
Appendix
A Updated Results for VTAB411

Our BayesTune training for the VTAB benchmark has been in progress, and we report the latest results here in412

Table 3, which can replace our older version Table 2 in the main paper. Now, we can see that the number of413

datasets where BayesTune achieves Rank 1 is increased from 6 to 7, so becoming the best method among the414

competing approaches.415

B Chosen Hyperparameters416

We grid-search hyperparameters on validation, where the two key hyperparameters are: the effective417

training data size N̂ and the noise discount factor γ (re: Sec. 4.1). The candidate sets are formed418

as: N̂ ∈ {108, 109, · · · , 1012}, γ ∈ {10−4, 10−2, 100} for NLP, and N̂ ∈ {106, 107, · · · , 1012},419

γ ∈ {10−4, 10−3, · · · , 100} for VTAB. The chosen hyperparameters are as follows (N̂ , γ): (NLP) cola420

= (11, 10−4), stsb = (12, 10−4), mrpc = (12, 100), rte = (8, 10−4), cb = (10, 10−4), copa = (8, 10−2),421

wsc = (10, 10−4); (VTAB) cifar100 = (7, 10−1), caltech101 = (9, 10−2), dtd = (12, 100), flower102422

= (12, 10−2), pets = (12, 100), svhn = (10, 100), sun397 = (7, 10−1), camelyon = (6, 100), eu-423

rosat = (7, 10−1), resisc45 = (12, 10−2), retinopathy = (7, 10−2), clevr-count = (7, 10−3), clevr-dist424

= (7, 10−3), dmlab = (8, 100), kitti = (7, 100), dsprite-loc = (12, 10−4), dsprite-ori = (12, 10−3), snorb-425

azim = (7, 10−2), snorb-ele = (6, 10−1).426

C More Analysis427

(NLP) Test accuracies at other sparsity levels. Although p = 0.005 is recognized as the optimal sparsity level428

overall for the GLUE and SuperGLUE tasks, we evaluate the test performance of our BayesTune for different429

sparsity levels: p ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.5}. The average test accuracies are shown in Fig. 4. We see that430

overall there is less significant change in test performance so long as the sparsity level p is small enough, and the431

resulting sparse updates selected by our BayesTune lead to equally good performance as those with the default432

value. However, increasing p further (e.g., p = 0.5) considerably degrades the performance, which signifies the433

importance of sparse fine-tuning to avoid potential overfitting.434

(VTAB) Scale posterior mean λ̂ vs. sparsity level p. We visualize the plots that relate the sorted scale posterior435

means λ̂ to the sparsity levels p in Fig. 5. The plots are aligned with the the test accuracy plots analyzed in the436

main paper. As the plots are grouped along the optimal sparsity values, we see certain trends: for the sparse437

group (sun397 and cifar100), the scale λ̂ values are overall small scaled (in the range of [0, 0.2]) with sharp438

drops at small λ̂; for the dense group: (camelyon and dmlab), λ̂ scale is even larger (in the range of [0, 0.5])439

with relatively smooth decaying at small values; lastly for the in-between group (clever-dist, dspr-ori,440

kitti, and snorb-ele), we have much narrower λ̂ ranges in between 0 and 0.1 except for kitti.441
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Full update 85.8 68.9 87.7 64.3 87.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1
Linear 0.04 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2

VPT [17] 0.64 78.878.878.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.196.196.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.932.932.9 37.8 4.16 3
Adapter [15] 0.16 69.2 90.1 68.0 98.8 89.9 82.8 54.354.354.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 3.68 1
LoRA [16] 0.29 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.984.984.9 95.3 84.484.484.4 73.6 82.982.982.9 69.269.269.2 49.8 78.5 75.7 47.1 31.0 44.0 2.68 4
NOAH [36] 0.43 69.6 92.792.792.7 70.270.270.2 99.199.199.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.949.949.9 81.7 81.8 48.3 32.8 44.244.244.2 1.951.951.95 5

