeneous graph domain. We believe that our work will significantly contribute to solv-
ing missing data problems in various real-world scenarios that contain heterogeneity, due to the
effectiveness and rapid imputation time of HetGFD. However, its effectiveness may be limited on
feature-heterophilic heterogeneous graphs, where most paths connecting attributed nodes are het-
erophilic connections. Additionally, HetGFD will be effective when all nodes belonging to a node
type with features have features of the same nature and scale.

10

Published as a conference paper at ICLR 2025

REFERENCES

Paul D Allison. Missing data. The SAGE handbook of quantitative methods in psychology, pp.
72–89, 2009. 1, 2

Emily Grace Armitage, Joanna Godzien, Vanesa Alonso-Herranz, Ángeles López-Gonzálvez, and
Coral Barbas. Missing value imputation strategies for metabolomics data. Electrophoresis, 36
(24):3050–3060, 2015. 1

Abraham Berman and Robert J Plemmons. Nonnegative matrices in the mathematical sciences.
SIAM, 1994. 14

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021. 3

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019. 15, 23

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph neural
network for heterogeneous graph embedding. In Proceedings of The Web Conference 2020, pp.
2331–2341, 2020. 3

Jiayan Guo, Lun Du, Wendong Bi, Qiang Fu, Xiaojun Ma, Xu Chen, Shi Han, Dongmei
Zhang, and Yan Zhang. Homophily-oriented heterogeneous graph rewiring. arXiv preprint
arXiv:2302.06299, 2023. 3

Shubham Gupta, Sahil Manchanda, Sayan Ranu, and Srikanta J Bedathur. Grafenne: Learning on
graphs with heterogeneous and dynamic feature sets. In International Conference on Machine
Learning, pp. 12165–12181. PMLR, 2023. 3, 8, 15, 16

Dongxiao He, Chundong Liang, Cuiying Huo, Zhiyong Feng, Di Jin, Liang Yang, and Weixiong
Zhang. Analyzing heterogeneous networks with missing attributes by unsupervised contrastive
learning. IEEE Transactions on Neural Networks and Learning Systems, 2022. 3, 8

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020. 3

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020a. 23

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of the web conference 2020, pp. 2704–2710, 2020b. 3, 8, 17

Houye Ji, Cheng Yang, Chuan Shi, and Pan Li. Heterogeneous graph neural network with distance
encoding. In 2021 IEEE International Conference on Data Mining (ICDM), pp. 1138–1143.
IEEE, 2021. 3

Bo Jiang and Ziyan Zhang. Incomplete graph representation and learning via partial graph neural
networks. arXiv preprint arXiv:2003.10130, 2020. 3

Di Jin, Cuiying Huo, Chundong Liang, and Liang Yang. Heterogeneous graph neural network via
attribute completion. In Proceedings of the Web Conference 2021, pp. 391–400, 2021. 2, 3, 7, 8,
16, 17

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 17

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a. 3, 17

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b. 8, 17

11

Published as a conference paper at ICLR 2025

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020. 3

Jongin Lim, Daeho Um, Hyung Jin Chang, Dae Ung Jo, and Jin Young Choi. Class-attentive dif-
fusion network for semi-supervised classification. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 8601–8609, 2021. 3

Po-Ling Loh and Martin J Wainwright. High-dimensional regression with noisy and missing data:
Provable guarantees with non-convexity. Advances in neural information processing systems, 24,
2011. 2

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou,
Jianguo Jiang, Yuxiao Dong, and Jie Tang. Are we really making much progress? revisiting,
benchmarking and refining heterogeneous graph neural networks. In Proceedings of the 27th
ACM SIGKDD conference on knowledge discovery & data mining, pp. 1150–1160, 2021. 8

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017. 15

Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong,
and Michael M Bronstein. On the unreasonable effectiveness of feature propagation in learning
on graphs with missing node features. In Learning on Graphs Conference, pp. 11–1. PMLR,
2022. 1, 2, 3, 4, 14, 15, 16

Hibiki Taguchi, Xin Liu, and Tsuyoshi Murata. Graph convolutional networks for graphs containing
missing features. Future Generation Computer Systems, 117:155–168, 2021. 3

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani,
David Botstein, and Russ B Altman. Missing value estimation methods for dna microarrays.
Bioinformatics, 17(6):520–525, 2001. 8, 15, 16

Daeho Um, Jiwoong Park, Seulki Park, and Jin young Choi. Confidence-based feature imputation
for graphs with partially known features. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=YPKBIILy-Kt. 1,
2, 3, 4, 6, 8, 14, 15, 16

Daeho Um, Jongin Lim, Sunoh Kim, Yuneil Yeo, and Yoonho Jung. Spreading out-of-distribution
detection on graphs. In The Thirteenth International Conference on Learning Representations,
2025a. URL https://openreview.net/forum?id=p1TBYyqy8v. 3

Daeho Um, Ji Won Yoon, Seong Jin Ahn, and Yunha Yeo. Gene-gene relationship modeling based
on genetic evidence for single-cell rna-seq data imputation. Advances in Neural Information
Processing Systems, 37:18882–18909, 2025b. 1, 2

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008. 22

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017. 3

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017. 3

Kai Wang, Yanwei Yu, Chao Huang, Zhongying Zhao, and Junyu Dong. Heterogeneous graph
neural network for attribute completion. Knowledge-Based Systems, 251:109171, 2022. 2, 3, 8

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The world wide web conference, pp. 2022–2032, 2019. 3

Yunha Yeo and Daeho Um. The butterfly effect: Color-guided image generation from unconditional
diffusion models. IEEE Access, 2025. 3

12

https://openreview.net/forum?id=YPKBIILy-Kt
https://openreview.net/forum?id=p1TBYyqy8v

Published as a conference paper at ICLR 2025

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative
adversarial nets. In International conference on machine learning, pp. 5689–5698. PMLR, 2018.
8, 15, 16

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In International
conference on machine learning, pp. 7134–7143. PMLR, 2019. 3

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Heteroge-
neous graph neural network. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 793–803, 2019. 2, 3

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018. 3

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061–9073, 2021. 3

Zhiwen Zhang, Hongjun Wang, Zipei Fan, Xuan Song, and Ryosuke Shibasaki. Missing road con-
dition imputation using a multi-view heterogeneous graph network from gps trajectory. IEEE
Transactions on Intelligent Transportation Systems, 2023. 3

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017. 9, 17

13

Published as a conference paper at ICLR 2025

A CONVERGENCE PROOF FOR DIFFUSION IN HETGFD

HetGFD is comprised of two diffusion stages: preliminary diffusion and relation-aware diffusion.
We prove the convergence of the two diffusion stages as follows.

