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A Derivations

A.1 Derivation of Variational Bound for Nonlinear Diffusion

The variational bound derived in Song et al. [11] is only applicable when G(xt, t) is reduced
to g(t)I. This section, therefore, derives the variational bound of a general diffusion SDE of
dxt = f(xt, t) dt + G(xt, t) dwt, and we analyze why learning f and G is infeasible if 1) the
transition probability of p0t(xt|x0) is intractable and 2) G is anisotropic by xt.

From Anderson [10], the corresponding reverse SDE of dxt = f(xt, t) dt+ G(xt, t) dwt is

dxt =
[
f(xt, t)− div(GGT )−GGT∇ log pt(xt)

]
dt̄+ G(xt, t) dw̄t, (4)

and the generative SDE becomes

dxt =
[
f(xt, t)− div(GGT )−GGT s(xt, t)

]
dt̄+ G(xt, t) dw̄t. (5)

Then, from the Girsanov theorem [35] and the martingale property [17], using the disintegration
property of the KL divergence, we have

DKL(µ‖ν) = DKL(pT (xT )‖π(xT ))

+
1

2

∫ T

0

Ext

[(
s(xt, t)−∇ log pt(xt)

)T
GGT

(
s(xt, t)−∇ log pt(xt)

)]
dt,

(6)

where µ is the path measure of Eq. (4) and ν is the path measure of Eq. (5). Therefore, from the data
processing inequality [36], we get

DKL(pr‖p) ≤ DKL(µ‖ν) = DKL(pT (xT )‖π(xT ))

+
1

2

∫ T

0

Ext

[(
s(xt, t)−∇ log pt(xt)

)T
GGT

(
s(xt, t)−∇ log pt(xt)

)]
dt,

where p is the generative distribution at t = 0.

Now, from the Fokker-Planck equation, the density function satisfies

∂pt
∂t

= −
∑
j

∂

∂xt,j

[
fj(xt, t)pt(xt)−

∑
i

∂

∂xt,j
(Hij(xt, t)pt(xt))

]
,

where H(xt, t) = 1
2G(xt, t)G(xt, t)

T . Then, analogous to Theorem 4 of Song et al. [11], the
entropy becomes

H(pr)−H(pT ) = −
∫ T

0

∂

∂t
H(pt) dt

=

∫ T

0

∫
∂pt
∂t

log pt(xt) dxt dt

= −
∫ T

0

∫ ∑
j

∂

∂xt,j

[
fj(xt, t)pt(xt)−

∑
i

∂

∂xt,i
(Hij(xt, t)pt(xt))

]
log pt(xt) dxt dt

=

∫ T

0

∫ ∑
j

[
fj(xt, t)pt(xt)−

∑
i

∂

∂xt,i
(Hij(xt, t)pt(xt))

]∂ log pt(xt)

∂xt,j
dxt dt

=

∫ T

0

∫
pt(xt)

∑
j

fj(xt, t)
∂ log pt(xt)

∂xt,j
dxt dt

−
∫ T

0

∫ ∑
j

∑
i

(
∂Hij

∂xt,i
pt +Hij

∂pt
∂xt,i

)
∂ log pt
∂xt,j

dxt dt

= −
∫ T

0

Ext [div(f(xt, t))] dt

−
∫ T

0

Ext [div(H(xt, t))
T∇ log pt(xt)] + Ext [∇ log pt(xt)

T
H(xt, t)∇ log pt(xt)] dt
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= −1

2

∫ T

0

Ext

[
2div(f(xt, t)) + div(G(xt, t)G(xt, t)

T )T∇ log pt(xt)

+∇ log pt(xt)
T
G(xt, t)G(xt, t)

T∇ log pt(xt)
]

dt.

Therefore, the variational bound of the model log-likelihood is derived by

Epr(x0)

[
− log p(x0)

]
= DKL(pr‖p) +H(pr) ≤ DKL(µ‖ν) +H(pr)

=
1

2

∫ T

0

Ext

[
(∇ log pt(xt)− s(xt, t))

TGGT (∇ log pt(xt)− s(xt, t))
]

dt

+ExT

[
− log π(xT )

]
+H(pr)−H(pT )

=
1

2

∫ T

0

Ext

[(
s(xt, t)−∇ log pt(xt)

)T
GGT

(
s(xt, t)−∇ log pt(xt)

)
−∇ log pt(xt)

T
GGT∇ log pt(xt)− div(GGT )T∇ log pt(xt)− 2div(f(xt, t))

]
dt

+ExT

[
− log π(xT )

]
.

Using the integration by parts, this variational bound transforms to

Epr(x0)

[
− log pθ(x0)

]
≤1

2

∫ T

0

Ext

[
sTGGT s + 2div(GGT s)

− div(GGT )∇ log pt − 2div(f)
]

dt+ ExT

[
− log π(xT )

]
Also, this variational bound is equivalently formulated as

Epr(x0)

[
− log p(x0)

]
≤ 1

2

∫ T

0

Ex0,xt

[(
s(xt, t)−∇ log p0t(xt|x0)

)T
GGT

(
s(xt, t)−∇ log p0t(xt|x0)

)
−∇ log p0t(xt|x0)

T
GGT∇ log p0t(xt|x0)− div(GGT )T∇ log p0t(xt|x0)− 2div(f)

]
dt

+ ExT

[
− log π(xT )

]
.

Therefore, optimizing the nonlinear drift (f ) and diffusion (G) terms are intractable in general for two
reasons. First, the transition probability of p0t(xt|x0) is intractable for nonlinear SDEs. To compute
p0t(xt|x0), one needs the Feynman-Kac formula [12] which requires expectation on every sample
paths, see Appendix E.4.

Second, even if p0t(xt|x0) is tractable, computing the above variational bound would not be scalable
due to the matrix multiplication of GGT that is of O(d2) complexity and the divergence computation
[37]. These would become the main source of training bottleneck if dimension increases.

A.2 Derivation of Nonlinear Drift and Volatility Terms for INDM

Throughout this section, we omit φ for notational simplicity. With the linear SDE on latent space

dzt = −1

2
β(t)zt dt+ g(t) dwt, z0 = h(x0) with x0 ∼ pr, (7)

from xt = h−1(zt), the k-th component of the induced variable satisfies

dxt,k =
∂h−1

k

∂t
dt+

[
∇zth

−1
k (zt)

]T
dzt +

1

2
tr
(
∇2

zth
−1
k (zt) dzt dzTt

)
(8)

by the multivariate Ito’s Lemma [17]. Plugging the linear SDE of Eq. (7), Eq. (8) is transformed to

dxt,k =
[
∇zth

−1
k (zt)

]T {−1

2
β(t)zt dt+ g(t) dwt

}
+

1

2
g2(t)tr

(
∇2

zth
−1
k (zt)

)
dt

=

{
−1

2
β(t)

[
∇zth

−1
k (zt)

]T
zt +

1

2
g2(t)tr

(
∇2

zth
−1
k (zt)

)}
dt+ g(t)

[
∇zth

−1
k (zt)

]T
dwt,

(9)
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because ∂h−1
k

∂t = 0. Then, Eq. (9) in vector form becomes

dxt = f(xt, t) dt+ G(xt, t) dwt,

where the vector-valued drift and the matrix-valued volatility terms are given by{
f(xt, t) = − 1

2β(t)∇zth
−1(zt)zt + 1

2g
2(t)tr

(
∇2

zth
−1(zt)

)
G(xt, t) = g(t)∇zth

−1(zt).
(10)

Here,∇2
zth
−1(zt) is a 3-dimensional tensor with (i, j, k)-th element to be

(
∇2

zth
−1
k (zt)

)
i,j

, and the

trace operator applied on this tensor is defined as a vector of
[
tr
(
∇2

zth
−1
1 (zt)

)
, ..., tr

(
∇2

zth
−1
d (zt)

)]T
.

From the inverse function theorem [38], the Jacobian of the inverse function ∇zth
−1(zt) equals to

the inverse Jacobian
[
∇xth(xt)

]−1
. Therefore, Eq. (10) is transformed to{

f(xt, t) = − 1
2β(t)

[
∇xth(xt)

]−1
h(xt) + 1

2g
2(t)tr

(
∇2

zth
−1(zt)

)
G(xt, t) = g(t)

[
∇xth(xt)

]−1
.

(11)

Now, we derive the second term of f in terms of xt as follows: observe that
∑
k
∂h−1
i

∂zt,k
∂hk
∂xt,j

= δi,j ,
where δi,j = 1 if i = j and 0 otherwise. Differentiating both sides with respect to xt,l, we have∑

k

{
∂

∂xt,l

(
∂h−1

i

∂zt,k

)}
∂hk
∂xt,j

+
∂h−1

i

∂zt,k

{
∂

∂xt,l

(
∂hk
∂xt,j

)}
= 0,

where the first term is∑
k,m

∂hm
∂xt,l

{
∂

∂zt,m

(
∂h−1

i

∂zt,k

)}
∂hk
∂xt,j

=
∑
k,m

(
∇xth(xt)

)T
l,m

(
∇2

zth
−1
i (zt)

)
m,k

(
∇xth(xt)

)
k,j
,

using the chain rule, and the second term becomes∑
k

∂h−1
i

∂zt,k

{
∂

∂xt,l

(
∂hk
∂xt,j

)}
=
∑
k

(
∇zth

−1(zt)
)
i,k

(
∇2

xthk(xt)
)
l,j
.

From the above, we derive the trace term of f in Eq. (11) as

tr
(
∇2

zth
−1(zt)

)
= −tr

([
∇xth(xt)

]−T ([∇xth(xt)
]−1 ∗ ∇2

xth(xt)
) [
∇xth(xt)

]−1
)
,

where ∇2
xth(xt) is a 3-dimensional tensor with (i, j, k)-th element to be

(
∇2

xthk(xt)
)
i,j

. Also, we
define ∗ operation as the element-wise matrix multiplication given by([

∇xth(xt)
]−1 ∗ ∇2

xth(xt)
)
i,j

:= ∇xt

[
h(xt)

]−1
(
∇2

xth(xt)
)
i,j
.

Combining all together, thus, we derive the nonlinear drift term in Eq. (11) as a function of xt given
by

f(xt, t) =− 1

2
β(t)

[
∇xth(xt)

]−1
h(xt)

− 1

2
g2(t)tr

([
∇xth(xt)

]−T ([∇xth(xt)
]−1 ∗ ∇2

xth(xt)
) [
∇xth(xt)

]−1
)
.

B Details on Section 6.1

It is one of central topics in the community of VAE to obtain a tighter ELBO [39, 40]. This section
analyzes the variational gap and further theoretical analysis in diffusion models. Before we start, we
remind the generalized Helmholtz decomposition in Lemma 1.
Lemma 1 (Helmholtz Decomposition [41]). Any twice continuously differentiable vector field s that
decays faster than ‖z‖−c2 for ‖z‖2 → ∞ and c > 0 can be uniquely decomposed into two vector
fields, one rotation-free and one divergence-free: s = ∇ log p+ u.
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A rotation-free vector field ∇ log p, or the divergence part, is a score function of a probability
density p, and a divergence-free vector field u, or the rotation part, satisfies div(u) ≡ 0. From this
decomposition, any score network is decomposed by sθ(zt, t) = ∇ log pθt (zt) + uθt (zt) for some
probability pθt and vector field uθt , for any t ∈ (0, T ]. Then, the generative SDE of the full score
network

dzt =
[
f(zt, t)− g2(t)sθ(zt, t)

]
dt̄+ g(t) dw̄t (12)

and the generative SDE of the divergence part

dzt =
[
f(zt, t)− g2(t)∇ log pθt (zt)

]
dt̄+ g(t) dw̄t (13)

has distinctive path measures. Throughout this section, f(zt, t) does not have to be a linear vector field,
such as − 1

2β(t)zt. If νθ and ρθ are the path measures of SDEs of Eqs. (12) and (13), respectively,
then using the Girsanov theorem [11, 35] and the martingale property [17], we have

DKL(νθ‖ρθ) =
1

2

∫ T

0

g2(t)Ezt∼νθ|t
[
‖∇ log pθt (zt)− sθ(zt, t)‖22

]
dt

=
1

2

∫ T

0

g2(t)Ezt∼νθ|t
[
‖uθ(zt, t)‖22

]
dt.

(14)

This KL divergence of two path measures quantifies how much the score network contains the rotation
part uθt . Recall that the forward SDE satisfies

dzt = f(zt, t) dt+ g(t) dwt,

which starts at pφ0 , and the marginal distribution of its path measure µφ at t is pφt . As NELBO is
equivalent to

DKL(µφ‖νφ,θ) =
1

2

∫ T

0

g2(t)Epφt (zt)

[
‖sθ(zt, t)−∇ log pφt (zt)‖22

]
dt+DKL

(
pφT (zT )‖π(zT )

)
,

(15)

for θ-optimization, the optimal θ∗ satisfies sθ∗(zt, t) = ∇ log pφt (zt). At this optimality, θ
should satisfy a pair of constraints: 1) the zero-rotation part uθ

∗

t ≡ 0, which is equivalent to
DKL(νθ∗‖ρθ∗) = 0; 2) the coincidence of ∇ log pφt (zt) ≡ ∇ log pθt (zt). The starting point to
analyze the variational gap with respect to the Helmholtz decomposition is the next theorem. We
defer the proofs in Section G.
Proposition 1. Suppose qθt is the marginal distribution of νθ at t. The variational gap is

Gap
(
µφ({xt}),νφ,θ({xt})

)
:=DKL

(
µφ({xt})‖νφ,θ({xt})

)
−DKL

(
pφ0 (x0)‖qθ0 (x0)

)
=

1

2

∫ T

0

g2(t)Epφt (zt)

[
‖∇ log qθt (zt)− sθ(zt, t)‖22︸ ︷︷ ︸

Score-only error

]
dt.

Remark 1. The generative SDE of dzθt = [− 1
2β(t)zθt − g2(t)sθ(zθt , t)] dt̄ + g(t) dw̄t does not

necessarily start from the prior π. Proposition 1 holds for an arbitrary distribution pθT . At the same
spirit, Proposition 1 holds for any distribution pφ0 .
Remark 2. Throughout the section, we follow the assumptions made in Appendix A of Song et al.
[11]. On top of that, we assume that both sθ and qθt are continuously differentiable.

The variational gap derived in Proposition 1 does not include the forward score,∇ log pφt (zt), except
for taking the expectation, Epφt (zt)

. Therefore, the gap is intuitively connected to the score training,
rather than the flow training. To elucidate the logic, we decompose the variational gap in Proposition
1 into

Gap
(
µφ,νφ,θ

)
=

1

2

∫ T

0

g2(t)Epφt (zt)

[
‖∇ log qθt (zt)− sθ(zt, t)‖22

]
dt

≤ 1

2

∫ T

0

g2(t)Epφt (zt)

[∥∥∇ log qθt (zt)−∇ log pθt (zt)
∥∥2

2
+
∥∥∇ log pθt (zt)− sθ(zt, t)

∥∥2

2

]
dt.(16)
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=
1

2

∫ T

0

g2(t)Epφt (zt)

[ ∥∥∇ log qθt (zt)−∇ log pθt (zt)
∥∥2

2︸ ︷︷ ︸
How close is νθ to forward measure

+
∥∥uθt (zt)

∥∥2

2︸ ︷︷ ︸
How close is uθ

t to zero

]
dt.

The second term, ‖∇ log pθt (zt)− sθ(zt, t)‖22 (see Eq. (14)), equals to the L2-norm of the rotation
term, ‖uθt (zt, t)‖22, so it measures how close is the score network to the space of

Sdiv := {s : Rd → Rd| the rotation term of s is zero}.

