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Abstract001

Despite remarkable advances in natural lan-002
guage processing, developing effective sys-003
tems for low-resource languages remains a004
formidable challenge, with performance typ-005
ically lagging far behind high-resource coun-006
terparts due to data scarcity and insufficient007
linguistic resources. Cross-lingual knowledge008
transfer has emerged as a promising approach009
to address this challenge by leveraging re-010
sources from high-resource languages. In this011
paper, we investigate methods for transferring012
linguistic knowledge from high-resource lan-013
guages to low-resource languages, where the014
number of labeled training instances is in hun-015
dreds. We focus on sentence-level and word-016
level tasks. We examine three approaches for017
cross-lingual knowledge transfer: (a) augmen-018
tation in hidden layers, (b) token embedding019
transfer through token translation, and (c) a020
novel method for sharing token embeddings at021
hidden layers using Graph Neural Networks.022
Experimental results on sentiment classifica-023
tion and NER tasks on low-resource languages024
Marathi, Bangla (Bengali) and Malayalam us-025
ing high-resource languages Hindi and English026
demonstrate that our novel GNN-based ap-027
proach significantly outperforms existing meth-028
ods, achieving a significant improvement of 21029
and 27 percentage points respectively in macro-030
F1 score compared to traditional transfer learn-031
ing baselines such as multilingual joint training.032
We also present a detailed analysis of the trans-033
fer mechanisms and identify key factors that034
contribute to successful knowledge transfer in035
this linguistic context. Our findings provide036
valuable insights for developing NLP systems037
for other low-resource languages.038

1 Introduction039

Cross-lingual knowledge transfer has emerged040

as a crucial approach for improving natural lan-041

guage processing capabilities across different lan-042

guages. Recent advances in Large Language Mod-043

els (LLMs) and multilingual model variants have044

demonstrated remarkable success in this domain 045

by jointly training on multiple languages simulta- 046

neously, enabling zero-shot and few-shot learning 047

capabilities (Devlin et al., 2019; Lan et al., 2019). 048

These models, such as XLM-R (Conneau et al., 049

2020), mT5 (Xue et al., 2021), and BLOOM (Scao 050

et al., 2022), learn shared representations across 051

languages, thereby facilitating knowledge transfer 052

from high-resource to low-resource languages. The 053

success of these models largely stems from their 054

ability to leverage massive multilingual corpora 055

and transformer-based architectures (Vaswani et al., 056

2017), which effectively capture cross-lingual pat- 057

terns and relationships. 058

However, when dealing with extremely low- 059

resource scenarios where target languages have 060

very limited labeled data (e.g., only 100 training in- 061

stances), even state-of-the-art multilingual models 062

struggle to generalize effectively. This challenge is 063

particularly acute as these models rely heavily on 064

substantial training data across languages to learn 065

robust cross-lingual representations. Traditional ap- 066

proaches of fine-tuning pre-trained models or em- 067

ploying joint training on multilingual architectures 068

often fail to capture the nuanced characteristics of 069

low-resource languages when working with such 070

limited data. The problem is further compounded 071

when the low-resource language lacks pre-trained 072

models or significant monolingual corpora, making 073

it challenging to leverage existing transfer learning 074

techniques effectively. 075

To address this challenge, we propose a com- 076

prehensive framework that intelligently transfers 077

linguistic knowledge from high-resource to low- 078

resource languages through three complementary 079

approaches. We name it BhashaSetu after the 080

words “Bhasha” and “Setu” that mean “language” 081

and “bridge” respectively in most Indian languages, 082

highlighting its role in bridging languages. 083

Our approach is as follows. First, we intro- 084

duce Hidden Augmentation Layers (HAL) that 085
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create mixed representations in the hidden space,086