Proposition 1. A row-stochastic transition matrix M̃ (d) for the preliminary diffusion is expressed
as

M̃ (d) =

 I 0ku 0k−

M
(d)
uk M

(d)
uu M

(d)
u−

M
(d)
−k M

(d)
−u M

(d)
−−

 .
The recursive formula of preliminary diffusion is defined by

x̃(d)(t) =

x̃
(d)
k (t)

x̃
(d)
u (t)

x̃
(d)
− (t)

 = M̃ (d)x̃(d)(t− 1), t = 1, · · · ,K;

x̃(d)(0) =

x(d)
k
0u

0−

 .
Then, lim

K→∞
x̃
(d)
u (K) converges.

The proof of Proposition 1 follows proofs in Rossi et al. (2022); Um et al. (2023). Um et al. (2023)
proves convergence of feature diffusion with a row-stochastic transition matrix. Here, we prove the
case when non-attributed nodes participate in feature diffusion with virtual features. We begin with
two lemmas.
Lemma 1. M (d) is a row-stochastic matrix obtained by M (d) = (D(d))−1M (d) where M (d)

is a weighted-adjacency matrix of a connected graph G and D
(d)
ii =

∑
j M

(d)
i,j . Let M (d)

nn ∈
R(N−|V(d)

u |)×(N−|V(d)
u |) be the bottom-right submatrix of M (d) and ρ(·) be spectral radius. Then,

ρ(M
(d)
nn) < 1.

Proof. Let M (d)
nn0 ∈ RN×N be a matrix defined by

M
(d)
nn0 =

[
0kk 0kn

0nk M
(d)
nn

]
,

where 0kk ∈ {0}|V
(d)
k |×|V(d)

k |, 0kn ∈ {0}|V
(d)
k |×(N−|V(d)

k |), and 0nk ∈ {0}(N−|V(d)
k |)×|V(d)

k |. Since
M (d) is the weighted adjacency matrix of the connected graph G, M (d)

nn0 ≤ M (d) element-wisely
and M

(d)
nn0 ̸= M . Furthermore, M (d)

nn0 + M (d) is an adjacency matrix of a connected graph. By
Theorem 2.2.7 of Berman & Plemmons (1994), M (d)

nn0 + M (d) is irreducible. By Corollary 2.1.5
of Berman & Plemmons (1994), ρ(M (d)

nn0) < ρ(M (d)) and by Theorem 2.5.3, ρ(M (d)) = 1. Then,
ρ(M

(d)
nn0) = ρ(M

(d)
nn) since M

(d)
nn0 and M

(d)
nn have the same non-zero eigenvalues. Therefore,

ρ(M
(d)
nn0) = ρ(M

(d)
nn) < 1.

Lemma 2. I −M
(d)
nn is invertible where I is the (N − |V(d)

k |)× (N − |V(d)
k |) identity matrix.

Proof. By Lemma. 1 1 is not an eigenvalue of M (d)
nn . Therefore, 0 is not an eigenvalue of I−M

(d)
nn .

Hence I −M
(d)
nn is invertible.

We now prove Proposition 1 as follows.

Proof. Let M (d)
nk ∈ R(N−|V(d)

k |)×|V(d)
k | and M

(d)
nn ∈ R(N−|V(d)

k |)×(N−|V(d)
k |) be the bottom-left and

bottom-right submatrices of M (d), respectively. Let x̃(d)
n (t) =

[
x̃
(d)
u (t)

x̃
(d)
− (t)

]
. Then, we can unfold the

14

Published as a conference paper at ICLR 2025

recursive formula of preliminary diffusion as

x̃(d)(t) =

[
x̃
(d)
k (t)

x̃
(d)
n (t)

]
= M̃ (d)x̃(d)(t− 1)

=

[
I 0kn

M
(d)
nk M

(d)
nn

][
x̃
(d)
k (t− 1)

x̃
(d)
n (t− 1)

]

=

[
x̃
(d)
k (t− 1)

M
(d)
nk x̃

(d)
k (t− 1) +M

(d)
nn x̃

(d)
n (t− 1)

]
.

In |V(d)
k | rows from the top, x̃(d)

k (t) does not change from x
(d)
k . Hence we only consider the remain-

ing rows. We unroll the recursion in the remaining N − |V(d)
k | rows as follows.

x̃(d)
n (K) = M

(d)
nk x

(d)
k +M (d)

nn x̃
(d)
n (K − 1)

= . . .

= (

K−1∑
t=0

(M (d)
nn)

t)M
(d)
nk x

(d)
k + (M (d)

nn)
K x̃(d)

n (0)

By Lemma 1 that lim
K→∞

(M
(d)
nn)K = 0, lim

K→∞
(M

(d)
nn)K x̃

(d)
n (0) = 0 regardless of initial values for

x̃
(d)
n (0) (We set the initial values to zeros in implementation for simplicity).

Since lim
K→∞

∑K−1
t=0 (M

(d)
nn)t = (I − M

(d)
nn)−1 and ρ(M

(d)
nn) < 1 by Lemma. 1, I − M

(d)
nn is

invertible. Then,

lim
K→∞

x̃(d)
n (K) = lim

K→∞
(

K−1∑
t=0

(M (d)
nn)

t)M
(d)
nk x

(d)
k

=(I −M (d)
nn)

−1M
(d)
nk x

(d)
k .

Here, lim
K→∞

x̃
(d)
u (K) is the first |V(d)

k | rows of lim
K→∞

x̃
(d)
n (K) that converges.

In the same way, the convergence of relation-aware diffusion can be proved by simply replacing
M̃ (d) with T̂ (d).

B FURTHER DETAILS ON IMPLEMENTATION

All the models used in this paper are implemented with Pytorch (Paszke et al., 2017) and Pytorch
Geometric (Fey & Lenssen, 2019). All experiments are conducted with an Intel Core I5-6600 CPU
@ 3.30 GHz and a single GPU (NVIDIA GeForce RTX 2080 Ti).