On the other hand, having assumed the rotation part to be zero, the first term, ‖∇ log qθt (zt) −
∇ log pθt (zt)‖22, becomes zero only if the generative score∇ log qθt equals to a forward score∇ log qt
with certain initial distribution q0, meaning that if there exists a q0 and qt is a marginal density of the
forward SDE starting from q0, then

∇ log qt(zt) = ∇ log qθt (zt) is equivalent to ∇ log qt(zt) = ∇ log pθt (zt),

and only in that case, ∇ log qθt (zt) = ∇ log pθt (zt). Therefore, the gap becomes tight if 1) uθt ≡ 0
and 2) ∇ log qθt = ∇ log qt for some qt following the forward SDE, which is concretely proved in
Lemma 2. It turns out that this is the only case of the gap being zero proved in Theorem 2. For that,
we provide a rigorous definition of the class of score functions of interest as below.

Definition 1. Let Ssol ⊆ Sdiv be a sub-family of rotation-free score functions s : Rd → Rd such
that s(zt, t) = ∇ log pt(zt) almost everywhere for pt that is the marginal distribution of the path
measure of dzt = f(zt, t) dt+ g(t) dwt at t.

Remark 3. Analogous to Theorem 1, no condition for the starting and ending variables is imposed in
Definition 1.
Remark 4. Ssol is the space of score functions of the forward SDE dzt = f(zt, t) dt+ g(t) dwt with
arbitrary initial variable.

Although Song et al. [11] focused on the data diffusion, their theory is applicable for a diffusion
process that starts with an arbitrary initial distribution. Lemma 2 describes the theoretic analysis done
by Song et al. [11].

Lemma 2 (Theorem 2 of Song et al. [11]). Gap(µφ,νφ,θ) = 0 if sθ ∈ Ssol.

With Lemma 2, however, we cannot certainly be sure that the score network sθ of INDM falls to
Ssol when the variational gap is zero. Thus, we take a step further to identify the connection of zero
variational gap and the class of rotation-free score functions Ssol in Theorem 2. This Theorem 2
completely characterizes all admissible score networks that achieve the zero variational gaps, and we
are certain that the zero variational gap implies sθ ∈ Ssol, which turns out to be a solution space in
Theorem 3.

Theorem 2. Gap(µφ,νφ,θ) = 0 if and only if sθ ∈ Ssol.

⋯

Figure 10: Descriptive Illustration On Nearly MLE Training.

From Theorem 2, the variational gap
is strictly positive as long as the ro-
tation part of the score network re-
mains to be nonzero. NELBO of Eq.
(15) optimizes its score network to-
wards sθ(zt, t) → ∇ log pφt (zt) :=
sφ(zt, t), which is equivalent to
log pθt (zt)→ ∇ log pφt (zt) (or equiv-
alently, log qθt (zt) → ∇ log pφt (zt))
and uθt (zt, t) → 0. In contrast to
DDPM++ with fixed φ, optimizing
DKL(µφ‖νφ,θ) w.r.t φ finds the closest sφ among Ssol to sθ. Thus, if sθ ∈ Ssol, then sφ∗ = sθ,
which is proved in Theorem 3. If sθ /∈ Ssol, then sφ∗ is not equal to sθ , anymore, but sφ∗ will be the
closest among Ssol to sθ because DKL(µφ‖νφ,θ) is the weighted L2-norm of sφ − sθ.

Theorem 3. For any fixed sθ̄ ∈ Ssol, if φ∗ ∈ arg minφDKL(µφ‖νφ,θ̄), then sφ∗(zt, t) =

∇ log pφ
∗

t (zt) = sθ̄(zt, t), and DKL(µφ∗‖νφ∗,θ̄) = DKL(pr‖pφ∗,θ̄) = Gap(µφ∗ ,νφ∗,θ̄) = 0.
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Indeed, Theorem 3 implies that the whole class of Ssol is the solution space, which means that any
sθ in Ssol is a candidate for an optimal score function as there always exists φ∗ corresponding to
a given θ that achieves the perfect match of the model distribution to the data distribution. This is
contrastive to DDPM++ that only has a unique optimal point of sθ∗(zt, t) = ∇ log pφidt (zt) ∈ Ssol.
Figure 10 illustrates that the optimal point of DDPM is a single point in Ssol, whereas any sθ ∈ Ssol
is a candidate for the optimal point of INDM by Theorem 3. In other words, the number of DDPM
optimality is one, while INDM has infinite number of optimalities.

B.1 Restricting Search Space of sθ into Sdiv

Due to the space limit, the argument in this section has not been included in the main paper. Below,
we provide the rationale that it is the number of optimal points that affect the NLL performance. For
that, we optimize DDPM++ with a regularization, suggested in Proposition 5. This regularization
restricts the score network from not deviating Sdiv too far by keeping the rotation term, uθt , being
consistently small. Consequently, a fastly converging rotation term is advantageous in reducing the
variational gap (see Inequality (16)), and this regularization helps the MLE training of DDPM++.

Proposition 2 proves that Sdiv is identical to a class of score functions that have symmetric derivatives.
From this, Proposition 3 provides a motivation of the regularization by proving that a symmetric matrix
satisfies a certain equality. Then, Proposition 4 implies that the formula suggested in Proposition 3
indeed measures how close is the matrix symmetric. Lastly, Proposition 5 provides the minimum
variance estimator of the formula. With these propositions, we conclude that the constraint of

Eε1,ε2
[(
εT2
(
∇sθ(zt, t)− (∇sθ)T (zt, t)

)
ε1

)2
]

= 0 (17)

with ε1 and ε2 sampled from the random variable suggested in Proposition 5 would optimize sθ
in the space of Sdiv. Using the Lagrangian form, we could add the left-hand-side of Eq. (17) as a
regularization term in NELBO to force the score network not deviate from Sdiv too much.

With the clear mathematical properties, however, obtaining the full matrix of∇sθ is a bottleneck in the
computation of the regularization term. Specifically, each row of∇sθ needs to be computed separately
[42], so it takes O(d) complexity to compute∇sθ, which is prohibitively expensive. Therefore, we
use a trick to reduce O(d) to O(1) motivated from the Hutchinson’s estimator [43, 23]: first, we
compute the gradient of εT2 sθ and εT1 sθ, separately. Afterwards, we apply vector multiplication
between ε1 and∇(εT2 sθ), which gives us εT2∇sθε1; and analogously, the multiplication of ε2 with
∇(εT1 sθ) yields εT2 (∇sθ)T ε1. This trick requires only second time of gradient computations to
estimate the regularization. Hence, the computational complexity of εT2 (∇sθ −∇sTθ )ε1 is O(1).
Proposition 2. sθ ∈ Sdiv if and only if∇ztsθ(zt, t) is symmetric.

Proposition 3. A matrix A ∈ Rd×d is symmetric if and only if Eε1,ε2∼N (0,I)

[
(εT2 (A−AT )ε1)2

]
=

0.

In fact, we can prove a bit stronger results in the next propositions.
Proposition 4. Let ε1 and ε2 be vectors of d independent samples from a random variable U with
mean zero. Then

Eε1,ε2 [(εT2 (A−AT )ε1)2] = EU [U2]2‖A−AT ‖2F
and

Var
((
εT2 (A−AT )ε1

)2)
= Var(U2)

(
Var(U2) + 2

(
Var(U) + EU [U ]2

)2)∑
a,b

(∆A)4
ab

+ 2
(
Var(U) + EU [U ]2

)2(
3Var(U2) + 2

(
Var(U) + EU [U ]2

)2)∑
a

∑
b 6=d

(∆A)2
ab(∆A)2

ad

+ 2
(
Var(U) + EU [U ]2

)4(∑
a 6=c

∑
b6=d

(∆A)2
ab(∆A)2

cd

+ 3
∑
a 6=c

∑
b6=d

(∆A)ab(∆A)ad(∆A)cb(∆A)cd

)
,

where (∆A)ab := Aab −Aba.
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Proposition 5. Let U be the discrete random variable which takes the values 1,−1 each with
probability 1/2. Then (εT2 (A − AT )ε1)2 is the unbiased estimator of ‖A − AT ‖2F . Moreover, U
is the unique random variable amongst zero-mean random variables for which the estimator is an
unbiased estimator, and attains a minimum variance.

Summing altogether, if it is the main focus to eliminate the rotation term in the score estimation, we
could optimizeDKL(µφ‖νφ,θ)+λEε1,ε2

[
(εT2 (∇sθ −∇sTθ )εT1 )2

]
, where ε1 and ε2 are the random

variables of minimum variance, as proposed in Proposition 5. In practice, we find that the above
regularized training loss is unnecessary for INDM because we already achieves the nearly MLE
training, but it helps DDPM++ to reduce the variational gap at the expense of 4× slower training
speed than the training with unregularized loss in DDPM++. Even with reduced variational gap,
we find that NLL of DDPM++ is improved only marginally only on certain training scenarios, and
has no effect in most trials, so we leave the detailed effect of MLE training in diffusion models as a
future work. Notably, therefore, we conclude that the NLL gain in INDM, compared to DDPM++,
essentially originates from φ-training and its consequential expanded solution space to Ssol.

C Details on Section 6.2

C.1 Full Statement of Theorem 4

We provide a full statement of Theorem 4. Theorem 4 is heavily influenced by the theoretic analysis
of De Bortoli et al. [15], Guth et al. [22], and it could be considered as merely an application of
their results. It is possible that the inequality in Theorem 4 could not be tight, but empirically the
robustness is significantly connected to the initial distribution’s smoothness.

Theorem 4. Assume that there exists M ≥ 0 such that for any t ∈ [0, T ] and z ∈ Rd, the score
estimation is close enough to the forward score by M , ‖sθ(x, t)−∇ log pφt (x)‖ ≤ M , with sθ ∈
C([0, T ]×Rd,Rd). Assume that∇ log pφt (z) isC2 in both t and z, and that supz,t ‖∇2 log pφt (z)‖ ≤
K and ‖ ∂∂t∇ log pφt (z)‖ ≤ Me−αt‖z‖ for some K,M,α > 0. Suppose (h−1

φ )# s a push-
forward map. Then ‖pr − (h−1

φ )#p
θ
0,N‖TV ≤ Epri(φ) +Edis(φ) +Eest(φ,θ), where Epri(φ) =√

2e−TDKL(pφT ‖π)1/2 is the error originating from the prior mismatch; Edis(φ) = 6
√
δ(1 +

Epφ0 (z)[‖z‖
4]1/4)(1 +K +M(1 + 1√

2α
)) is the discretization error with δ = max γk

2

min γk
; Eest(φ,θ) =

2TM2 is the score estimation error.

C.2 Geometric Interpretation of Latent Diffusion

Starting Location
Ending Location

Data Trajectory

Figure 11: Particle trajectories of the probability
flow ODE for VPSDE on the synthetic two moons
2d dataset.

Figure 11 illustrates the diffusion trajectories of
the probability flow ODE of VPSDE. It shows
that the trajectories are highly nonlinear, and this
section is devoted to analyze why such nonlinear
trajectory occurs. Figure 12 shows two diffusion
paths differing only on their scales on (a) the
two moons dataset and (b) the ring dataset. The
standard Gaussian distribution at T has a larger
variance than the initial data at the top row and
has a smaller one at the bottom row on each
dataset. For the visualization purpose, we zoom
in the top row, and we zoom out the bottom row
for each dataset, but we fix the xlim and ylim
arguments in the matplotlib package [44] row-
wisely. With this discrepancy of the initial data
scale, the particle trajectory at the bottom row is much more straightforward than in the top row, and
it implies that the scale of initial data matters to the straightness of the bridge even if the diffusion
SDE is identically linear.

A behind rationale for this observation comes from the closed-form solution of VPSDE. Suppose the
forward diffusion follows VPSDE of dxt = − 1

2β(t)xt dt+
√
β(t) dwt. Then, the solution of this
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(a) Two Moons Dataset

(b) Ring Dataset

Figure 12: Comparison of linear diffusion bridges on data and latent spaces in diverse datasets.

Table 7: Statistics of data variable and latent variable on CIFAR-10. All statistics are averaged by
dimension.

Mean Variance Min Max

DDPM++ (x0 = z
φid
0 ) -0.05 0.25 -1 1

INDM (zφ0 ) 0.70 9.74 -8.66 12.17

SDE becomes

xt = e−
1
2

∫ t
0
β(s) dsx0︸ ︷︷ ︸

linearly contraction mapping

+

√
1− e−

∫ t
0
β(s) dsε︸ ︷︷ ︸

random perturbation

, (18)

(DDPM) Starting Location
(DDPM) Location After Drift
(DDPM) Location After Diffusion

(INDM) Starting Location
(INDM) Location After Drift
(INDM) Location After Diffusion

Latent 𝑧𝑧0
𝜙𝜙

Manifold

Prior 
𝒩𝒩(0, 𝐼𝐼)
Manifold

Data 𝑥𝑥0
Manifold

Diffusion 
Bridge

Diffusion 
Bridge

Figure 13: Descriptive Illustration On Diffusion Bridge.

where ε ∼ N (0, I). As the drift
term − 1

2β(t)xt ahead towards the ori-
gin of Rd, the solution in Eq. (18)
is a summation of the contraction
mapping to the origin, 0 ∈ Rd,
with a random noise function, where
the magnitude of the random pertur-
bation depends solely on the diffu-
sion coefficient, g(t) =

√
β(t). If

x0 is inflated by cx0, then it be-
comes xt = c × e−

1
2

∫ t
0
β(s) dsx0 +√

1− e−
∫ t
0
β(s) dsε with contraction

mapping multiplied by c. Therefore,
as c increases, the contraction force
outweighs the random perturbing ef-
fect, and the particle trajectory is be-
coming straight.

On a high-dimensional dataset, most
of the mass of the standard Gaussian
π = N (0, I), which is the prior, is
concentrated on a thin spherical shell
with squared radius of d, according to
the Gaussian annulus theorem [45], as
described in the black circle of Figure 13. On CIFAR-10, the data distribution has the smaller average
square radius of Epr(x0)

[
‖x0‖22

]
= 776 < 3072 = d, whereas the latent distribution has a larger
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average square radius of Epr(x0)

[
‖hφ(x0)‖22

]
= Epφ0 (zφ

0 )

[
‖zφ0 ‖22

]
> d than a standard Gaussian

distribution. The latent radius varies from 5, 385 to 31, 399 by experimental settings. Thus, the latent
manifold is located outside of the prior on CIFAR-10 as depicted in Figure 13.

When the latent manifold envelops the prior manifold, i.e., ‖zφ0 ‖2 > ‖z
φ
T ‖2, the drift term,− 1

2β(t)zφt ,
and the vector of zφT − zφ0 aligns towards the origin. On the other hand, if the initial manifold is
located inside the prior manifold, i.e., ‖x0‖2 < ‖xT ‖2, then the drift term points towards the opposite
direction of xT − x0. This leads that the contraction mapping disturbs the particle to move towards
xT , and it is the random perturbation that leads the particle to converge to xT . In latent trajectory, the
contraction mapping driven by the drift term helps the particle moving towards zφT . Therefore, the
particle trajectory is more straightforward in the latent trajectory, which moves outside of the prior
manifold, compared to the data trajectory that lives inside of the prior manifold. This clarifies why
the sampling-friendly bridge is constructed in INDM.

Data
Latent

(a) Data and Latent Manifolds
At Initial Stage of Training

Data
Latent

(b) Data and Latent Manifolds
Afer Training of 10k Steps

Diffusion Trajectory
Optimal Transport Trajectory
Latent (Initial Point)
Optimal Monge Map
Final Point of ODE for VPSDE

(c) Diffusion and (optimal)
Monge Trajectories At Initial
Stage of Training

Diffusion Trajectory
Latent (Initial Point)
Optimal Monge Map
Final Point of ODE for VPSDE

(d) Diffusion and (optimal)
Monge Trajectories After Train-
ing of 10k Steps

Figure 14: (a,b) Latent manifold by training iterations (c,d)
Diffusion trajectories by training iterations. We use Python
Optimal Transport (POT) library [46] to obtain the optimally
transported Monge map between 1,000 samples from the
latent starting variable and the latent ending variable. We
only visualize 10 samples out of 1,000 transport maps for a
clear implication. In (c), we train the score network further
until converged (with the fixed flow) to visualize accurate
diffusion paths.

