
MagNet: A Neural Network for Directed Graphs
Supplementary Material

Xitong Zhang1, Yixuan He2, Nathan Brugnone1,3, Michael Perlmutter4, and Matthew Hirn1,5,6

1Michigan State University, Department of Computational Mathematics, Science & Engineering,
East Lansing, Michigan, United States

2University of Oxford, Department of Statistics, Oxford, England, United Kingdom
3Michigan State University, Department of Community Sustainability,

East Lansing, Michigan, United States
4University of California, Los Angeles, Department of Mathematics,

Los Angeles, California, United States
5Michigan State University, Department of Mathematics,

East Lansing, Michigan, United States
6Michigan State University, Center for Quantum Computing, Science & Engineering,

East Lansing, Michigan, United States

Contents

1 Github repository 2

2 List of method abbreviations 2

3 Further implementation details 2

4 Datasets 3

4.1 Node classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4.2 Link prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5 Eigenvalues of the magnetic Laplacian 4

6 The eigenvectors and eigenvalues of directed stars and cycles 6

7 Expanded details of numerical results 7

8 Optimal q values for synthetic data 13

9 Checklist 14

35th Conference on Neural Information Processing Systems (NeurIPS 2021), virtual.



1 Github repository

A Github repository containing code needed to reproduce the results is https://github.com/
matthew-hirn/magnet.

2 List of method abbreviations

• MagNet (this paper)
• ChebNet [1]
• GCN [5]
• APPNP [6]
• GAT [10]
• SAGE [4]
• GIN [11]
• DGCN [9]
• DiGraph [8]
• DiGraphIB [8]: DiGraph with inception

blocks

• BiGCN: applying GCN on the original
adjacency matrix and its transpose ma-
trix separately

• BiSAGE: applying SAGE on the origi-
nal adjacency matrix and its transpose
matrix separately

• BiGAT: applying GAT on the original
adjacency matrix and its transpose ma-
trix separately

• KNN: K-nearest neighbors based on the
eigenvectors with the smallest eigenval-
ues of magnetic Laplacian [3].

3 Further implementation details

We set the parameterK = 1 in our implementation of both ChebNet and MagNet, except for synthetic
noisy cylcic graphs with random input features. For sythetic noisy cylcic graphs with random input
features, we also tried K = 2 for MagNet. We train all models with a maximum of 3000 epochs and
stop early if the validation error doesn’t decrease after 500 epochs for both node classification and
link prediction tasks. One dropout layer with a probability of 0.5 is created before the last linear layer.
The model is picked with the best validation accuracy during training for testing. We tune the number
of filters in [16, 32, 48] for the graph convolutional layers for all models, except DigraphIB, since
the inception block has more trainable parameters. For node classification, we tune the learning rate
in [1e−3, 5e−3, 1e−2] for all models. Compared with node classification, the number of available
samples for link prediction is much larger. Thus, we set a relatively small learning rate of 1e−3.

We use Adam as the optimizer and `2 regularization with the hyperparameter set as 5e−4 to avoid
overfitting. We post the best testing performance by grid-searching based on validation accuracy. For
node classification on the synthetic datasets, we generate a one-dimensional node feature sampled
from the standard normal distribution. We use the original features for the other node classification
datasets. For link prediction, we use the in-degree and out-degree as the node features for all datasets
instead the original features. This allows all models to learn directed information from the adjacency
matrix. Our experiments were conducted on 8 compute nodes each with 1 Nvidia Tesla V100 GPU,
120G RAM, and 32 Intel Xeon E5-2660 v3 CPUs; as well as on a compute node with 8 Nvidia RTX
8000 GPUs, 1000GB RAM, and 48 Intel Xeon Silver 4116 CPUs.

Here are implementation details specific to certain methods:

• We set the parameter ε to 0 in GIN for both tasks.
• For GAT and BiGAT, the number of heads tuned is in [2, 4, 8].
• For APPNP, we set K = 10 for node classification (following the original paper [6]), and

search K in [1, 5, 10] for link prediction.
• The coefficient α for PageRank-based models (APPNP, DiGraph) is searched in

[0.05, 0.1, 0.15, 0.2].
• For DiGraph, the model includes graph convolutional layers without the high-order ap-

proximation and inception module. The high order Laplacian and the inception module is
included in DigraphIB.

• DigraphIB is a bit different than other networks because it requires generating a three-
channel Laplacian tensor. For this network, the number of filters for each channel is
searched in [6, 11, 21] for node classification and link prediction.
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• For GCN, the out-degree normalized, directed adjacency matrix, including self-loops is also
tried in addition to the symmetrized adjacency matrix for node classification tasks, except
for synthetic datasets since symmetrization will break the cluster pattern.

• For other spatial methods, including APPNP, GAT, SAGE, and GIN, we tried both the
symmetrized adjacency matrices and the original directed adjacency matrices for node
classification tasks except for synthetic datasets.

• For KNN, we set q = 0.25 and K = 5.

4 Datasets

4.1 Node classification

As shown in Table 1, we use six real datasets for node classification. A directed edge is defined as
follows. If the edge (u, v) ∈ E but (v, u) /∈ E, then (u, v) is a directed edge. If (u, v) ∈ E and
(v, u) ∈ E, then (u, v) and (v, u) are undirected edges (in other words, undirected edges that are not
self-loops are counted twice). For the citation datasets, Cora-ML and Citeseer, we randomly select
20 nodes in each class for training, 500 nodes for validation, and the rest for testing following [8].
For the synthetic datasets (ordered DSBM graphs, cyclic DSBM graphs, noisy cyclic DSBM graphs),
we generate a one-dimensional node feature sampled from the standard normal distribution.