B.1 BASELINES

We compare the performance of HetGFD with the following seven baselines. (1) Zero imputation
(Zero) imputes all missing features with zero values. (2) Mean imputation (Mean) imputes a miss-
ing feature value at Xi,j with the mean of all known feature values in the j-th channel. (3) Iterative
SVD (SVD) (Troyanskaya et al., 2001) is a structure-agnostic method that imputes missing features
by performing iterative low-rank SVD decomposition for matrix completion. (4) GAIN (Yoon et al.,
2018) is a structure-agnostic deep imputation method that employs generative adversarial training.
(5) GRAFENNE (Gupta et al., 2023) is a GNN architecture that addresses heterogeneous features.
(6) FP (Rossi et al., 2022)+virtual features (FP+VF). FP is a diffusion-based imputation method
designed for homogeneous graphs, where known features diffuse channel-wisely. To enable diffu-
sion, we introduce our virtual feature scheme to FP. (7) PCFI (Um et al., 2023)+virtual features

15

Published as a conference paper at ICLR 2025

Table 4: Dataset statistics.
Datasets Nodes Edges # classes Feature dimension Target node type Target edge type

ACM
Paper: 4014 # Paper-Paper: 9612

3 4000 Paper Paper-Author# Author: 7157 # Paper-Author: 26794
Subject: 56 # Paper-Subject: 8028

DBLP

Author: 4057 # Paper-Author: 39290
Paper-Term: 171620

Paper-Conference: 28656
4 4231 Author Paper-Author# Paper: 14328

Term: 7723
Conference: 20

IMDB
Movie: 4025 # Movie-Director: 8050

Movie-Actor: 24144 5 3066 Movie Movie-Director# Director: 1836
Actor: 4523

(PCFI+VF). PCFI is a state-of-the-art diffusion-based method for homogeneous graphs, which uti-
lizes pseudo-confidence of each feature value during the diffusion. Similarly, our virtual feature
scheme is employed in PCFI as well.

For all baselines, we use their original hyperparameters and tuning methods specified in the re-
spective papers and official codes. For two simple baselines, Zero imputation (Zero) and Mean
imputation (Mean), we implement them with Pytorch built-in function. For the other baselines, we
implement them as follows.

• k-nearest neighbor (kNN) imputation (Troyanskaya et al., 2001). We use a custom our
implementation that performs imputation by creating k edges for each node based on cosine
similarity and leveraging the neighborhood mean. For each setting, k is search within
{1, 3, 5, 10}.

• Iterative SVD (SVD) (Troyanskaya et al., 2001). We use the implementation from the fan-
cyimpute package.1 We tune hyperparameter rank in {F/5, F − 1} as in the implemented
code from the package.

• Generative adversarial imputation nets (GAIN) (Yoon et al., 2018). We use the source
code2 released by the authors. We set all the hyperparameters of GAIN to those in the
released source code.

• GRAFENNE (Gupta et al., 2023). We use the source code3 released by the authors. We set
all the hyperparameters of GRAFENNE to those in the released source code.

• Feature propagation (FP) (Rossi et al., 2022). We use the source code4 released by the
authors.

• Pseudo-Confidence-based feature imputation (PCFI) (Um et al., 2023). We use the source
code5 released by the authors. For PCFI models, we tune hyperparameter α, β in the search
range specified in Um et al. (2023).

While the codes for SVD, FP, PCFI are Apache-2.0 licensed, the codes for GAIN and GRAFENNE
have no public declaration of license.

B.2 DATASETS

ACM is a citation network consisting of three node types and three edge types. DBLP is a bibliog-
raphy network consisting of four node types and three edge types. IMDB, extracted from an online
movie database, includes three node types and two edge types. We downloaded all the datasets used
in this paper from the GitHub repository for Jin et al. (2021). This publicly available repository does
not contain any statements ragarding licenses for the datasets. We conducted all the experiments on
the largest connected components of each dataset. For a disconnected graph, HetGFD can deal with
it by working on each connected component independently. The statistics of the three datasets are
summarized in Table 4.

1https://github.com/iskandr/fancyimpute
2https://github.com/jsyoon0823/GAIN
3https://github.com/data-iitd/Grafenne
4https://github.com/twitter-research/feature-propagation
5https://github.com/daehoum1/pcfi

16

Published as a conference paper at ICLR 2025

B.3 SEMI-SUPERVISED NODE CLASSIFICATION

We utilize the node split suggested in Jin et al. (2021), which uses 10% nodes for training, 10%
nodes for validation, and 80% nodes for testing. When training HGT (Hu et al., 2020b) models,
we use Adam optimizer (Kingma & Ba, 2014). The maximum number of epochs is set to 1000
and we apply an early stopping strategy with the patience of 200 epochs. We tune hyperparame-
ters for training downstream GNN models and conduct a grid search based on the validation sets.
Specifically, we search for the optimal number of layers from {1, 2, 3} and the learning rate from
{0.1, 0.01, 0.001, 0.0001}. We set the the hidden dimension to 64 for all the models. In the ex-
periments with HGNN-AC (Jin et al., 2021), we set a learning strategy and all the parameters of
HGNN-AC models according to the official code6 for Jin et al. (2021).

B.4 LINK PREDICTION

For the link prediction splits, as described in Kipf & Welling (2016b), we divide target edges into
training, validation, and testing sets, comprising 10%, 5%, and 85% of the edges, respectively. In
our approach, negative sampling is performed to generate non-existent edges for training, validation,
and testing in link prediction tasks. First, we create a mask that identifies all potential edges in the
graph, excluding existing edges to form a pool of non-edges. From this pool, we randomly sample
negative edges, ensuring the number of negative samples matches the desired ratio for validation and
testing. The remaining non-edges are used to create a training mask for negative samples. For each
dataset, we generate 10 edge splits. We utilize the Adam optimizer (Kingma & Ba, 2014) to train
the HGT models with the hidden dimension of 64. Similar to HGT training in semi-supervised node
classification, we tune the hyperparameters for training the downstream GNN models and perform
a grid search based on the validation sets. Specifically, we search for the optimal number of layers
from {1, 2, 3} and the learning rate from {0.1, 0.01, 0.001, 0.0001}. It is important to note that both
imputation and the training of downstream GNNs are performed exclusively on training edges in
each split, with validation and testing edges excluded.