Figure 14 presents the 2d toy case of
the two moons dataset. It illustrates a
simple visualization of the flow train-
ing. Figure 14 shows that even though
the latent manifold is located near the
data manifold at the initial phase of
training in Figure 14-(a), after the
training, the latent manifold is inflated
to the outside of the real data in Fig-
ure 14-(b). Therefore, the probability
flow ODE (deterministic trajectory),
after the training, transports the initial
mass to the final mass with a nearly
linear line in Figure 14-(d), in con-
trast to the curvy VPSDE trajectory
at the initial phase of training in Fig-
ure 14-(c). In this example, the flow
training puts the latent manifold out
of the data manifold, and this helps
the robust sampling.

In addition, Figure 14 illustrates the
Monge trajectories between the latent
initial distribution and the prior distri-
bution. As theoretically demonstrated
in Gaussian and empirically shown in
general distribution in Khrulkov and
Oseledets [47], the encoder map of
VPSDE is nearly optimal transport un-
der the squared Euclidean cost func-
tion, where the encoder map is the
mapping from the initial point to the
final point passed through the proba-
bility flow ODE. Figure 14 supports this, and the diffusion trajectory becomes more straight alike to
the optimal Monge map after the training.

INDM
DDPM++

Figure 15: Illustrative Particle Trajectory.

Figure 15 illustrates the concept of
linearized diffusion path. As the flow
inflates the latent manifold, the diffu-
sion trajectory becomes more linear,
and Figure 7 supports the conceptual
illustration of Figure 15 on CIFAR-
10.
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D Related Work

D.1 Latent Score-based
Generative Model (LSGM)

The diffusion process on latent space is firstly introduced in LSGM. LSGM transforms the data
variable to a latent variable, and estimates the prior distribution with a diffusion model. Suppose θ,
φ, and ψ represent for the parameters for the score network, the encoder network, and the decoder
network, respectively. Then, LSGM optimizes the loss of

DKL(pr‖pθ,ψ) ≤ DKL

(
pr(x0)qφ(z0|x0)‖pθ(z0)pψ(x0|z0)

)
= DKL

(
pr(x0)qφ(z0|x0)‖qφ(z0)pψ(x0|z0)

)
+DKL

(
qφ(z0)‖pθ(z0)

)
≤ DKL

(
pr(x0)qφ(z0|x0)‖qφ(z0)pψ(x0|z0)

)
+DKL

(
µφ({zt}Tt=0)‖νθ({zt}Tt=0)

)
= LLSGM (θ,φ,ψ)

where qφ(z0) is the marginal distribution of the encoder posterior, qφ(z0) =
∫
pr(x0)qφ(z0|x0) dx0.

As well as INDM, LSGM also optimizes the log-likelihood of the model distribution by using a
diffusion model in the latent space. Though both INDM and LSGM losses include a denoising score
loss on the latent space (which is the KL divergence between path measures on the latent space),
LLSGM (θ,φ,ψ) is not equivalent to the KL divergence between the forward and generative path
measures on the data space, in contrast to INDM with DKL(µφ({xt}Tt=0‖νφ,θ({xt}Tt=0) as its loss
function. In fact, there is no forward SDE (green path in Figure 3) on the data space in LSGM
according to Lemma 3, which is a direct application of the Borsuk-Ulam theorem [48].
Lemma 3 (Rn is not homeomorphic to Rm [48]). If n 6= m, there is no continuous map E : Rn →
Rm that has the continuous inverse map E−1 : Rm → Rn.

Lemma 3 implies that there is no inverse function of the encoder as long as the latent dimension is
different from the data dimension (and the activation function is continuous, such as ReLU). From
this, LSGM cannot define a random variable on the data space by xφt = E−1

φ (zt), in contrast to
INDM that defines xφt = h−1

φ (zt). This non-existence of random variables on the data space implies
that the forward diffusion process does not exists as long as the latent dimension differs to the data
dimension.

With the above theoretic dilemma of LSGM, one could build a generative diffusion process on the
data space. If xψ,θt := Dψ(zθt ), where zθt is a generative random variable on the latent space, and
Dψ is a decoder map, then we could build a generative diffusion process on the data space through
the Ito’s formula in the same way as we did in INDM. Inspired by this, one could argue that the
forward diffusion could be constructed by xψt := Dψ(zt), where zt is a forward random variable
on the latent space. This construction enables to construct a forward diffusion process on the latent
space, but there are a couple of caveats to this construction.

Table 8: LSGM training fails when using
the variance weighting function.

NLL NELBO FID

LSGM (VP, FID) NaN NaN NaN
INDM (VP, FID) 3.23 3.17 2.90

Theoretically, this forward diffusion process starts
from the reconstructed variable, xψ0 = Dψ(z0) =
Dψ(Eφ(x0)) = xrec, where x0 and xrec differs through-
out the training procedure. In addition, even if we admit
{xψt } as a forward diffusion, LLSGM (θ,φ,ψ) cannot be
derived as the KL divergence of path measures for the
forward diffusion (admittably {xψt }, but not true to be
precise) and the generative diffusion (xψ,θt ) on the data space. Instead, the loss contains the encoder
parameters to optimize, and the loss diverges from the KL divergence on the data space. Also,
hypothetically, even if the loss is the KL divergence of the forward and generative path measures on
the data space, the optimization could be drifted away from the optimal point because the forward
diffusion starts from untrained reconstructed variable, xrec, which is not close to the data variable, x0.
This analysis provides a clue to explain the training instability of LSGM as reported in Vahdat et al.
[9] and Dockhorn et al. [20], in contrast to INDM that is stable to train in any training configuration.
Table 8 shows a fast comparison of LSGM and INDM with variance weighting function, sampled
from t ∈ U [0, 1]. NaN indicates experiments that fail due to training instability, see Section 5.2 and
Table 6 of Vahdat et al. [9] and Section E.2.7 of Dockhorn et al. [20].
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Table 9: Comparison of latent dimension of INDM and LSGM.

Datset Data Dimension Latent Dimension of INDM Latent Dimension of INDM

MNIST 784 784 2,560
CIFAR-10 3,072 3,072 46,080
CelebA-HQ 256 196,608 196,608 819,200

Moreover, Table 9 compares INDM with LSGM in terms of the latent dimension. We compute
the latent dimension of LSGM, according to their paper and released checkpoint. Contrary to the
dimensional reduction property which is the crux of the auto-encoding structure, LSGM maps data
into a latent space of a much higher dimension than the data dimension. LSGM is known to perform
well, but having observed 15x higher latent dimension than the data dimension on CIFAR-10, the
good performance was not gained for free. On the other hand, INDM always retains the same
dimension to the data, while keeping the invertibility.

D.2 Diffusion Normalizing Flow (DiffFlow)

The Girsanov theorem [35] proves that the variational bound is derived by

DKL(pr‖pθ) ≤ 1

2

∫ T

0

g2(t)Epr(x0)Ep0t(xt|x0)

[
‖sθ(xt, t)−∇xt log p0t(xt|x0)‖22

]
dt+DKL(pT ‖π).

(19)

When the forward diffusion is given as dxt = fφ(xt, t) dt + g(t) dwt, where fφ is an explicit
parametrization of the drift term by a normalizing flow with parameters φ, then the transition
probability, p0t(xt|x0), becomes intractable. Therefore, optimizing the continuous variational bound
is not feasible. One might detour this issue by alternatively optimizing the continuous DDPM++ loss
of ∫ T

0

λ̃(t)Epr(x0)Eε∼N (0,I)

[
‖ε− ε̂θ(xt, t)‖22

]
dt, (20)

but the denoising score loss of Eq. (19) is not equivalent to the continuous DDPM++ loss of Eq. (20)
when the transition probability is no longer a Gaussian distribution.

DiffFlow detours the intractability issue of the continuous loss of Eq. (19) by discretizing the
nonlinear SDE in the Euler-Maruyama (EM) fashion [49]. We construct the discrete random variables
that approximate the nonlinear SDE by the induction. If xφ,EM

t0 := xφ0 and ∆ti := ti − ti−1, where
{ti}Nt=0 are discretization timesteps with t0 = 0 and tN = T , then the solution of the nonlinear SDE
that starts from xφ,EM

ti−1
is

xφti − xφ,EM
ti−1

=

∫ ti

ti−1

fφ(xφt , t) dt+

∫ ti

ti−1

g(t) dwt. (21)

Here, the integral of the drift term is∫ ti

ti−1

fφ(xφt , t) dt =

∫ ti

ti−1

fφ
(
xφ,EM
ti−1

+ (xφt − xφ,EM
ti−1

), ti−1 + (t− ti−1)
)

dt

=

∫ ti

ti−1

fφ(xφ,EM
ti−1

, ti−1) dt+O(∆t
3/2
i )

=fφ(xφ,EM
ti−1

, ti−1)∆ti +O(∆t
3/2
i ),

and the integral of the volatility term is∫ ti

ti−1

g(t) dwt = g(ti−1)(wti −wti−1
) +O(∆t

3/2
i ) = g(ti−1)ε

√
∆ti +O(∆t

3/2
i ),

where ε ∼ N (0, I). Therefore, DiffFlow defines the next discretized random variable, xφ,EM
ti , to be

xφti =xφ,EM
ti−1

+ fφ(xφ,EM
ti−1

, ti−1)∆ti + g(ti−1)ε
√

∆ti +O(∆t
2/3
i )
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≈xφ,EM
ti−1

+ fφ(xφ,EM
ti−1

, ti−1)∆ti + g(ti−1)ε
√

∆ti

=xφ,EM
ti ,

and this Euler-Maruyama random variable xφ,EM
ti follows a Gaussian distribution of mean xφ,EM

ti−1
+

fφ(xφ,EM
ti−1

, ti−1)∆ti and variance g2(ti−1)∆ti. Note that this discretization approximates the nonlin-
ear SDE with a finite Markov chain of {xEM

ti }
N
i=0.

DiffFlow constructs the generative process as

xθti−1
= xθti −

[
fφ(xφti , ti)− g

2(ti)sθ(xφti , ti)
]
∆ti + g(ti)ε

√
∆ti.

Then, from the Jensen’s inequality, the discrete DDPM loss satisfies

DKL(pr‖pφ,θ) ≤
N−1∑
i=1

Epr(xEM
t0

)Epφ(xEM
ti
,xEM
ti−1
|xEM
t0

)

[
DKL(pφ(xEM

ti−1
|xEM
ti ,x

EM
t0 )‖pθ(xEM

ti−1
|xEM
ti ))

]
.

(22)

While the true inference distribution on the continuous variables, pφ(xti−1
|xti ,xt0), is not a Gaussian

distribution due to terms related to O(∆t
3/2
i ), the inference distribution on the discretized variables,

pφ(xEM
ti−1
|xEM
ti ,x

EM
t0 ), becomes a Gaussian distribution by the Euler-Maruyama-style discretization.

Therefore, Eq. (22) reduces to a tractable loss that does not need to compute the transition probability:

DKL(pr‖pφ,θ) ≤
N−1∑
i=1

Epr(xEM
t0

)Epφ(xEM
ti
,xEM
ti−1
|xEM
t0

)

[
DKL(pφ(xEM

ti−1
|xEM
ti ,x

EM
t0 )‖pθ(xEM

ti−1
|xEM
ti ))

]
=

1

2

N−1∑
i=1

Epr(xEM
t0

)Epφ(xEM
ti
,xEM
ti−1
|xEM
t0

)

[
1

g2(ti)∆ti

∥∥∥xEM
ti−1
− xEM

ti

+
[
fφ(xEM

ti , ti)− g
2(ti)sθ(xEM

ti , ti)
]
∆ti

∥∥∥2

2

]
= LDiffFlow(φ,θ)

(23)

While Eq. (23) does not need to compute the transition probability, another issue of optimizing the
variational bound originates from the expectation of Epφ(xEM

ti
,xEM
ti−1
|xEMt0 ). The empirical Monte-Carlo

estimation is too expensive because a realization of xEM
ti needs i number of flow evaluations. In total,

summing i over i = 1 to N requires O(N2) flow evaluations to estimate the discrete variational
bound of Eq. (23). Therefore, DiffFlow exchanges the summation and the expectation to reduce the
number of flow evaluations by

LDiffFlow(φ,θ) =
1

2
E{xti}N−1

i=0 ∼pφ(xt0 ,...,xtN−1
)

[N−1∑
i=1

1

g2(ti)∆ti

∥∥∥xti−1
− xti

+
[
fφ(xti , ti)− g2(ti)sθ(xti , ti)

]
∆ti

∥∥∥2

2

]
.

(24)

This reformulated Eq. (24) estimates LDiffFlow with a single sample path from the Markov chain of
{xEM

ti }
N
t=1, so it requires O(N) flow evaluations to estimate LDiffFlow(φ,θ). Therefore, DiffFlow

takes O(N) computational complexity in total for every optimization step.

There are five differences between DiffFlow and INDM. Basically, these differences arise from the
different usage of the flow transformation between DiffFlow and INDM. First, INDM enables to
train the continuous diffusion model without the sacrifice on training time, while DiffFlow is limited
on the discrete diffusion model at the expense of slower training time. DiffFlow approximates the
forward nonlinear SDE with a finite Markov chain. Suppose xEM

t to be the continuous-time random
variable defined by xEM

t = xEM
ti−1

+ fφ(xEM
ti−1

, ti−1)(t− ti−1) + g(ti−1)ε
√
t− ti−1 on time range of

t ∈ [ti−1, ti), then we have

E
[
‖xt − xEM

t ‖2
]
≤ C

√
∆ti, (25)
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where C = C(T,K,E[‖x0‖22]) ≥ O(K2) is a constant with K being a Lipschits constant of

‖fφ(x, t)− fφ(y, t)‖2 ≤ K‖x− y‖2
and

‖fφ(x, t)‖2 + |g(t)| ≤ K(1 + ‖x‖2)

for all x,y ∈ Rd and t ∈ [ti−1, ti). Having that ∆ti is fixed a-priori, the upper bound in Inequality
(25) could be arbitrarily large becuase it depends on K that represents the magnitude of nonlinearity
of fφ. For instance, if fφ(xt, t) = x2

t , then there does not exist any K > 0 that satisfies above
Lipschitz bounds. In such case, it is unable to guarantee the tightness of the discretized Markov chain
to the continuous nonlinear SDE in the classical sense. Therefore, the Euler-Maruyama approximation
of the nonlinear SDE should take N as many as possible if we want to regard the finite Markov
chain as a discretized nonlinear SDE, which would eventually increase the training, evaluation, and
sampling time.

Second, the computational complexity of INDM is O(1) because the flow is evaluated only once at
every optimization step. This is because the INDM loss is simply an addition of the flow loss and the
linear diffusion loss. The training time of DiffFlow will be prohibitive as N increases.

Third, our INDM jointly models both drift and volatility terms nonlinearly, whereas DiffFlow
nonlinearly models only the drift term. As illustrated in Figure 1 and 2-(c) in the main paper,
nonlinearizing the volatility term brings a different diffusion to the overall process, compared to a
diffusion that arises from a nonlinear drift. In particular, Figure 2-(c) depicts that the data-dependent
volatility term yields an ellipsoidal covariance in the noise distribution, which was assumed to have a
fixed diagonal covariance in previous research, as illustrated in Figure 6. In INDM, this covariance
becomes the subject of matter to optimize.

