
Published as a conference paper at ICLR 2021

A APPENDIX

We summarize the notations used throughout the paper in Table 2. In the following sections, we
provide proofs of all results in the main text and the additional details.

Symbol Meaning

R the set of real numbers
Rm⇥n the set of m⇥ n real matrices
N+

k the set of first k positive numbers
| · |p the vector p-norm
k · kp the operator norm induced by the vector p-norm
k · kF the Frobenius norm
X[i, j] the (i, j)-th element of matrix X

X[i, :] the i-th row of matrix X

X[:, i] the i-th column of matrix X

1n a all-one vector with size n

A an adjacency matrix
Ã an adjacency matrix plus the identity matrix
B the radius of the `2-ball where an input node feature lies
Cin an incidence matrix of incoming nodes
Cout an incidence matrix of outgoing nodes
�, ⇢, g non-linearities in MPGNN

C�, C⇢, Cg Lipschitz constants of �, ⇢, g under the vector 2-norm
C the percolation complexity
D the degree matrix
D the unknown data distribution
d the maximum node degree plus one
e the Euler’s number
fw a model parameterized by vector w
G the space of graph
h the maximum hidden dimension
H a node representation matrix
H the hypothesis/model class
I the identity matrix
l the number of graph convolution layers / message passing steps
L the loss function
L̃ the Laplacian matrix
m the number of training samples
P, E probability and expectation of a random variable
P the prior distribution over hypothesis class
Q the posterior distribution over hypothesis class
S a set of training samples
W a weight matrix
X a node feature matrix where each row corresponds to a node
X the space of node feature
y the graph class label
� the margin parameter
z a data triplet (A,X, y)
Z the space of data triplet
log the natural logarithm

Table 2: Summary of important notations.

A.1 PAC BAYES RESULTS

For completeness, we provide the proofs of the standard PAC-Bayes results as below.

13

Published as a conference paper at ICLR 2021

Lemma A.1. For non-negative continuous random variables X , we have

E[X] =

Z 1

0
P(X � ⌫)d⌫.

Proof.

E[X] =

Z 1

0
XP(X)dX

=

Z 1

0

Z X

0
1d⌫P(X)dX

=

Z 1

0

Z X

0
P(X)d⌫dX

=

Z 1

0

Z 1

⌫
P(X)dXd⌫ (region of the integral is the same)

=

Z 1

0
P(X � ⌫)d⌫

Lemma A.2. [2-side] Let X be a random variable satisfying P(X � ✏) e
�2m✏2 and P(X

�✏) e
�2m✏2 where m � 1 and ✏ > 0, we have

E[e2(m�1)X2

] 2m.

Proof. If m = 1, the inequality holds trivially. Let us now consider m > 1.

E[e2(m�1)X2

] =

Z 1

0
P
⇣
e
2(m�1)X2

� ⌫

⌘
d⌫ (Lemma A.1)

=

Z 1

0
P
✓
X

2 � log ⌫

2(m� 1)

◆
d⌫

=

Z 1

0
P

X �

s
log ⌫

2(m� 1)

!
d⌫ +

Z 1

0
P

X �

s
log ⌫

2(m� 1)

!
d⌫ (5)

Z 1

0
P

X �

s
log ⌫

2(m� 1)

!
d⌫ =

Z 1

0
P

X �

s
log ⌫

2(m� 1)

!
d⌫ +

Z 1

1
P

X �

s
log ⌫

2(m� 1)

!
d⌫

 1 +

Z 1

1
P

X �

s
log ⌫

2(m� 1)

!
d⌫

 1 +

Z 1

1
e
�2m log ⌫

2(m�1) d⌫

= 1 +
⇣
�(m� 1)⌫�

1
m�1

���
1

1

⌘

= m (6)

Similarly, we can show that

Z 1

0
P

X �

s
log ⌫

2(m� 1)

!
d⌫ m (7)

Combining Eq. (5) and Eq. (6), we finish the proof.

14

Published as a conference paper at ICLR 2021

Theorem 2.1. (Two-side) Let P be a prior distribution over H and let � 2 (0, 1). Then, with
probability 1 � � over the choice of an i.i.d. training set S according to D, for all distributions Q
over H and any � > 0, we have

LD,�(Q) LS,�(Q) +

s
DKL(QkP) + log 2m

�

2(m� 1)

Proof. Let �(h) = LD,�(h)� LS,�(h). For any function f(h), we have

Eh⇠Q[f(h)] = Eh⇠Q[log e
f(h)]

= Eh⇠Q[log e
f(h) + log

Q

P
+ log

P

Q
]

= DKL(QkP) + Eh⇠Q

log

✓
P

Q
e
f(h)

◆�

 DKL(QkP) + logEh⇠Q

P

Q
e
f(h)

�
(Jensen’s inequality)

= DKL(QkP) + logEh⇠P

h
e
f(h)

i
. (8)

Let f(h) = 2(m� 1)�(h)2. We have

2(m� 1)Eh⇠Q[�(h)]2 2(m� 1)Eh⇠Q[�(h)2] (Jensen’s inequality)

 DKL(QkP) + logEh⇠P

h
e
2(m�1)�(h)2

i
. (9)

Since LD(h) 2 [0, 1], based on Hoeffding’s inequality, for any ✏ > 0, we have

P(�(h) � ✏) e
�2m✏2

P(�(h) �✏) e
�2m✏2

Hence, based on Lemma A.2, we have

ES

h
e
2(m�1)�(h)2

i
 2m) Eh⇠P

h
ES

h
e
2(m�1)�(h)2

ii
 2m

, ES

h
Eh⇠P

h
e
2(m�1)�(h)2

ii
 2m

Based on Markov’s inequality, we have

P
✓
Eh⇠P

h
e
2(m�1)�(h)2

i
� 2m

�

◆

�ES

h
Eh⇠P

h
e
2(m�1)�(h)2

ii

2m
 �. (10)

Combining Eq. (9) and Eq. (10), with probability 1� �, we have

Eh⇠Q[�(h)]2
DKL(QkP) + log

�
2m
�

�

2(m� 1)
(11)

which proves the theorem.

Lemma 2.2. Let fw(x) : X ! Rk be any model with parameters w, and P be any distribution on
the parameters that is independent of the training data. For any w, we construct a posterior Q(w+u)
by adding any random perturbation u to w, s.t., P(maxx2X |fw+u(x)� fw(x)|1 <

�
4) >

1
2 . Then,

for any �, � > 0, with probability at least 1� � over an i.i.d. size-m training set S according to D,
for any w, we have:

LD,0(fw) LS,�(fw) +

s
2DKL(Q(w + u)kP) + log 8m

�

2(m� 1)

15

Published as a conference paper at ICLR 2021

Proof. Let w̃ = w + u. Let C be the set of perturbation with the following property,

C =

⇢
w

0
����max
x2X

|fw0(x)� fw(x)|1 <
�

4

�
. (12)

w̃ = w + u (w is deterministic and u is stochastic) is distributed according to Q(w̃). We now
construct a new posterior Q̃ as follows,

Q̃(w̃) =

⇢ 1
ZQ(w̃) w̃ 2 C
0 w̃ 2 C̄. (13)

Here Z =
R
w̃2C dQ(w̃) = P

w̃⇠Q
(w̃ 2 C) and C̄ is the complement set of C. We know from the

assumption that Z >
1
2 . Therefore, for any w̃ ⇠ Q̃, we have

max
i2N+

k ,j2N+
k ,x2X

�����|fw̃(x)[i]� fw̃(x)[j]|� |fw(x)[i]� fw(x)[j]|

�����

 max
i2N+

k ,j2N+
k ,x2X

�����fw̃(x)[i]� fw̃(x)[j]� fw(x)[i] + fw(x)[j]

�����

 max
i2N+

k ,j2N+
k ,x2X

�����fw̃(x)[i]� fw(x)[i]

�����+

�����fw̃(x)[j]� fw(x)[j]

�����

 max
i2N+

k ,x2X

�����fw̃(x)[i]� fw(x)[i]

�����+ max
j2N+

k ,x2X

�����fw̃(x)[j]� fw(x)[j]

�����

<
�

4
+

�

4
=

�

2
(14)

Recall that

LD(fw, 0) = P
z⇠D

✓
fw(x)[y] max

j 6=y
fw(x)[j]

◆

LD(fw̃,
�

2
) = P

z⇠D

✓
fw̃(x)[y]

�

2
+ max

j 6=y
fw̃(x)[j]

◆
.

Denoting j
⇤
1 = argmaxj 6=y fw̃(x)[j] and j

⇤
2 = argmaxj 6=y fw(x)[j], from Eq. (14), we have

���fw̃(x)[y]� fw̃(x)[j
⇤
2]� fw(x)[y] + fw(x)[j

⇤
2]
���<

�

2

) fw̃(x)[y]� fw̃(x)[j
⇤
2] < fw(x)[y]� fw(x)[j

⇤
2] +

�

2
(15)

Note that since fw̃(x)[j⇤1] � fw̃(x)[j⇤2], we have
fw̃(x)[y]� fw̃(x)[j

⇤
1] fw̃(x)[y]� fw̃(x)[j

⇤
2]

 fw(x)[y]� fw(x)[j
⇤
2] +

�

2
(Eq. (15))

Therefore, we have

fw(x)[y]� fw(x)[j
⇤
2] 0) fw̃(x)[y]� fw̃(x)[j

⇤
1]

�

2
,

which indicates P
z⇠D

(fw(x)[y] fw(x)[j⇤2]) P
z⇠D

�
fw̃(x)[y] fw̃(x)[j⇤1] +

�
2

�
, or equivalently

LD,0(fw) LD, �2
(fw̃). (16)

Note that this holds for any perturbation w̃ ⇠ Q̃.