For evaluation, we utilize AUC and AP, two metrics widely used for link prediction tasks. The ROC
AUC metric (denoted as AUC) evaluates the model’s ability to distinguish between positive (true)
links and negative (non-existent) links. It is computed by assessing the True Positive Rate (TPR)
and False Positive Rate (FPR) at various thresholds of the predicted edge scores. These values are
used to construct a Receiver Operating Characteristic (ROC) curve, which plots FPR on the x-axis
and TPR on the y-axis. The Area Under the Curve (AUC) is then calculated, providing a single
value that represents the overall performance of the model. The AP (Average Precision) metric
emphasizes the precision-recall tradeoff, making it particularly valuable for imbalanced datasets. It
is calculated by measuring Precision and Recall values across different thresholds of the predicted
edge scores. These values are used to create a Precision-Recall curve, and the AP score is derived
as the weighted average of precision values at each level of recall. A higher AP score reflects better
performance, especially in identifying true links among a large number of negatives.

B.5 EXPERIMENTAL SETTING FOR THE PPI DATASET

In the protein-protein interaction networks (PPI) dataset (Zitnik & Leskovec, 2017), a node repre-
sents a protein, and an edge represents an interaction between two proteins. Each node has 121
binary gene ontology (GO) terms, which describe biological information, such as biological path-
ways, cellular components, and molecular functions. For consistency with our experimental setup,
we use the first GO term as the node label for prediction. The second GO term is used to determine
the edge type. Edges connecting two nodes with the same second GO term are classified as type
A, while edges connecting two nodes with different second GO terms are classified as type B. We
then utilize the remaining 119 GO terms as node features for proteins, and apply structural missing
with different rates. We use 80% nodes for training, 10% nodes for validation, and 10% nodes for
testing. We randomly create 10 different binary masks of a feature matrix for each rm, and evaluate
imputation methods across 10 runs using the generated masks. We consistently utilize GCN (Kipf
& Welling, 2016a) models for downstream networks across imputation methods.

6https://github.com/liangchundong/HGNN-AC

17

Published as a conference paper at ICLR 2025

B.6 HYPERPARAMETER DETAILS

Table 5: Hyper-parameters (α and β) of HetGFD used in experiments with rm = 0.995.
Task GNN Missing type Structural missing Uniform missing

Dataset ACM DBLP IMDB ACM DBLP IMDB

Semi-supervised
node classification

HGT α 0.7 0.1 0.7 0.1 0.1 0.3
β 0.2 0.4 0.1 0.4 0.4 0.5

HGNN-AC α 0.7 0.1 0.7 0.5 0.1 0.5
β 0.8 0.8 0.5 0.9 0.9 0.99

Link prediction HGT α 0.1 0.5 0.9 0.1 0.9 0.9
β 0.4 0.8 0.8 0.5 0.9 0.99

Table 6: Hyper-parameters (α and β) of HetGFD under structural-missing settings with HGNN-AC
and rm ∈ {0.9, 0.5}.

rm Dataset ACM DBLP IMDB

0.9
α 0.7 0.1 0.9
β 0.8 0.99 0.2

0.5
α 0.9 0.1 0.9
β 0.99 0.99 0.8

Table 7: Hyper-parameters (α and β) of HetGFD on the PPI dataset.
rm 0.5 0.9 0.995
α 0.5 0.5 0.7
β 0.8 0.8 0.4

To find the optimal hyperparameters α and β for HetGFD, we perform a grid search on
validation sets. The search range is set to {(α, β)|α ∈ {0.9, 0.7, 0.5, 0.3, 0.1}, β ∈
{0.99, 0.9, 0.8, 0.5, 0.4, 0.2, 0.1, 0.05}}. We set the value of K to 100. We list the hyperparame-
ters of HetGFD used for HetGFD in our paper in Table 5, Table 6, and Table 7.

C HYPERPARAMETER SENSITIVITY

Figure 5: Average Macro-F1 score (%) in semi-supervised node classification for different (α, β) on
ACM under a structural-missing setting with rm = 0.995. HGT is commonly used as a downstream
GNN. This heatmap shows the results on the validation set, where we search α and β.

18

Published as a conference paper at ICLR 2025

Figure 6: Average Macro-F1 score (%) in semi-supervised node classification for different (α, β) on
ACM under a structural-missing setting with rm = 0.995. HGT is commonly used as a downstream
GNN. This heatmap shows the results on the test set.

Figure 7: Average AUR ROC (%) in link prediction for different (α, β) on ACM under a structural-
missing setting with rm = 0.995. HGT is commonly used as a downstream GNN. This heatmap
shows the results on the test set.

We conduct experiments to investigate the effects of hyperparameters of HetGFD. α and β are hy-
perparameters of HetGFD, where α controls PC and β determines the importance difference among
edge types. Figure 5 shows the effects of the hyperparameters α and β of HetGFD when HGT is
used as a downstream GNN. We determine optimal hyperparameters based on the validation sets.

We conduct additional experiments on test sets in both semi-supervised node classification and link
prediction. Figure 6 and Figure 7 show the results on ACM under structural-missing settings with
a missing rate of rm = 99.5%. As shown in Figure 6, when the runner-up’s Macro-F1 score is
84.47%, most combinations of α and β achieve state-of-the-art performance. Similarly, as shown in
Figure 7, when the runner-up’s ROC AUC is 74.87%, many combinations achieve state-of-the-art
performance, demonstrating the robustness of our HetGFD against α and β.

We conduct further experiments analyzing the impact of the diffusion step K on performance. Ta-
ble 8 shows the performance of HetGFD for different values of K, the number of diffusion steps.
As shown in the table, while the performance of HetGFD with K ∈ {10, 20} is slightly lower than
others, the performance becomes stable after K reaches 40. This is because imputed features ap-
proach the same steady state with a large enough K. In summary, K ≥ 40 shows the robustness in
both semi-supervised node classification and link prediction.

D FURTHER EXPERIMENTS

D.1 ABLATION STUDY

We conduct an extensive ablation study to analyze the effectiveness of the components in HetGFD.
The experiments for semi-supervised node classification are performed under uniform-missing set-
tings with rm = 0.995 and HGT is commonly used.