BayesTuneBayesTuneBayesTune Avg 68.9 92.6 69.5 99.199.199.1 90.890.890.8 88.188.188.1 50.0 84.6 95.8 82.8 76.076.076.0 82.6 67.4 49.6 82.382.382.3 81.981.981.9 49.949.949.9 22.6 39.3 2.37 777
0.37 (.07) (.37) (.04) (.37) (.15) (.67) (.04) (.60) (.60) (.37) (.07) (.30) (.22) (.52) (.60) (.60) (.30) (.52) (.67)

Table 3: (Latest) VTAB-1K results. The accuracies at the optimal sparsity levels are reported for our
BayesTune. For BayesTune, the optimal number of the updated parameters is dataset-dependent, and
these optimal numbers are depicted in the parentheses. The figures of the competing methods are
exerpted from [17, 15, 16, 36].
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Figure 4: (NLP benchmarks) Test accuracies at sparsity levels other than the default p = 0.005. We
evaluate the BayesTune sparse update models with p ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.5}, where the
default ones p = 0.005 are shown as red square markers.

(a) Sparse group (cifar100 and sun397) (b) Dense group (camelyon and dmlab)

(c) In-between group (clever-dist, dspr-ori, kitti, and snorb-ele)

Figure 5: (VTAB benchmarks) The plots of the sorted scale posterior means λ̂ vs. sparsity levels p,
each of which is aligned with the the corresponding test accuracy plot. The plots are grouped along
the optimal sparsity values where each group exhibits similar trends.

D Layer-wise and Module-wise Sparsity Patterns of BayesTuned Networks442

Sparsity patterns of RoBERTa-base on NLP tasks. We visualize the module-wise and layer-wise sparsity443

patterns of the BayesTuned RoBERTa-base networks on 7 NLP tasks in Fig. 6–19. First, for the layer-wise444

sparsity pattern: (Except for mrpc) The proportions of the selected updatable parameters are more or less445

uniformly distributed across the 12 layers of the Transformer, while the first word embedding layer and the last446

classification layer are significantly less and more selected, respectively. This is intuitively appealing as the447

task-specific features may tend to be determined at the higher, more global levels in texts/sentences, to account448

for longer-range dependency. Next, looking at the module-wise sparsity patterns, the proportions are highly449

non-uniform, layer-specific, and also task/dataset-dependent. For instance, the bias modules in some layers are450
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very densely selected, while they are very sparsely selected in other layers. This shows clear discrepancy to the451

heuristic strategies like BitFit [34] in which the bias modules are selected 100% for all layers.452

Sparsity patterns of ViT-B/16 on VTAB vision tasks. The module-wise and layer-wise sparsity patterns of the453

BayesTuned ViT-B/16 networks on VTAB benchmark datasets are shown in Fig. 20–38. We also superimpose454

the optimal p values (dataset dependent). The resulting patterns are quite similar to the NLP case: Except for a455

few cases, the lowest level visual prompt layers are selected far less, sometimes ignored, compared to the later456

layers. The last linear classification head, although not shown here in the sparsity diagrams, is selected 100%.457

Overall the layer-wise selection patterns are nearly uniform while the module-wise selection patterns are highly458

non-uniform and dataset dependent.459
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cola (Module-wise sparsity pattern)

Figure 6: Sparsity pattern of the modules in RoBERTa-base on cola. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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cola (Layer-wise sparsity pattern)

Figure 7: Sparsity pattern of the layers in RoBERTa-base on cola. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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stsb (Module-wise sparsity pattern)

Figure 8: Sparsity pattern of the modules in RoBERTa-base on stsb. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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stsb (Layer-wise sparsity pattern)

Figure 9: Sparsity pattern of the layers in RoBERTa-base on stsb. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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mrpc (Module-wise sparsity pattern)

Figure 10: Sparsity pattern of the modules in RoBERTa-base on mrpc. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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mrpc (Layer-wise sparsity pattern)

Figure 11: Sparsity pattern of the layers in RoBERTa-base on mrpc. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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rte (Module-wise sparsity pattern)