Again, recall that

LD, �2
(fw̃) = P

z⇠D

✓
fw̃(x)[y]

�

2
+ max

j 6=y
fw̃(x)[j]

◆

LD,�(fw) = P
z⇠D

✓
fw(x)[y] � +max

j 6=y
fw(x)[j]

◆

16

Published as a conference paper at ICLR 2021

From Eq. (14), we have
���fw̃(x)[y]� fw̃(x)[j

⇤
1]� fw(x)[y] + fw(x)[j

⇤
1]
���<

�

2

) fw(x)[y]� fw(x)[j
⇤
1] < fw̃(x)[y]� fw̃(x)[j

⇤
1] +

�

2
(17)

Note that since fw(x)[j⇤2] � fw(x)[j⇤1], we have

fw(x)[y]� fw(x)[j
⇤
2] fw(x)[y]� fw(x)[j

⇤
1]

 fw̃(x)[y]� fw̃(x)[j
⇤
1] +

�

2
(Eq. (17))

Therefore, we have

fw̃(x)[y]� fw̃(x)[j
⇤
1]

�

2
) fw(x)[y]� fw(x)[j

⇤
2] �,

which indicates LD, �2
(fw̃) LD,�(fw). Therefore, from the perspective of the empirical estimation

of the probability, for any w̃ ⇠ Q̃, we almost surely have

LS, �2
(fw̃) LS,�(fw). (18)

Now with probability at least 1� �, we have

LD,0(fw) Ew̃⇠Q̃

h
LD, �2

(fw̃)
i

(Eq. (16))

 Ew̃⇠Q̃

h
LS, �2

(fw̃)
i
+

s
DKL(Q̃kP) + log 2m

�

2(m� 1)
(Theorem 2.1)

 LS,�(fw) +

s
DKL(Q̃kP) + log 2m

�

2(m� 1)
(Eq. (18)) (19)

Note that

DKL(QkP) =

Z

w̃2C

Q log
Q

P
dw̃ +

Z

w̃2C̄

Q log
Q

P
dw̃

=

Z

w̃2C

QZ

Z
log

Q

ZP
dw̃ +

Z

w̃2C

Q logZdw̃

+

Z

w̃2C̄

Q(1� Z)

1� Z
log

Q

(1� Z)P
dw̃ +

Z

w̃2C̄

Q log(1� Z)dw̃

= ZDKL(Q̃kP) + (1� Z)DKL(Q̄kP)�H(Z), (20)

where Q̄ denotes the normalized density of Q restricted to C̄. H(Z) is the entropy of a Bernoulli
random variable with parameter Z. Since we know 1

2 Z 1 from the beginning, 0 H(Z)
log 2, and DKL is nonnegative, from Eq. (20), we have

DKL(Q̃kP) =
1

Z

⇥
DKL(QkP) +H(Z)� (1� Z)DKL(Q̄kP)

⇤

 1

Z
[DKL(QkP) +H(Z)]

 2DKL(QkP) + 2 log 2. (21)

Combining Eq. (19) and Eq. (21), we have

LD,0(fw) LS,�(fw) +

s
DKL(QkP) + 1

2 log
8m
�

m� 1
, (22)

which finishes the proof.

17

Published as a conference paper at ICLR 2021

A.2 GRAPH RESULTS

In this part, we provide a result on the graph Laplacian used by GCNs along with the proof. It is
used in the perturbation analysis of GCNs.

Lemma A.3. Let A be the binary adjacency matrix of an arbitrary simple graph G = (V,E) and
Ã = A + I . We define the graph Laplacian L = D

� 1
2 ÃD

� 1
2 where D is the degree matrix of Ã.

Then we have kLk1 = kLk1
p
d, kLk2 1, and kLkF

p
r where r is the rank of L and d� 1

is the maximum node degree of G.

Proof. First, Ã is symmetric and element-wise nonnegative. Denoting n = |V |, we have Ã 2 Rn⇥n,
Di =

Pn
j=1 Ã[i, j], and 1 Di d, 8i 2 N+

n . It is easy to show that L[i, j] = Ã[i, j]/
p
DiDj .

For the infinity norm and 1-norm, we have kLk1 = kL>k1 = kLk1. Moreover,

kLk1 = max
i2N+

n

nX

j=1

|L[i, j]|

= max
i2N+

n

nX

j=1

Ã[i, j]p
DiDj

 max
i2N+

n

1p
Di

nX

j=1

Ã[i, j]

= max
i2N+

n

p
Di

p
d (23)

For the spectral norm, based on the definition, we have

kLk2 = sup
x 6=0

|Lx|2
|x|2

= �max, (24)

where �max is the maximum singular value of L. Since L is symmetric, we have �i = |�i| where �i

is the i-th eigenvalue of L. Hence, �max = maxi |�i|. From Raylaigh quotient and Courant–Fischer
minimax theorem, we have

kLk2 = max
i

|�i| = max
x 6=0

����
x
>
Lx

x>x

����

= max
x 6=0

�����

Pn
i=1

Pn
j=1 L[i, j]xixjPn
i=1 x

2
i

�����

= max
x 6=0

�����

Pn
i=1

Pn
j=1 Ã[i, j]xixj/

p
DiDjPn

i=1 x
2
i

�����

= max
x 6=0

�����

P
(i,j)2Ẽ xixj/

p
DiDjPn

i=1 x
2
i

�����

 max
x 6=0

�����

1
2

P
(i,j)2Ẽ

�
x
2
i /Di + x

2
j/Dj

�
Pn

i=1 x
2
i

�����

= max
x 6=0

�����

P
(i,j)2Ẽ x

2
i /DiPn

i=1 x
2
i

����� = max
x 6=0

����

Pn
i=1 x

2
iPn

i=1 x
2
i

���� = 1, (25)

where Ẽ is the union of the set of edges E in the original graph and the set of self-loops. For
Frobenius norm, we have kLkF

p
rkLk2

p
r where r is the rank of L.

18

Published as a conference paper at ICLR 2021

A.3 GCN RESULTS

In this part, we provide the proofs of the main results regarding GCNs.
Lemma 3.1. (GCN Perturbation Bound) For any B > 0, l > 1, let fw 2 H : X ⇥ G ! RK be a
l-layer GCN. Then for any w, and x 2 XB,h0 , and any perturbation u = vec({Ui}li=1) such that
8i 2 N+

l , kUik2 1
l kWik2, the change in the output of GCN is bounded as,

|fw+u(X,A)� fw(X,A)|2 eBd
l�1
2

lY

i=1

kWik2

!
lX

k=1

kUkk2
kWkk2

Proof. We first perform the recursive perturbation analysis on node representations of all layers
except the last one, i.e., the readout layer. Then we derive the bound for the graph representation of
the last readout layer.

Perturbation Analysis on Node Representations. In GCN, for any layer j < l besides the last
readout one, the node representations are,

f
j
w(X,A) = Hj = �j

⇣
L̃Hj�1Wj

⌘
. (26)

We add perturbation u to the weights w, i.e., for the j-th layer, the perturbed weights are Wj + Uj .
For the ease of notation, we use the superscript of prime to denote the perturbed node represen-
tations, e.g., H 0

j = f
j
w+u(X,A). Let �j = f

j
w+u(X,A) � f

j
w(X,A) = H

0
j � Hj . Note that

�j 2 Rn⇥hj . Let j = max
i

|�j [i, :]|2 = max
i

��H 0
j [i, :]�Hj [i, :]

��
2

and �j = max
i

|Hj [i, :]|2. We
denote the u

⇤
j = argmax

i
|�j [i, :]|2 and v

⇤
j = argmax

i
|Hj [i, :]|2.

Upper Bound on the Max Node Representation For any layer j < l, we can derive an upper
bound on the maximum (w.r.t. `2 norm) node representation as follows,

�j = max
i

|Hj [i, :]|2 =
���
⇣
�j

⇣
L̃Hj�1Wj

⌘⌘
[v⇤j , :]

���
2
=
����j

⇣⇣
L̃Hj�1Wj

⌘
[v⇤j , :]

⌘���
2

���
⇣
L̃Hj�1Wj

⌘
[v⇤j , :]

���
2

(Lipschitz property of ReLU under vector 2-norm)

=
���
⇣
L̃Hj�1

⌘
[v⇤j , :]Wj

���
2

���
⇣
L̃Hj�1

⌘
[v⇤j , :]

���
2
kWjk2 =

�����
X

k2Nv⇤
j

L̃[v⇤j , k]Hj�1[k, :]

�����
2

kWjk2

X

k2Nv⇤
j

L̃[v⇤j , k] |Hj�1[k, :]|2 kWjk2

X

k2Nv⇤
j

L̃[v⇤j , k]�j�1 kWjk2
�
since 8i, |Hj�1[i, :]|2 �j�1

�

 d
1
2�j�1 kWjk2

 d
j
2�0

jY

i=1

kWik2 (unroll the recursion)

 d
j
2B

jY

i=1

kWik2, (27)

where in the last inequality we use the fact �0 = maxi |X[i, :]|2 B based on the assumption A3.
Nv⇤

j
is the set of neighboring nodes (including itself) of node v⇤j . In the third from the last inequality,

we use the Lemma A.3 to derive the following fact that 8i,
X

k2Ni

L̃[i, k] =
X

k2Ni

���L̃[i, k]
���

���L̃
���
1

p
d. (28)

19

Published as a conference paper at ICLR 2021

Upper Bound on the Max Change of Node Representation. For any layer j < l, we can derive
an upper bound on the maximum (w.r.t. `2 norm) change between the representations with and
without the weight perturbation for any node as follows,

 j = max
i

��H 0
j [i, :]�Hj [i, :]

��
2
=

����j

⇣
L̃H

0
j�1(Wj + Uj)

⌘
[u⇤

j , :]� �j

⇣
L̃Hj�1Wj

⌘
[u⇤

j , :]
���
2

���
⇣
L̃H

0
j�1(Wj + Uj)

⌘
[u⇤

j , :]�
⇣
L̃Hj�1Wj

⌘
[u⇤

j , :]
���
2

(Lipschitz property of ReLU)

=
���
⇣
(L̃H 0

j�1)[u
⇤
j , :]

⌘
(Wj + Uj)�

⇣
(L̃Hj�1)[u

⇤
j , :]

⌘
Wj

���
2

=
���
⇣⇣

(L̃H 0
j�1)[u

⇤
j , :]