Ten folds are generated randomly for each dataset, except for Cornell, Texas and Wisconsin. For
Cornell, Texas, and Wisconsin, we use the same training, validation, and testing folds as [7]. For
Telegram, we treat it as a directed, unweighted graph and randomly generate 10 splits for train-
ing/validation/testing with 60%/20%/20% of the nodes. The node features are sampled from the
normal distribution.

Table 1: Real datasets for node classification.

Cornell Texas Wisconsin Cora-ML Citeseer Telegram

# Nodes 183 183 251 2,995 3,312 245
# Edges 295 309 499 8,416 4,715 8,912
% Directed edges 86.9 76.6 77.9 93.9 95.0 82.4
# Features 1,703 1,703 1,703 2,879 3,703 1
# Classes 5 5 5 7 6 4

4.2 Link prediction

We use eight real datasets in link prediction as demonstrated in Table 2. Instead of using the original
features, we use the in-degree and out-degree as the node features in order to allow the models to
learn structural information from the adjacency matrix directly. The connectivity is maintained by
getting the undirected minimum spanning tree before removing edges for validation and testing. For
the results in the main text, undirected edges and, if they exist, pairs of vertices with multiple edges
between them, may be placed in the training/validation/testing sets. However, labels that indicate the
direction of such edges are not well defined, and therefore can be considered as noisy labels from the
machine learning perspective. In order to obtain a full set of well-defined, noiseless labels, in the
supplement we also run experiments in which undirected edges and pairs of vertices with multiple
edges between them are ignored when sampling edges for training/validation/testing (in other words,
only directed edges, and the absence of an edge, are included). We evaluated all models on four
prediction tasks, which we now describe.

To construct the datasets that we use for training, validation and testing, which consist of pairs of
vertices in the graph, we do the following. (1) Existence prediction. If (u, v) ∈ E, we give (u, v)
the label 0, otherwise its label is 1. The proportion of the two classes of edges is 25% and 75%,
respectively, when undirected edges and multi-edges are included, and 50% and 50%, respectively,
when only directed edges are included. (2) Direction prediction. Given an ordered node pair (u, v),
we give the label 0 if (u, v) ∈ E and the label 1 if (v, u) ∈ E, conditioning on (u, v) ∈ E or
(v, u) ∈ E. The proportion of the two types of edges is 50% and 50%. (3) Three-class link prediction.
For a pair of ordered nodes (u, v), if (u, v) ∈ E, we give the label 0, if (v, u) ∈ E, we give the
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label 1, if (u, v) /∈ E and (v, u) /∈ E, we give the label 2. The proportion of the three types of
edges is 25%, 25%, and 50%. (4) Direction prediction by three classes training. This task is based
on the training of task (3). We only evaluate the performance with ordered node pairs (u, v) when
(u, v) ∈ E or (v, u) ∈ E. We randomly generated ten folds for all datasets. We used 15% and 5% of
edges for testing and validation for all datasets. The classification results are in Section 7.

Table 2: Datasets for link prediction.

Cornell Texas Wisconsin Cora-ML CiteSeer WikiCS Chameleon Squirrel

# Nodes 183 183 251 2,995 3,312 11,701 2,277 5,201
# Edges 295 309 499 8,416 4,715 216,123 36,101 217,073
% Directed edges 86.9 76.6 77.9 93.9 95.0 45.9 73.9 82.8
# Features 2 2 2 2 2 2 2 2

5 Eigenvalues of the magnetic Laplacian

In this section we state and prove three theorems. Theorem 1, which shows that both the normalized
and unnormalized magnetic Laplacian a postive semidefinite, is well known (see e.g. [2]). Theorem
2, which shows that the eigenvalues of the normalized magnetic Laplacian lie in the interval [0, 2], is
a straightforward adaption of the corresponding result for the traditional normalized graph Laplacian.
Finally, Theorem 3 proves the un-normalized magnetic Laplacian may be factored in terms of a
complex valued incidence matrix, analogous to the well-known result for the standard graph Laplacian.
We give full proofs of all three results for completeness.
Theorem 1. Let G = (V,E) be a directed graph where V is a set of N vertices and E ⊆ V × V is
a set of directed edges. Then, for all q ≥ 0, both the unnormalized magnetic Laplacian L

(q)
U and its

normalized counterpart L
(q)
N are positive semidefinite.

Proof. Let x ∈ CN . We first note that since L
(q)
U is Hermitian we have Imag(x†L(q)

U x) = 0. Next,
we use the definition of Ds and the fact that As is symmetric to observe that

2Real
(
x†L

(q)
U x

)
=2

N∑
u,v=1

Ds(u, v)x(u)x(v)− 2

N∑
u,v=1

As(u, v)x(u)x(v) cos(iΘ
(q)(u, v))

=2

N∑
u=1

Ds(u, u)x(u)x(u)− 2

N∑
u,v=1

As(u, v)x(u)x(v) cos(iΘ
(q)(u, v))

=2
N∑

u,v=1

As(u, v)|x(u)|2 − 2

N∑
u,v=1

As(u, v)x(u)x(v) cos(iΘ
(q)(u, v))

=

N∑
u,v=1

As(u, v)|x(u)|2 +
N∑

u,v=1

As(v, u)|x(v)|2 − 2

N∑
u,v=1

As(u, v)x(u)x(v) cos(iΘ
(q)(u, v))