allowing controlled knowledge transfer while pre-087

serving the target language’s distinctive features.088

This approach builds upon and extends previous089

work in hidden space augmentation (Chaudhary,090

2020; Feng et al., 2021) to the cross-lingual setting.091

Second, we develop a token embedding transfer092

mechanism that leverages translation-based map-093

pings to initialize low-resource language embed-094

dings effectively. This is particularly beneficial for095

languages sharing similar scripts like Hindi and096

Marathi (Joshi, 2022). Finally, we propose a novel097

Graph-Enhanced Token Representation (GETR)098

approach that uses Graph Neural Networks (Zhou099

et al., 2020; Kipf and Welling, 2017; Veličković100

et al., 2018) to enable dynamic knowledge sharing101

between languages at the token level, thereby cap-102

turing complex cross-lingual relationships through103

graph-based message passing.104

This work contributes to the growing body of105

research in cross-lingual transfer learning (Zhang106

et al., 2022) while specifically addressing the chal-107

lenges of extreme data scarcity in low-resource108

languages. In short, our contributions are:109

1. We propose a comprehensive framework,110

BhashaSetu, for cross-lingual knowledge111

transfer in extremely low-resource scenarios,112

comprising three complementary approaches:113

hidden augmentation layer (HAL), token em-114

bedding transfer (TET), and graph-enhanced115

token representation (GETR) with GNNs116

(Sec. 3).117

2. We introduce a novel graph-based token inter-118

action mechanism that leverages Graph Neu-119

ral Networks to dynamically share knowledge120

between high-resource and low-resource lan-121

guages.122

3. We conduct extensive experiments across mul-123

tiple NLP tasks (sentiment classification and124

NER) and language pairs spanning multiple125

languages, demonstrating the versatility and126

robustness of our approach.127

4. We provide systematic analysis of the impact128

of various factors on cross-lingual knowledge129

transfer, including mixing coefficient, archi-130

tectural depth and dataset size ratios between131

languages.132

5. Experimental results on sentiment classifica-133

tion and NER tasks on low-resource languages134

Marathi, Bangla (Bengali) and Malayalam us-135

ing high-resource languages Hindi and En-136

glish demonstrate that our novel GNN-based137

approach significantly outperforms existing 138

methods, achieving 21 and 27 percentage 139

points improvement respectively in macro-F1 140

score compared to traditional transfer learn- 141

ing baselines such multilingual joint training, 142

while requiring only 100 training instances in 143

the low-resource language (Sec. 4). 144

2 Related Work 145

Cross-lingual transfer learning has advanced signif- 146

icantly with transformer-based models like BERT 147

(Devlin et al., 2019) and ALBERT (Lan et al., 148

2019), particularly with multilingual pre-trained 149

models such as XLM-R (Conneau et al., 2020), 150

mT5 (Xue et al., 2021), LLaMA (Touvron et al., 151

2023) and PaLM (Chowdhery et al., 2022). While 152

effective, these approaches require substantial mul- 153

tilingual training data, limiting their applicability 154

in extreme low-resource settings. More targeted 155

approaches include language-specific models, ad- 156

versarial training (Hu et al., 2020), and language- 157

specific adapters (Pfeiffer et al., 2020). Source 158

language selection significantly impacts perfor- 159

mance (Barnes et al., 2018), while modular task 160

decomposition (Zhang et al., 2022), two-stage fine- 161

tuning (Singh and Tiwary, 2023; Singh et al., 2024), 162

knowledge distillation (Yu et al., 2023), and hybrid 163

transfer approaches (Guzman Nateras et al., 2023; 164

Amazon Science, 2023) have shown promising re- 165

sults for cross-lingual transfer. 166

Data augmentation techniques in hidden spaces, 167

including wordMixup and sentMixup (Chaudhary, 168

2020), have proven valuable for low-resource sce- 169

narios and are comprehensively surveyed by Feng 170

et al. (Feng et al., 2021). Token-level trans- 171

fer approaches like trans-tokenization (Minixhofer 172

et al., 2023) and vocabulary replacement (Artetxe 173

et al., 2022) enable cross-lingual embedding trans- 174

fer without requiring parallel data, addressing a 175

critical challenge for low-resource languages. 176

Graph-based cross-lingual methods such as Het- 177

erogeneous GNNs (Wang et al., 2021) depend on 178

external semantic parsers and operate solely at the 179

GNN level, without integrating graph knowledge 180

into transformer models. Colexification-based mul- 181

tilingual graphs (Liu et al., 2023) construct graphs 182

from colexification relations rather than token in- 183

teractions, and similarly do not infuse graph infor- 184

mation into transformers. While recent work has 185

employed graph-based transformers with UCCA 186

semantic graphs (Wan and Li, 2024), such ap- 187
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proaches require pre-trained semantic parsers that188