19

Published as a conference paper at ICLR 2025

Table 8: Performance of HetGFD for the different value of K, the number of diffusion steps.
Semi-supervised node classification (Macro-F1)

K 10 20 40 100 (used) 200

ACM 85.05± 1.36 85.92± 0.81 85.90± 0.79 85.87± 0.81 85.89± 1.07
DBLP 90.68± 0.93 90.84± 0.81 90.88± 0.80 90.88± 0.79 90.88± 0.79
IMDB 45.27± 4.00 46.33± 2.96 47.10± 3.14 47.15± 1.66 47.15± 1.65

Link prediction (ROC AUC)
K 10 20 40 100 (used) 200

ACM 77.90± 1.12 77.98± 0.79 78.10± 0.88 78.25± 1.34 78.25± 1.34
DBLP 91.80± 0.54 91.88± 0.44 91.98± 0.50 91.94± 0.67 91.97± 0.52
IMDB 91.45± 1.15 91.66± 1.27 92.50± 1.04 92.50± 1.04 92.50± 1.04

Table 9: Ablation study of HetGFD under uniform-missing settings with rm = 0.995. △ denotes
using random edge-type ranking.

PC Edge-type ACM DBLP IMDB
ranking Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

✗ ✗ 84.07± 1.38 84.66± 1.38 89.47± 1.76 90.26± 1.76 45.57± 2.03 48.26± 2.03
✗ ✓ 85.19± 1.04 85.45± 1.04 89.89± 1.62 90.46± 1.62 46.25± 2.27 48.66± 1.57
✓ ✗ 86.26± 0.69 86.61± 0.63 90.49± 1.43 91.14± 1.35 47.25± 1.88 49.94± 1.38
✓ △ 86.87± 2.15 87.12± 1.83 90.20± 1.50 90.89± 1.32 47.13± 2.94 50.08± 1.81
✓ ✓ 88.14± 0.69 88.14± 0.66 90.65± 1.53 91.40± 1.24 48.57± 1.41 50.57± 1.66

Table 10: Performance comparison of HetGFD and its variant using direct edge-type-wise ho-
mophily (H) instead of the edge ranking based on H, in terms of Macro-F1 score on semi-supervised
node classification.

ACM DBLP IMDB

direct H 83.55± 1.40 89.25± 1.65 42.93± 5.95
HetGFD 85.87± 0.81 90.88± 0.79 47.15± 1.66

PC and edge-type ranking. PC and edge-type ranking can be removed from HetGFD by substi-
tuting 1 for α and β, respectively. This substitution reduces HetGFD to FP, as it eliminates the
mechanisms for controlling PC and distinguishing edge types. Additionally, HetGFD with random
edge-type ranking is compared. The results of the ablation study are presented in Table 9. The re-
sults show that the performance gain achieved by edge-type ranking is significantly greater when PC
is used than when it is not. This suggests that both PC and edge-type ranking mechanisms, which
are grounded in the principle of feature homophily, work synergistically to boost performance. The
notable performance improvement over the variant of HetGFD with random edge-type ranking fur-
ther validates the concept of edge-type-wise homophily in determining edge-type ranking within our
HetGFD framework.

Direct H vs ranking-based. We evaluate the performance of HetGFD using direct H values instead
of the edge-type ranking approach. β−(k−1) in Eq. (6) and βk−1 in Eq. (8) is where the edge-
type ranking is utilized. β−(k−1) in Eq. (6) is designed to reduce the importance (PC) of features
connected through low-ranking edges for the relation-aware diffusion stage, and βk−1 in Eq. (8) is
designed to make diffusion occur more through high-ranking edges for the relation-aware diffusion
stage. We use the direct edge-type-wise homophily H of each edge type instead of β−(k−1) in Eq.
(6) and βk−1 in Eq. (8). We replace β−(k−1) in Eq. (6) with H−1 of each edge type and replace
βk−1 in Eq. (8) with H to align with the design concept of HetGFD. Table 10 shows the results. The
results indicate that using direct H values results in lower performance across all datasets compared
to when edge-type ranking is used. This suggests that transforming H into the ranking provides a
more stable and effective way to leverage edge-type-wise homophily.

Random initialization vs zero initialization. We conduct additional experiments comparing the
performance of HetGFD when zero initialization and random initialization are used for virtual fea-

20

Published as a conference paper at ICLR 2025

Table 11: Performance of HetGFD for different initialization strategies for missing features. K
denotes the number of diffusion steps.

Semi-supervised node classification (Macro-F1)
Initialization ACM DBLP IMDB

random init (K = 100) 85.81± 0.78 90.65± 1.18 46.47± 2.06
random init (K = 1000) 85.85± 0.80 90.90± 0.80 47.11± 1.58
zero init (used) 85.87± 0.81 90.88± 0.79 47.15± 1.66

Link prediction (ROC AUC)
Initialization ACM DBLP IMDB

random init (K = 100) 77.57± 1.91 91.64± 0.77 92.50± 1.04
random init (K = 1000) 78.27± 1.29 91.96± 0.74 92.50± 1.04
zero init (used) 78.25± 1.34 91.94± 0.67 92.50± 1.04

ture generation. Table 11 shows the results. As shown in the table, zero initialization with K = 100
used in this paper shows slightly better performance compared to that of random initialization with
K = 100, where K is the number of diffusion steps. However, when we increase K of HetGFD us-
ing random initialization to 1000, the performance of both becomes almost identical. This is because
random initialization requires a larger value of K to reach a steady state. Although updated features
approach the same steady state with a large K regardless of the initialization based on the proof in
Appendix A, careful consideration is needed when determining K, depending on the initialization.

Table 12: Performance comparison of pre-imputed features obtained by preliminary diffusion and
HetGFD’s imputed matrix when fed to HGT.

Semi-supervised node classification (Macro-F1)

ACM DBLP IMDB

pre-imputed 83.40± 1.16 88.92± 1.82 45.02± 4.65
HetGFD 85.87± 0.81 90.88± 0.79 47.15± 1.66

Link prediction (ROC AUC)

ACM DBLP IMDB

pre-imputed 72.53± 2.10 63.21± 0.71 63.47± 13.05
HetGFD 78.25± 1.34 91.94± 0.67 92.50± 1.04

X̄ vs X̂′. To quantitatively assess the impact of our preliminary diffusion approach, we conduct
additional experiments comparing the performance of semi-supervised node classification and link
prediction tasks with pre-imputed features obtained via preliminary diffusion and HetGFD’s imputed
matrix. The results, presented in Table 12, show significant improvements when using HetGFD
over pre-imputed features. Specifically, the Macro-F1 scores and ROC AUC metrics demonstrate
that HetGFD consistently outperforms the preliminary diffusion approach across various datasets
(ACM, DBLP, and IMDB). These results highlight the importance of edge-type-wise homophily
and the resulting edge-type rankings.