Figure 12: Sparsity pattern of the modules in RoBERTa-base on rte. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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rte (Layer-wise sparsity pattern)

Figure 13: Sparsity pattern of the layers in RoBERTa-base on rte. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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cb (Module-wise sparsity pattern)

Figure 14: Sparsity pattern of the modules in RoBERTa-base on cb. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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cb (Layer-wise sparsity pattern)

Figure 15: Sparsity pattern of the layers in RoBERTa-base on cb. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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copa (Module-wise sparsity pattern)

Figure 16: Sparsity pattern of the modules in RoBERTa-base on copa. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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copa (Layer-wise sparsity pattern)

Figure 17: Sparsity pattern of the layers in RoBERTa-base on copa. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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wsc (Module-wise sparsity pattern)

Figure 18: Sparsity pattern of the modules in RoBERTa-base on wsc. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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wsc (Layer-wise sparsity pattern)

Figure 19: Sparsity pattern of the layers in RoBERTa-base on wsc. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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cifar100

Figure 20: Sparsity pattern of attached modules to ViT-B/16 on cifar100. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=10% is shown as vertical line.
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caltech101

Figure 21: Sparsity pattern of attached modules to ViT-B/16 on caltech101. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=20% is shown as vertical line.
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dtd

Figure 22: Sparsity pattern of attached modules to ViT-B/16 on dtd. (Left) Module-wise updatable
parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s optimal sparsity
level p∗=5% is shown as vertical line.
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flower102

Figure 23: Sparsity pattern of attached modules to ViT-B/16 on flower102. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=50% is shown as vertical line.
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pets

Figure 24: Sparsity pattern of attached modules to ViT-B/16 on pets. (Left) Module-wise updatable
parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s optimal sparsity
level p∗=20% is shown as vertical line.
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svhn

Figure 25: Sparsity pattern of attached modules to ViT-B/16 on svhn. (Left) Module-wise updatable
parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s optimal sparsity
level p∗=80% is shown as vertical line.
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sun397

Figure 26: Sparsity pattern of attached modules to ViT-B/16 on sun397. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=5% is shown as vertical line.
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camelyon

Figure 27: Sparsity pattern of attached modules to ViT-B/16 on camelyon. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=80% is shown as vertical line.
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eurosat

Figure 28: Sparsity pattern of attached modules to ViT-B/16 on eurosat. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=80% is shown as vertical line.
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resisc45

Figure 29: Sparsity pattern of attached modules to ViT-B/16 on resisc45. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=50% is shown as vertical line.
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retinopathy

Figure 30: Sparsity pattern of attached modules to ViT-B/16 on retinopathy. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=10% is shown as vertical line.

39



clevr-count

Figure 31: Sparsity pattern of attached modules to ViT-B/16 on clevr-count. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=40% is shown as vertical line.
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clevr-dist

Figure 32: Sparsity pattern of attached modules to ViT-B/16 on clevr-dist. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=30% is shown as vertical line.
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dmlab

Figure 33: Sparsity pattern of attached modules to ViT-B/16 on dmlab. (Left) Module-wise updatable
parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s optimal sparsity
level p∗=80% is shown as vertical line.
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kitti

Figure 34: Sparsity pattern of attached modules to ViT-B/16 on kitti. (Left) Module-wise updatable
parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s optimal sparsity
level p∗=80% is shown as vertical line.
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dsprite-loc

Figure 35: Sparsity pattern of attached modules to ViT-B/16 on dsprite-loc. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=90% is shown as vertical line.
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dsprite-ori

Figure 36: Sparsity pattern of attached modules to ViT-B/16 on dsprite-ori. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=70% is shown as vertical line.
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snorb-azim

Figure 37: Sparsity pattern of attached modules to ViT-B/16 on snorb-azim. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=70% is shown as vertical line.
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snorb-ele

Figure 38: Sparsity pattern of attached modules to ViT-B/16 on snorb-ele. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=90% is shown as vertical line.
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