are typically unavailable for low-resource Indian189

languages. In contrast, our GETR method con-190

structs token-level graphs directly from training191

data and uniquely integrates GNN-based token192

interactions within the transformer, enabling dy-193

namic, fine-grained cross-lingual knowledge shar-194

ing without external linguistic resources.195

3 Methodology196

This section presents three approaches for cross-197

lingual knowledge transfer: (a) augmentation198

in hidden layers, (b) token embedding transfer199

through translation, and (c) sharing token embed-200

dings at hidden layers utilizing graph neural net-201

works. Before delving into the technical details of202

these approaches, we first formally define the prob-203

lem statement for cross-lingual knowledge transfer204

in low-resource scenarios.205

3.1 Problem Statement206

Let us formally define our notation for cross-lingual207

knowledge transfer. For a high-resource language,208

we denote the dataset of textual instances as XH =209

{x1, x2, . . . , xNH
}, where each xi represents an210

individual text instance (e.g., a sentence). The cor-211

responding task-specific outputs are represented212

as YH = {y1, y2, . . . , yNH
}, where NH represents213

the total number of instances in the high-resource214

dataset, typically in the order of thousands. Simi-215

larly, we denote the low-resource language dataset216

as XL and its corresponding outputs as YL, where217

|XL| = NL ≪ NH , with NL being extremely218

small (approximately 100 instances). This extreme219

data scarcity in the low-resource setting presents220

the core challenge in our task.221

We define the combined dataset as X = {XH ∪222

XL} and Y = {YH ∪ YL}. Our objective is to223

learn a model M : X → Y that maps input text224

instances from either or both XH and XL to their225

respective outputs, while effectively leveraging the226

high-resource language data to compensate for the227

limited low-resource samples. The output space228

Y can correspond to any encoder-based task, with229

two common task variants. The first is for sentence-230

level tasks (such as sentiment analysis) where yi ∈231

{0, 1, . . . , c − 1}, c being the number of classes.232

The second is for sequence-labeling tasks (such233

as NER): yi = [yi1 , yi2 , . . . , yiT ], where T is the234

sequence length and each token-level label yit ∈235

Ytags represents a class (such as an NER tag).236

Despite the different output structures, the core 237

challenge of effective cross-lingual knowledge 238

transfer remains consistent across tasks, allowing 239

us to apply the same methodological approaches 240

with task-specific adaptations. We next describe 241

the three methods. 242

3.2 Augmentation in Hidden Layers (HAL) 243

Hidden layer augmentation has emerged as a preva- 244

lent technique for generating synthetic training data 245

in the latent space when working with textual in- 246

puts (Zhang, 2022; Chaudhary, 2020; Feng et al., 247

2021). While this approach has been successfully 248

applied for domain adaptation within the same lan- 249

guage (Zhang et al., 2022), its application to cross- 250

lingual knowledge transfer, particularly from high- 251

resource to low-resource languages, represents a 252

novel direction. This method is particularly ver- 253

satile as it can be applied to any high-resource 254

and low-resource language pair, regardless of their 255

script similarities or differences. 256

Let EM : X → H denote the encoder compo- 257

nent of the model M that maps each input text xi to 258

its final encoded CLS representation hCLSi. We pro- 259

pose a hidden augmentation mechanism that fuses 260

knowledge from high-resource and low-resource 261

languages through a weighted combination in the 262

latent space. Formally, we generate new training 263

pairs Ai = (hCLS
Ai

, yAi) as follows: 264

hCLS
Ai

= α · hCLS
Hi

+ (1− α) · hCLS
Li

(1) 265

where α ∈ [0, 1] is a mixing coefficient that con- 266

trols the contribution of each language. This co- 267

efficient can be either fixed through training or 268

randomly sampled per iteration. For sentence-level 269

prediction tasks, the label mixing is defined as: 270

yAi = α · yHi + (1− α) · yLi (2) 271

where yHi ∈ Rc and yLi ∈ Rc are typically one- 272

hot encoded vectors with c classes. The resulting 273

yAi ∈ Rc becomes a soft probability distribution 274

over the c classes as it is augmented from both yHi 275

and yLi . For sequence-level prediction tasks, the 276

label augmentation requires modification to handle 277

token-level outputs: 278

yAi,t = α · yHi,t + (1− α) · yLi,t (3) 279

where yAi,t represents the augmented label for the 280

tth token in the ith text, and both yHi,t and yLi,t are 281

one-hot encoded vectors in R|Ytags| representing 282

the tag distribution at position t. 283
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Empirically, α values between 0.1 and 0.4 yield284