⌘
�

⇣
(L̃Hj�1)[u

⇤
j , :]

⌘⌘
(Wj + Uj) +

⇣
(L̃Hj�1)[u

⇤
j , :]

⌘
Uj

���
2

=

�������

0

B@
X

k2Nu⇤
j

L̃[u⇤
j , k]

�
H

0
j�1[k, :]�Hj�1[k, :]

�
1

CA (Wj + Uj) +

0

B@
X

k2Nu⇤
j

L̃[u⇤
j , k]Hj�1[k, :]

1

CAUj

�������
2

�����
X

k2Nu⇤
j

L̃[u⇤
j , k]

�
H

0
j�1[k, :]�Hj�1[k, :]

�
�����
2

kWj + Ujk2 +

�����
X

k2Nu⇤
j

L̃[u⇤
j , k]Hj�1[k, :]

�����
2

kUjk2

X
k2Nu⇤

j

L̃[u⇤
j , k]

��H 0
j�1[k, :]�Hj�1[k, :]

��
2
kWj + Ujk2 +

X
k2Nu⇤

j

L̃[u⇤
j , k] |Hj�1[k, :]|2 kUjk2

X
k2Nu⇤

j

L̃[u⇤
j , k] j�1 kWj + Ujk2 +

X
k2Nu⇤

j

L̃[u⇤
j , k]�j�1 kUjk2

p

d j�1 kWj + Ujk2 +
p

d�j�1 kUjk2 , (29)

where in the second from the last inequality we use the fact 8k,
��H 0

j�1[k, :]�Hj�1[k, :]
��
2
 j�1

and 8k, |Hj�1[k, :]|2 �j�1. In the last inequality, we again use the fact in Eq. (28). We can
simplify the notations in Eq. (29) as j aj�1 j�1 + bj�1 where aj�1 =

p
dkWj + Ujk2 and

bj�1 =
p
d�j�1kUjk2. Since �0 = X �X = 0, we have 0 = 0. It is straightforward to work

out the recursion as,

 j
j�1X

k=0

bk

j�1Y

i=k+1

ai

!
=

j�1X

k=0

d
1
2�kkUk+1k2

j�1Y

i=k+1

d
1
2 kWi+1 + Ui+1k2

!

=
j�1X

k=0

d
j�k
2 �kkUk+1k2

jY

i=k+2

kWi + Uik2

!
. (30)

Based on Eq. (27), we can instantiate the bound in Eq. (30) as

 j
j�1X

k=0

d
j�k
2 �kkUk+1k2

jY

i=k+2

kWi + Uik2

!

j�1X

k=0

d
j�k
2

d

k
2 B

kY

i=1

kWik2

!
kUk+1k2

jY

i=k+2

(kWik2 + kUik2)
!

 B

j�1X

k=0

d
j
2

kY

i=1

kWik2

!
kUk+1k2

jY

i=k+2

✓
1 +

1

l

◆
kWik2

!

= B

j�1X

k=0

d
j
2

k+1Y

i=1

kWik2

!
kUk+1k2
kWk+1k2

jY

i=k+2

✓
1 +

1

l

◆
kWik2

!

= Bd
j
2

jY

i=1

kWik2

!
j�1X

k=0

kUk+1k2
kWk+1k2

✓
1 +

1

l

◆j�k�1

 Bd
j
2

jY

i=1

kWik2

!
jX

k=1

kUkk2
kWkk2

✓
1 +

1

l

◆j�k

(31)

20

Published as a conference paper at ICLR 2021

Final Bound on the Readout Layer Now let us consider the average readout function in the last
layer, i.e., the l-th layer. Based on Eq. (27) and Eq. (31), we can bound the change of GCN’s output
with and without the weight perturbation as follows,

|�l|2 =

����
1

n
1nH

0
l�1(Wl + Ul)�

1

n
1nHl�1Wl

����
2

=

����
1

n
1n�l�1(Wl + Ul) +

1

n
1nHl�1Ul

����
2

 1

n
|1n�l�1(Wl + Ul)|2 +

1

n
|1nHl�1Ul|2

 1

n
kWl + Ulk2|1n�l�1|2 +

1

n
kUlk2|1nHl�1|2

=
1

n
kWl + Ulk2

�����

nX

i=1

�l�1[i, :]

�����
2

+
1

n
kUlk2

�����

nX

i=1

Hl�1[i, :]

�����
2

 1

n
kWl + Ulk2

nX

i=1

|�l�1[i, :]|2

!
+

1

n
kUlk2

nX

i=1

|Hl�1[i, :]|2

!

kWl + Ulk2 l�1 + kUlk2 �l�1

kWl + Ulk2 Bd
l�1
2

l�1Y

i=1

kWik2

!
l�1X

k=1

kUkk2
kWkk2

✓
1 +

1

l

◆l�1�k

+ kUlk2 Bd
l�1
2

l�1Y

i=1

kWik2

=Bd
l�1
2

"
kWl + Ulk2

l�1Y

i=1

kWik2

!
l�1X

k=1

kUkk2
kWkk2

✓
1 +

1

l

◆l�1�k

+ kUlk2
l�1Y

i=1

kWik2

#

=Bd
l�1
2

lY

i=1

kWik2

!"
kWl + Ulk2

kWlk2

l�1X

k=1

kUkk2
kWkk2

✓
1 +

1

l

◆l�1�k

+
kUlk2
kWlk2

#

Bd
l�1
2

lY

i=1

kWik2

!"✓
1 +

1

l

◆ l�1X

k=1

kUkk2
kWkk2

✓
1 +

1

l

◆l�1�k

+
kUlk2
kWlk2

#

=Bd
l�1
2

lY

i=1

kWik2

!✓
1 +

1

l

◆l
"
l�1X

k=1

kUkk2
kWkk2

✓
1 +

1

l

◆�k

+
kUlk2
kWlk2

✓
1 +

1

l

◆�l
#

eBd
l�1
2

lY

i=1

kWik2

!"
lX

k=1

kUkk2
kWkk2

Use 1

✓
1 +

1

l

◆l

 e

!
(32)

which proves the lemma.

Theorem 3.2. (GCN Generalization Bound) For any B > 0, l > 1, let fw 2 H : X ⇥ G ! RK

be a l-layer GCN. Then for any �, � > 0, with probability at least 1 � � over the choice of an i.i.d.
size-m training set S according to D, for any w, we have,

LD,0(fw) LS,�(fw) +O

0

BBBB@

vuuutB2dl�1l2h log(lh)
lQ

i=1
kWik22

lP
i=1

kWik2
F

kWik2
2
+ log ml

�

�2m

1

CCCCA

Proof. Let � =
⇣Ql

i=1 kWik2
⌘1/l

. We normalize the weights as W̃i = �
kWik2

Wi. Due to the
homogeneity of ReLU, i.e., a�(x) = �(ax), 8a � 0, we have fw = fw̃. We can also verify thatQl

i=1 kWik2 =
Ql

i=1 kW̃ik2 and kWikF /kWik2 = kW̃ikF /kW̃ik2, i.e., the terms appear in the
bound stay the same after applying the normalization. Therefore, w.l.o.g., we assume that the norm
is equal across layers, i.e., 8i, kWik2 = �.

21

Published as a conference paper at ICLR 2021

Consider the prior P = N (0,�2
I) and the random perturbation u ⇠ N (0,�2

I). Note that the � of
the prior and the perturbation are the same and will be set according to �. More precisely, we will set
the � based on some approximation �̃ of � since the prior P can not depend on any learned weights
directly. The approximation �̃ is chosen to be a cover set which covers the meaningful range of �.
For now, let us assume that we have a fix �̃ and consider � which satisfies |� � �̃| 1

l �. Note that
this also implies

|� � �̃| 1

l
�)

✓
1� 1

l

◆
� �̃

✓
1 +

1

l

◆
�

)
✓
1� 1

l

◆l�1

�
l�1 �̃

l�1
✓
1 +

1

l

◆l�1

�
l�1

)
✓
1� 1

l

◆l

�
l�1 �̃

l�1
✓
1 +

1

l

◆l

�
l�1

) 1

e
�
l�1 �̃

l�1 e�
l�1 (33)

From Tropp (2012), for Ui 2 Rh⇥h and Ui ⇠ N (0,�2
I), we have,

P (kUik2 � t) 2he�t2/2h�2

. (34)

Taking a union bound, we have

P (kU1k2 < t & · · · & kUlk2 < t) = 1� P (9i, kUik2 � t)

� 1�
lX

i=1

P (kUik2 � t)

� 1� 2lhe�t2/2h�2

. (35)

Setting 2lhe�t2/2h�2

= 1
2 , we have t = �

p
2h log(4lh). This implies that the probability that the

spectral norm of the perturbation of any layer is no larger than �

p
2h log(4lh) holds with probability

at least 1
2 . Plugging this bound into Lemma 3.1, we have with probability at least 1

2 ,

|fw+u(X,A)� fw(X,A)|2 eBd
l�1
2

lY

i=1

kWik2

!
lX

k=1

kUkk2
kWkk2

= eBd
l�1
2 �

l
lX

k=1

kUkk2
�

 eBd
l�1
2 �

l�1
l�

p
2h log(4lh)

 e
2
Bd

l�1
2 �̃

l�1
l�

p
2h log(4lh) �

4
, (36)

where we can set � = �

42Bd
l�1
2 �̃l�1l

p
h log(4lh)

to get the last inequality. Note that Lemma 3.1 also

requires 8i 2 N+
l , kUik2 1

l kWik2. The requirement is satisfied if � �

l
p

2h log(4lh)
which in

turn can be satisfied if

�

4eBd
l�1
2 �l�1l

p
2h log(4lh)

 �

l

p
2h log(4lh)

, (37)

since the chosen value of � satisfies � �

4eBd
l�1
2 �l�1l

p
2h log(4lh)

. Note that Eq. (37) is equivalent

to �
4eBd

1�l
2 �

l. We will see how to satisfy this condition later.

22

Published as a conference paper at ICLR 2021

We now compute the KL term in the PAC-Bayes bound in Lemma 2.2.