=

N∑
u,v=1

As(u, v)
(
|x(u)|2 + |x(v)|2 − 2x(u)x(v) cos(iΘ(q)(u, v))

)
(1)

≥
N∑

u,v=1

As(u, v)
(
|x(u)|2 + |x(v)|2 − 2|x(u)||x(v)|

)
=

N∑
u,v=1

As(u, v)(|x(u)| − |x(v)|)2

≥0.
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Thus, L
(q)
U is positive semidefinite. For the normalized magnetic Laplacian, we note that(

D−1/2s AsD
−1/2
s

)
� exp(iΘ(q)) = D−1/2s

(
As � exp(iΘ(q))

)
D−1/2s ,

and therefore
L
(q)
N = D−1/2s L

(q)
U D−1/2s . (2)

Thus, letting y = D
−1/2
s x, the fact that Ds is diagonal implies

x†L
(q)
N x = x†D−1/2s L

(q)
U D−1/2s x = y†L

(q)
U y ≥ 0.

Theorem 2. Let G = (V,E) be a directed graph where V is a set of N vertices and E ⊆ V × V is
a set of directed edges. Then, for all q ≥ 0, the eigenvalues of the normalized magnetic Laplacian
L
(q)
N are contained in the interval [0, 2].

Proof. By Theorem 1, we know that L
(q)
N has real, nonnegative eigenvalues. Therefore, we need to

show that the lead eigenvalue, λN , is less than or equal to 2. The Courant-Fischer theorem shows that

λN = max
x6=0

x†L
(q)
N x

x†x
.

Therefore, using (2) and setting y = D
−1/2
s x, we have

λN = max
x6=0

x†D
−1/2
s L

(q)
U D

−1/2
s x

x†x
= max

y 6=0

y†L
(q)
U y

y†Dsy
.

First, we observe that since Ds is diagonal, we have

y†Dsy =

N∑
u,v=1

Ds(u, v)y(u)y(v) =

N∑
u=1

Ds(u, u)|y(u)|2

Next, we note that by (1), we have

y†L
(q)
U y =

1

2

N∑
u,v=1

As(u, v)
(
|x(u)|2 + |x(v)|2 − 2x(u)x(v) cos(iΘ(q)(u, v))

)

≤ 1

2

N∑
u,v=1

As(u, v)(|x(u)|+ |x(v)|)2

≤
N∑

u,v=1

As(u, v)(|x(u)|2 + |x(v)|2).

Therefore, since As is symmetric, we have

y†L
(q)
U y ≤ 2

N∑
u,v=1

As(u, v)|x(u)|2

= 2

N∑
u=1

|x(u)|2
(

N∑
v=1

As(u, v)

)

= 2

N∑
u=1

Ds(u, u)|x(u)|2

= 2y†Dsy.
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Definition 1. Let G = (V,E) be a directed graph where V is a set of N vertices and E ⊆ V × V is
a set of directed edges. We say that a link (u, v) ∈ E is bidirectional if the “reverse” link (v, u) is
also also in E. If a link is not bidirectional we say that it is unidirectional.
Theorem 3. Let G = (V,E) be a directed graph where V is a set of N vertices and E ⊆ V × V is
a set of directed edges. Then, for all q ≥ 0, the unnormalized magnetic Laplacian may be factored as
L
(q)
U = B(q)(B(q))†, where B(q) is a modified incidence matrix defined by

B(q)(j, `) =



1√
2
eiπq if j is the source of link ` and ` is unidirectional

−1√
2
e−iπq if j is the sink of the link ` and ` is unidirectional

1 if j is the source of the link ` and ` is bidirectional
1 if j is the sink of the link ` and ` is bidirectional
0 otherwise

.

Proof. Let B = B(q) for the remainder of the proof. By definition we have,

(BB†)(j, k) =
∑
`

B(j, `)B(k, `)

If j = k, we have

(BB†)(j, j)

=
∑
`

B(j, `)B(j, `)

=
∑

` unidirectional
st. j is a source

B(j, `)B(j, `) +
∑

` unidirectional
st. j is a sink

B(j, `)B(j, `) +
∑

` bidirectional
st. j is a source

B(j, `)B(j, `) +
∑

` bidirectional
st. j is a sink

B(j, `)B(j, `)

=
∑

` unidirectional
st. j is a source

1√
2
eiπq

1√
2
eiπq +

∑
` unidirectional

st. j is a sink

−1√
2
e−iπq

(
−1√
2
eiπq

)
+

∑
` bidirectional
st. j is a source

1 +
∑

` bidirectional
st. j is a sink

1

=
1

2
(din(j) + dout(j))

=ds(j).

If j 6= k and there is a link from j to k but not from k to j, then

(BB†)(j, k) =
∑
`

B(j, `)B(k, `) =
1√
2
eiπq

(
−1√
2
eiπq

)
=
−1
2
e2πiq = −H(q)(j, k)

Likewise, if there is a link from k to j but not from j to k we have

(BB†)(j, k) =
∑
`

B(j, `)B(k, `) =

(
−1√
2
e−iπq

)
1√
2
e−iπq =

−1
2
e−2πiq = −H(q)(j, k).

Lastly, if there is neither a link from k to j or j to k we have (BB†)(j, k) = 0.