optimal results, as they maintain the primary char-285

acteristics of the low-resource language while286

supplementing it with knowledge from the high-287

resource language. Since the augmentation pro-288

duces soft labels, we employ KL-divergence loss289

(Cui et al., 2023) instead of standard cross-entropy290

loss (Zhong et al., 2023) for soft labels and cross-291

entropy for hard labels during training. This frame-292

work can be further extended by adding multiple293

transformer layers above EM and performing aug-294

mentation at each layer’s CLS output, thus enabling295

hierarchical knowledge fusion.296

3.3 Token Embedding Transfer through297

Translation (TET)298

Traditional approaches often initialize token em-299

beddings for low-resource languages randomly,300

which can lead to suboptimal performance, espe-301

cially when training data is scarce. We propose an302

initialization strategy that leverages token embed-303

dings from a high-resource language through trans-304

lation mapping. This approach provides a more305

informed starting point for the embedding matrix306

of the low-resource language, enabling effective307

fine-tuning even with limited training samples. The308

core idea is to initialize the token embeddings of309

the low-resource language using the semantic in-310

formation captured in the pre-trained embeddings311

of their translated counterparts in the high-resource312

language. While this method assumes the avail-313

ability of word-level translations for the training314

data of the low-resource language, it does not re-315

quire any pre-trained models or large corpora in316

the low-resource language.317

Algorithm 1 details our systematic process318

for transferring token embeddings from a high-319

resource language (e.g., English) to a low-resource320

language (e.g., Marathi). To illustrate this process,321

consider transferring embeddings for the Marathi322

word "āntarbhās.ika" meaning "cross-lingual" in En-323

glish. The word would be tokenized in Marathi,324

potentially splitting it into subword tokens like325

"āntar" + "bhās.ika". Then, it is translated to En-326

glish as "cross-lingual", which might be tokenized327

as "cross" + "lingual" in English. The pre-trained328

embeddings for these English tokens are retrieved329

and averaged. For each Marathi token, we col-330

lect all instances where it appears across different331

words in the Marathi corpus. For example, the332

token "bhās.ika" might also appear in words like333

"bahubhās.ika" (meaning "multi-lingual"). Finally,334

Algorithm 1 Token Embedding Transfer through
Translation (TET)
1: VL ← Set of unique words from LRL corpus
2: for all wl ∈ VL do ▷ For each LRL word
3: Tl ← LRLTokenize(wl)
4: wh ← TranslateToHRL(wl)
5: Th ← HRLTokenize(wh)
6: Eh ← {GetPretrainedEmbeddings(t)|t ∈ Th} ▷

HRL token embeddings
7: eavg ← Mean(Eh)
8: for all tl ∈ Tl do ▷ For each LRL token
9: Ptl ← ∅ ▷ Initialize projected embeddings set

10: for all w′ ∈ VL do ▷ Check all LRL words
11: if tl ∈ LRLTokenize(w′) then
12: Ptl ← Ptl ∪ {eavg}
13: end if
14: end for
15: El[tl]← Mean(Ptl) ▷ Final embedding for LRL

token
16: end for
17: end for
18: return El ▷ Dictionary of LRL token embeddings

we average all corresponding English embedding 335

projections to create the final embedding for each 336

Marathi token. While we show transliterated exam- 337

ples here for clarity, in our actual experiments we 338

used the original scripts for all languages. 339

3.4 Graph-Enhanced Token Representation 340

for Cross-lingual Learning (GETR) 341

We propose a novel approach leveraging Graph 342

Neural Networks (GNN) (Zhou et al., 2020) to 343

enable dynamic knowledge sharing between high- 344

resource and low-resource languages at the token 345

level. For each batch of mixed-language inputs, 346

we construct an undirected graph G = (T,C), 347

where T = {t1, t2, . . . , vNk
} represents the set of 348

N unique tokens in batch k. The edge set C cap- 349

tures sequential relationships between tokens, de- 350

fined as C ⊆ {tij , ti(j+1)|tij , ti(j+1) ∈ T}, where 351

tokens ti1, ti2, . . . tin form sentence si. 352

To illustrate the mechanism, consider two sen- 353

tences: "The movie was good" from a high- 354

resource language and "I was impressed with the 355

movie" from a low-resource language. As shown 356

in Figure 1, tokens are represented as nodes with 357

edges connecting consecutive tokens within each 358

sentence. When computing the representation for 359

shared tokens (e.g., "was"), the model incorporates 360

contextual information from both language environ- 361

ments. This allows the CLS embedding of the low- 362

resource sentence to benefit from the high-resource 363

language’s token representations through neighbor- 364

hood aggregation. 365

Given the encoder output H ∈ RB×S×D (where 366
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Figure 1: Graphical representation of tokens of two
sentences in a batch: “The movie was good” and “I was
impressed with the movie”.