KL (QkP) =
|w|22
2�2

=
422B2

d
l�1

�̃
2l�2

l
2
h log(4lh)

2�2

lX

i=1

kWik2F

 O

B

2
d
l�1

�
2l
l
2
h log(lh)

�2

lX

i=1

kWik2F
�2

!

 O

B

2
d
l�1

l
2
h log(lh)

Ql
i=1 kWik22

�2

lX

i=1

kWik2F
kWik22

!
. (38)

From Lemma 2.2, fixing any �̃, with probability 1 � � and for all w such that |� � �̃| 1
l �, we

have,

LD,0(fw) LS,�(fw) +O

0

BBBB@

vuuutB2dl�1l2h log(lh)
lQ

i=1
kWik22

lP
i=1

kWik2
F

kWik2
2
+ log m

�

�2m

1

CCCCA
. (39)

Finally, we need to consider multiple choices of �̃ so that for any �, we can bound the generalization
error like Eq. (39). First, we only need to consider values of � in the following range,

1p
d

�
p
d

2B

!1/l

 � 1p
d

�
p
md

2B

!1/l

, (40)

since otherwise the bound holds trivially as LD,0(fw) 1 by definition. Note that the lower bound
in Eq. (40) ensures that Eq. (37) holds which in turn justifies the applicability of Lemma 3.1. If

� <
1p
d

⇣
�
p
d

2B

⌘1/l
, then for any (X,A) and any j 2 N+

K , |f(X,A)[j]| �
2 . To see this, we have,

|fw(X,A)[j]| |fw(X,A)|2 = | 1
n
1nHl�1Wl|2

 1

n
|1nHl�1|2kWlk2

 kWlk2 max
i

|Hl�1[i, :]|2

 Bd
l�1
2

lY

i=1

kWik2 = d
l�1
2 �

l
B (Use Eq. (27))

= d
l�1
2 B

�

2Bd
l�1
2

 �

2
. (41)

Therefore, by the definition in Eq. (4), we always have LS,�(fw) = 1 when � <
1p
d

⇣
�
p
d

2B

⌘1/l
.

Alternatively, if � >
1p
d

⇣
�
p
md

2B

⌘1/l
, the term inside the big-O notation in Eq. (39) would be,

vuuutB2dl�1l2h log(lh)
lQ

i=1
kWik22

lP
i=1

kWik2
F

kWik2
2
+ log m

�

�2m
�

vuut l2h log(lh)

4

lX

i=1

kWik2F
kWik22

�
r

l2h log(lh)

4
� 1, (42)

where we use the facts that kWikF � kWik2 and we typically choose h � 2 in practice and l � 2.

Since we only need to consider � in the range of Eq. (40), a sufficient condition to make |���̃| 1
l �

hold would be |� � �̃| 1
l
p
d

⇣
�
p
d

2B

⌘1/l
. Therefore, if we can find a covering of the interval in Eq.

23

Published as a conference paper at ICLR 2021

(40) with radius 1
l
p
d

⇣
�
p
d

2B

⌘1/l
and make sure bounds like Eq. (39) holds while �̃ takes all possible

values from the covering, then we can get a bound which holds for all �. It is clear that we only
need to consider a covering C with size |C| = l

2

⇣
m

1
2l � 1

⌘
. Therefore, denoting the event of Eq.

(39) with �̃ taking the i-th value of the covering as Ei, we have

P
�
E1 & · · · & E|C|

�
= 1� P

�
9i, Ēi

�
� 1�

|C|X

i=1

P
�
Ēi

�
� 1� |C|�. (43)

Note Ēi denotes the complement of Ei. Hence, with probability 1� � and for all w, we have,

LD,0(fw) LS,�(fw) +O

0

BBBB@

vuuutB2dl�1l2h log(lh)
lQ

i=1
kWik22

lP
i=1

kWik2
F

kWik2
2
+ log m|C|

�

�2m

1

CCCCA

= LS,�(fw) +O

0

BBBB@

vuuutB2dl�1l2h log(lh)
lQ

i=1
kWik22

lP
i=1

kWik2
F

kWik2
2
+ log ml

�

�2m

1

CCCCA
, (44)

which proves the theorem.

A.4 MPGNNS RESULTS

In this part, we provide the proofs of the main results regarding MPGNNs.
Lemma 3.3. (MPGNN Perturbation Bound) For any B > 0, l > 1, let fw 2 H : X ⇥G ! RK be a
l-step MPGNN. Then for any w, and x 2 XB,h0 , and any perturbation u = vec({U1, U2, Ul}) such
that ⌘ = max

⇣
kU1k2

kW1k2
,
kU2k2

kW2k2
,
kUlk2

kWlk2

⌘
 1

l , the change in the output of MPGNN is bounded as,

|fw+u(X,A)� fw(X,A)|2
(
eB (l + 1)2 ⌘kW1k2kWlk2C�, if dC = 1

eBl⌘kW1k2kWlk2C�
(dC)l�1�1

dC�1 , otherwise

where C = C�C⇢CgkW2k2.

Proof. We first perform the recursive perturbation analysis on node representations of all steps ex-
cept the last one, i.e., the readout step. Then we derive the bound for the graph representation of the
last readout step.

Perturbation Analysis on Node Representations. In message passing GNNs, for any step j < l

besides the last readout one, the node representations are,

M̄j = Cing
�
C

>
outHj�1

�

Hj = �
�
XW1 + ⇢

�
M̄j

�
W2

�
, (45)

where the incidence matrices Cin 2 Rn⇥c and Cout 2 Rn⇥c (recall c is the number of edges).
Moreover, since each edge only connects one incoming and one outgoing node, we have,

cX

k=1

Cin[i, k] max
i

cX

k=1

Cin[i, k] = kCink1 d

nX

t=1

Cout[t, k] max
k

nX

t=1

Cout[t, k] kCoutk1 1 (46)

where d � 1 is the maximum node degree. Note that one actually has kCink1 d � 1 for simple
graphs. Since some models in the literature pre-process the graphs by adding self-loops, we thus
relax it to kCink1 d which holds in both cases.

24

Published as a conference paper at ICLR 2021

We add perturbation u to the weights w, i.e., the perturbed weights are W1 + U1, W2 + U2 and
Wl + Ul. For the ease of notation, we use the superscript of prime to denote the perturbed node
representations, e.g., H 0

j = f
j
w+u(X,A). Let �j = f

j
w+u(X,A) � f

j
w(X,A) = H

0
j � Hj . Note

that �j 2 Rn⇥hj . Let j = max
i

|�j [i, :]|2 = max
i

��H 0
j [i, :]�Hj [i, :]

��
2

and �j = max
i

|Hj [i, :]|2.
We denote the u

⇤
j = argmax

i
|�j [i, :]|2 and v

⇤
j = argmax

i
|Hj [i, :]|2. To simplify the derivation,

we abbreviate the following statistics = C�BkW1k2 and ⌧ = dC throughout the proof where
C = C�C⇢CgkW2k2 is the percolation complexity.

Upper Bound on the Max Node Representation. For any step j < l, we can derive an upper
bound on the `2 norm of the aggregated message of any node i as follows,

��M̄j [i, :]
��
2
=

�����

cX

k=1

Cin[i, k]
�
g
�
C

>
outHj�1

��
[k, :]

�����
2

=

�����

cX

k=1

Cin[i, k]g
�
C

>
out[k, :]Hj�1

�
�����
2

cX

k=1

Cin[i, k]
��g
�
C

>
out[k, :]Hj�1

���
2

cX

k=1

Cin[i, k]Cg

��C>
out[k, :]Hj�1

��
2
=

cX

k=1

Cin[i, k]Cg

�����

nX

t=1

C
>
out[k, t]Hj�1[t, :]

�����
2

cX

k=1

Cin[i, k]Cg

nX

t=1

Cout[t, k] |Hj�1[t, :]|2

!

cX

k=1

Cin[i, k]Cg

nX

t=1

Cout[t, k]�j�1

!

 dCg�j�1. (47)

Then we can derive an upper bound on the maximum (w.r.t. `2 norm) node representation as follows,

�j = max
i

|Hj [i, :]|2 =
���
�
XW1 + ⇢

�
M̄j

�
W2

�
[v⇤j , :]

��
2

=
���
��
XW1 + ⇢

�
M̄j

�
W2

�
[v⇤j , :]

���
2

 C�

���XW1 + ⇢
�
M̄j

�
W2

�
[v⇤j , :]

��
2

= C�

��(XW1) [v
⇤
j , :] +

�
⇢
�
M̄j

�
W2

�
[v⇤j , :]

��
2

 C�

��(XW1) [v
⇤
j , :]
��
2
+ C�

���⇢
�
M̄j

�
W2

�
[v⇤j , :]

��
2

= C�

��X[v⇤j , :]W1

��
2
+ C�

��⇢
�
M̄j

�
[v⇤j , :]W2

��
2

 C�

��X[v⇤j , :]
��
2
kW1k2 + C�

��⇢
�
M̄j

�
[v⇤j , :]

��
2
kW2k2

 C�BkW1k2 + C�

��⇢
�
M̄j [v

⇤
j , :]
���

2
kW2k2

 C�BkW1k2 + C�C⇢

��M̄j [v
⇤
j , :]
��
2
kW2k2

 C�BkW1k2 + dC�C⇢Cg�j�1kW2k2 = + ⌧�j�1

 ⌧
j�0 +

j�1X

i=0

⌧
j�1�i

 (Unroll recursion)

=
j�1X

i=0

⌧
j�1�i

 (Use �0 = 0)

=

(
j, if ⌧ = 1

⌧j�1
⌧�1 , otherwise

(48)

Upper Bound on the Max Change of Node Representation. For any step j < l, we can derive
an upper bound on the maximum (w.r.t. `2 norm) change between the aggregated message with and
without the weight perturbation for any node i as follows,

25

Published as a conference paper at ICLR 2021

��M̄ 0
j [i, :]� M̄j [i, :]

��
2

���Cing

�
C

>
outH

0
j�1

��
[i, :]�

�
Cing

�
C

>
outHj�1

��
[i, :]