DiffFlow, as its current form, cannot impose nonlinearity to the volatility term because the dis-
cretized Markov chain is not a Gaussian distribution, anymore. To clarify, suppose a SDE of
dxt = fφ(xt, t) dt + Gφ(xt, t) dwt (think of the green path of Figure 3 in the main paper) starts
from a random variable xEM

ti−1
. The next discrete random variable of the Euler-Maruyama discretiza-

tion is the approximate solution of this SDE at t = ti, so let us approximate the right-hand-side of Eq.
(26):

xti − xEM
ti−1

=

∫ ti

ti−1

fφ(xt, t) dt+

∫ ti

ti−1

Gφ(xt, t) dwt. (26)

The integral of the volatility term is∫ ti

ti−1

Gφ(xt, t) dwt =

∫ ti

ti−1

Gφ

(
xEM
ti−1

+ (xt − xEM
ti−1

), ti−1 + (t− ti−1)
)

dwt

and since xt − xEM
ti−1

= Gφ(xEM
ti−1

, ti−1)(wt −wti−1
) +O(∆ti), we get∫ ti

ti−1

Gφ(xt, t) dwt

= Gφ(xEM
ti−1

, ti−1)(wti −wti−1)

+Gφ(xEM
ti−1

, ti−1)
∂Gφ(xt, t)

∂xt
|xEM
ti−1

∫ ti

ti−1

wt −wti−1
dwt +O(∆t2i )

= Gφ(xEM
ti−1

, ti−1)(wti −wti−1
)

+Gφ(xEM
ti−1

, ti−1)∇xEM
ti−1

Gφ(xEM
ti−1

, ti−1)
1

2

(
(wti −wti−1)2 −∆ti

)
+O(∆t2i )

= Gφ(xEM
ti−1

, ti−1)ε
√

∆ti

+
1

2
Gφ(xEM

ti−1
, ti−1)∇xEM

ti−1
Gφ(xEM

ti−1
, ti−1)

(
ε2 − 1

)
∆ti +O(∆t2i ),

where ε ∼ N (0, I) and
∫ ti
ti−1

wt − wti−1
dwt =

∫ ti
ti−1

wt dwt − wti−1
(wti − wti−1

) =∫ ti
ti−1

1
2 d(w2

t )−
∫ ti
ti−1

1
2 dt−wti−1

(wti−wti−1
) = 1

2 (w2
ti−w2

ti−1
−∆ti)−wti−1

(wti−wti−1
) =
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1
2

(
(wti −wti−1)2 −∆ti

)
is according to the Ito’s formula [17]. As Gφ(xt, t) now depends on xt,

the term including (ε2 − 1) does not vanish. Therefore, xEM
ti is approximated by

xti =xEM
ti−1

+ fφ(xEM
ti−1

, ti−1)∆ti + Gφ(xEM
ti−1

, ti−1)ε
√

∆ti

+
1

2
Gφ(xEM

ti−1
, ti−1)∇xEM

ti−1
Gφ(xEM

ti−1
, ti−1)

(
ε2 − 1

)
∆ti +O(∆t

3/2
i )

≈xEM
ti−1

+ fφ(xEM
ti−1

, ti−1)∆ti + G(xEM
ti−1

, ti−1)ε
√

∆ti

+
1

2
Gφ(xEM

ti−1
, ti−1)∇xEM

ti−1
Gφ(xEM

ti−1
, ti−1)

(
ε2 − 1

)
∆ti

:=xEM
ti .

(27)

The order of the term 1
2Gφ(xEM

ti−1
, ti−1)∇xEM

ti−1
Gφ(xEM

ti−1
, ti−1)

(
ε2− 1

)
∆ti is O(∆ti), which is the

same order of the term fφ(xEM
ti−1

, ti−1)∆ti. Thus, this last term including ε2 cannot be ignored in the
approximation.

With this approximation, the discretized random variable, xEM
ti , includes a term of ε2, which is the

square of the Brownian motion that does not follow a Gaussian distribution. Therefore, the variational
bound of Eq. (22) is no longer reduced to a tractable loss, such as Eq. (23), and as a consequence,
Eq. (22) is not optimizable even though the nonlinear SDE is discretized. Therefore, we have to
ignore the last term, 1

2Gφ∇Gφ(ε2 − 1)∆ti, to tractably optimize the variational bound, but such
ingorance equals to the approximation of DiffFlow, which would incur a large approximation error if
Gφ nonlinearly depends on xt. This leads DiffFlow limited on Gφ(xt, t) = gφ(t), at its maximal
capacity. This is contrastive to the result of INDM illustrated in Figure 6.

Fourth, as the generative process of DiffFlow starts from an easy-to-sample prior distribution, the
flexibility of fφ is severely restricted to constrain pφT (xφT ) ≈ π(xφT ). The feasible space of nonlinear
fφ that satisfies this constraint does not seem to be derived explicitly. Contrastive to DiffFlow, the
data diffusion does not have to end at π in INDM. Instead, INDM assumes the linear diffusion on the
latent variable, so the ending variable on the latent space, zφT , is already close to the prior distribution.
Therefore, the space of admissible nonlinear drift in INDM, which is explicitly desribed in Eq. (10),
should be larger than the space of DiffFlow. A lesson from this is that the explicit parametrization
seems to be intuitive, but underneath the surface, not many properties could be uncovered explicitly,
whereas the implicit parametrization using the invertible transformation enjoys its explicit derivations
that enable to analyze concrete properties.

Fifth, DiffFlow estimates its loss of Eq. (24) using a single (or multiple) path to update the parameters
with the reparametrization trick [50]. On the other hand, the discretized diffusion model estimates its
loss with Eq. (23), where the sampling from p0t(xt|x0) is inexpensive because the transition probabil-
ity is a Gaussian distribution. Therefore, the losses of Eqs. (24) and (23) coincide in the expectation
sense, but they are estimated differently between DiffFlow and diffusion models with analytic tran-
sition probabilities. Taking 1

g2(ti)∆ti

∥∥xEM
ti−1
− xEM

ti +
[
fφ(xEM

ti , ti)− g
2(ti)sθ(xEM

ti , ti)
]
∆ti
∥∥2

2
as a

random variableXi, Eq. (23) is reduced to 1
2

∑
E[Xi], and Eq. (24) is reduced to 1

2Esample-path[
∑
Xi].

Therefore, the variance of the Monte-Carlo estimation of Eq. (23) becomes 1
2

∑
Var(Xi), whereas

the variance of the Monte-Carlo estimation of Eq. (24) becomes

1

2
Var
(∑

Xi

)
=

1

2

[∑
Var(Xi) + 2

∑
Cov(Xi, Xj)

]
,

where Cov(Xi, Xj) represents the covariance of two random variablesXi andXj . Table 10 represents
the ratio of these two variances,

Ratio :=
Var(

∑
Xi)∑

Var(Xi)
=

∑
Var(Xi) + 2

∑
Cov(Xi, Xj)∑

Var(Xi)
= 1 + 2

∑
Cov(Xi, Xj)∑

Var(Xi)
,

and it shows that the DiffFlow loss has prohibitively large variance as N increases, compared to the
INDM loss, which computes its Monte-Carlo estimation in spirit of Eq. (23) with N =∞.

Note that throughout our argument, we have omitted the prior and reconstruction terms on the
variational bounds in this section.
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Table 10: The variance ratio between the variances of the analytic transition probability-based
estimation of Eq. (23) and the sample-based estimation of Eq. (24).

Number of Random Variables (N )

1 10 100 1000 10000

Estimation
Variance Ratio 1.00 1.02 2.08 16.68 76.08

D.3 Schrödinger Bridge Problem (SBP)

Schrödinger Bridge Problem (SBP) [14–16] has recently been highlighted in machine learning for
its connection to the score-based diffusion model. Schrödinger Bridge Problem is a bi-constrained
problem of

min
ρ∈P(pr,π)

DKL(ρ‖µ),

whereP(pr, π) is a family of path measure with bi-constraints of pr and π as its marginal distributions
at t = 0 and t = T , respectively, and µ is a reference path measure that is governed by

dxt = f(xt, t) dt+ g(t) dwt, x0 ∼ pr. (28)

As the KL divergence becomes infinite if the diffusion coefficient of ρ is not equal to g(t) (because
quadratic variations of µ and ρ becomes different), SBP is equivalently formulated as

min
ρ∈P(pr,π)

DKL(ρ‖µ) = min
ρv∈P(pr,π)

DKL(ρv‖µ),

where the path measure ρv ∈ P(pr, π) follows the SDE of

dxt =
[
f(xt, t) + g2(t)v(xt, t)

]
dt+ g(t)wt. (29)

From the Girsanov theorem and the Martingale property [51], we have

DKL(ρv‖µ) =
1

2

∫ T

0

g2(t)Eρv [‖v(xt, t)‖22] dt+DKL(π‖pT ),

where pT is the marginal distribution of µ at t = T . If V(pr, π) is the space of all vector fields v of
which forward SDE with Eq. (29) satisfies the boundary conditions, then SBP is equivalent to

min
ν∈P(pr,π)

DKL(ν‖µ) = min
v∈V(pr,π)

1

2

∫ T

0

g2(t)Eρv [‖v(xt, t)‖22] dt, (30)

where ρv is the associated path measure of Eq. (29). Eq. (30) interprets the solution of SBP as the
least energy (weighted by g2) of the auxiliary vector field (v) among admissible space of vector
fields (V(pr, π)). Hence, if µ ∈ P(pr, π), then the trivial vector field, v ≡ 0, is the solution of
SBP. When the reference SDE of Eq. (28) is one of the family of linear SDEs, such as VESDE or
VPSDE, then µ /∈ P(pr, π), so the trivial vector field is not the solution of SBP, anymore. Instead,
µ’s ending variable is close enough to π (e.g., DKL(pT ‖π) ≈ 10−5 in bpd scale [8]), so the closest
path measure in V(pr, π) to µ is nearly identical to a trivial vector field, v∗ ≈ 0, and the nonlinearity
of SBP is limited.

Chen et al. [16] connects the optimal solution of SBP with PDEs. At the optimal point, if we denote by
ρ∗ = arg minρ∈P(pr,π)DKL(ρ‖µ), then this optimal diffusion process follows a forward diffusion
SDE [16] of

dxt =
[
f(xt, t) + g2(t)∇xt log Ψ(xt, t)

]
dt+ g(t) dwt, x0 ∼ pr,

with the corresponding reverse diffusion as

dxt =
[
f(xt, t)− g2(t)∇xt log Ψ̂(xt, t)

]
dt̄+ g(t) dw̄t, xT ∼ π,

where Ψ(xt, t) and Ψ̂(xt, t) are the solutions of a system of PDEs [21]:

∂Ψ

∂t
=−∇xtΨ

T f − 1

2
tr(g2∇2

xtΨ)

∂Ψ̂

∂t
=− div(Ψ̂f) +

1

2
tr(g2∇2

xtΨ̂),

(31)
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such that Ψ(x0, 0)Ψ̂(x0, 0) = pr(x0) and Ψ(xT , T )Ψ̂(xT , T ) = π(xT ). With Ψ and Ψ̂, the forward
diffusion SDE ends exactly at π, and the corresponding reverse SDE ends at pr. Therefore, SBP is
equivalent to solve the system of PDEs given by Eq. (31).

Chen et al. [16] solves the system of coupled PDEs with Eq. (31) using a theory of forward-backward
SDEs, which requires a deep understanding of PDE theory. SB-FBSDE [16] uses the fact that the
solution (Ψ, Ψ̂) of Hopf-Cole transform in Eq. (31) is derived from the solution of the forward-
backward SDEs of

dxt =
[
f(xt, t) + g(t)zt(xt, t)

]
dt+ g(t) dwt

dyt = 1
2 (zTt zt)(xt, t) dt+ zTt (xt, t) dwt

dŷt =
[

1
2 (ẑTt ẑt)(xt, t) + div

(
g(t)ẑt(xt, t)− f(xt, t)

)
+ (ẑTt zt)(xt, t)

]
dt+ ẑTt (xt, t) dwt,

(32)

where the boundary conditions are given by x(0) = x0 and yT + ŷT = log π(xT ). The solution of
the above system of forward-backward SDEs satisfies zt(xt, t) = g(t)∇ log Ψ(xt, t) and ẑt(xt, t) =

g(t)∇ log Ψ̂(xt, t), where (Ψ, Ψ̂) is the solution of Eq. (31). SB-FBSDE parametrizes (zt, ẑt) as
θ and φ, and it estimates the solution (zt, ẑt) of Eq. (32) from MLE training of the log-likelihood
log pφ,θ(x0).

Other than the PDE-driven approach [16], SBP has been traditionally solved via Iterative Proportional
Fitting (IPF) [52]. Concretely, suppose

dxφt =
[
f(xφt , t) + g2(t)sφ(xφt , t)

]
dt+ g(t) dwt, xφ0 ∼ pr, (33)

is a forward diffusion with a parametrized vector field of sφ, and

dxθt =
[
f(xθt , t)− g2(t)sθ(xθt , t)

]
dt̄+ g2(t)w̄t, xθT ∼ π,

is a generative diffusion with a parametrized vector field of sθ . Then, IPF get its optimal vector fields
by alternatively solving below half-bridge problems

νφn = arg min
νφ∈P(pr,·)

DKL(νφ‖νθn−1
), (34)

νθn = arg min
νθ∈P(·,π)

DKL(νθ‖νφn), (35)

where the convergence of νφn → νφ∗ and µθn → νθ∗ is guaranteed in De Bortoli et al. [15]. Here,
analogously, P(·, π) is a family of path measure with π as its marginal distribution at t = T . Notably,
each of the half-bridge problem is a diffusion problem with the KL divergence replaced with the
reverse KL divergence. Since SBP learns the forward SDE, sampling particle paths is expensive as it
requires to solve an SDE numerically, so the training of IPF is slow.

E Correction of Density Estimation Metrics of Diffusion Models with Time
Truncation

E.1 Equivalent Reverse SDEs

Throughout Section E, the diffusion process is assumed to follow a SDE of dxt = f(xt, t) dt +
g(t) dwt because the below argument is generally applicable for any continuous diffusion models.
For INDM, we apply the below argument on the latent space, which has a linear drift term. Let
dxt =

[
f(xt, t) − 1+λ2

2 g2(t)∇xt log pλt (xt)
]

dt̄ + λg(t)w̄t be the reverse SDEs starting from pT ,
where pλt is the probability law of the solution at t. Then, the reverse Kolmogorov equation (or
Fokker-Planck equation) becomes

∂pλt (xt, t)

∂t
=−

d∑
i=1

∂

∂xi

([
fi(xt, t)−

1 + λ2

2
g2(t)

(
∇xt log pλt (xt, t)

)
i

]
pλt (xt, t)

)

− λ2g2(t)

2

d∑
i=1

∂2

∂x2
i

[
pλt (xt, t)

]
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=−
d∑
i=1

∂

∂xi

(
fi(xt, t)p

λ
t (xt, t)−

1 + λ2

2
g2(t)

∂pλt (xt, t)

∂xi

)

− λ2g2(t)

2

d∑
i=1

∂2

∂x2
i

[
pλt (xt, t)

]
=−

d∑
i=1

∂

∂xi

[
fi(xt, t)p

λ
t (xt, t)

]
+

1

2
g2(t)

d∑
i=1

∂2

∂x2
i

[
pλt (xt, t)

]
,

which is independent of λ. Therefore, it satisfies pλt = pλ
′

t for any λ 6= λ′.

For any λ ∈ [0, 1], the generative SDE is constructed by plugging sθ(xt, t) in place of∇xt log pλt (xt)

in the reverse SDE as dxt =
[
f(xt, t) − 1+λ2

2 g2(t)sθ(xt, t)
]

dt̄ + λg(t)w̄t. Suppose we denote
pλ,θt as the marginal distribution of the model at t. Then, the generative SDEs with different λ have
distinctive marginal distributions: pλ,θt 6= pλ

′,θ
t for λ 6= λ′.