6 The eigenvectors and eigenvalues of directed stars and cycles

In this section, we examine the eigenvectors and eigenvalues of the unnormalized magnetic Laplacian
on two example graphs. As alluded to in the main text, in the directed star graph directional
information is contained in the eigenvectors only. For the directed cycle, on the other hand, the
magnetic Laplacian encodes the directed nature of the graph only through the eigenvalues. Both
examples can be verified via direct pen and paper calculation.

Example 1. Let G(in) and G(out) be the directed star graphs with vertices V = {1, . . . , N} and
edges pointing in/out to the central vertex as shown in Figure 1. Then the eigenvalues of L

(q,in)
U , the

unnormalized magnetic Laplacian on Gin, are given by

λin
1 = 0, λin

k =
1

2
for 2 ≤ k ≤ N − 1, and λin

N =
N

2
.
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(a) (b)

Figure 1: Directed stars (a) G(in), and (b) G(out)

If we let v = 1 be the central vertex, then the lead eigenvector is given by

uin
1 (1) = e2πiq, uin

1 (n) = 1, 2 ≤ n ≤ N.

For 2 ≤ k ≤ N − 1, the eigenvectors are

uin
k = δk − δk+1,

and the final eigenvector is given by

uin
N (1) = −e2πiq, uin

N (n) =
1

N − 1
, 2 ≤ n ≤ N.

The phase matrices satisfies Θ(q,in) = −Θ(q,out). Therefore, the associated magnetic Laplacians

satisfy L
(q,in)
U (u, v) = L

(q,out)
U (u, v). Since these matrices are Hermitian, this implies that the cor-

responding eigenvalue-eigenvector pairs satisfy λin
k = λout

k , and uin
k = uout

k . Hence, uin
1 and uout

1
identify the central vertex, and the sign of their imaginary parts at this vertex identifies whether it is a
source or a sink. On the other hand, the eigenvalues give no directional information.

Example 2. Let G be the directed cycle. Then, then the eigenvalues of L
(q)
U is are the classical

Fourier modes uk(n) = e(2πikn/N), independent of q. The eigenvalues, however, do depend on q and
are given by

λk = 1− cos

(
2π

(
k

N
+ q

))
, 1 ≤ k ≤ N.

7 Expanded details of numerical results

Here we present more details on our node classification results in Tables 3, 4, 5, 6, 7 and 8; and more
details of our link prediction results in Tables 9, 10, 11, 12, 13, and 14. We present our results in the
form mean ± standard deviation.

The networks GCN, APPNP, GAT, SAGE, and GIN were not designed with directed graphs as the
primary motivation. Therefore, we implemented these methods in two ways: (i) with the original
asymmetric adjacency matrix; and (ii) with a symmetrized adjacency matrix. For node classification,
symmetrizing the adjacency matrix improved performance for most of these networks on most of
the real datasets. We did not test the symmetric implementations on our synthetic DSBM datasets
because these datasets, by design, place a heavy importance on directional information. For link
prediction, on the other hand, we only use asymmetric adjacency matrices. In our tables below,
GCN, APPNP, GAT, SAGE, and GIN refer to the implementations with the symmetrized adjacency
matrix and GCN-D, APPNP-D, GAT-D, SAGE-D, and GIN-D refer to our implementation with the
asymmetric matrix.

Tables 3, 4, 5, and 6 provide the precise node classification results for the four types of DSBM graphs
introduced in Section 5.1.1 of the main text; they correspond to the plots in Figure 3 of the main text.
Table 8 contains all of the information contained in Table 1 from the main text, but reports separately
the results of GCN, APPNP, GAT, SAGE, and GIN (which use the symmetrized adjacency matrix)
and the results of GCN-D, APPNP-D, GAT-D, SAGE-D, and GIN-D (which use the asymmetric
adjacency matrix), whereas Table 1 in the main text reported only the best-performer between the
two variants.
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In Table 6, the spectral KNN classifier performs extremely well and exceeds the performance of
MagNet. This is perhaps unsurprising since it is known that spectral clustering style methods
generally perform well on stochastic block models. However, we note that in our main experiments
with MagNet, we used random noise for our initial node features. If we rerun these experiments using
the lead eigenvector of the magnetic Laplacian for the initial node features, then the performance of
MagNet improves significantly and exceeds that of spectral clustering as shown in Table 7. For real
datasets, spectral clustering performs poorly. The poor performance of spectral clustering may be
caused by the inability of spectral clustering to leverage the important information which is contained
in the node features of these datasets.

In Table 6, BiGCN, BiSAGE, and BiGAT are generally better than GCN-D, SAGE-D, and GAT-D.
It indicates that it is beneficial to consider the neighbors in both directions. However, there is
no noticeable improvement for BiGCN and BiGAT on real datasets WebKB/Cornell and Citeseer,
as reported in Table 8. It is because the best performance of GCN and GAT is achieved when
symmetrizing the adjacency matrix first. BiSAGE is better than SAGE on WebKB/Cornell since
testing accuracy is better for SAGE with the original asymmetric adjacency matrix. But with all node
classification results, MagNet outperforms BiGCN, BiSAGE, and BiGAT.

With respect to link prediction, there are many results in the supplement in addition to what is reported
in the main text. Table 9 in the supplement is the same as Table 2 from the main text, except in
the supplement we also include the Texas data set. Table 10 expands upon Table 9 by considering
the more difficult three-class classification problems described in Section 4.2 of the supplement.
All of the results in these tables include undirected edges and, if present, multi-edges, which have
essentially random labels with respect to their directionality (see also Section 4.2), and hence these
results indicate the model’s ability to ignore these noisy labels. MagNet performs quite well across
this slate of link prediction experiments (top performer in 13/20 experiments).