��
2

=

�����

cX

k=1

Cin[i, k]
�
g
�
C

>
outH

0
j�1

�
� g

�
C

>
outHj�1

��
[k, :]

�����
2

cX

k=1

Cin[i, k]
���g
�
C

>
outH

0
j�1

�
� g

�
C

>
outHj�1

��
[k, :]

��
2

=
cX

k=1

Cin[i, k]
��g
��
C

>
outH

0
j�1

�
[k, :]

�
� g

��
C

>
outHj�1

�
[k, :]

���
2

cX

k=1

Cin[i, k]Cg

���C>
outH

0
j�1

�
[k, :]�

�
C

>
outHj�1

�
[k, :]

��
2

=
cX

k=1

Cin[i, k]Cg

�����

nX

t=1

Cout[t, k]H
0
j�1[t, :]�

nX

t=1

Cout[t, k]Hj�1[t, :]

�����
2

=
cX

k=1

Cin[i, k]Cg

�����

nX

t=1

Cout[t, k]
�
H

0
j�1[t, :]�Hj�1[t, :]

�
�����
2

cX

k=1

Cin[i, k]Cg

nX

t=1

Cout[t, k]
��H 0

j�1[t, :]�Hj�1[t, :]
��
2

!

 dCg j�1 (49)

Based on Eq. (49), we can derive an upper bound on the maximum (w.r.t. `2 norm) change between
the representations with and without the weight perturbation for any node as follows,

 j =max
i

��H 0
j [i, :]�Hj [i, :]

��
2

=
����
�
X(W1 + U1) + ⇢

�
M̄

0
j

�
(W2 + U2)

��
[u⇤

j , :]�
�
�
�
XW1 + ⇢

�
M̄j

�
W2

��
[u⇤

j , :]
��
2

=
���
��
X(W1 + U1) + ⇢

�
M̄

0
j

�
(W2 + U2)

�
[u⇤

j , :]
�
� �

��
XW1 + ⇢

�
M̄j

�
W2

�
[u⇤

j , :]
���

2

C�

���X(W1 + U1) + ⇢
�
M̄

0
j

�
(W2 + U2)

�
[u⇤

j , :]�
�
XW1 + ⇢

�
M̄j

�
W2

�
[u⇤

j , :]
��
2

C�

��X[u⇤
j , :]U1 +

�
⇢
�
M̄

0
j

��
[u⇤

j , :](W2 + U2)�
�
⇢
�
M̄j

��
[u⇤

j , :]W2

��
2

=C�

��X[u⇤
j , :]U1 +

�
⇢
�
M̄

0
j

�
� ⇢

�
M̄j

��
[u⇤

j , :](W2 + U2) + ⇢
�
M̄j

�
[u⇤

j , :]U2

��
2

C�B kU1k2 + C�C⇢

��M̄ 0
j [u

⇤
j , :]� M̄j [u

⇤
j , :]
��
2
kW2 + U2k2 + C�C⇢

��M̄j [u
⇤
j , :]
��
2
kU2k2

kU1k2
kW1k2

+ dC j�1
kW2 + U2k2

kW2k2
+ dC�j�1

kU2k2
kW2k2

(Use Eq. (47) and (49))

⌧

✓
1 +

kU2k2
kW2k2

◆
 j�1 +

kU1k2
kW1k2

+ ⌧�j�1
kU2k2
kW2k2

(50)

If ⌧ = 1, then we have,

 j ⌧

✓
1 +

kU2k2
kW2k2

◆
 j�1 +

kU1k2
kW1k2

+ ⌧�j�1
kU2k2
kW2k2

✓
1 +

kU2k2
kW2k2

◆
 j�1 +

✓
kU1k2
kW1k2

+
kU2k2
kW2k2

(j � 1)

◆
(Use Eq. (48))

 (1 + ⌘) j�1 + ⌘ (1 + (j � 1))

✓
Use ⌘ = max

✓
kU1k2
kW1k2

,
kU2k2
kW2k2

,
kUlk2
kWlk2

◆◆

=(1 + ⌘) j�1 + ⌘j. (51)

26

Published as a conference paper at ICLR 2021

If ⌧ 6= 1, then we have,

 j ⌧

✓
1 +

kU2k2
kW2k2

◆
 j�1 +

kU1k2
kW1k2

+ ⌧�j�1
kU2k2
kW2k2

⌧

✓
1 +

kU2k2
kW2k2

◆
 j�1 +

✓
kU1k2
kW1k2

+ ⌧
kU2k2
kW2k2

⌧
j�1 � 1

⌧ � 1

◆
(Use Eq. (48))

⌧ (1 + ⌘) j�1 + ⌘

✓
1 +

⌧
j � ⌧

⌧ � 1

◆ ✓
Use ⌘ = max

✓
kU1k2
kW1k2

,
kU2k2
kW2k2

,
kUlk2
kWlk2

◆◆

=⌧ (1 + ⌘) j�1 + ⌘

✓
⌧
j � 1

⌧ � 1

◆
. (52)

Recall from Eq. (30), if j aj�1 j�1 + bj�1 and 0 = 0, then j
Pj�1

k=0 bk

⇣Qj�1
i=k+1 ai

⌘
.

If ⌧ = 1, then we have aj�1 = 1 + ⌘, bj�1 = ⌘j in our case and,

 j
Xj�1

k=0
bk

✓Yj�1

i=k+1
ai

◆
=
Xj�1

k=0
⌘(k + 1) (1 + ⌘)j�k�1

⌘

✓
1 +

1

l

◆j j�1X

k=0

(k + 1)

✓
1 +

1

l

◆�k�1 ✓
Use ⌘ 1

l

◆

=⌘

✓
1 +

1

l

◆j jX

k=1

k

✓
1 +

1

l

◆�k

=⌘

✓
1 +

1

l

◆j ✓
1 +

1

l

◆�1 1� (j + 1)
�
1 + 1

l

��j
+ j

�
1 + 1

l

��j�1

⇣
1�

�
1 + 1

l

��1
⌘2

=⌘

�
1 + 1

l

�j+1 � (j + 1)
�
1 + 1

l

�
+ j

⇣�
1 + 1

l

�1 � 1
⌘2

=⌘l
2

 ✓
1 +

1

l

◆j+1

� (j + 1)

✓
1 +

1

l

◆
+ j

!

⌘l
2

 ✓
1 +

1

l

◆j+1

� 1

!

⌘l (l + 1)

✓
1 +

1

l

◆j

(53)

If ⌧ 6= 1, then we have aj�1 = ⌧ (1 + ⌘), bj�1 = ⌘

⇣
⌧j�1
⌧�1

⌘
in our case and,

 j
j�1X

k=0

bk

j�1Y

i=k+1

ai

!
=

j�1X

k=0

⌘

✓
⌧
k+1 � 1

⌧ � 1

◆
⌧
j�k�1 (1 + ⌘)j�k�1

⌘⌧
j

✓
1 +

1

l

◆j j�1X

k=0

✓
⌧
k+1 � 1

⌧ � 1

◆
⌧
�k�1

✓
1 +

1

l

◆�k�1 ✓
Use ⌘ 1

l

◆

⌘⌧
j

✓
1 +

1

l

◆j j�1X

k=0

✓
1� ⌧

�k�1

⌧ � 1

◆✓
1 +

1

l

◆�k�1

 ⌘⌧
j

⌧ � 1

✓
1 +

1

l

◆j j�1X

k=0

�
1� ⌧

�k�1
�✓

1 +
1

l

◆�k�1

 ⌘⌧
j

⌧ � 1

✓
1 +

1

l

◆j jX

k=1

�
1� ⌧

�k
�

(54)

27

Published as a conference paper at ICLR 2021

Final Bound with Readout Function Now let us consider the readout function. Since the last
readout layer produces a vector in R1⇥C , we have,

|�l|2 =

����
1

n
1nH

0
l�1(Wl + Ul)�

1

n
1nHl�1Wl

����
2

=

����
1

n
1n�l�1(Wl + Ul) +

1

n
1nHl�1Ul

����
2

 1

n
|1n�l�1(Wl + Ul)|2 +

1

n
|1nHl�1Ul|2

 1

n
kWl + Ulk2|1n�l�1|2 +

1

n
kUlk2|1nHl�1|2

kWl + Ulk2 l�1 + kUlk2�l�1 (55)

If ⌧ = 1, we have,

|�l|2 kWlk2
✓
1 +

1

l

◆
⌘l (l + 1)

✓
1 +

1

l

◆l�1

+ (l � 1)kUlk2 (Use Eq. (48), (53))

kWlk2
✓
1 +

1

l

◆l

⌘l (l + 1) + (l � 1)

kUlk2
kWlk2

✓
1 +

1

l

◆�l
!

kWlk2e⌘ (l(l + 1) + (l � 1))

=kWlk2e⌘
�
l
2 + 2l � 1

�

kWlk2e⌘ (l + 1)2 (56)

Otherwise, we have,

|�l|2 kWlk2
⌘⌧

l�1

⌧ � 1

✓
1 +

1

l

◆l l�1X

k=1

�
1� ⌧

�k
�
+ kUlk2

⌧
l�1 � 1

⌧ � 1
(Use Eq. (48), (54))

kWlk2
⌧

l�1

⌧ � 1

✓
1 +

1

l

◆l

⌘

l�1X

k=1

�
1� ⌧

�k
�
+

kUlk2
kWlk2

(1� ⌧
1�l)

!
(57)

If ⌧ > 1, then 1�⌧�k

⌧�1 1�⌧1�l

⌧�1 when 1 k l � 1. If ⌧ < 1, we also have 1�⌧�k

⌧�1 1�⌧1�l

⌧�1
when 1 k l � 1. Therefore, Eq. (57) can be further relaxed as,

|�l|2 kWlk2
⌧

l�1

⌧ � 1

✓
1 +

1

l

◆l

⌘

l�1X

k=1

�
1� ⌧

�k
�
+

kUlk2
kWlk2

(1� ⌧
1�l)

!