Table 13: Performance comparison of HetGFD and its variant using uniform weights instead of
|Er|−1 in Eq. (2), in terms of Macro-F1 score on semi-supervised node classification. Er denotes
the set of r-type edges.

ACM DBLP IMDB

uniform weights 85.87± 0.81 90.29± 1.68 43.19± 5.38
HetGFD 85.87± 0.81 90.88± 0.79 47.15± 1.66

Uniform weights vs |Er|−1 in Eq. (2). We compare the performance of HetGFD using uniform
weights against the proposed |Er|−1 weights in Eq. (2), where Er denotes the set of r-type edges.

21

Published as a conference paper at ICLR 2025

The results are shown in Table 13. While both variants perform equally well on ACM, HetGFD with
the proposed weights achieved superior performance on DBLP and IMDB. This performance dif-
ference stems from that uniform weights cause biased diffusion toward the majority edge type. For
example, in DBLP, there are edge types of Paper-Author, Paper-Term, and Paper-Conference, with
each edge type having 39,290, 171,620, and 28,656 edges, respectively. In this case, using uniform
weights causes excessive diffusion through Paper-Term edges, subsequently making the Paper-Term
edge-type-wise homophily the highest. Since authors connected through Paper-Author edges may
have more similar features than those connected through Paper-Term and Paper-Conference edges,
using uniform weights leads to performance degradation. In contrast, we confirm that the original
HetGFD consistently ranks Paper-Author as the highest edge-type-wise homophily.

Table 14: Performance comparison of HetGFD by assigning different weights to W̄(d,r) in Eq. (8),
in terms of Macro-F1 score on semi-supervised node classification.

W̄(d,r) in Eq. (8) ACM DBLP IMDB

βk−1 83.06± 1.14 88.57± 2.83 43.84± 3.98
ξj,d/ξi,d 85.09± 1.54 90.29± 1.12 42.97± 5.46
βk−1 · ξj,d/ξi,d (HetGFD) 85.87± 0.81 90.88± 0.79 47.15± 1.66

Ablation study in Eq. (8). We experiment with different weight assignments for W̄(d,r) in Eq.
(8). In this equation, the term ξj,d/ξi,d strengthens the message passing from high-PC features to
low-PC features. The results in Table 3 show that the combination of βk−1 and ξj,d/ξi,d used in
HetGFD consistently outperforms other weighting schemes. This highlights the effectiveness of our
proposed weighting strategy.

Figure 8: A t-SNE plot of imputed features and deep features learned with HGT.

D.2 QUALITATIVE RESULTS

We provide qualitative results by employing t-SNE (Van der Maaten & Hinton, 2008) to visualize
imputed features and deep features in HGT, obtained by HetGFD. For comparison, we also present
visualizations of features obtained by PCFI+VF which is the most competitive method. Figure 8
shows the qualitative results on ACM under a structural-missing setting with rm = 0.995. HetGFD
provides much clearer cluster structures for both imputed features and deep features than PCFI+VF,
indicating a more effective feature imputation.

D.3 ADDITIONAL COMPLEXITY ANALYSIS

The two main processes to consider in the time complexity of HetGFD are the two diffusion stages,
the calculation of edge-type-wise homophily H the calculation of PC. The two diffusion stage have
a time complexity of O(|E|) since they are implemented using the message passing operation in

22

Published as a conference paper at ICLR 2025

Figure 9: Imputation time (s) of methods on ACM under a structural-missing setting with rm =
0.995.

PyTorch Geometric (Fey & Lenssen, 2019). This operation involves aggregating information from
neighboring nodes, which scales linearly with the number of edges in the graph. The calculation
of H has a time complexity of O(F · |E|) since it measures feature similarity across all edges.
The calculation of PC has a time complexity of O(N2). This is because the calculation of PC
uses Dijkstra’s algorithm, an algorithm for finding the shortest paths between nodes in a graph, for
distance encoding. In structural-missing settings, the missing status of nodes is identical across
all channels. Therefore, only a single transition matrix needs to be computed, requiring just one
PC calculation. However, in uniform-missing settings, the missing status of nodes varies for each
channel, necessitating different transition matrices for each of the F channels. Consequently, F
PC calculations are required. Thus, HetGFD operates in structural-missing settings with a time
complexity of O(F · |E| + N2) and in uniform-missing settings with a complexity of O(F · |E| +
F ·N2). However, it is important to note that PCFI, the most competitive baseline, also involves the
calculation of PC using Dijkstra’s algorithm, which has a time complexity of O(N2). Compared to
PCFI, our HetGFD consistently demonstrates superiority across all experimental settings.

For each imputation method, we measure the time for imputation. Figure 9 shows imputation time
on a single split of ACM under a structural-missing setting with rm = 0.995. While Zero and Mean
show much shorter imputation time than the other methods, Zero and Mean suffer from significant
performance degradation at high rm. Meanwhile, diffusion-based methods (FP+VF, PCFI+VF, and
HetGFD) show far less imputation time than SVD and GAIN. Although our method, HetGFD,
necessitates more imputation time compared to other diffusion-based methods, it results in notable
performance improvements in two major graph learning tasks.

To validate the scalability of HetGFD, we conduct additional experiments on OGBN-Arxiv (Hu
et al., 2020a), which consists of 169343 nodes, 1166243 edges, and 128-dim node features. The
nodes represent papers published in 2017, 2018, and 2019. We divide edges into three types: 2017-
2018, 2018-2019, and 2017-2019. Under a structural-missing setting with rm, we observed that
HetGFD require only 0.39 hours for imputation. This demonstrates the efficiency of HetGFD in
terms of imputation time, even for graphs with a large number of nodes.

D.4 COMPARISON WITH FEATURE DISTANCE-BASED WEIGHTS

We conduct additional experiments to compare the weighted matrix W̄(d) used in relation-aware
diffusion against feature distance-based weights. The purpose of W̄(d) is to assign greater weights
to edge types that significantly contribute to feature homophily, i.e., edge types that result in highly
similar features between connected nodes. In contrast, the feature distance-based approach can be a
simpler method for calculating weights. To construct the feature distance-based propagation matrix,
we follow these steps: First, a pre-imputed feature matrix is generated using preliminary diffusion,
as in HetGFD. Then, a single feature mean vector is computed for each node type based on the
pre-imputed matrix. For each edge type, the feature distance is calculated by measuring the distance
between the mean feature vectors of the two node types connected by that edge type. For each
edge type, the calculated distance is inverted and assigned to the edges belonging to that edge type.
Finally, the resulting weighted matrix is row-stochastically normalized to perform diffusion-based
imputation.