Tables 11, 12, 13, and 14 evaluate the same four link prediction tasks as Tables 9 and 10, except that
undirected edges and multi-edges are not included in the training/validation/testing sets. Thus all
labels are well-defined and noiseless. In this setting MagNet also performs very well, obtaining the
top performance in 23/32 experiments across all four tables.

Aside from Table 13, MagNet achieves the highest testing accuracy in 20/24 experiments. Digraph
achieves the highest testing accuracy in 4/8 experiments, and MagNet is best in 3/8 experiments as
shown in Table 13. Having said that, there is not a statistically significant difference between MagNet
and the top performing method in two other datasets (Wisconsin and Cora-ML), and MagNet is also
a very close second on WikiCS. Thus, MagNet is either the top performer or on par with the top
performing method in 5/8 datasets in Table 13. Nevertheless, the task is more difficult for MagNet
than other tasks. We hypothesize that this is because half of the task is identifying whether there is an
edge between u, v, or not; the other half, if there is an edge, is determining its direction. The first
half of the task is an undirected task, and thus q > 0 could provide noisy features for those pairs of
vertices for which there is no edge. The Digraph method utilizes the symmetric Laplacian, which is
unsuitable for direction prediction but works well for predicting the presence of an edge in either
direction or the absence of an edge. The direction of the edge is more important in Tables 11, 12, and
14, and MagNet captures the direction information very well. The results indicate there is a trade-off
between capturing undirected and directed features. This observation also leads to a potential future
research direction that utilizes magnetic Laplacian matrices based on multiple values of q, making
MagNet capture both undirected and directed information precisely.

Tables 11, 12, and 14 also report the testing accuracy of BiGCN, BiSAGE and BiGAT. There is a
significant improvement for BiGCN and BiSAGE compared with SAGE and GCN for WebKB/Cornell
and Citeseer. However, BiGAT is better than GAT only on WebKB/Cornell since GAT fails on Citeseer
for link prediction tasks, and there are no benefits to consider neighbors from both directions.
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Table 3: Node classification accuracy of ordered DSBM graphs with varying edge density.

Method / α∗ 0.1 0.08 0.05

ChebNet 19.9±0.6 20.0±0.7 20.0±0.7
GCN-D 68.9±2.1 67.6±2.7 58.5±2.0

APPNP-D 97.7±1.7 95.9±2.2 90.3±2.4
SAGE-D 20.1±1.1 19.9±0.8 19.9±1.0
GIN-D 57.3±5.8 55.4±5.5 50.9±7.7
GAT-D 42.1±5.3 39.0±7.0 37.2±5.5

DGCN 84.9±7.2 81.2±8.2 64.4±12.4
DiGraph 82.1±1.7 77.7±1.6 66.1±2.4

DiGraphIB 99.2±0.5 97.7±0.7 89.3±1.7

MagNet 99.6±0.2 98.3±0.8 94.1±1.2
Best q 0.25 0.10 0.25

Table 4: Node classification accuracy of ordered DSBM graphs with varying net flow.

Method / β∗ .05 .10 .15 .20 .25 .30 .35 .40

ChebNet 19.9±0.6 20.0±0.6 20.0±0.6 20.0±0.8 20.0±0.8 20.0±0.6 19.7±0.8 19.9±0.6
GCN-D 68.9±2.1 74.1±1.7 75.4±1.3 74.9±1.3 72.0±1.3 65.7±1.6 58.1±2.2 45.7±4.2

APPNP-D 97.7±1.7 94.3±2.5 89.6±3.5 80.2±8.3 69.3±4.0 59.8±5.2 51.5±4.6 40.1±5.1
SAGE-D 20.1±1.1 20.1±1.0 19.9±0.8 19.9±0.7 19.6±0.8 19.9±0.8 20.1±0.9 19.9±0.8
GIN-D 57.3±5.8 47.7±11.4 34.7±13.5 26.7±9.8 24.4±6.3 21.0±3.5 20.6±2.7 19.8±0.6
GAT-D 42.1±5.3 33.0±5.1 26.2±3.7 19.9±1.4 20.0±1.2 19.9±0.8 19.5±0.2 19.5±0.2

DGCN 84.9±7.2 87.5±5.6 87.9±4.8 87.9±3.5 85.3±2.5 79.2±2.0 69.7±1.5 54.2±1.7
DiGraph 82.1±1.7 83.0±1.7 81.9±1.1 79.5±1.3 73.4±1.8 67.6±2.6 57.9±1.5 43.4±6.4

DiGraphIB 99.2±0.5 97.9±0.7 94.2±1.6 88.6±2.2 82.0±3.1 69.7±2.5 57.7±5.8 41.6±8.2

MagNet 99.6±0.2 99.0±0.9 97.5±0.7 94.3±1.5 88.9±1.8 79.4±2.8 68.4±2.5 52.1±3.0

Best q 0.25 0.20 0.20 0.25 0.20 0.20 0.20 0.25

Table 5: Node classification accuracy of cyclic DSBM graphs with varying net flow.