=kWlk2⌧ l�1

✓
1 +

1

l

◆l

⌘

l�1X

k=1

1� ⌧
�k

⌧ � 1
+

kUlk2
kWlk2

1� ⌧
1�l

⌧ � 1

!

kWlk2⌧ l�1
e

⌘(l � 1)

�
1� ⌧

1�l
�

⌧ � 1
+

kUlk2
kWlk2

�
1� ⌧

1�l
�

⌧ � 1

!

kWlk2⌧ l�1
e⌘l

�
1� ⌧

1�l
�

⌧ � 1

✓
Use

kUlk2
kWlk2

 ⌘

◆

=e⌘lkWlk2
⌧
l�1 � 1

⌧ � 1
, (58)

Therefore, combining Eq. (56) and Eq. (58), we have,

|�l|2
(
e⌘ (l + 1)2 kWlk2, if dC = 1

e⌘lkWlk2 ⌧ l�1�1
⌧�1 , otherwise.

(59)

which proves the lemma.

28

Published as a conference paper at ICLR 2021

Theorem 3.4. (MPGNN Generalization Bound) For any B > 0, l > 1, let fw 2 H : X ⇥ G ! RK

be a l-step MPGNN. Then for any �, � > 0, with probability at least 1� � over the choice of an i.i.d.
size-m training set S according to D, for any w, we have,

1. If dC 6= 1, then

LD,0(fw) LS,�(fw) +O

0

@

s
B2 (max (⇣�(l+1), (�⇠)(l+1)/l))2 l2h log(lh)|w|22 + log m(l+1)

�

�2m

1

A .

2. If dC = 1, then

LD,0(fw) LS,�(fw) +O

0

BB@

vuutB2 max
⇣
⇣�6,�3C3

�

⌘
(l + 1)4h log(lh)|w|22 + log m

�

�2m

1

CCA .

where ⇣ = min (kW1k2, kW2k2, kWlk2), |w|22 = kW1k2F+kW2k2F+kWlk2F , C = C�C⇢CgkW2k2,
� = kW1k2kWlk2, and ⇠ = C�

(dC)l�1�1
dC�1 .

Proof. We will derive the results conditioning on the value of dC.

General Case dC 6= 1 We first consider the general case dC 6= 1. To derive the generalization
bound, we construct a special statistic of the learned weights � = max

⇣
1
⇣ , (�⇠)

1
l

⌘
. It is clear that

1
⇣ �, �⇠ �

l, and �⇠/⇣ �
l+1. Note that 1

⇣ = max
⇣

1
kW1k2

,
1

kW2k2
,

1
kWlk2

⌘
.

Consider the prior P = N (0,�2
I) and the random perturbation u ⇠ N (0,�2

I). Note that the � of
the prior and the perturbation are the same and will be set according to �. More precisely, we will set
the � based on some approximation �̃ of � since the prior P can not depend on any learned weights
directly. The approximation �̃ is chosen to be a cover set which covers the meaningful range of �.
For now, let us fix any �̃ and consider � which satisfies |� � �̃| 1

l+1�. This also implies,

|� � �̃| 1

l + 1
�)

✓
1� 1

l + 1

◆
� �̃

✓
1 +

1

l + 1

◆
�

)
✓
1� 1

l + 1

◆l+1

�
l+1 �̃

l+1
✓
1 +

1

l + 1

◆l+1

�
l+1

) 1

e
�
l+1 �̃

l+1 e�
l+1 (60)

From Tropp (2012), for Ui 2 Rh⇥h and Ui ⇠ N (0,�2
I), we have,

P (kUik2 � t) 2he�t2/2h�2

. (61)

Taking a union bound, we have

P (kU1k2 < t & · · · & kUlk2 < t) = 1� P (9i, kUik2 � t)

� 1�
lX

i=1

P (kUik2 � t)

� 1� 2lhe�t2/2h�2

. (62)

Setting 2lhe�t2/2h�2

= 1
2 , we have t = �

p
2h log(4lh). This implies that the probability that the

spectral norm of the perturbation of any layer is no larger than �

p
2h log(4lh) holds with probability

29

Published as a conference paper at ICLR 2021

at least 1
2 . Plugging this bound into Lemma 3.3, we have with probability at least 1

2 ,

|fw+u(X,A)� fw(X,A)|2 e
t

⇣
lC�BkW1k2kWlk2

(dC)l�1 � 1

dC � 1

= etlB
�⇠

⇣

= eBl�
l+1

t e
2
Bl�̃

l+1
�

p
2h log(4lh) �

4
, (63)

where we can set � = �

42Bl�̃l+1
p

h log(4lh)
to get the last inequality. Note that Lemma 3.3 also

requires max
⇣

kU1k2

kW1k2
,
kU2k2

kW2k2
,
kUlk2

kWlk2

⌘
 1

l . The requirement is satisfied if � ⇣

l
p

2h log(4lh)
which

in turn can be satisfied if
�

4eBl�l+1
p
2h log(4lh)

 1

�l

p
2h log(4lh)

, (64)

since the chosen value of � satisfies � �

4eBl�l+1
p

2h log(4lh)
and 1

� ⇣. Therefore, one sufficient

condition to make Eq. (64) hold is �
4eB �

l. We will see how to satisfy this condition later.

We now compute the KL term in the PAC-Bayes bound in Lemma 2.2.

KL (QkP) =
|w|22
2�2

=
422B2

�̃
2l+2

l
2
h log(4lh)

2�2

�
kW1k2F + kW2k2F + kWlk2F

�

 O
✓
B

2
�
2l+2

l
2
h log(lh)

�2

�
kW1k2F + kW2k2F + kWlk2F

�◆
(65)

From Lemma 2.2, fixing any �̃, with probability 1 � � and for all w such that |� � �̃| 1
l+1�, we

have,

LD,0(fw) LS,�(fw) +O

0

@
s

B2�2l+2l2h log(lh)|w|22 + log m
�

�2m

1

A . (66)

Finally, we need to consider multiple choices of �̃ so that for any �, we can bound the generalization
error like Eq. (66). In particular, we only need to consider values of � in the following range,

⇣
�

2B

⌘ 1
l �

✓
�
p
m

2B

◆ 1
l

, (67)

since otherwise the bound holds trivially as LD,0(fw) 1 by definition. To see this, if �l
<

�
2B ,

then for any (X,A) and any j 2 N+
K , we have,

|fw(X,A)[j]| |fw(X,A)|2 = | 1
n
1nHl�1Wl|2

 1

n
|1nHl�1|2kWlk2

 kWlk2 max
i

|Hl�1[i, :]|2

 BC�kW1k2kWlk2
(dC)l�1 � 1

dC � 1
(Use Eq. (48))

 B�⇠ (Use definition of � and ⇠)

 B�
l (Use definition of �)

<
�

2
. (68)

30

Published as a conference paper at ICLR 2021

Therefore, based on the definition in Eq. (4), we always have LS,�(fw) = 1 when �
l
<

�
2B . It

is hence sufficient to consider �l � �
2B >

�
4eB which also makes Eq. (64) hold. Alternatively, if

�
l
>

�
p
m

2B , the term inside the big-O notation in Eq. (66) would be,
s

B2�2ll2h log(lh)(�2|w|22) + log m
�

�2m
�
r

l2h log(lh)(|w|22/⇣2)
4

� 1, (69)

The last inequality uses the fact that we typically choose h � 2 in practice, l � 2 and |w|22 �
min

�
kW1k2F , kW2k2F , kWlk2F

�
� ⇣

2. Since we only need to consider � in the range of Eq. (67), one

sufficient condition to ensure |���̃| 1
l+1� holds would be |���̃| 1

l+1

� �
2B

� 1
l . Therefore, if we

can find a covering of the interval in Eq. (67) with radius 1
l+1

� �
2B

� 1
l and make sure bounds like Eq.

(66) holds while �̃ takes all possible values from the covering, then we can get a bound which holds
for all �. It is clear that we only need to consider a covering C with size |C| = (l+1)

2

�
m

1/2l � 1
�
.

Therefore, denoting the event of Eq. (66) with �̃ taking the i-th value of the covering as Ei, we have

P
�
E1 & · · · & E|C|

�
= 1� P

�
9i, Ēi

�
� 1�

|C|X

i=1

P
�
Ēi

�
� 1� |C|�, (70)

where Ēi denotes the complement of Ei. Hence, with probability 1� � and for all w, we have,

LD,0(fw) LS,�(fw) +O

0

@

s
B2�2l+2l2h log(lh)|w|22 + log m|C|

�

�2m

1

A

= LS,�(fw) +O

0

@

s
B2�2l+2l2h log(lh)|w|22 + log m(l+1)

� + 1
2l logm

�2m

1

A

= LS,�(fw) +O

0

BB@

vuutB2 max
⇣
⇣�1, (�⇠)

1
l

⌘2(l+1)
l2h log(lh)|w|22 + log m(l+1)

�

�2m

1

CCA

(71)

which proves the theorem for the case of dC 6= 1.