E.2 Log-Likelihood for Diffusion Models with Time Truncation

Due to the unbounded score loss illustrated in [27], a diffusion model truncates the diffusion time
to be [ε, 1] for small enough ε > 0. However, since the small range of diffusion time contributes
significant portion of the log-likelihood [27], the effect of truncation should be counted both on
training and evaluation. To describe, as we have no knowledge on the score estimation at t ∈ [0, ε),
we have estimate the data log-likelihood by using the variational inferecence:

log pλ,θ0 (x0) = log

∫
pλ,θ0 (x0,xε) dxε

≥
∫
p0ε(xε|x0) log

pλ,θε (xε)p
θ
ε0(x0|xε)

p0ε(xε|x0)
dxε

= Ep0ε(xε|x0)

[
log pλ,θε (xε)

]
+ Ep0ε(xε|x0)

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
,

where pλ,θε is the generative distribution perturbed by ε, and pθε0(x0|xε) is the reconstruction transition
probability given xε. Then, we have

Epr(x0)[− log pλ,θ0 (x0)] ≤ Exε

[
− log pλ,θε (xε)

]
− Ex0,xε

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
= DKL(pε‖pλ,θε )− Ex0,xε

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
+H(pε),

which is equivalent to

DKL(pr‖pλ,θ0 ) ≤ DKL(pε‖pλ,θε )− Ex0,xε

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
+H(pε)−H(pr)

= DKL(pε‖pλ,θε ) +DKL

(
pr(x0)p0ε(xε|x0)‖pε(xε)pθε0(x0|xε)

)
.

E.3 NELBO Correction

Supposeµε is the path measure of dxt = f(xt, t) dt+g(t) dwt on [ε, T ], and νλθ,ε is the path measure

of dxt =
[
f(xt, t) − 1+λ2

2 g2(t)∇xt log pλt (xt)
]

dt̄ + λg(t)w̄t on [ε, T ]. Then, the continuous
variational bound on the truncated diffusion model becomes

Epr(x0)

[
− log pλ,θ0 (x0)

]
≤ DKL(pε‖pλ,θε )− Ex0,xε

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
+H(pε)

≤ DKL(µε‖νλθ,ε)− Ex0,xε

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
+H(pε)

=
1

2

(1 + λ2)2

4λ2

∫ T

ε

g2(t)Ext

[
‖sθ(xt, t)− log pt(xt)‖22

]
dt− ExT

[
log π(xT )

]
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−Ex0,xε

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
+H(pε)−H(pT )

=
1

2

∫ T

ε

Ex0,xt

[
(1 + λ2)2

4λ2
g2(t)‖ log p0t(xt|x0)− sθ(xt, t)‖22 − g2(t)‖∇xt log p0t(xt|x0)‖22

−2∇xt · f(xt, t)

]
dt− ExT

[
log π(xT )

]
− Ex0,xε

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
,

whereH(pε)−H(pT ) is derived to be − 1
2

∫ T
ε
E
[
g2‖∇ log p0t‖22 + 2∇ · f

]
dt by Theorem 4 of Song

et al. [11]. The residual term, Epr(x0)p0ε(xε|x0)

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
, has been ignored both on training

and evaluation in previous research. Therefore, we report the correct NELBO (denoted by w/ residual
in the main paper) by counting the residual term Epr(x0)p0ε(xε|x0)

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
into account. Note

that (1+λ2)2

4λ2 is minimized when λ = 1, so our reported NELBO is based on the generative SDE at
λ = 1.

E.4 NLL Correction

NLL of the generative SDE can be computed through the Feynman-Kac formula [12] by

pλθ,ε(xε) = E{xt}t>ε|xε

[
π(xT ) exp

(
−
∫ T

ε

tr
(
∇xt

[
f(xt, t)−

1 + λ2

2
g2(t)sθ(xt, t)

])
dt

)]
.

(36)

However, the expectation is intractable because there are infinitely-many sample paths. Fortunately,
the sample variance diminishes as λ → 0, and the generative SDE collapses to a generative ODE
when λ = 0 [1], i.e., the generative SDE of λ = 0 becomes

dxt =

[
f(xt, t)−

1

2
g2(t)sθ(xt, t)

]
dt̄,

which corresponds to the generative ODE of forward time as

dxt =

[
f(xt, t)−

1

2
g2(t)sθ(xt, t)

]
dt. (37)

Then, the sample path becomes deterministic, and the expectation in Eq. (36) is degenerated as the
single sample path of ODE with Eq. (37) starting xε. The instantaneous change-of-variable formula
[1], which is a collapsed Feynman-Kac formula in Eq. (36), guarantees that there is a corresponding
ODE of Eq. (37) as

d log p0,θ
t (yt)

dt
= −tr

(
∇yt

[
f(yt, t)−

1

2
g2(t)sθ(yt, t)

])
. (38)

From the fact that the reverse SDEs have the identical marginal distributions described in Section
E.1, we approximate the model log-likelihood at λ = 1 by the log-likelihood at λ = 0 at the expense
of slight difference between the model distributions of different λs. When computing the model
log-likelihood at λ = 0, we integrate the ODE of Eq. (38) over [ε, 1] using an ODE solver, such as
the Runge-Kutta 45 method [25].

There are minor subtleties in computing the log-likelihood at λ = 0 that significantly affects to bpd
evaluation. To the best of our knowledge, all the current practice on continuous diffusion models
computes bpd by integrating

d log p0,θ
t (yt)

dt
= −tr

(
∇yt

[
f(yt, t)−

1

2
g2(t)sθ(yt, t)

])
,

on t ∈ [ε, T ], where {yt}Tt=ε is a sample path starting from yε := x0. This is equivalent of computing
log p0,θ

ε (x0). However, strarting from x0 incurs large discrepancy on the NLL output, compared to
starting from instead of xε. Since the integration is on [ε, 1], the starting variable should follow xε,
which is a slightly perturbed variable.
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Table 11: The difference of the integration with different initial points of xε and x0 on DDPM++ (VP,
NLL). The difference increases by ε.

ε

10−2 10−3 10−4 10−5

Exε

[
− log pθε (xε)

]
− Ex0

[
− log pθε (x0)

]
1.13 0.73 0.24 0.05

To fix this subtlety, we solve the below alternative differential equation of

d log p0,θ
t

dt
= −tr

(
∇yt

[
f(yt, t)−

1

2
g2(t)sθ(yt, t)

])
, (39)

on t ∈ [ε, T ], where {y0
t }Tt=ε is a sample path starting from yε := xε. By replacing the initial

value to xε from x0, we could correctly compute log pθε (xε). Table 11 presents the difference of
Exε

[
− log p0,θ

ε (xε)
]
− Ex0

[
− log p0,θ

ε (x0)
]

with various ε. We report the correct NLL as

Exε

[
− log p0,θ

ε (xε)
]
− Ex0,xε

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
,

where log p0,θ
ε (xε) is computed based on the initial point of xε when λ = 0.

E.5 Calculating the Residual Term

This section calculates the residual term, Epr(x0)p0ε(xε|x0)

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
. The transition probability

of p0ε(xε|x0) is the Gaussian distribution of N (xε;µ(ε)x0, σ
2(ε)I) if f(xt, t) = − 1

2β(t)xt with

µ(ε) = e−
1
2

∫ ε
0
β(s) ds and σ2(ε) =

(g2(t)

β(t)
− g2(0)

β(0)
+ 1− e−

∫ t
0
β(s) ds

)
,

see Appendix A.1 of Kim et al. [27] for detailed computation. On the other hand, the generative
distribution of pθ,ε0(x0|xε) is assumed to be a Gaussian distribution of N

(
x0;µθ,ε0(xε), σ

2
θ,ε0I

)
,

where µθ,ε0(xε) = 1
µ(ε)

(
xε + σ2(ε)sθ(xε, ε)

)
[28]. Then, we have

Ep0ε(xε|x0)

[
log

pθε0(x0|xε)
p0ε(xε|x0)

]
= logµ(ε)− 1

2σ2
θ,ε0(ε)

Ep0ε(xε|x0)

[∥∥∥x0 −
1

µ(ε)

(
xt + σ2(ε)sθ(xε, ε)

)∥∥∥2

2

]
+

1

2
.

We could approximate the variance of pθε0(x0|xε) to be the variance of pε0(x0|xε), if pε0(x0|xε) is
derived as a closed-form. For that, let us assume x0 ∼ N (0, σ2). Then,

p(x0,xε) = p(x0)p0ε(xε|x0)

∝ exp

(
−‖x0‖22

2σ2
− ‖xε − µ(ε)x0‖22

2σ2(ε)

)
= exp

(
−1

2

(
1

σ2
+
µ2(ε)

σ2(ε)

)∥∥∥∥x0 −
µ(ε)σ2

σ2(ε) + µ2(ε)σ2
xε

∥∥∥∥2

2

+O(‖xε‖22)

)
.

Therefore, pε0(x0|xε) = N
(
x0

∣∣ µ(ε)σ2

σ2(ε)+µ2(ε)σ2 xε, 1/(
1
σ2 + µ2(ε)

σ2(ε) )
)
. When σ is sufficiently large

compared to σ2(ε)
µ2(ε) , the variance of pε0(x0|xε) is approximately σ2(ε)

µ2(ε) . Now, if x0 ∼ pr, then the

variance of x0 is large enough compared to σ2(ε)
µ2(ε) , so we could approximate σ2

θ,ε0(ε) to be σ2(ε)
µ2(ε) . Note

that DDPM [8] assumes the variance to be σ2(ε). We compute the residual term with σ2(ε)
µ2(ε) variance

for both VESDE and VPSDE. Note that this residual term is inspired from the released code of Song
et al. [11].
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Table 12: Despite of our implementation is built deeply based on Song et al. [1], our pytorch
implementation and the jax implementation of Song et al. [11] differs in their final performances.

SDE Model NLL NELBO Gap FID
after before w/ residual w/o residual after before ODE

VP

DDPM++ (NLL, reported) [11] - 2.95 - 3.08 - 0.13 6.03

DDPM++ (NLL, ours) 3.03 2.97 3.13 3.11 0.10 0.14 6.70
INDM (NLL) 2.98 2.95 2.98 2.97 0.00 0.02 6.01

F Experimental Details and Additional Results

F.1 Model Architecture

Diffusion Model We implement two diffusion models as backbone: NCSN++ (VE) [1] and DDPM++
(VP) [1], where two backbones are one of the best performers in CIFAR-10 dataset. In our setting,
NCSN++ assumes the score network with parametrization of sθ(zt, log σ2(t)), where σ2(t) =
σ2
min(σmaxσmin

)2t is the variance of the transition probability p0t(zt|z0) with VESDE. As introduced
in Song et al. [1], we use the Gaussian Fourier embeddings [53] to model the high frequency
details across the temporal embedding. DDPM++ models the score network with parametrization of
εθ(zt, t), which targets to estimate−σ(t)∇zt log pt(zt). We use the Transformer sinusoidal temporal
embedding [54].

We use the U-Net [55] architecture for the score networks on both NCSN++ and DDPM++ based on
[8]. We stack U-Net resblocks of up-and-down convolutions with skip connections that give input
information to the output layer. Also, we follow Ho et al. [8] by applying the global attention at the
resolution of 16× 16. We use four U-Net resblocks with four feature map resolutions (32× 32 to
4× 4). On CIFAR-10, we use four and eight resblocks for shallow and deep settings, respectively.
The performances of shallow and deep models turn out to be insignificant, so we use four resblocks on
CelebA. We provide the identical diffusion model structures to compare the baseline linear diffusion
model and the INDM model in a fair setting.

Flow Model We build a normalizing flow model as follows. Ma et al. [24] uses the autoencoding
structure of decouple the global information and the local representation. The compression encoder
extracts the global information, and the invertible decoder is a conditional flow conditioned by the
encoded latent representation. Ma et al. [24] utilizes a shallow network for the compressive encoder,
and it applies Glow [56] for the invertible decoder. We empirically find that resnet-based flow network
outperforms the Glow-based flow, so we replace Glow to ResFlow [23].

For the ResFlow, we drop three components from the original paper: 1) the activation normalization
[56], 2) the batch normalization [57], and 3) the fully connected layers. For the activation function,
we use the sine function [58] on quantitative comparisons in Section 7, and we use swish function
[59] on qualitative analysis in otherwise sections including Section 6. With the sine activation, the
training becomes more stable, and the FID performance is significantly improved while maintaining
the NLL performance. For the multi-GPU training, we use the Neumann log-determinant gradient
estimator, instead of the memory-efficient estimator [23].

F.2 Experimental details

With the batch size of 128, we train the diffusion model with Exponential Moving Average (EMA)
[28] rate of 0.9999, and we do not use EMA on our flow model. Using EMA on the flow model is
advantageous on NLL at the expense of FID, and we build our model with emphasis on FID. We train
the model by two step. The pre-training stage trains the diffusion model about five days with a flow
model fixed as an identity function on four P40 GPUs with 96Gb GPU memory for all experiments.
After the pre-training, we train both flow and diffusion networks about five days. In this stage, we
apply the learning rate scheduling to boost the FID score. We initiate the learning rate after the
sample generation performance is saturated. For the diffusion model, we drop the learning rate from
2× 10−4 to 10−5. For the flow model, we drop the learning rate from 10−3 to 10−5 for VPSDE and
5× 10−5 to 10−5 for VESDE.
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VESDE and VPSDE have different training details. We apply INDM on VESDE with σmin = 10−2.
Throughout the experiments, VESDE has σmax = 50 on CIFAR-10 and σmax = 90 on CelebA. On
the other hand, VPSDE assumes β(t) = βmin + (βmax − βmin)t with βmin = 0.1 and βmax = 20.
Both VESDE and VPSDE truncate the diffusion time on [ε, T ] in order to stabilize the diffusion
model [27], where ε = 10−5 and T = 1.

With all hyperparameters identical to Song et al. [11], however, we could not achieve the reported
performance. Table 12 compares the reported performance and the model performance trained on
out implementation, of which structure is heavily based on the released code of [1]. Due to the
discrepancy between the reported and the regenerated performances, we compare our INDM to the
regenerated performance as default to investigate the effect of nonlinear diffusion in a fair setting.
Throughout the training, we used 4× NVIDIA RTX 3090.

F.2.1 Variance Reduction

Flow Training When we train the flow network with L
(
{xt}Tt=0, g

2; {φ,θ}), this NELBO contains
the integration of

L
(
{zt}Tt=0, g

2;θ
)

=
1

2

∫ T

0

g2(t)Ez0,zt

[
‖sθ(zt, t)‖22

]
dt,

up to a constant. Suppose Lt
(
{zt}Tt=0;θ

)
to be 1

2Ez0,zt [‖sθ(zt, t)−∇zt log p0t(zt|x0)‖22]. Previous
works on diffusion models [60, 12, 11, 27] show that the estimation variance is largely reduced
with the importance sampling, which could improve the model performance [11], and we apply
this importance sampling throughout the experiments for NLL setting. Concretely, the importance
sampling chooses an importance weight that is proportional to g2(t)

σ2(t) , and estimates the integration

by L
(
{zt}Tt=0, g

2;θ
)

=
∫ T

0
g2(t)Lt

(
{zt}Tt=0;θ

)
dt ≈

∑N
n=1 σ

2(tn)Ltn
(
{zt}Tt=0;θ

)
, where tn is

sampled from the importance distribution.

For VESDE, it satisfies β(t) = 0 and g(t) = σmin(σmaxσmin
)t
√

2 log (σmaxσmin
). The transition probability

becomes p−∞t(zt|z−∞) = N (zt; z−∞, σ
2(t)), where σ2(t) =

∫ t
−∞ g2(s) ds = σ2

min

(
σmax
σmin

)2t
.

Since σ2(t) is proportional to g2(t) in VESDE, the importance weight follows the uniform distribution,
and the importance sampling is equivalent with choosing the uniform t. This is why there is no
experimetal setting of VE with NLL.

On the other hand, VPSDE satisfies β(t) = βmin + (βmax − βmin)t with g(t) =
√
β(t). Then, the

transition probability becomes p0t(zt|z0) = N (zt;µ(t)zt, σ
2(t)I), where µ(t) = e−

1
2

∫ t
0
β(s) ds and

σ2(t) = 1− e−
∫ t
0
β(s) ds. Thus, VPSDE has the importance weight of g2(t)

σ2(t) = β(t)

1−e−
∫ t
0 β(s) ds

.