B, S, and D denote batch size, sequence length,367

and embedding dimension respectively), we re-368

shape it to H′ ∈ RL×D (L = BS) for GNN pro-369

cessing. We employ either GCN (Kipf and Welling,370

2017) or GAT (Veličković et al., 2018) layers with371

an adjacency matrix A ∈ {0, 1}L×L that captures372

token relationships such as Aij = 1 if li and lj373

are consecutive tokens in a sentence. Notably, we374

construct A using the flattened dimension L rather375

than unique tokens, allowing for token repetition376

which makes the array multiplication simpler and377

straight-forward. The GNN output is then reshaped378

to generate query Q and key K matrices for the379

subsequent transformer layer, while the value V380

matrix maintains its original computation path:381

H′ = Reshape(H) ∈ RL×D

H′
G = GNN(H′)

HG = Reshape(H′
G) ∈ RB×S×D

Q = HG ×Wq

K = HG ×Wk

(4)382

where Wq ∈ RD×D′
, Wk ∈ RD×D′

are query383

and key weight matrices respectively. The subse-384

quent transformer operations remain unchanged,385

following the standard sequence of cross-attention,386

feed-forward networks, layer normalization, and387

residual connections.388

V = H×Wv (5)389

where Wv ∈ RD×D′
is the value weight matrix.390

Once Q, K and V are computed, the rest of the391

transformer encoder (Vaswani et al., 2017) block392

is unchanged, i.e., cross-attention block followed393

by feed-forward, layer normalization and residual394

connection. Figure 2 illustrates our modified BERT395

architecture with GNN layers (gray shaded area).396

Multiple GNN layers can be stacked sequentially397

to enable deeper cross-lingual knowledge transfer.398

Strategic Batch Formation for Graph Construc-399

tion: We propose a batch formation strategy400

Figure 2: BERT encoder architecture incorporating the
GNN layer for cross-lingual knowledge transfer.

that balances high-resource and low-resource in- 401

stances while maximizing token overlap between 402

languages. For every batch of size B, we ensure 403

exactly B/2 instances from each language domain. 404

Our construction alternates between low-resource 405

and high-resource anchors: we first select a random 406

low-resource instance, then add (n/2− 1) neigh- 407

bors from low-resource language and n/2 from 408

high-resource language based on maximum token 409

overlap. These n instances are removed from the 410

available pool to prevent repetition within an epoch. 411

We then select a high-resource anchor and repeat 412

the process, and continue this alternation until the 413

batch is filled. 414

To improve robustness, 70% of the batches fol- 415

low this strategic formation while the remaining 416

30% maintain an equal language distribution that 417

selects instances randomly. This prevents over- 418

reliance on specific token patterns while preserving 419

structured knowledge transfer. The process contin- 420

ues across epochs until all low-resource instances 421

are utilized. 422

During inference, we apply the same principle 423

using training data to form neighborhoods for test 424

instances based on token overlap. This balanced 425

batch construction creates our token interaction 426

graph G = (T,C), enabling effective cross-lingual 427

token relationships without requiring pre-trained 428

resources for the low-resource language. 429

4 Experiments and Results 430

4.1 Dataset 431

Our experiments evaluate cross-lingual knowledge 432

transfer across multiple languages and tasks. For 433

sentiment classification, we employ two high- 434

resource languages: Hindi (Yadav, 2023; Sawant, 435

2023) and English (Akanksha, 2023), each with 436

12,000 labeled instances. We use two low-resource 437
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Table 1: Performance comparison of different training
approaches on sentiment classification dataset when
Hindi and English are considered as HRL and Marathi
as LRL.