Special Case dC = 1 Now we consider dC = 1 of which the proof follows the logic of the one
for dC 6= 1. Note that this case happens rarely in practice. We only include it for the completeness
of the analysis. We again construct a statistic � = max

⇣
1
⇣ ,
p
�C�

⌘
. For now, let us fix any �̃ and

consider � which satisfies |� � �̃| 1
3�. This also implies 1

e�
3 �̃

3 e�
3. Based on Lemma

3.3, we have,

|fw+u(X,A)� fw(X,A)|2 e
t

⇣
(l + 1)2C�BkW1k2kWlk2

= et(l + 1)2B
�C�

⇣
 eB(l + 1)2�3

t

 e
2
B(l + 1)2�̃3

�

p
2h log(4lh) �

4
, (72)

where we can set � = �

42B(l+1)2�̃3
p

h log(4lh)
to get the last inequality. Note that Lemma 3.3 also

requires max
⇣

kU1k2

kW1k2
,
kU2k2

kW2k2
,
kUlk2

kWlk2

⌘
 1

l . The requirement is satisfied if � ⇣

l
p

2h log(4lh)
which

in turn can be satisfied if
�

4eB(l + 1)2�3
p

2h log(4lh)
 1

�l

p
2h log(4lh)

, (73)

31

Published as a conference paper at ICLR 2021

since the chosen value of � satisfies � �

4eB(l+1)2�3
p

2h log(4lh)
and 1

� ⇣. As shown later, we

only need to consider a certain range of values of � which naturally satisfy the condition �l
4eB(l+1)2

�
2, i.e., the equivalent form of Eq. (73). This assures the applicability of Lemma 3.3. Now we

compute the KL divergence,

KL (QkP) =
|w|22
2�2

=
422B2

�̃
6(l + 1)4h log(4lh)

2�2

�
kW1k2F + kW2k2F + kWlk2F

�

 O
✓
B

2
�
6(l + 1)4h log(lh)

�2

�
kW1k2F + kW2k2F + kWlk2F

�◆
(74)

In particular, we only need to consider values of � in the following range,

r
�

2Bl
 �

r
�
p
m

2Bl
, (75)

since otherwise the bound holds trivially as LD,0(fw) 1 by definition. To see this, if � <
�

2Bl ,
then for any (X,A) and any j 2 N+

K , we have,

|fw(X,A)[j]| |fw(X,A)|2 = | 1
n
1nHl�1Wl|2

 1

n
|1nHl�1|2kWlk2

 kWlk2 max
i

|Hl�1[i, :]|2

 B(l � 1)C�kW1k2kWlk2 (Use Eq. (48))
 B(l � 1)�C� (Use definition of �)

 Bl�
2 (Use definition of �)

<
�

2
. (76)

Therefore, based on the definition in Eq. (4), we always have LS,�(fw) = 1 when � <
�

2Bl . It
it hence sufficient to consider �2 � �

2Bl � �l
4eBl2 � �l

4eB(l+1)2 which means the condition in Eq.

(73) is indeed satisfied. Alternatively, if � >

q
�
p
m

2Bl , the term inside the big-O notation in Eq. (74)
would be,

s
B2�4(l + 1)4h log(lh)�2|w|22 + log m

�

�2m
�

s
(l + 1)4h log(lh) |w|22

⇣2

4l2
� 1, (77)

where the first inequality hold since � � 1
⇣ . The last inequality uses the fact that we typically choose

h � 2 in practice, l � 2, and |w|22 � min
�
kW1k2F , kW2k2F , kWlk2F

�
� ⇣

2. Since we only need to
consider � in the range of Eq. (75), one sufficient condition to ensure |� � �̃| 1

3� always holds
would be |� � �̃| 1

3

p �
2Bl . Therefore, if we can find a covering of the interval in Eq. (75) with

radius 1
3

p �
2Bl and make sure bounds like Eq. (66) holds while �̃ takes all possible values from the

covering, then we can get a bound which holds for all �. It is clear that we only need to consider a
covering C with size |C| = 3

2

⇣
m

1
4 � 1

⌘
.

32

Published as a conference paper at ICLR 2021

Statistics Max Node Degree
d� 1

Max Hidden Dim
h

Spectral Norm of
Learned Weights

VC-Dimension
(Scarselli et al., 2018) - O

�
h
4
�

-

Rademacher Complexity
(Garg et al., 2020) Case A O

⇣
d
l�1
p

log(dl�1)
⌘

O (h) O
⇣
�C⇠

p
log (�C⇠)

⌘

Rademacher Complexity
(Garg et al., 2020) Case B O

⇣
d
l�1
p

log(dl�2)
⌘

O
✓
h

q
log

p
h

◆
O
⇣
�C⇠

p
log (�⇠)

⌘

Rademacher Complexity
(Garg et al., 2020) Case C O

⇣
d
l�1
p

log(d2l�3)
⌘

O
✓
h

q
log

p
h

◆
O
⇣
�C⇠

p
log (kW2k2�⇠2)

⌘

Ours Case A - O
�p

h log h
�

O
⇣
⇣
�(l+1)

p
kW1k2F + kW2k2F + kWlk2F

⌘

Ours Case B O
⇣
d

(l+1)(l�2)
l

⌘
O
�p

h log h
�

O
⇣
�
1+ 1

l ⇠
1+ 1

l

p
kW1k2F + kW2k2F + kWlk2F

⌘

Table 3: Detailed comparison of Generalization Bounds for GNNs. “-” means inapplicable. We only
consider the general case dCkW2k2 6= 1 and simplify the Rademacher complexity based bounds
(w.r.t. spectral norm of weights) based on the assumption that C� ⌧ dC⇠ which generally holds
in practice. Here C = C�C⇢CgkW2k2, ⇠ = C�

(dC)l�1�1
dC�1 , ⇣ = min (kW1k2, kW2k2, kWlk2), and

� = kW1k2kWlk2. Note that d
(l+1)(l�2)

l d
l2�l

l = d
l�1.

Hence, with probability 1� � and for all w, we have,

LD,0(fw) LS,�(fw) +O

0

@

s
B2�6(l + 1)4h log(lh)|w|22 + log m|C|

�

�2m

1

A

= LS,�(fw) +O

0

@
s

B2�6(l + 1)4h log(lh)|w|22 + log m
� + 1

4 logm

�2m

1

A

= LS,�(fw) +O

0

BB@

vuutB2 max
⇣
⇣�6,�3C3

�

⌘
(l + 1)4h log(lh)|w|22 + log m

�

�2m

1

CCA (78)

which proves the theorem for the case of dC = 1.

Remark. Note that our proof applies to both homogeneous and non-homogeneous GNNs.

A.5 BOUND COMPARISON

In this section, we explain the details of the comparison with Rademacher complexity based gener-
alization bounds of GNNs.

A.5.1 RADEMACHER COMPLEXITY BASED BOUND

We first restate the Rademacher complexity bound from (Garg et al., 2020) as below:

LD,0(fw) LS,�(fw)

+O

0

BB@
1
�m

+ hBlZ

vuut log
⇣
Bl

p
mmax

⇣
Z,M

p
hmax

�
BB1, R̄B2

�⌘⌘

�2m
+

s
log 1

�

m

1

CCA (79)

where M = C�
(C�C⇢CgdB2)

l�1�1
C�C⇢CgdB2�1 , Z = C�

�
BB1 + R̄B2

�
, R̄ C⇢Cgdmin

⇣
b
p
h,BB1M

⌘
, b

is the uniform upper bound of � (i.e., 8x 2 Rh, �(x) b), and B1, B2, Bl are the spectral norms

33

Published as a conference paper at ICLR 2021

of the weight matrices W1,W2,Wl. Note that the numerator of M has the exponent l � 1 since we
count the readout function in the number of layers/steps, i.e., there are l � 1 message passing steps
in total.

A.5.2 COMPARISON IN OUR CONTEXT

For typical message passing GNNs presented in the literature, node state update function � could be
a neural network like MLP or GRU, a ReLU unit, etc. This makes the assumption of the uniform
upper bound on � impractical, e.g., b = 1 when � is ReLU. Therefore, we dot not adopt this
assumption in our analysis8.

Rademacher Complexity Based Bound Based on the above consideration, we have R̄
C⇢CgdBB1M . We further convert some notations in the original bound to the ones in our con-
text.

M = C�
(C�C⇢CgdB2)l�1 � 1

C�C⇢CgdB2 � 1
= ⇠ (80)

R̄ C⇢CgdBB1M = C⇢CgdBkW1k2⇠ (81)
Z = C�

�
BB1 + R̄B2

�
= BkW1k2 (C� + dC⇠) , (82)

where we use the same abbreviations as in Theorem 3.4, ⇠ = C�
(dC)l�1�1

dC�1 , � = kW1k2kWlk2,
C = C�C⇢CgkW2k2.

We need to consider three cases for the big-O term of the original bound in Eq. (79) depending on
the outcomes of the two point-wise maximum functions.

Case A If max
⇣
Z,M

p
hmax

�
BB1, R̄B2

�⌘
= Z, then the generalization bound is,

O

hBlZ

r
log (Bl

p
mZ)

m

!

= O

hkWlkBkW1k2 (C� + dC⇠)

r
log (kWlk2

p
mBkW1k2 (C� + dC⇠))

m

!

= O

hB� (C� + dC⇠)

r
log (

p
mB� (C� + dC⇠))

m

!
. (83)

Case B If max
⇣
Z,M

p
hmax

�
BB1, R̄B2

�⌘
= M

p
hmax

�
BB1, R̄B2

�
and BB1 =

max
�
BB1, R̄B2

�
, then the generalization bound is,

O

0

BB@hBlZ

vuut log
⇣
Bl

p
mM

p
hBB1

⌘

m

1

CCA

= O

0

BB@hkWlkBkW1k2 (C� + dC⇠)

vuut log
⇣
kWlk2

p
m⇠

p
hBkW1k2

⌘

m

1

CCA

= O

0

BB@hB� (C� + dC⇠)

vuut log
⇣p

m�⇠
p
hB

⌘

m

1

CCA (84)

8If we introduce the uniform upper bound on � in our analysis, we can also obtain a similar functional
dependency in our bound like min(b

p
h, ·). But as aforementioned, it is somewhat impractical and leads to a

more cumbersome bound.

34

Published as a conference paper at ICLR 2021

Case C If max
⇣
Z,M

p
hmax

�
BB1, R̄B2

�⌘
= M

p
hmax

�
BB1, R̄B2

�
and R̄B2 =

max
�
BB1, R̄B2

�
, then the generalization bound is,

O

0

BB@hBlZ

vuut log
⇣
Bl

p
mM

p
hR̄B2

⌘

m

1

CCA

= O

0

BB@hkWlkBkW1k2 (C� + dC⇠)

vuut log
⇣
kWlk2

p
m⇠

p
hC⇢CgdBkW1k2⇠kW2k2

⌘

m

1

CCA

= O

0

BB@hB� (C� + dC⇠)

vuut log
⇣
�
p
m
p
hC⇢CgdB⇠2kW2k2

⌘

m

1

CCA (85)

We show the detailed dependencies of the Rademarcher complexity based bound under three cases
in Table 3. In practice, we found message passing GNNs typically do not behave like a contraction
mapping. In other words, we have dC > 1 and ⇠ � 1 hold for many datasets. Therefore, the case C
happens more often in practice, i.e., max

⇣
Z,M

p
hmax

�
BB1, R̄B2

�⌘
= M

p
hR̄B2.