Table 15 presents a performance comparison between the feature distance-based approach and our
HetGFD. For this comparison, we perform semi-supervised classification and link prediction tasks,

23

Published as a conference paper at ICLR 2025

Table 15: Performance comparison with HetGFD using feature distance-based weights.
Semi-supervised node classification (Structural missing)

Missing Type ACM DBLP IMDB
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Distance-based 83.30± 1.45 83.94± 1.52 88.48± 2.30 89.37± 2.07 43.23± 3.83 47.27± 1.96
HetGFD 85.87± 0.81 86.10± 0.81 90.88± 0.79 91.53± 0.79 47.15± 1.66 49.46± 1.66

Semi-supervised node classification (Uniform missing)

Missing Type ACM DBLP IMDB
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Distance-based 83.97± 1.63 84.70± 1.35 85.28± 7.31 87.28± 3.95 43.50± 2.90 47.39± 1.62
HetGFD 88.14± 0.69 88.14± 0.66 90.65± 1.53 91.40± 1.24 48.57± 1.41 50.57± 1.66

Link prediction (Structural missing)

Missing Type ACM DBLP IMDB
AUC AP AUC AP AUC AP

Distance-based 72.52± 1.03 73.21± 1.37 60.52± 10.23 59.43± 9.59 72.00± 16.41 67.66± 12.23
HetGFD 78.25± 1.34 78.62± 2.12 91.94± 0.67 91.88± 0.91 92.50± 1.04 86.99± 1.58

Link prediction (Uniform missing)

Missing Type ACM DBLP IMDB
AUC AP AUC AP AUC AP

Distance-based 72.37± 1.27 73.03± 1.68 60.40± 9.66 59.48± 8.92 70.57± 18.07 67.48± 15.57
HetGFD 76.96± 1.74 77.19± 1.98 92.17± 0.56 92.12± 0.53 91.95± 1.72 86.72± 3.40

consistently utilizing HGT models as downstream GNNs. As shown in the table, HetGFD signif-
icantly outperforms the feature distance-based approach across all settings. These results validate
the effectiveness of designing the propagation matrix based on edge-type-wise homophily H.

24

Published as a conference paper at ICLR 2025

D.5 STATISTICAL ANALYSIS

Table 16: p-values comparing our HetGFD to the runner-up in each setting. * denotes state-of-the-
art, not a runner-up.