Method / β∗ .05 .10 .15 .20 .25 .30

ChebNet 75.3±16.9 63.3±24.1 70.6±20.2 71.3±29.5 86.6±7.4 59.7±21.3
GCN-D 83.5±24.8 64.9±35.8 69.8±9.4 58.4±37.1 76.7±7.5 39.5±22.2

APPNP-D 19.5±0.4 19.6±0.5 19.4±0.3 19.6±0.7 19.8±0.6 20.1±1.5
SAGE-D 91.5±5.4 81.2±18.9 79.0±8.4 71.1±24.3 75.7±7.4 46.0±24.4
GIN-D 77.2±19.0 68.6±21.1 54.2±16.3 67.9±20.8 55.5±19.4 39.3±20.5
GAT-D 98.2±2.1 91.2±20.4 97.0±2.9 58.7±39.2 93.1±4.6 60.2±38.3

DGCN 91.4±15.6 97.9±11.7 99.0±1.0 80.2±32.9 95.8±6.7 96.0±4.7
DiGraph 71.5±30.3 76.9±27.4 73.1±33.3 74.8±35.1 85.7±12.1 66.3±28.4

DiGraphIB 88.0±16.5 97.4±2.5 99.4±0.5 98.1±1.2 90.8±13.4 88.4±6.8

MagNet 100.0±0.1 100.0±0.0 99.2±1.1 96.6±12.6 99.9±0.3 98.8±1.0
Best q 0.10 0.10 0.15 0.10 0.10 0.10
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Table 6: Node classification accuracy of noisy cyclic DSBM graphs with varying net flow.

Method / β∗ .05 .10 .15 .20

ChebNet 18.2±3.3 20.2±3.5 19.8±3.6 18.6±3.9
GCN-D 24.3±4.9 22.6±4.5 21.6±3.8 20.5±4.8

APPNP-D 17.8±2.3 17.6±2.0 18.5±2.8 18.0±2.1
SAGE-D 25.2±7.9 21.2±4.6 19.6±3.3 21.2±4.1
GIN-D 22.6±5.1 21.0±4.8 21.8±3.3 18.6±2.7
GAT-D 28.2±7.6 24.2±4.7 23.5±3.9 20.5±4.1

BiGCN 40.6±11.2 25.2±5.7 26.4±7.6 17.7±2.7
BiSAGE 32.2±10.7 22.0±5.3 21.4±5.8 20.7±4.2
BiGAT 51.9±11.4 28.0±6.8 30.6±11.1 23.3±5.2

DGCN 37.6±5.5 28.9±6.6 25.6±6.8 21.3±3.7
DiGraph 24.4±8.3 25.5±10.5 20.8±7.4 18.1±3.1

DiGraphIB 30.5±7.6 33.0±10.1 24.2±9.1 19.0±3.7

MagNet 78.4±7.8 52.8±17.9 31.8±14.5 24.2±5.8
Best q 0.25 0.25 0.25 0.25

Table 7: Node classification accuracy of noisy cyclic DSBM graphs with varying net flow with input
features as the eigenvector of magnetic Laplacian with smallest eigenvalues.

Method / β∗ .05 .10 .15 .20

ChebNet 91.8±2.5 87.4±3.5 81.2±4.2 69.9±4.3
GCN-D 63.9±10.3 49.8±7.8 41.5±6.2 35.9±4.3

APPNP-D 86.5±3.8 84.3±3.2 77.1±4.3 67.1±4.5
SAGE-D 95.1±2.4 90.4±3.7 83.8±3.1 70.8±4.0
GIN-D 50.4±7.8 43.0±8.1 39.3±4.5 35.5±4.4
GAT-D 93.1±3.3 87.4±4.1 80.3±4.5 64.6±4.8

DGCN 85.6±4.4 77.1±5.6 68.0±4.9 58.2±3.8
DiGraph 57.4±20.8 51.7±18.1 50.8±16.4 42.6±10.3

DiGraphIB 77.5±6.1 68.8±7.2 66.0±6.7 51.6±5.9

KNN 94.1±2.0 88.4±2.9 80.9±4.2 67.7±4.3

MagNet 97.1±1.5 94.1±2.2 88.8±3.2 75.1±4.3
Best q 0.25 0.25 0.25 0.25
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Table 8: Testing accuracy of node classification. The best results are in bold and the second best are
underlined.

Cornell Texas Wisconsin Cora-ML Citeseer Telegram

ChebNet 79.8±5.0 79.2±7.5 81.6±6.3 80.0±1.8 66.7±1.6 73.4 ±5.8
GCN 59.0±6.4 57.9±5.4 55.9±5.4 82.0±1.1 66.0±1.5 73.4±5.9

GCN-D 57.3±4.8 58.7±3.8 52.7±5.4 72.6±1.6 60.5±1.6 63.6±4.7

APPNP 58.7±4.0 57.0±4.8 49.6±6.5 82.6±1.4 66.9±1.8 69.4±3.5
APPNP-D 58.4±3.0 56.8±2.7 51.8±7.4 68.6±2.5 58.6±1.8 66.4±5.0

GAT 57.6±4.9 61.1±5.0 54.1±4.2 81.9±1.0 67.3±1.3 72.6±7.5
GAT-D 57.3±7.7 59.2±4.1 52.0±4.6 73.1±1.6 62.7±1.6 67.4±4.4
SAGE 77.6±6.3 84.3±5.5 79.2±5.3 82.3±1.2 66.0±1.5 66.4±6.4