The Monte-Carlo sample from this importance weight is the solution of the inverse Cumulative
Distribution Function (CDF) of the importance distribution as

t = F−1(u)

⇐⇒ u = F (t) =
1

Z

∫ t

ε

g2(s)

σ2(s)
ds =

1

Z

(
F(t)−F(ε)

)
,

(40)

where u is a uniform sample from [0, 1], F(t) is the antiderivative of the importance weight given
by F(t) = log (1− e−0.5t2(βmax−βmin)−tβmin) + 0.5t2(βmax − βmin) + tβmin, and Z is the
normalizing constant given by

Z =

∫ T

ε

g2(t)

σ2(t)
dt

=
[

log (1− e−0.5t2(βmax−βmin)−tβmin) + 0.5t2(βmax − βmin) + tβmin

]T
ε

= log (1− e−0.5T 2(βmax−βmin)−Tβmin)− log (1− e−0.5ε2(βmax−βmin)−εβmin)

+ 0.5(T 2 − ε2)(βmax − βmin) + (T − ε)βmin
≈23.86
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Table 13: Ablation study on the stopping sampling time trained on DDPM++ (VP) in CIFAR-10.
Model FID (tmin = 10−3) FID (tmin = 10−4) FID (tmin = 10−5)

INDM (deep, VP, NLL) 5.94 5.74 5.71

Table 14: Ablation study on the SNR trained on NCSN++ (VE) in CIFAR-10. The performances are
FID-5k scores.

Model
Signal-to-Natio Ratio (SNR)

0.13 0.14 0.15 0.16 0.17

INDM (VE, FID) 7.24 7.12 7.20 7.25 7.34

for T = 1 and ε = 10−5. The solution for the inverse CDF in Eq. (40) becomes

e
∫ t
0
β(s) ds = 1 + exp (Zu+ F(ε))

⇐⇒
∫ t

0

β(s) ds =
1

2
(βmax − βmin)t2 + βmint = log (1 + exp (Zu+ F(ε)))

⇐⇒ t =
−βmin +

√
β2
min + 2(βmax − βmin) log

(
1 + exp (Zu+ F(ε))

)
βmax − βmin

.

The variation of the Monte-Carlo diffusion time depends on the uniform sample of u.

∫ t

0

β(s) ds = log

(
1− σ2

min

1− σ2
min

(
σmax
σmin

)t) = log
(
1 + exp (Zu+ F(ε))

)
⇐⇒ 1− σ2

min

(σmax
σmin

)t
=

1− σ2
min

1 + eZu+F(ε)

⇐⇒ σ2
min

(σ2
max

σ2
min

)t
=
eZu+F(ε) + σ2

min

1 + eZu+F(ε)

⇐⇒ t log
σ2
max

σ2
min

= log
(
eZu+F(ε) + σ2

min

)
− log

(
1 + eZu+F(ε)

)
− log σ2

min.

F.2.2 Sampling Tricks to Improve FID

For ODE sampler, we use Runge Kutta 45 method [61] for the ODE solver. Since the score network
was not trained beneath the truncation time, i.e., sθ(zt, t) has not been trained on t ∈ [0, ε), keep
denoising up to the zero diffusion time would harm the sample fidelity. If tmin is the stopping
diffusion time of the ODE, one predictor step from tmin to 0 is applied to the noised sample, ztmin ,
in order to eliminate the residual noise in ztmin to z0 [62]. Table 13 searches the optimal stopping
diffusion time, and it shows that the truncation time (10−5) turns out to be the optimal stopping
time. Throughout the paper, we report the FID (ODE) performance of our INDM with the training
truncation time (10−5). For VESDE, the ODE sampler fails to generate realistic images, so we do
not report sample generation performance.
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Figure 16: Ablation study for
the flow temperature.

In PC sampler, for the predictor, we use the Reverse Diffusion
Predictor for VESDE and the Euler-Maruyama Predictor for VPSDE.
For the corrector, we use the Langevin dynamics [63] for VESDE,
and we do not use any corrector for VPSDE. We use 1) Signal-
to-Noise Ratio (SNR) scheduling, 2) temperature scheduling, 3)
stopping time scheduling, and 4) data-adaptive prior than a fixed
prior to improve FID. First, Table 14 presents that the optimal SNR
is 0.14, which is slightly different from the optimal SNR of 0.16 in
the linear diffusion [1]. We use SNR of 0.14 as default in our PC
sampling.
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Table 15: Ablation study on the temperature for PC sampler trained on DDPM++ (VP) in CIFAR-10.
The performances are FID scores. Contrary to Kingma and Dhariwal [56], the temperature bigger
than 1 works the best.

Model
Temperature

1 1.03 1.04 1.05 1.1 1.2

INDM (VP, FID) 2.92 2.91 2.90 2.90 2.91 3.09

Table 16: Ablation study on the final denoising step trained on VESDE in CIFAR-10. The perfor-
mances are FID scores.

Model FID (xε) FID (x−0.25) FID (x−0.5) FID (x−0.75) FID (x−1) FID (x−1.5) FID (x−∞)

NCSN++ (VE, FID) 11.7 8.40 40.8 65.7 85.8 118 2.46

INDM (VE, FID) 2.40 2.33 2.31 2.29 2.29 2.34 2.37

INDM (VE, deep, FID) 2.35 2.29 2.28 2.29 2.29 2.36 2.33

Second, as introduced in Kingma and Dhariwal [56], we scale the generated latent, zθ0 , by multiplying
the temperature. Table 15 presents that the optimal temperature for VPSDE is 1.04 ∼ 1.05 in terms
of FID on INDM (VP, FID) setting. We use the temperature of 1 for the remaining settings except
INDM (VP, FID). With temperature τ , the normalizing flow puts its latent input scaled by τ to the
flow network. In Figure 16, the image color with a higher temperature tends to be brighter, and we
find that the optimal temperature depends on the experimental settings.

Third, the stopping time scheduling is a method that manipulate the final denoising step. To attain
the variance of VESDE as σ2(t) = σ2

min(
σ2
max

σ2
min

)2t, we should start the diffusion process of dzt =

σ2(t) dwt at t = −∞ because

σ2(t) =

∫ t

t0

g2(s) ds = σ2
min

(σ2
max

σ2
min

)2t

(41)

implies t0 = −∞. If the generative SDE is dzt = g2(t)sθ(zt, t) dt̄ + σ2(t) dw̄t, then the Euler-
Maruyama discretization is

zti ← zti+1 + g2(ti+1)(ti − ti+1)sθ(zti+1 , ti+1) +
√
σ(ti+1)2 − σ(ti)2ε, (42)

where ε ∼ N (0, I). However, since the initial time of VESDE is t = −∞, denoising the noised
sample with the Euler-Maruyama discretization would incur arbitrary large error at the final step that
denoises from t = ε to t = −∞. Therefore, Song et al. [1] suggested the reverse diffusion predictor
that denoises by

zσ−1(σi) ← zσ−1(σi+1) + (σ2
i+1 − σ2

i )sθ(zσ−1(σi+1), σi+1) +
√
σ2
i+1 − σ2

i ε, (43)

which is equivalent to the Euler-Maruyama discretization if ti − ti+1 is small enough (because
∆σ2(t) ≈ g2(t)∆t by Eq. (41)). The difference of Eqs. (42) and (43) is minor as long as we denoise
on the range of [ε, T ], but only Eq. (43) enables to denoise from t = ε to t = −∞.

However, it turns out that the direction of the score network is not aligned to the direction of the
data score near t ≈ 0, so sθ(zε, σmin) would not be accurate enough to the perturbed data score.
Therefore, the final denoising step of

z−∞ ← zε + σ2
minsθ(zε, σmin) + σminε,

might not be mostly effective. This leads us to try the final step as

zε−δ = zε +
1

2

(
σ2(ε)− σ2(ε− δ)

)
sθ(zε, σmin),

for various δ ≥ 0. After the denoising up to zε−δ , we apply the inverse of the flow network to obtain
xε−δ = h−1

φ (zε−δ), and Table 16 presents that there is a sweet spot (x−0.5 ∼ x−0.75) that works the
best in terms of FID. We report the line searched FID performance for each of VESDE setting.

Lastly, we use pφT instead of π to sample from INDM (VE). This data-adaptive prior is particularly
beneficial on the experiment of VESDE. In INDM (VE), the data-adaptive prior reduces FID-5k
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Figure 17: Comparison of data and latent diffusions by training steps of Checkerboard.

from 8.14 to 7.52, so we use this technique by default throughout out performance report. In INDM
(VP), this technique is not effective, and we use the vanilla prior distribution. The reason why the
data-adaptive prior is effective in VESDE is because the discrepancy of VESDE between pφT and π is
significantly larger than VPSDE, see Figure 5 of Chen et al. [16].

We compute FID [18] for CIFAR-10 based on the statistics released by Song et al. [1]2, which used
the modified Inception V1 network3 in order to compare INDM to the baselines [1, 11] in a fair
setting. On the other hand, for the CelebA dataset, we compute the clean-FID [64] that provides
consistently antialiased performance.

F.2.3 Interpolation Task

For the interpolation task, we provide the line-by-line algorithm in Algorithm 2. We train with the
likelihood weighting as default for our experiment on the dataset interpolation. The interpolation
loss of Lint consumes 0.2Gb of GPU memory, and the INDM loss of LINDM takes 2.5Gb of GPU
memory in the EMNIST-MNIST experiment.

Algorithm 2 Data Interpolation of INDM
1: repeat
2: Compute LINDM = L({xt}Tt=0, g

2; {φ,θ}) for x0 ∼ p(1)
r

3: Compute Lint = E
p
(2)
r

[− log pφ(y)] for y ∼ p(2)
r

4: Compute Ltot = LINDM + Lint
5: Update φ← φ− ∂Ltot

∂φ

6: Update θ ← θ − ∂Ltot
∂θ

7: until converged

F.3 Effect of Pre-training Table 17: Ablation study on pre-training.

# Pre-training Steps 100k 200k 300k 400k 500k

NLL 3.00 2.99 2.99 2.99 2.98
FID 7.39 7.31 6.80 6.65 6.22

We find that training INDM with a pre-trained
score network of linear diffusion models im-
proves FID. Table 17 conducts the ablation
study on the number of pre-training steps. We

2https://github.com/yang-song/score_sde_pytorch
3https://tfhub.dev/tensorflow/tfgan/eval/inception/1
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Table 18: Elapsed time per a training step by discretization.

Model Complexity N = 100 N = 1, 000 N =∞

DDPM O(1) 0.27 0.27 0.27
SBP (w/o experience memory) O(N) 2.83 23.3 ∞
SBP (w/ experience memory) O(N) 0.52 2.39 ∞
DiffFlow O(N) 18.45 180.88 ∞
INDM O(1) 1.69 1.69 1.69

Table 19: Total training time in a single GPU days.

Model Total Training Time (GPU Days) Training Steps GPU Spec #GPUs NLL FID

DDPM++ 5 500k P40 1 3.03 6.70
LSGM 44 450k RTX 3090 8 2.87 6.89
SBP 3 260k RTX 3090 - 2.98 3.18
DiffFlow 32 100k RTX 2080 8 3.04 14.14
INDM (including pre-training time) 25 700k P40 4 2.98 6.01
INDM (w/o pre-training) 60 600k P40 4 2.98 8.49

pre-train the score network with DDPM++ (VP, NLL) for five variations of pre-training steps
(100k/200k/300k/400k/500k), and we train flow+score networks for 350k steps further with NLL
setting (λ = g2). Table 17 empirically demonstrates that it is better to search the nonlinearity of the
data process near the linear process. For this clear empirical advantage of pre-training, we report the
quantitative performances in Section 7 with pre-training.

F.4 Training Time

Table 18 presents the elapsed time per a training step by the number of discretization on CIFAR-10. In
contrast to INDM which is invariant on the choice of N , the training time of SBP and DiffFlow is not
scalable for their O(N) complexities. The training time is measured under the identical computing
resource (1x NVIDIA RTX 3090/Intel I7 3.8GHz) and the same batch size (32) to compare INDM
with baselines in a fair setting.

Table 19 compares INDM with baselines with respect to a single GPU-time for the total training
time on CIFAR-10. The remaining columns including training steps, GPU Spec, NLL, and FID are
reported for the reference. For DiffFlow, we present the reported GPU days in the paper. For LSGM
and SBP, we estimate the elapsed time with the released training configuration in their papers and
GitHub repositories. For DDPM++ and INDM, we report the elapsed time from our own experiments.
From the table, the overall training time of INDM/DiffFlow/LSGM remains at a similar scale. SBP is
the fastest algorithm because of the experience replay memory technique. Note that a completely fair
comparison between algorithms is infeasible because the training setup (e.g. #GPUs, training steps,
network size . . . ) varies by algorithms. Also, P40 is strictly slower than RTX series GPUs.

F.5 Visualization of Latent

F.5.1 Visualization of 2d Latent Manifold

(a) Samples from xφ,θ
0 (b) Samples from zθ0

Figure 18: Samples from the data space and latent
space on CIFAR-10 and CelebA.

Figure 17 illustrates the data and latent mani-
folds of the 2d checkerboard dataset by training
steps. The data manifold has the singularity at
the origin, but this singularity disappears in the
latent manifold after the training.

F.5.2 Visualization of High-dimensional
Latent Vector on Benchmark Datasets

Figure 18 illustrates the samples from (a) the
data space and (b) the latent space. To visualize
the latent vectors, we normalize the latent value
into the [0, 1]d space.
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F.6 Nonlinear Diffusion Coefficient
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Figure 19: Eigenvalue of GGT /g2 on CIFAR-10.

INDM trains the volatility term, Gφ,
which was fixed across previous re-
search, except LSGM. The exact
form of Gφ in LSGM, however, is
not derivable, so we exclude com-
paring LSGM in this section. As
stated in Section 3, the noise dis-
tribution of a diffusion process is
N (0,G(xt, t)G

T (xt, t)), which is
anisotropic by the input data, xt, and
time, t. The influence of diffusion time on this covariance matrix is illustrated in Figure 19-
(a). It presents the box plot of the eigenvalue distribution of the (normalized) covariance,
Gφ(xt, t)G

T
φ(xt, t)/g

2(t), on CIFAR-10, from t = 0 to t = T . All the eigenvalues of previ-
ous research collapse to one as they share the isotropic covariance matrix, g2(t)I. On the other
hand, the eigenvalues of INDM is dispersive throughout the diffusion time. As the distribution
becomes more dispersive, the covariance matrix becomes more unisotropic, and Figure 19-(a) implies
that the learnt diffusion process is under a highly nonlinear noise perturbation in a range of large
diffusion time. The covariance matrix also depends on the input data, and Figure 19-(b) illustrates the
eigenvalue distribution of the covariance at distinctive data instances of xt at t = 0. The eigenvalue
distribution varies by instance, implying that data is diffused inhomogeneously by its location.

F.7 Relative Energy

Table 20: Relative En-
ergy.

Model Relative Energy

DDPM++ 1.60
INDM 1.23

Each flow network parameter constructs a different latent trajec-
tory, so training the flow network has the effect of shifting the
diffusion bridge. To check if learning the flow network is
helpful for the transportation cost or not, recall the Benamou-
Brenier formula [65, 66], which is a dual formulation of the
Wasserstein distance [66, 67] that the optimal transportation cost
is the least kinetic energy out of all admissible transportation

plans: W 2
2 (p, q) = inf{pt,vt}t

{
K({pt,vt}t);

∂pt
∂t

+ div(ptvt) = 0︸ ︷︷ ︸
continuity equation

, p0 = p, pT = q︸ ︷︷ ︸
boundary conditions

}
, where

K({pt,vt}t) :=
∫ T

0

∫
pt(x)‖vt(x)‖22 dx dt/T is the kinetic energy of the transportation. The

continuity equation (that guarantees the conservation of mass along time transition [68]) and the
boundary conditions determine the set of admissible trajectories, and the forward diffusion constructs
an admissible trajectory. We quantify how much a trajectory is close to the optimal transport as the

relative energy, given by R(φ) =
K({pφt ,v

φ
t }t)

W 2
2 (pφ0 ,p

φ
T )

. Table 20 shows that INDM’s latent diffusion is more

close to the optimal transport than DDPM++ on CIFAR-10.