PAC Bayes Bound For our PAC-Bayes bound in Theorem 3.4, we also need to consider two cases
which correspond to max

⇣
⇣
�1

, (�⇠)
1
l

⌘
= ⇣

�1 (case A) and max
⇣
⇣
�1

, (�⇠)
1
l

⌘
= (�⇠)

1
l (case

B) respectively. Here ⇣ = min (kW1k2, kW2k2, kWlk2). We show the detailed dependencies of
our bound under three cases in Table 3. Again, in practice, we found dC > 1, ⇠ � 1 and ⇣ 1.
Therefore, case B occurs more often.

VC-dim Bound (Scarselli et al., 2018) show that the upper bound of the VC-dimension of general
GNNs with Sigmoid or Tanh activations is O(p4N2) where p is the total number of parameters and
N is the maximum number of nodes. Since p = O(h2) in our case, the VC-dim bound is O(h8

N
2).

Therefore, the corresponding generalization bound scales as O(h
4Np
m
). Note that N is at least d and

could be much larger than d for some datasets.

A.6 CONNECTIONS WITH EXISTING BOUNDS OF MLPS/CNNS

ReLU Networks are Special GCNs Since regular feedforward neural networks could be viewed
as a special case of GNNs by treating each sample as the node feature of a single-node graph, it
is natural to investigate the connections between these two classes of models. In particular, we
consider the class of ReLU networks studied in Neyshabur et al. (2017),

H0 = X (Input Node Feature)
Hk = �k (Hk�1Wk) (k-th Layer)
Hl = Hl�1Wl (Readout Layer), (86)

where �k = ReLU. It includes two commonly-seen types of deep neural networks, i.e., fully con-
nected networks (or MLPs) and convolutional neural networks (CNNs), as special cases. Comparing
Eq. (86) against Eq. (1), it is clear that these ReLU networks can be further viewed as special cases
of GCNs which operate on single-node graphs, i.e., L̃ = I .

35

Published as a conference paper at ICLR 2021

Statistics COLLAB IMDB-BINARY IMDB-MULTI PROTEINS

max # nodes 492 136 89 620
max # edges 80727 2634 3023 2718

classes 3 2 3 2
graphs 5000 1000 1500 1113
train/test 4500/500 900/100 1350/150 1002/111

feature dimension 367 65 59 3
max node degree 491 135 88 25

Table 4: Statistics of real-world datasets.

Statistics ER-1 ER-2 ER-3 ER-4 SBM-1 SBM-2

max # nodes 100 100 100 100 100 100
max # edges 1228 3266 5272 7172 2562 1870

classes 2 2 2 2 2 2
graphs 200 200 200 200 200 200
train/test 180/20 180/20 180/20 180/20 180/20 180/20

feature dimension 16 16 16 16 16 16
max node degree 25 48 69 87 25 36

Table 5: Statistics of synthetic datasets.

Connections of Generalization Bounds Let us restate the PAC-Bayes bound of ReLU networks
in Neyshabur et al. (2017) as below,

LD,0(fw) LS,�(fw) +O

0

BBBB@

vuuutB2l2h log(lh)
lQ

i=1
kWik22

lP
i=1

kWik2
F

kWik2
2
+ log ml

�

�2m

1

CCCCA
. (87)

Comparing it with the bound in Theorem 3.2, we can find that our bound only adds a factor dl�1 to
the first term inside the square root of the big-O notation which is brought by the underlying graph
structure of the data. If we consider GCNs operating on single-node graphs, i.e., the case where
GCNs degenerate to ReLU networks, two bounds coincide since d = 1. Therefore, our Theorem
3.2 directly generalizes the result in Neyshabur et al. (2017) to GCNs which is a strictly larger class
of models than ReLU networks.

A.7 EXPERIMENTAL DETAILS

Datasets We create 6 synthetic datasets by generating random graphs from different random graph
models. In particular, the first 4 synthetic datasets correspond to the Erdős–Rényi models with
different edge probabilities: 1) Erdős–Rényi-1 (ER-1), edge probability = 0.1; 2) Erdős–Rényi-2
(ER-2), edge probability = 0.3; 3) Erdős–Rényi-3 (ER-3), edge probability = 0.5; 4) Erdős–Rényi-
4 (ER-4), edge probability = 0.7. The remaining 2 synthetic datasets correspond to the stochastic
block model with the following settings: 1) Stochastic-Block-Model-1 (SBM-1), two blocks, sizes
= [40, 60], edge probability = [[0.25, 0.13], [0.13, 0.37]]; 2) Stochastic-Block-Model-2 (SBM-2),
three blocks, sizes = [25, 25, 50], edge probability = [[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02,
0.07, 0.40]]. Each synthetic dataset has 200 graphs where the number of nodes of individual graph is
100, the number of classes is 2, and the random train-test split ratio is 90%/10%. For each random
graph of individual synthetic dataset, we generate the 16-dimension random Gaussian node feature
(normalized to have unit `2 norm) and a binary class label following a uniform distribution. We
summarize the statistics of the real-world and synthetic datasets in Table 4 and Table 5 respectively.

36

Published as a conference paper at ICLR 2021

l = 2 PROTEINS IMDB-MULTI IMDB-BINARY COLLAB

Rademacher 11.80± 0.18 16.66± 0.04 17.37± 0.02 21.26± 0.07
PAC-Bayes 8.45± 0.28 15.26± 0.07 15.44± 0.03 19.37± 0.17

l = 4

Rademacher 24.04± 0.23 29.94± 0.10 31.38± 0.09 41.03± 0.33
PAC-Bayes 22.10± 0.23 28.35± 0.11 29.53± 0.08 40.31± 0.36

Table 6: Bound (log value) comparisons on real-world datasets.

l = 2 ER-1 ER-2 ER-3 ER-4 SBM-1 SBM-2

Rademacher 17.37± 0.16 17.98± 0.13 18.15± 0.15 18.35± 0.10 17.88± 0.11 17.71± 0.09
PAC-Bayes 15.38± 0.12 15.13± 0.13 14.86± 0.25 14.69± 0.24 15.23± 0.12 15.35± 0.10

l = 4

Rademacher 27.92± 0.02 29.57± 0.12 30.64± 0.18 31.34± 0.20 29.35± 0.14 28.87± 0.07
PAC-Bayes 27.00± 0.04 28.32± 0.07 29.18± 0.12 29.70± 0.14 28.14± 0.05 27.74± 0.04

l = 6

Rademacher 37.10± 0.29 40.22± 0.19 42.00± 0.26 43.08± 0.39 40.04± 0.25 39.02± 0.19
PAC-Bayes 36.85± 0.25 39.65± 0.14 41.30± 0.22 42.24± 0.34 39.50± 0.17 38.63± 0.17

l = 8

Rademacher 46.72± 0.51 51.16± 0.21 53.44± 0.39 55.06± 0.38 50.60± 0.17 49.29± 0.34
PAC-Bayes 46.79± 0.48 51.02± 0.21 53.10± 0.36 54.67± 0.38 50.44± 0.16 49.22± 0.36

Table 7: Bound (log value) comparisons on synthetic datasets.

Experimental Setup For all MPGNNs used in the experiments, we specify � = ReLU, ⇢ = Tanh,
and g = Tanh which imply C� = C⇢ = Cg = 1. For experiments on real-world datasets, we set
h = 128, the number of training epochs to 50, and try 2 values of network depth, i.e., l = 2 and
l = 4. The batch size is set to 20 (due to the GPU memory constraint) on COLLAB and 128 for
others. For experiments on synthetic datasets, we set h = 128 and try 4 values of network depth,
i.e., l = 2, l = 4, l = 6 and l = 8. Since these generated datasets essentially require GNNs to fit
to random labels which is arguably hard, we extend the number of training epochs to 200. For all
above experiments, we use Adam as the optimizer with learning rate set to 1.0e�2. The batch size
is 128 for all synthetic datasets.

Bound Computations For all datasets, we compute the bound values for the learned model saved
in the end of the training. We also consider the constants of both bounds in the computation. In
particular, for our bound, we compute the following quantity

vuut422B2
⇣
max

⇣
⇣�(l+1), (�⇠)

l+1
l

⌘⌘2
l2h log(4lh)|w|22

�2m
. (88)

For the Rademacher complexity based bound, we compute the following quantity

2⇥ 24hBlZ

vuut3 log
⇣
24Bl

p
mmax

⇣
Z,M

p
hmax

�
BB1, R̄B2

�⌘⌘

�2m
, (89)

where the variables are the same as Eq. (79).

Experimental Results In addition to the figures shown in the main paper, we also provide the
numerical values of the bound evaluations in Table 6 (real-world datasets) and Table 7 (synthetic

37

Published as a conference paper at ICLR 2021

datasets). As you can see, our bound is tighter than the Rademacher complexity based one under all
settings except for one synthetic setting which falls in the scenario “small d (max-node-degree) and
large l (number-of-steps)”. This makes sense since we have a square term on the number of steps l
and it will play a role when the term involved with d is comparable (i.e., when d is small). Again,
all quantities are in the log domain.

38

	Introduction
	Background
	Analysis Setup
	Graph Neural Networks (GNNs)
	Background of PAC-Bayes Analysis

	Generalization Bounds
	PAC-Bayes Bounds of GCNs
	PAC-Bayes Bounds of MPGNNs
	Comparison with Other Bounds
	Comparison with Existing GNN Generalization Bounds
	Connections with Existing Bounds of MLPs/CNNs

	Experiments
	Discussion
	Appendix
	PAC Bayes Results
	Graph Results
	GCN Results
	MPGNNs Results
	Bound Comparison
	Rademacher Complexity based Bound
	Comparison in Our Context

	Connections with Existing Bounds of MLPs/CNNs
	Experimental Details