SAGE-D 80.0±6.1 76.2±3.8 83.1±4.8 72.0±2.1 61.8±2.0 58.2±3.6
GIN 57.9±5.7 65.2±6.5 58.2±5.1 78.1±2.0 63.3±2.5 86.4±4.3

GIN-D 55.4±5.2 58.1±5.3 50.2±7.6 67.0±3.2 60.4±2.3 67.0±4.3

BiGCN 58.4±2.5 - - - 65.5±1.8 -
BiSAGE 80.8±5.9 - - - 64.9±1.2 -
BiGAT 58.1±4.4 - - - 67.1±1.4 -

DGCN 67.3±4.3 71.7±7.4 65.5±4.7 81.3±1.4 66.3±2.0 90.4±5.6
Digraph 66.8±6.2 64.9±8.1 59.6±3.8 79.4±1.8 62.6±2.2 82.0±3.1

DiGraphIB 64.4±9.0 64.9±13.7 64.1±7.0 79.3± 1.2 61.1±1.7 64.1±7.0

KNN 44.6±8.0 61.4±7.3 48.4±5.8 19.4±0.8 20.2±0.4 59.2±4.0

MagNet 84.3±7.0 83.3±6.1 85.7±3.2 79.8±2.5 67.5±1.8 87.6 ±2.9

Best q 0.25 0.15 0.05 0.0 0.0 0.15
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Table 11: Existence prediction(%) with noiseless labels. The best results are in bold and the second
best are underlined.

Cornell Texas Wisconsin Cora-ML CiteSeer WikiCS Chameleon Squirrel

ChebNet 68.6±5.1 67.7±9.9 70.1±5.6 71.2±0.8 66.0±1.6 78.4±0.3 88.7±0.3 90.4±0.2
GCN-D 56.7±10.4 66.1±7.5 62.9±6.0 75.5±1.1 64.0±1.8 78.3±0.3 90.1±0.3 92.0±0.2

APPNP-D 65.2±9.0 72.1±6.9 71.5±4.0 78.6±0.7 71.0±0.8 80.6±0.3 90.4±0.4 91.8±0.2
SAGE-D 71.2±7.7 66.6±7.2 70.5±5.5 70.1±1.4 64.0±1.6 62.2±0.3 86.1±0.6 83.7±0.2
GIN-D 63.8±7.1 72.1±5.7 70.1±3.6 78.3±1.0 70.1±0.9 80.5±0.3 90.4±0.4 92.1±0.1
GAT-D 62.6±9.9 50.0±1.8 50.9±1.6 50.0±0.1 50.2±0.5 50.2±0.3 50.1±0.2 58.8±13.4

BiGCN 73.7±5.4 - - - 75.8±1.2 - - -
BiSAGE 79.0±6.7 - - - 72.1±1.9 - - -
BiGAT 74.7±6.9 - - - 50.4±0.5 - - -

DGCN 73.2±5.3 67.1±9.8 71.8±4.5 74.0±1.0 73.4±1.2 80.7±0.3 89.1±0.4 91.5±0.2
DiGraph 71.6±5.3 84.2±3.8 79.4±3.3 75.7±1.1 74.0±1.3 76.8±0.3 89.3±0.4 91.4±0.1

DiGraphIB 73.4±4.4 85.1±5.6 77.9±3.8 76.0±1.0 74.3±2.0 76.9±0.4 89.3±0.5 90.8±0.1

MagNet 76.2±4.4 84.9±3.9 81.7±2.2 81.1±0.7 80.7±0.6 84.2±0.2 91.1±0.5 91.6±0.2

Best q 0.20 0.10 0.05 0.15 0.05 0.10 0.10 0.10

Table 12: Direction prediction(%) with noiseless labels. The best results are in bold and the second
best are underlined.

Cornell Texas Wisconsin Cora-ML CiteSeer WikiCS Chameleon Squirrel

ChebNet 74.1±5.6 72.3±10.0 69.9±6.2 73.3±1.2 69.2±2.1 71.1±0.3 94.6±0.2 95.3±0.2
GCN-D 54.4±8.8 76.7±6.3 73.8±4.2 80.8±1.1 70.8±2.3 78.4±0.2 97.2±0.2 97.2±0.1

APPNP-D 73.6±6.6 83.6±4.3 80.8±4.5 85.6±0.8 81.0±1.8 82.9±0.2 97.6±0.2 98.1±0.1
SAGE-D 77.0±5.5 77.7±6.5 76.4±3.8 69.3±0.5 70.1±1.6 56.0±0.2 94.4±0.3 93.6±1.8
GIN-D 69.4±6.6 84.7±4.5 80.6±3.8 84.5±0.9 78.5±1.4 82.9±0.1 97.6±0.2 98.0±0.1
GAT-D 71.8±10.1 51.1±1.8 52.2±2.0 50.1±0.2 50.7±0.5 50.2±0.4 50.5±1.3 68.6±16.8

BiGCN 87.0±4.4 - - - 83.9±1.2 - - -
BiSAGE 84.0±4.7 - - - 80.4±1.1 - - -
BiGAT 81.8±5.1 - - - 50.7±0.5 - - -

DGCN 82.9±5.9 80.8±10.8 76.8±8.8 80.3±1.5 81.6±2.0 81.6±0.3 96.6±0.2 98.0±0.1
DiGraph 83.1±4.9 89.0±2.8 87.8±4.1 82.0±1.0 84.0±1.5 79.6±0.2 97.1±0.2 96.9±0.1

DiGraphIB 83.7±5.6 89.5±3.3 87.8±3.9 84.3±1.4 85.1±1.4 83.0±0.2 97.6±0.2 97.2±0.1

MagNet 88.0±2.6 92.6±4.6 88.2±3.5 87.6±0.8 87.8±1.1 86.3±0.3 97.9±0.2 98.3±0.1
Best q 0.15 0.25 0.10 0.15 0.15 0.15 0.15 0.15