F.8 Full Quantitative Tables

Tables 21, 22, and 23 gives the full details of the quantitative comparisons to baseline models.

F.9 Random samples

Figures 20 and 21 show the non cherry-picked random samples from INDM (VE, FID) on CIFAR-10
and INDM (VP, FID) on CelebA, respectively.

G Proofs of Theorems and Propositions

Theorem 1. Suppose that pφ,θ(x0) is the likelihood of a generative random variable xφ,θ0 . Then,
the negative log-likelihood is bounded by

Epr(x0)

[
− log pφ,θ(x0)

]
≤ L

(
{xt}Tt=0, g

2; {φ,θ}
)
,
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where

L
(
{xt}Tt=0, g

2; {φ,θ}
)

= −Epr(x0)

[
log
∣∣det

(
∇x0

hφ
)∣∣]

+ L
(
{zt}Tt=0, g

2;θ
)
− EzT

[
log π(zT )

]
+
d

2

∫ T

0

β(t)− g2(t)

σ2(t)
dt,

with L
(
{zt}Tt=0, g

2;θ
)

:= 1
2

∫ T
0
g2(t)Ez0,zt

[
‖sθ(zt, t)−∇zt log p0t(zt|z0)‖22

]
dt. Here, p0t(zt|z0)

is the transition probability of the forward linear diffusion process on latent space.

Proof of Theorem 1. From the change of variable, the transformation of z0 = hφ(x0) induces

pr(x0) =
p0(z0)∣∣∣det
(
∂hφ

∂x0

)∣∣∣−1 ,

and thus the entropy of the data distribution becomes

H(pr) = −
∫
pr(x0) log pr(x0) dx0

= −
∫
p0(z0) log

p0(z0)∣∣∣det
(
∂hφ

∂x0

)∣∣∣−1 dz0

= −
∫
pr(x0) log

∣∣∣ det
(∂hφ
∂x0

)∣∣∣dx0 −
∫
p0(z0) log p0(z0) dz0

= −Epr(x0)

[
log
∣∣∣det

(∂hφ
∂x0

)∣∣∣]− ∫ p0(z0) log p0(z0) dz0

= −Epr(x0)

[
log
∣∣∣det

(∂hφ
∂x0

)∣∣∣]+H(p0).

From Theorem 4 of Song et al. [11], the entropy at t = 0 equals to

H(p0) = H(pT )− 1

2

∫ T

0

Ept(zt)
[
2∇zt · f(zt, t) + g2(t)‖∇zt log pt(zt)‖22

]
dt,

where f(zt, t) is a drift term of the diffusion for zt and pt is the probability distribution of zt.
Therefore, the negative log-likelihood becomes

−Epr(x0)

[
log pφ,θ(x0)

]
= DKL(pr‖pφ,θ) +H(pr)

≤ DKL(µφ({xt})‖νφ,θ({xt})) +H(pr)

= DKL(µφ({xt})‖νφ,θ({xt}))− Epr(x0)

[
log
∣∣∣ det

(∂hφ
∂x0

)∣∣∣]+H(p0)

= DKL(µφ({zt})‖νθ({zt}))− Epr(x0)

[
log
∣∣∣det

(∂hφ
∂x0

)∣∣∣]+H(pT )

−1

2

∫ T

0

Ezφ
t

[
− dβ(t) + g2(t)‖∇zt log pt(zt)‖22

]
dt.

Now, from Theorem 1 of [11], the KL-divergence between the path measures becomes

DKL(µφ({zt})‖νθ({zt})) = DKL(pT (zT )‖π(zT )) (44)

+
1

2

∫ T

0

g2(t)Ept(zt)
[
‖sθ(zt, t)−∇zt log pt(zt)‖22

]
dt,(45)

so if we plug in this into the negative log-likelihood, we yield the following:

−Epr(x0)

[
log pφ,θ(x0)

]
≤ −Epr(x0)

[
log
∣∣∣ det

(∂hφ
∂x0

)∣∣∣]+
1

2

∫ T

0

g2(t)Ezt

[
‖sθ(zt, t)−∇zt log pt(zt)‖22

]
dt
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+DKL(pT ‖π) +H(pT )− 1

2

∫ T

0

Ezt

[
− dβ(t) + g2(t)‖∇zt log pt(zt)‖22

]
dt

= −Epr(x0)

[
log
∣∣∣ det

(∂hφ
∂x0

)∣∣∣]− EzT

[
log π(zT )

]
+
d

2

∫ T

0

β(t) dt

+
1

2

∫ T

0

g2(t)Ezt

[
‖sθ(zt, t)−∇zt log pt(zt)‖22 − ‖∇zt log pt(zt)‖22

]
dt

Also, we have

Ezt

[
sθ(zt, t) · ∇zt log pt(zt)

]
=

∫
pt(zt)sθ(zt, t) · ∇zt log pt(zt) dzt

=

∫
sθ(zt, t) · ∇ztpt(zt) dzt

=

∫
sθ(zt, t) ·

∫
p0(z0)∇ztp0t(zt|z0) dz0 dzt

= Ez0
Ezt|z0

[
sθ(zt, t) · ∇zt log p0t(zt|z0)

]
Therefore,

1

2

∫ T

0

g2(t)Ezt

[
‖sθ(zt, t)−∇zt log pt(zt)‖22 − ‖∇zt log pt(zt)‖22

]
=

∫ T

0

g2(t)Ezt

[1

2
‖sθ(zt, t)‖22 − sθ(zt, t) · ∇zt log pt(zt)

]
=

∫ T

0

g2(t)Ez0
Ezt|z0

[1

2
‖sθ(zt, t)‖22 − sθ(zt, t) · ∇zt log p0t(zt|z0)

]
=

1

2

∫ T

0

g2(t)Ez0
Ezt|z0

[
‖sθ(zt, t)−∇zt log p0t(zt|z0)‖22 − ‖∇zt log p0t(zt|z0)‖22

]
.

Now, since p0t(zt|z0) = N (zt;µ(t)zt, σ
2(t)I) for µ(t) and σ2(t) determined by β(t) and g(t), we

have

Ezt|z0

[
‖∇zt log p0t(zt|z0)‖22

]
= Ezt|z0

[∥∥∥zt − µ(t)z0

σ2(t)

∥∥∥2

2

]
= EN (z;0,I)

[ ‖z‖22
σ2(t)

]
=

d

σ2(t)
,

and we have the desired result.

Proposition 1. Suppose qθt is the marginal distribution of νθ at t. The variational gap is

Gap
(
µφ({xt}),νφ,θ({xt})

)
:=DKL

(
µφ({xt})‖νφ,θ({xt})

)
−DKL

(
pφ0 (x0)‖qθ0 (x0)

)
=

1

2

∫ T

0

g2(t)Epφt (zt)

[
‖∇ log qθt (zt)− sθ(zt, t)‖22︸ ︷︷ ︸

Score-only error

]
dt.

Proof of Proposition 1. Suppose qθt is a marginal distribution of the path measure of the generative
SDE given by

dzt =
[
f(zt, t)− g2(t)sθ(zt, t)

]
dt̄+ g(t) dw̄t. (46)

The Fokker-Planck equation of the above generative SDE satisfies

∂qθt
∂t

(zt) =−
d∑
i=1

∂

∂zi

([
fi(zt, t)− g2(t)

(
sθ(zt, t)

)
i

]
qθt (zt)

)
− g2(t)

2

d∑
i=1

∂2

∂z2
i

[
qθt (zt)

]
=div

((
− f(zt, t) + g2(t)sθ(zt, t)−

g2(t)

2
∇ log qθt (zt)

)
qθt (zt)

)
. (47)
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On the other hand, if pφt is the marginal distribution of the path measure of the forward SDE given by

dzt = f(zt, t) dt+ g(t) dwt,

then the corresponding Fokker-Planck equation becomes

∂pφt
∂t

(zt) = div
((
− f(zt, t) +

g2(t)

2
∇ log pφt (zt, t)

)
pφt (zt)

)
. (48)

Combining Eq. (47) with Eq. (48) and using the integration by parts, the derivative of the KL
divergence becomes

∂DKL(pφt ‖qθt )

∂t
=

∂

∂t

∫
pφt (zt) log

pφt (zt)

qθt (zt)
dzt

=

∫
∂pφt
∂t

(zt) log
pφt (zt)

qθt (zt)
dzt −

∫
∂qθt
∂t

(zt)
pφt (zt)

qθt (zt)
dzt

= −
∫
pφt (zt)

(
−f(zt, t) +

g2(t)

2
∇ log pφt (zt)

)T
∇ log

pφt (zt)

qθt (zt)
dzt

+

∫
pφt (zt)

(
−f(zt, t) + g2(t)sθ(zt, t)−

g2(t)

2
∇ log qθt (zt)

)T
∇ log

pφt (zt)

qθt (zt)
dzt

=
g2(t)

2

∫
pφt (zt)

(
∇ log

pφt (zt)

qθt (zt)

)T (
2sθ(zt, t)−∇ log pφt (zt)−∇ log qθt (zt)

)
dzt.

Integrating the above derivative, we get the KL divergence of

DKL

(
pφ0 (z0)‖qθ0 (z0)

)
= −

∫ T

0

∂DKL(pφt ‖qθt )

∂t
dt+DKL(pφT ‖q

θ
T )

(49)

=

∫ T

0

g2(t)

2
Ezφ

t

[
(∇ log pφt −∇ log qθt )T (∇ log pφt +∇ log qθt − 2sθ)

]
dt+DKL(pφT ‖q

θ
T ).

Also, from Eq. (44), we have

DKL

(
µφ({xt})‖νφ,θ({xt})

)
= DKL

(
µφ({zt})‖νθ({zt})

)
=

∫ T

0

g2(t)

2
Epφt (zt)

[
‖∇ log pφt (zt)− sθ(zt, t)‖22

]
dt+DKL(pφT ‖q

θ
T ).

(50)

By subtracting Eq. (49) from Eq. (50), we get the desired result:

Gap(µφ,νφ,θ) = DKL

(
µφ({xt})‖νφ,θ({xt})

)
−DKL

(
pr(x0)‖pφ,θ(x0)

)
= DKL

(
µφ({zt})‖νθ({zt})

)
−DKL

(
pφ0 (z0)‖qθ0 (z0)

)
=

∫
g2(t)

2
Ezφ

t

[
‖∇ log pφt − sθ‖22 − (∇ log pφt −∇ log qθt )T (∇ log pφt +∇ log qθt − 2sθ)

]
dt

=

∫
g2(t)

2
Epφt (zt)

[
‖∇ log qθt − sθ‖22

]
dt.

Theorem 2. Gap(µφ,νφ,θ) = 0 if and only if sθ ∈ Ssol.

Proof of Theorem 2. (⇒) Suppose the variational gap is zero. Then, as the support of pφt is the
whole space of Rd, Theorem 1 implies that sθ(zt, t) = ∇ log qθt (zt) almost everywhere, for any
t > 0. To check if sθ(z0, 0) = ∇ log qθ0 (z0) at t = 0, suppose sθ(z0, 0) 6= ∇ log qθ0 (z0) on a set of
positive measure. Then, from the continuity of sθ and ∇ log qθt , we have sθ(zs, s) 6= ∇ log qθs (zs)
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on s < t0 for some t0. Therefore, for any t ∈ [0, T ], we conclude that sθ(zt, t) = ∇ log qθt (zt)
almost everywhere and Eq. (46) becomes

dzt =
[
f(zt, t)− g2(t)∇ log qθt (zt)

]
dt̄+ g(t) dw̄t. (51)

As the Fokker-Planck equation of the SDE of Eq. (51) becomes

∂qθt
∂t

(zt) = div
((
− f(zt, t) +

g2(t)

2
∇ log qθt (zt)

)
qθt (zt)

)
,

which coincide with the Fokker-Planck equation of the forward SDE of dzt = f(zt, t) dt+ g(t) dwt,
we conclude sθ ∈ Ssol by definition.

(⇐) holds from Lemma 2.

Theorem 3. For any fixed sθ̄ ∈ Ssol, if φ∗ ∈ arg minφDKL(µφ‖νφ,θ̄), then sφ∗(zt, t) =

∇ log pφ
∗

t (zt) = sθ̄(zt, t), and DKL(µφ∗‖νφ∗,θ̄) = DKL(pr‖pφ∗,θ̄) = Gap(µφ∗ ,νφ∗,θ̄) = 0.

Proof of Theorem 3. If sθ̄ ∈ Ssol, there exists q0 such that sθ̄(zt, t) = ∇ log qt(zt), where
zt ∼ qt is governed by dzt = f(zt, t) dt + g(t) dwt that starts from z0 ∼ q0. This implies
that the generative path measure of νφ,θ̄ coincides with some forward path measure. On the
other hand, the forward latent diffusion is also governed by dzt = f(zt, t) dt + g(t) dwt that
starts from z0 ∼ pφ0 . Therefore, if pφ0 = q0 almost everywhere, then the generative path mea-
sure of νφ,θ̄ coincides with the forward path measure of µφ, and it holds that DKL(µφ‖νφ,θ̄) =∫ T

0
g2(t)

2 E[‖∇ log pφt −∇ log qt‖22] dt+DKL(pφT ‖qT ) = 0. If pφ0 6= q0 on a set of positive measureA,

thenDKL(µφ‖νφ,θ̄) =
∫ T

0
g2(t)

2 E[‖∇ log pφt −∇ log qt‖22] dt+DKL(pφT ‖qT ) is strictly positive be-
cause ‖∇ log pφt −∇ log qt‖22 > 0 onA, for any t. This leads that ifφ∗ ∈ arg minφDKL(µφ‖νφ,θ̄),
then DKL(µφ∗‖νφ∗,θ̄) = 0, and pφ

∗

0 = q0 almost everywhere. Therefore, we get the desired result
because 0 = DKL(µφ∗‖νφ∗,θ̄) ≥ DKL(pr‖pφ∗,θ̄) ≥ 0.

Proposition 2. sθ ∈ Sdiv if and only if∇ztsθ(zt, t) is symmetric.

Proof of Proposition 2. If ∇ztsθ(zt, t) is symmetric, then sθ(zt, t) is a 1-form, and sθ ∈ Sdiv. If
sθ ∈ Sdiv, then there exists pt such that sθ(zt, t) = ∇ log pt(zt). Thus,∇sθ = ∇2 log pt, which is
symmetric.

Proposition 3. A matrix A ∈ Rd×d is symmetric if and only if Eε1,ε2∼N (0,I)

[
(εT2 (A−AT )ε1)2

]
=

0.

Proof of Proposition 3. As

Eε1,ε2∼N (0,I)

[
(εT2 Aε1 − εT1 Aε2)2

]
=Eε1,ε2∼N (0,I)

[
(εT2 (A−AT )ε1)2

]
,

A is symmetric if and only if Eε1,ε2∼N (0,I)

[
(εT2 Aε1 − εT1 Aε2)2

]
= 0.