For Table 1
GNN Missing Type Dataset Metric Runner-up Runner-up’s Ours p-value

HGT

Structural

ACM Macro-F1 PCFI+VF 84.47± 1.22 85.87± 0.81 5.98× 10−3

Micro-F1 PCFI+VF 85.06± 0.98 86.10± 0.81 7.29× 10−3

DBLP Macro-F1 PCFI+VF 90.41± 1.23 90.88± 0.79 2.23× 10−1

Micro-F1 PCFI+VF 91.14± 1.08 91.53± 0.79 2.37× 10−1

IMDB Macro-F1 PCFI+VF 46.64± 1.51 47.15± 1.66 5.30× 10−1

Micro-F1 PCFI+VF 49.69± 1.83∗ 49.46± 1.66 7.58× 10−1

Uniform

ACM Macro-F1 PCFI+VF 86.26± 0.69 88.14± 0.69 1.11× 10−3

Micro-F1 PCFI+VF 86.61± 0.63 88.14± 0.66 1.84× 10−3

DBLP Macro-F1 Mean 90.54± 1.62 90.65± 1.53 8.63× 10−1

Micro-F1 Mean 91.32± 1.62 91.40± 1.24 9.27× 10−1

IMDB Macro-F1 PCFI+VF 47.25± 1.88 48.57± 1.41 4.42× 10−2

Micro-F1 PCFI+VF 49.94± 1.38 50.57± 1.66 2.63× 10−1

For Table 18
GNN Missing Type Dataset Metric Runner-up Runner-up’s Ours p-value

HGNN-AC

Structural

ACM Macro-F1 PCFI+VF 69.25± 4.32 76.23± 2.84 1.56× 10−4

Micro-F1 PCFI+VF 75.07± 4.32 76.91± 2.84 1.21× 10−1

DBLP Macro-F1 PCFI+VF 93.02± 0.49 93.26± 0.40 2.49× 10−1

Micro-F1 PCFI+VF 93.49± 0.49 93.76± 0.40 1.59× 10−1

IMDB Macro-F1 PCFI+VF 34.29± 3.46 35.05± 1.84 5.98× 10−1

Micro-F1 PCFI+VF 42.99± 3.46 43.64± 1.84 5.62× 10−1

Uniform

ACM Macro-F1 PCFI+VF 84.04± 2.08 85.27± 1.61 7.72× 10−2

Micro-F1 PCFI+VF 84.92± 3.26 85.64± 1.61 4.79× 10−1

DBLP Macro-F1 PCFI+VF 93.77± 0.44 94.03± 0.29 1.63× 10−1

Micro-F1 PCFI+VF 94.21± 0.44 94.45± 0.29 1.26× 10−1

IMDB Macro-F1 PCFI+VF 41.06± 3.87 43.52± 2.66 8.30× 10−2

Micro-F1 PCFI+VF 47.20± 3.87 47.87± 2.66 4.30× 10−1

For Table 2
Missing Type Dataset Metric Runner-up Runner-up’s Ours p-value

Structural

ACM AUC GRAFENNE 74.87± 6.71 78.25± 1.34 1.58× 10−1

AP FP+VF 74.03± 0.84 78.62± 2.12 2.65× 10−4

DBLP AUC GRAFENNE 90.14± 7.26 91.94± 0.67 4.50× 10−1

AP GRAFENNE 76.53± 7.12 91.88± 0.91 1.08× 10−4

IMDB AUC FP+VF 92.50± 1.04 92.50± 1.04 1
AP FP+VF 86.99± 1.58 86.99± 1.58 1

Uniform

ACM AUC PCFI+VF 74.94± 1.37 76.96± 1.74 1.60× 10−2

AP PCFI+VF 73.80± 1.63 77.19± 1.98 7.98× 10−3

DBLP AUC GAIN 72.48± 0.62 92.17± 0.56 4.57× 10−15

AP GAIN 74.20± 0.60 92.12± 0.53 5.39× 10−13

IMDB AUC GAIN 92.50± 1.04∗ 91.95± 1.72 4.98× 10−1

AP GAIN 86.99± 1.58∗ 86.72± 3.40 8.47× 10−1

For Table 3
rm Runner-up Runner-up’s Ours p-value

0.5 PCFI+VF 80.75± 1.68 81.57± 1.04 2.53× 10−1

0.9 PCFI+VF 65.22± 2.19 66.84± 1.92 7.68× 10−2

0.995 GRAFENNE 62.26± 0.00 63.20± 0.37 3.25× 10−5

We conduct additional experiments to evaluate the statistical significance of our HetGFD’s superior
performance. Table 16 shows p-values comparing EDBD to the runner-up in each setting for all the
results in Table 1, Table 18, Table 2, and Table 3. As shown in the table, the p-values for Table 1, Ta-
ble 18, Table 2, and Table 3 exhibit a wide range of distributions. Nevertheless, while the runner-ups
vary depending on the setting, HetGFD consistently achieves state-of-the-art performance, except
for link prediction on DBLP under the uniform-missing setting.

25

Published as a conference paper at ICLR 2025

Table 17: Normalized Dirichlet energy for each metapath.
Dataset Edge Type Normalized Dirichlet energy

ACM Paper-Author-Paper 0.105
Paper-Subject-Paper 0.149

DBLP
Paper-Author-Paper 0.159
Paper-Term-Paper 0.183

Paper-Conference-Paper 0.203

IMDB Movie-Director-Movie 0.125
Movie-Actor-Movie 0.203

E DISCUSSION ON FEATURE HOMOPHILY

In the context of homophily, two types are commonly discussed: class homophily and feature
homophily. Diffusion-based imputation methods rely on feature homophily. However, in hetero-
geneous graphs, some node types often lack features, making it very challenging to assess the
overall level of feature homophily in such graphs (i.e., whether the graph is feature-homophilic
or non-feature-homophilic (feature-heterophilic)). Nevertheless, if one wishes to measure feature
homophily, it can be done using metapaths (e.g., Movie-Director-Movie or Movie-Actor-Movie)
that connect node types with features. Each metapath exhibits a distinct level of feature homophily
within a heterogeneous graph. For example, some metapaths, such as Movie-Director-Movie, ex-
hibit high feature homophily, while others, like Movie-Actor-Movie, display low feature homophily.

Table 17 presents the normalized Dirichlet energy (lower values indicate higher feature homophily),
representing the feature homophily levels for each metapath in the datasets used in this paper. As
shown in the table, all datasets contain metapaths with varying levels of feature homophily. We
emphasize that, while it is very challenging to determine whether a heterogeneous graph is feature-
homophilic or feature-heterophilic, diverse levels of feature homophily exist within the graph de-
pending on the metapaths. Through the extensive experiments, we confirm that our HetGFD effec-
tively prevents performance degradation on downstream tasks under various missing data scenarios
across these datasets as well as the PPI dataset. However, the effectiveness of HetGFD may be lim-
ited on feature-heterophilic heterogeneous graphs, where most paths connecting attributed nodes are
heterophilic connections.

26

Published as a conference paper at ICLR 2025

F ADDITIONAL EXPERIMENTAL RESULTS

Table 18: Semi-supervised node classification results (%) with rm = 0.995.

GNN Missing type Method ACM DBLP IMDB
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Full features 89.09± 2.38 89.22± 1.95 93.48± 0.58 93.95± 0.58 55.23± 3.07 56.67± 1.70

HGNN-AC

Structural
missing

Zero 42.14± 6.12 58.01± 6.12 13.14± 4.97 28.81± 4.97 19.34± 0.44 36.76± 0.44
Mean 21.86± 0.04 48.75± 0.04 11.33± 0.98 28.35± 0.98 19.61± 0.78 36.38± 0.78
kNN 42.45± 6.33 58.63± 6.39 13.40± 4.88 28.95± 4.88 19.34± 0.44 36.76± 0.44
SVD 41.59± 4.63 57.09± 4.63 12.04± 1.93 27.78± 1.78 19.34± 0.44 36.76± 0.44
GAIN 40.15± 4.40 56.23± 4.40 11.28± 0.69 27.78± 2.17 19.34± 0.44 36.76± 0.44
GRAFENNE 52.77± 7.28 65.49± 5.17 18.65± 3.13 27.73± 0.94 27.20± 2.73 36.12± 1.76
FP+VF 64.22± 5.33 73.00± 5.33 17.60± 16.03 32.96± 16.03 20.31± 1.20 37.01± 1.20
PCFI+VF 69.25± 4.32 75.07± 4.32 93.02± 0.49 93.49± 0.49 34.29± 3.46 42.99± 3.46
HetGFD (ours) 76.23± 2.84 76.91± 2.84 93.26± 0.40 93.76± 0.40 35.05± 1.84 43.64± 1.84

Uniform
missing

Zero 21.85± 0.00 48.74± 0.00 11.51± 0.57 27.76± 1.42 19.63± 0.71 36.84± 0.71
Mean 21.86± 0.04 48.75± 0.04 11.28± 1.78 27.32± 2.06 20.93± 1.58 36.42± 1.58
kNN 21.85± 0.00 48.74± 0.00 11.40± 0.63 27.51± 1.50 20.55± 1.24 36.55± 1.24
SVD 60.63± 4.62 68.11± 4.62 11.72± 0.79 27.54± 1.73 19.86± 0.78 36.86± 0.78
GAIN 55.28± 10.33 65.40± 10.33 11.38± 0.57 28.78± 1.73 19.63± 0.71 36.84± 0.71
GRAFENNE 73.04± 1.34 74.29± 1.06 17.8± 2.24 28.61± 0.91 36.51± 1.88 39.82± 1.60
FP+VF 83.27± 2.04 84.04± 2.04 11.95± 2.59 28.21± 2.59 20.61± 1.97 37.24± 1.97
PCFI+VF 84.04± 2.08 84.92± 3.26 93.77± 0.44 94.21± 0.44 41.06± 3.87 47.20± 3.87
HetGFD (ours) 85.27± 1.61 85.64± 1.61 94.03± 0.29 94.45± 0.29 43.52± 2.66 47.87± 2.66

27