8 Optimal q values for synthetic data

Optimal q values for synthetic graphs are shown in Tables 3, 4, 5, and 6. We observe that the optimal
q is smaller for node classification of cyclic DSBM graphs than the ordered and noisy cyclic DSBM
graphs. For cyclic DSBM graphs, the cluster is relatively clear by checking connectivity even without
direction information. But the direction is crucial for classification for the other two types of DSBM
graphs. It indicates that a smaller q (q < 0.15) is enough for node classification of directed graphs
when the direction is less critical. And a larger q (q > 0.15) is needed to encode more direction
information in the phase matrix for better performance. If the cluster is evident in the symmetrized
adjacency matrix, we can use q = 0, and MagNet will reduce to ChebNet as results of Cora-ML and
CiteSeer in Table 8.
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Table 13: Three classes link prediction(%) with noiseless labels. The best results are in bold and the
second best are underlined.

Cornell Texas Wisconsin Cora-ML CiteSeer WikiCS Chameleon Squirrel

ChebNet 63.0±2.1 71.5±2.0 70.5±2.1 65.6±0.5 60.3±0.8 74.3±0.1 80.7±0.3 83.9±0.1
GCN-D 53.0±2.5 62.6±2.6 55.8±3.1 67.5±0.6 57.1±1.1 74.5±0.2 81.3±0.3 86.2±0.1

APPNP-D 61.5±3.6 63.3±3.3 57.9±4.3 68.6±0.7 60.3±1.2 75.8±0.2 81.2±0.2 85.9±0.1
SAGE-D 64.8±4.0 59.2±3.2 60.7±4.6 50.9±0.1 51.1±1.2 60.8±0.1 70.0±0.3 67.3±0.2
GIN-D 54.6±3.8 65.2±3.7 58.4±4.0 68.6±0.7 59.1±1.4 76.2±0.2 81.7±0.3 86.5±0.3
GAT-D 58.8±6.4 56.9±1.4 54.2±1.0 50.8±0.1 52.2±0.2 60.8±0.1 54.2±0.1 52.5±0.0

DGCN 65.1±6.1 73.6±3.6 71.6±1.7 67.9±0.5 66.0±0.7 77.6±0.1 80.9±0.3 85.4±0.1
DiGraph 66.1±4.7 76.4±4.0 72.9±2.0 67.2±0.7 67.5±0.6 74.4±0.2 83.8±0.3 86.4±0.2

DiGraphIB 64.5±4.1 76.2±4.3 72.4±2.6 66.6±0.5 64.4±0.6 71.8±0.2 83.4±0.2 85.6±0.1

MagNet 67.1±4.6 76.1±3.7 70.3±2.2 68.4±0.9 63.4±1.1 79.6±0.1 83.8±0.4 86.0±0.1

Best q 0.25 0.10 0.05 0.05 0.10 0.10 0.10 0.10

Table 14: Direction prediction by three classes link prediction(%) with noiseless labels. The best
results are in bold and the second best are underlined.

Cornell Texas Wisconsin Cora-ML CiteSeer WikiCS Chameleon Squirrel

ChebNet 75.6±4.9 61.6±5.4 69.7±4.1 73.4±1.3 69.4±1.5 71.1±0.2 94.6±0.2 95.3±0.1
GCN-D 56.6±3.0 77.9±7.0 70.9±5.1 80.6±1.1 70.3±2.1 78.4±0.2 97.2±0.2 97.2±0.1

APPNP-D 75.5±4.5 83.5±4.4 79.9±3.4 83.6±0.8 80.7±1.4 82.7±0.2 97.5±0.2 98.0±0.1
SAGE-D 77.3±4.5 75.0±5.4 75.8±5.0 69.2±0.6 69.7±1.6 56.0±0.3 94.4±0.3 92.8±1.3
GIN-D 71.9±4.6 85.6±4.1 80.6±3.8 84.4±0.8 78.6±2.0 82.9±0.2 97.6±0.2 98.1±0.1
GAT-D 67.3±10.8 49.7±1.6 52.3±1.9 50.0±0.1 50.1±0.3 50.2±0.5 50.1±0.1 50.0±0.0

BiGCN 83.2±4.5 - - - 83.8±1.0 - - -
BiSAGE 86.7±4.2 - - - 79.7±1.6 - - -
BiGAT 80.4±8.0 - - - 50.2±0.6 - - -

DGCN 79.9±6.1 68.0±8.9 77.0±4.3 80.1±1.1 81.1±2.6 81.6±0.3 96.4±0.2 98.0±0.1
DiGraph 85.5±4.1 90.4±4.0 87.6±4.7 82.0±1.0 83.0±1.2 79.6±0.2 97.1±0.2 96.9±0.1

DiGraphIB 85.2±4.7 89.9±3.4 87.5±4.2 84.2±1.1 85.2±1.3 82.2±0.3 97.1±0.2 96.9±0.1

MagNet 88.0±3.5 91.7±4.1 86.1±6.5 87.2±0.9 88.2±1.0 86.4±0.2 97.9±0.2 98.3±0.1
Best q 0.25 0.10 0.05 0.05 0.10 0.10 0.10 0.10
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[3] Michaël Fanuel, Carlos M Alaiz, and Johan AK Suykens. Magnetic eigenmaps for community
detection in directed networks. Physical Review E, 95(2):022302, 2017.

[4] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc.

[5] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[6] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
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