Proposition 4. Let ε1 and ε2 be vectors of d independent samples from a random variable U with
mean zero. Then

Eε1,ε2 [(εT2 (A−AT )ε1)2] = EU [U2]2‖A−AT ‖2F
and

Var
((
εT2 (A−AT )ε1

)2)
= Var(U2)

(
Var(U2) + 2

(
Var(U) + EU [U ]2

)2)∑
a,b

(∆A)4
ab

+ 2
(
Var(U) + EU [U ]2

)2(
3Var(U2) + 2

(
Var(U) + EU [U ]2

)2)∑
a

∑
b 6=d

(∆A)2
ab(∆A)2

ad

+ 2
(
Var(U) + EU [U ]2

)4(∑
a 6=c

∑
b6=d

(∆A)2
ab(∆A)2

cd

+ 3
∑
a 6=c

∑
b6=d

(∆A)ab(∆A)ad(∆A)cb(∆A)cd

)
,

where (∆A)ab := Aab −Aba.
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Proof of Proposition 4.

Eε1,ε2
[(
εT2 (A−AT )ε1

)2]
=Eε1,ε2

[(∑
i,j

ε1,iε2,j(Aij −Aji)2
)2]

=Eε1,ε2
[ ∑
i,j,r,s

ε1,iε2,jε1,rε2,s(Aij −Aji)(Ars −Asr)
]

=Eε1,ε2
[∑
i,j

ε21,iε
2
2,j(Aij −Aji)2

]
=EU [U2]2

∑
i,j

(Aij −Aji)2

=EU [U2]2‖A−AT ‖2F .

Also, if B := A−AT , then

Eε1,ε2
[(
εT2 (A−AT )ε1

)4]
= Eε1,ε2

[ ∑
a,b,c,d,e,f,g,h

ε1,aε2,bε1,cε2,dε1,eε2,f ε1,gε2,hBabBcdBefBgh

]
= Eε1,ε2

[ ∑
b,d,f,h

ε2,bε2,dε2,f ε2,h
∑
a,c

ε1,aε1,c
∑
e,g

ε1,eε1,gBabBcdBefBgh

]
= Eε1,ε2

[ ∑
b,d,f,h

ε2,bε2,dε2,f ε2,h
∑
a

ε21,a
∑
e,g

ε1,eε1,gBabBadBefBgh

]
+Eε1,ε2

[ ∑
b,d,f,h

ε2,bε2,dε2,f ε2,h
∑
a 6=c

ε1,aε1,c
∑
e,g

ε1,eε1,gBabBcdBefBgh

]
= Eε1,ε2

[ ∑
b,d,f,h

ε2,bε2,dε2,f ε2,h
∑
a

ε21,a
∑
e

ε21,eBabBadBefBeh

]
+Eε1,ε2

[ ∑
b,d,f,h

ε2,bε2,dε2,f ε2,h
∑
a 6=c

ε21,aε
2
1,cBabBcd(BafBch +BcfBah)

]
= Eε1,ε2

[ ∑
b,d,f,h

ε2,bε2,dε2,f ε2,h
∑
a

ε41,aBabBadBafBah

]
+3Eε1,ε2

[ ∑
b,d,f,h

ε2,bε2,dε2,f ε2,h
∑
a6=c

ε21,aε
2
1,cBabBafBcdBch

]
= EU [U4]

∑
a

Eε2
[ ∑
b,d,f,h

ε2,bε2,dε2,f ε2,hBabBadBafBah

]
+3EU [U2]2

∑
a6=c

Eε2
[ ∑
b,d,f,h

ε2,bε2,dε2,f ε2,hBabBafBcdBch

]
= EU [U4]

∑
a

Eε2
[∑

b

ε42,bB
4
ab + 3

∑
b 6=d

ε22,bε
2
2,dB

2
abB

2
ad

]
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Therefore,
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Proposition 5. Let U be the discrete random variable which takes the values 1,−1 each with
probability 1/2. Then (εT2 (A − AT )ε1)2 is the unbiased estimator of ‖A − AT ‖2F . Moreover, U
is the unique random variable amongst zero-mean random variables for which the estimator is an
unbiased estimator, and attains a minimum variance.

Proof of Proposition 5. A random variable U2 has strictly positive variance if U2 attains more than
two values on a nonzero measure. To make Var(U2) = 0, the random variable should be a discrete
variable which takes the values 1, -1 each with probability 1/2.

Theorem 4 (De Bortoli et al. [15] and Guth et al. [22]). Assume that there exists M ≥ 0 such
that for any t ∈ [0, T ] and z ∈ Rd, the score estimation is close enough to the forward score by
M , ‖sθ(x, t) − ∇ log pφt (x)‖ ≤ M , with sθ ∈ C([0, T ] × Rd,Rd). Assume that ∇ log pφt (z) is
C2 in both t and z, and that supz,t ‖∇2 log pφt (z)‖ ≤ K and ‖ ∂∂t∇ log pφt (z)‖ ≤ Me−αt‖z‖
for some K,M,α > 0. Suppose (h−1

φ )# s a push-forward map. Then ‖pr − (h−1
φ )#p

θ
0,N‖TV ≤

Epri(φ) +Edis(φ) +Eest(φ,θ), where Epri(φ) =
√

2e−TDKL(pφT ‖π)1/2 is the error originating
from the prior mismatch; Edis(φ) = 6

√
δ(1 + Epφ0 (z)[‖z‖

4]1/4)(1 + K + M(1 + 1√
2α

)) is the

discretization error with δ = max γk
2

min γk
; Eest(φ,θ) = 2TM2 is the score estimation error.

Remark 5. Although the proof is based on the standard form of the Ornstein-Uhlenbeck process, the
direct extension of the theorem holds for generic VPSDE if there exists β̄ > 0 such that 1

β̄
≤ β(t) ≤ β̄.

See De Bortoli [69].
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Lemma 4 (Lemma S11 of De Bortoli et al. [15]). Let (E, E) and (F,F) be two measurable spaces
and K : E×F → [0, 1] be a Markov kernel. Then for any µ0, µ1 ∈ P(E) we have

‖µ0K − µ1K‖TV ≤ ‖µ0 − µ1‖TV .

In addition, for any ϕ : E→ F measurable we get that

‖ϕ#µ0 − ϕ#µ1‖TV ≤ ‖µ0 − µ1‖TV ,

with equality if ϕ is injective.

Proof of Theorem 4. For any k ∈ {1, ..., N}, denoteRk the Markov kernel such that for any z ∈ Rd,
A ∈ B(Rd) and k ∈ {0, ..., N − 1} we have

Rθk+1(z,A) = (4πγk+1)−d/2
∫
A

exp

[
−
‖z̃− T θk+1(z)‖2

4γk+1

]
dz̃,

where for any z ∈ Rd, T θk+1(z) = z + γk+1{z + 2sθ(z, tk)}, where tk =
∑k−1
l γl. Define

QθN =
∏N
l=1R

θ
l . Analogously, let us define

Rφk+1(z,A) = (4πγk+1)−d/2
∫
A

exp

[
−
‖z̃− T φk+1(z)‖2

4γk+1

]
dz̃,

for T φk+1(z) = z + γk+1{z + 2∇ log pφt (z, tk)} and QφN =
∏N
l=1R

φ
l .

Suppose PT |0 is the transition kernel from time zero to T and PR is the reverse-time measure, i.e.,
for any A ∈ B(C) we have PR(A) = P(AR) with AR = {t 7→ ω(T − t) : ω ∈ A}. Then,

pφ0 PT |0P
R
T |0(A) = PTPRT |0(A) = PR0PRT |0(A) = PRT (A) = pφ0 (A). (52)

Combining Eq. (52) with Lemma 4, we have

‖pφ0 − pθ0,N‖TV = ‖pφ0 PT |0PRT |0 − πQθN‖TV
≤ ‖pφ0 PT |0PRT |0 − πPRT |0‖TV + ‖πPRT |0 − πQφN‖TV + ‖πQφN − πQ

θ
N‖TV

≤ ‖pφ0 PT |0 − π‖TV︸ ︷︷ ︸
Epri

+ ‖πPRT |0 − πQφN‖TV︸ ︷︷ ︸
Edis

+ ‖πQφN − πQ
θ
N‖TV︸ ︷︷ ︸

Eest

.

The first two terms, Epri(φ) +Edis(φ), are those terms derived in Theorem 2 of Guth et al. [22]. By
Lemma S13 of De Bortoli et al. [15], the last term, Eest(φ,θ), is bounded by

‖πQφN − πQ
θ
N‖2TV ≤

1

2

∫ T

0

E
[
‖bφ({zt}Tt=0, t)− bθ({zt}Tt=0, t)‖2

]
dt,

where bφ({zt}Tt=0, t) =
∑N−1
k=0 1[tk,tk+1)(t){ztk + 2 log pφt (ztk)} and bθ({zt}Tt=0, t) =∑N−1

k=0 1[tk,tk+1)(t){ztk + 2sθ(ztk , tk)} are the drift terms of piecewise generative processes, given
by

dzt =
[
− zt − 2∇ log pφtk(ztk)

]
dt̄+ g(t) dw̄t

and

dzt =
[
− zt − 2sθ(ztk , tk)

]
dt̄+ g(t) dw̄t

defined each of the interval [tk, tk+1] for k = 0, ..., N − 1, respectively. Therefore, Eest(φ,θ) is
bounded by

Eest(φ,θ) ≤ 1

2

∫ T

0

E
[
‖bφ({zt}Tt=0, t)− bθ({zt}Tt=0, t)‖2

]
dt

= 2

N−1∑
k=0

∫ tk+1

tk

E
[
‖∇ log pφtk(ztk)− sθ(ztk , tk)‖2

]
dt
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Table 21: Performance comparison to linear/nonlinear diffusion models on CIFAR-10. We report
both before/after correction of density estimation performances. We report the baseline performances
of linear diffusions by training our PyTorch implementation based on Song et al. [1, 11] with identical
hyperparameters and networks on both linear/nonlinear diffusions in order to quantify the effect of
nonlinearity in a fair setting. Boldface numbers represent the best performance in a column, and
underlined numbers represent the second best.

SDE Model
Nonlinear Data

Diffusion # Params
NLL (↓) NELBO (↓) Gap (↓) FID (↓)

after
correction

before
correction

w/ residual w/o residual (=NELBO-NLL) ODE PC(after) (before) after before

VE

NCSN++ (FID) 7 63M 4.86 3.66 4.89 4.45 0.03 0.79 - 2.38
INDM (FID) 3 76M 3.22 3.13 3.28 3.24 0.06 0.11 - 2.29

NCSN++ (deep, FID) 7 108M 4.85 3.45 4.86 4.43 0.01 0.98 - 2.20
INDM (deep, FID) 3 118M 3.13 3.03 3.14 3.10 0.01 0.07 - 2.28

VP

DDPM++ (FID) 7 62M 3.21 3.16 3.34 3.32 0.13 0.16 3.90 2.89
INDM (FID) 3 75M 3.17 3.11 3.23 3.18 0.06 0.07 3.61 2.90

DDPM++ (deep, FID) 7 108M 3.19 3.13 3.32 3.29 0.13 0.16 3.69 2.64
INDM (deep, FID) 3 121M 3.09 3.02 3.13 3.08 0.04 0.06 3.67 3.15

DDPM++ (NLL) 7 62M 3.03 2.97 3.13 3.11 0.10 0.14 6.70 5.17
INDM (NLL) 3 75M 2.98 2.95 2.98 2.97 0.00 0.02 6.01 5.30
INDM (NLL, ST) 3 75M 3.01 2.98 3.02 3.01 0.01 0.03 3.88 3.25

DDPM++ (deep, NLL) 7 108M 3.01 2.95 3.11 3.09 0.10 0.14 6.43 4.88
INDM (deep, NLL) 3 121M 2.97 2.94 2.97 2.96 0.00 0.02 5.71 4.79

Table 22: Performance comparison on CIFAR-10.

Class SDE Type Model
NLL (↓) NELBO (↓) Gap (↓) FID (↓)

after
correction

before
correction

w/ residual w/o residual (=NELBO-NLL) ODE PC(after) (before) after before

GAN

StyleGAN2 + ADA [70] - - - - - - 2.92
StyleFormer [32] - - - - - - 2.82
SNGAN + DGflow [71] - - - - - - 9.62
TransGAN [72] - - - - - - 9.26

Autoregressive
PixcelCNN [73] 3.14 - - - - - 65.9
PixcelRNN [73] 3.00 - - - - - -
Sparse Transformer [74] 2.80 - - - - - -

Flow

Glow [56] 3.35 - - - - - 48.9
Residual Flow [23] 3.28 - - - - - 46.4
Flow++ [26] 3.28 - - - - - 46.4
Wolf [24] 3.27 - - - - - 37.5
VFlow [75] 2.98 - - - - - -
DenseFlow-74-10 [4] 2.98 - - - - - 34.9

VAE

NVAE [6] - - 2.91 - - - 23.5
Very Deep VAE [76] - - 2.87 - - - -
δ-VAE [77] - - 2.83 - - - -
DCVAE [78] - - - - - - 17.9
CR-NVAE [31] - - - - - - 2.51

Diffusion

Linear

DDPM [8] - - 3.75 - - - 3.17
NCSNv2 [7] - - - - - - 10.87
DDIM [79] - - - - - - 4.04
IDDPM [60] 3.37 - - - - - 2.90
VDM [28] 2.65 - - - - - 7.41
NCSN++ (FID) [1] 4.85 3.45 4.86 4.43 0.01 0.98 - 2.20
DDPM++ (FID) [1] 3.19 3.13 3.32 3.29 0.13 0.16 3.69 2.64
DDPM++ (NLL) [11] 3.01 2.95 3.11 3.09 0.10 0.14 6.43 4.88
CLD-SGM [20] - - - 3.31 - - 2.25 -

Nonlinear

SBP SB-FBSDE [16] - 2.98 - - - - - 3.18

VAE
-based

LSGM (FID) [9] - - 3.45 3.43 - - 2.10 -
LSGM (NLL)-269M - - - 2.97 - - 6.15 -
LSGM (NLL) - - 2.87 2.87 - - 6.89 -
LSGM (balanced)-109M - - - 2.96 - - 4.60 -
LSGM (balanced) - - 2.98 2.95 - - 2.17 -

Flow
-based

DiffFlow (FID) [13] - - 3.04 - - - - 14.14

INDM (FID) 3.13 3.03 3.14 3.10 0.01 0.07 - 2.28
INDM (NLL) 2.97 2.94 2.97 2.96 0.00 0.02 5.71 4.79
INDM (ST) 3.01 2.98 3.02 3.01 0.01 0.03 3.88 3.25

≤ 2TM2.

Now, from Lemma 4 and the invertibility of the flow transformation, we have

‖pr − (h−1
φ )# ◦ pθ0,N‖TV = ‖(hφ)# ◦ pr − pθ0,N‖TV = ‖pφ0 − pθ0,N‖TV ,

which completes the proof.
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Table 23: Performance comparison on CelebA 64× 64.

Model NLL (↓) NELBO (↓) Gap (↓) FID (↓)
after before w/ res- w/o res- after before ODE PC

UNCSN++ [27] - 1.93 - - - - - 1.92
DDGM [29] - - - - - - - 2.92
Efficient-VDVAE [30] - 1.83 - -
CR-NVAE [31] - - 1.86 - - - - -
DenseFlow-74-10 [4] 1.99 - - - - - - -
StyleFormer [32] - - - - - - 3.66

NCSN++ (VE) 3.41 2.37 3.42 3.96 0.01 1.59 - 3.95
INDM (VE, FID) 2.31 1.95 2.33 2.17 0.02 0.22 - 2.54

DDPM++ (VP, FID) 2.14 2.07 2.21 2.22 0.06 0.14 2.32 3.03
INDM (VP, FID) 2.27 2.13 2.31 2.20 0.04 0.07 1.75 2.32

DDPM++ (VP, NLL) 2.00 1.93 2.09 2.09 0.09 0.16 3.95 5.31
INDM (VP, NLL) 2.05 1.97 2.05 2.00 0.00 0.03 3.06 5.14

Figure 20: Non cherry-picked random samples from CIFAR-10 trained on INDM (VE, deep, FID).
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Figure 21: Non cherry-picked random samples fr om CelebA trained on INDM (VP, FID).
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