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Figure 1: Architectures of the baseline models (a) ViLT and (b) METER. The blue modules are
the default Transformer layers that are frozen during the adaptation, while the green ones are the
trainable adapters. “En” denotes the encoding layers. “LEn” and “FEn” represent the encoding layers
of METER for texts and images, and “FL” and “FV” are the fusion layers for language and vision,
respectively.

The architectures of two based models are given in Fig. 1. We also report their detailed skipping2

results by DAS in Tab. A. Here, “LEn” represents Language Encoder, and “VEn” represents Vision3

Encoder. We can first see that ViLT is a relatively compact model to METER, which only has 124

Transformer layers without any modality-specific encoder. In this case, it can only be skipped one5

or two layers without obviously degrading the performance. In stark contrast, METER is a deep6

and huge VLP model, of which redundancy is much more obvious. By skipping up to 8 layers, its7

performance drops are still marginal on all tasks. Meanwhile, we also observe that discarding its8

visual encoder layers will greatly disturb its training and performance during experiments, thus these9

layers are not considered as the skipping candidates. From Tab. A, we also have some interesting10

observations. For instance, the language encoding layers are less important to VQA. This may suggest11

that most questions in VQA2.0 are shorter and less complex, and the model needs to focus more on12

the visual understanding and cross-modal interactions. This case is less significant on NLVR2, which13

requires a detailed comparison between images and texts. Overall, these results confirm that the large14

VLP models exhibit obvious redundancy to downstream VL tasks. More importantly, the importance15

of their modules is different to different tasks, requiring proper estimations.16

B The results of random sampling17

Tab. B gives the detailed results of random sampling mentioned in Fig.3 of the main paper. We can18

see that random sampling is not only consistently worse than our DAS, but also varies greatly in19
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Table A: The kipped layers and performance for different base models and tasks. For VQA, we
report the test-Dev as the performance. For NLVR2, we report the test-P as the performance. For
Flickr30k, we report IR/TR R@1 as the performance. “Fusion” refers to only skipping the layers in
the multimodal fusion modules of METER, while “Global” denotes the skipping scope of the fusion
modules and the language encoder.

METER

Datasets Candidates Number of
Skipped Per. Additional

FLOPs Skipped Layers

VQA

- 0 75.28 1.68G -

Fusion

2 74.92 -9.06G FV0, FV4
4 74.80 -11.16G FL2, FL3, FV0, FV5
6 74.67 -17.58G FL1, FL2, FL3, FV0, FV4, FV5
8 73.70 -24.00G FL1, FL2, FL3, FL4, FV0, FV1, FV4, FV5

Global

2 75.24 -3.96G FV0, LEn6
4 75.13 -4.51G FV0, LEn10, LEn11
6 75.02 -5.06G FV0, LEn4, LEn6, LEn8, LEn10, LEn11
8 74.05 -5.61G FV4, LEn4, LEn5, LEn6, LEn8, LEn9, LEn10, LEn11

NLVR2

- 0 81.28 0.99G -

Fusion

2 80.07 -2.66G FL4, FV5
4 80.11 -4.14G FL2, FL3, FL5, FV5
6 78.16 -9.97G FL3, FL4, FL5, FV1, FV3, FV4
8 79.30 -11.45G FL1, FL2, FL3, FL4, FL5, FV0, FV3, FV4

Global

2 81.37 -2.19G FV5, LEn1
4 81.34 -3.67G FL2, FL3, FV5, LEn4
6 80.04 -4.22G FL2, FL5, FL6, LEn5, LEn6, LEn11
8 79.61 -8.34G FL2, FL3, FL4, FL5, FV1, FV5, LEn4, LEn11

Flickr30k
- 0 81.20/92.40 1.68G -

Fusion 4 80.12/91.80 -11.16G FL4, FL5, FV0, FV3
Global 4 80.42/91.40 -6.06G FL2, FL5, FV0, LEn8

ViLT

Datasets Candidates Number of
Skipped Per. Additional

FLOPs Skipped Layers

VQA
- 0 70.13 0.73G -

Global 1 69.28 -1.03G En3
2 67.64 -2.79G En1, En3

NLVR2
- 0 76.26 0.73G -

Global 1 74.89 -1.03G En5
2 73.00 -2.79G En5, En11

Flickr30k - 0 62.44/82.10 0.73G -
Global 1 60.66/80.80 -1.03G En7

Table B: The detailed experiment results of random sampled subnetworks for Fig.3 in the main paper.

METER

Datasets Candidates Number of
Skipped

VQA
test-Dev

Additional
FLOPs Skipped Layers

VQA Fusion

4
74.24 -11.16G FL2, FL4, FV2, FV3
74.67 -11.16G FL1, FL5, FV0, FV3
74.08 -11.16G FL1, FL4, FV1, FV4

6
74.05 -17.58G FL1, FL2, FL3, FV2, FV3, FV5
73.26 -17.58G FL0, FL1, FL4, FV0, FV2, FV5
73.03 -17.58G FL2, FL4, FL5, FV1, FV2, FV5

8
71.81 -24.00G FL0, FL1, FL3, FL5, FV2, FV3, FV4, FV5
68.56 -24.00G FL1, FL3, FL4, FL5, FV1, FV2, FV3, FV4
69.88 -24.00G FL0, FL2, FL5, FV1, FV2, FV3, FV4, FV5

terms of skipped layers and performance, especially when the number of skipped layers is large. On20

the contrary, these results just confirm the effectiveness of the proposed DAS.21

C Generalization on Pre-trained Language Model22

To validate the generalization ability of DAS, we also apply it to a pre-trained language model called23

RoBERTa [5], as shown in Tab. C. Due to the time limit, we do not conduct careful tunings for24

RoBERTa. The settings of DAS follow the main paper, while the rest are the same with MAM [1].25

From this table, we can first see that DAS is also applicable to pre-trained language models. It26

can also achieve the target of PCETL in terms of computation and update parameter scales, while27

obtaining limited performance drops. However, we can also see that the competitiveness of DAS to28
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Table C: Comparison between DAS and PETL methods for RoBERTa on MNLI and SST2. “En”
denotes the encoding layers. “Acc.” denotes the accuracy.

Methods Updated
Parameter

Additional
FLOPs

MNLI SST2
Acc. Skipped Layers Acc. Skipped Layers

Full Tuning 124.65M 0.0 87.6 - 94.6
Bit-Fit [6] 0.10M 0.0 84.7 - 93.7
Pre-fix [4] 0.14M 1.20G 86.3 - 94.0
LoRA [3] 0.59M 0.0 87.2 - 94.2
Adapter [2] 0.63M 0.33G 87.2 - 94.2
MAM [1] 0.61M 0.79G 87.4 - 94.2
DAS1 0.63M -3.71G 86.8 En10 94.1 En10
DAS2 0.63M -7.74G 86.7 En10, En11 93.9 En8, En10
DAS3 0.63M -11.77G 86.2 En9, En10, En11 93.8 En7, En8, En10

other PETL methods is slightly worse on MNLI, of which objective is close to the pre-training ones.29

We think that the task gap may be a potential factor affecting PCETL. Overall, these results well30

validate the generalization ability of DAS on LLMs towards PCETL.31
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