HRL LRL Training Type Metrics on Test Dataset

Accuracy Macro-F1
- Marathi Scratch Training 0.50± 0.168 0.33± 0.000

English Marathi Joint Training 0.56± 0.001 0.53± 0.002

English Marathi Scratch Training + TET 0.57± 0.052 0.51± 0.061
English Marathi Joint Training + TET 0.58± 0.002 0.56± 0.003
English Marathi HAL 0.61± 0.001 0.60± 0.001
English Marathi HAL + TET 0.63± 0.002 0.63± 0.001
English Marathi GETR-GCN 0.67± 0.002 0.69± 0.002
English Marathi GETR-GCN + TET 0.68± 0.001 0.68± 0.001
English Marathi GETR-GCN + HAL 0.69± 0.001 0.70± 0.001
English Marathi GETR-GCN + HAL + TET 0.69± 0.001 0.70± 0.002
English Marathi GETR-GAT 0.74± 0.001 0.73± 0.001
English Marathi GETR-GAT + TET 0.74± 0.002 0.74± 0.001
English Marathi GETR-GAT + HAL 0.75± 0.001 0.75± 0.001
English Marathi GETR-GAT + HAL + TET 0.75± 0.001 0.74± 0.001

Hindi Marathi Joint Training 0.77± 0.004 0.75± 0.004

Hindi Marathi Scratch Training + TET 0.56± 0.052 0.52± 0.061
Hindi Marathi HAL 0.80± 0.003 0.80± 0.005
Hindi Marathi GETR-GCN 0.82± 0.001 0.82± 0.001
Hindi Marathi GETR-GCN + HAL 0.83± 0.002 0.83± 0.002
Hindi Marathi GETR-GAT 0.86± 0.003 0.85± 0.001
Hindi Marathi GETR-GAT + HAL 0.86± 0.001 0.87± 0.001

target languages: Marathi (Pingle et al., 2023),438

which shares the Devanagari script with Hindi, and439

Bangla (Bengali) (Sazzed and Jayarathna, 2019),440

a language close to Hindi but with its own script.441

All sentiment classification datasets contain binary442

labels (positive and negative) with balanced class443

distributions.444

The original Marathi dataset contained 12,113445

training and 1,000 test instances. To simulate an446

extreme low-resource scenario, we created three447

distinct splits: a training set of 100 instances ran-448

domly sampled from the original training set, a449

validation set of 1,500 instances also from the orig-450

inal training set, and a test set of 2,000 instances451

by combining the original 1,000 test instances with452

1,000 additional samples from the training set. We453

deliberately increased the test set size to evaluate454

robustness. Similarly, for Bengali, we created non-455

overlapping splits of 100 training, 1,500 validation,456

and 2,000 test instances. Throughout our experi-457

ments, we maintain the strict constraint that no pre-458

trained models or significant linguistic resources459

are available for the low-resource languages.460

For Named Entity Recognition, we maintain En-461

glish and Hindi as high-resource languages, with462

the English NER dataset (Jain, 2022) comprising463

12,000 training instances (17 unique entity tags)464

and the Hindi dataset (Murthy et al., 2022) con-465

taining 12,084 training instances (13 unique entity466

tags). We apply our methods to two low-resource467

target languages: Marathi (Patil et al., 2022) with468

100 training instances, 1,500 validation and 2,000469

test instances (14 unique entity tags), and Malay-470

alam (Mhaske et al., 2022) (that uses a completely471

different script from both Hindi and English) with 472

100 training instances, 1,500 validation instances, 473

and 2,000 test instances (7 unique entity tags). 474

4.2 Implementation Details 475

We conducted all experiments on an Amazon EC2 476

p4de.24xlarge instance, which is equipped with 477

8 NVIDIA A100 Tensor Core GPUs (80 GB each), 478

96 vCPUs, and 1,152 GB of system memory. For 479

most training approaches, we used a batch size of 480

128, except for scratch training and scratch training 481

+ TET where we used a smaller batch size of 8 482

due to memory constraints. In GETR methods, 483

we used 10 neighbors per instance with a batch 484

size of 120 to accommodate the graph construction 485

overhead. We employed the AdamW optimizer 486

with learning rates ranging from 3e-5 to 3e-7 when 487

using pre-trained models. For scratch training, we 488

found that a relatively higher learning rate (3e-4) 489

provided decent results when combined with TET. 490

Throughout experiments, we monitored validation 491

loss across 50 epochs to select the best checkpoint 492

for test evaluation. 493

For our high-resource languages, we uti- 494

lized l3cube-pune/hindi-albert (Joshi, 495

2022) as the pre-trained model for Hindi and 496

albert/albert-base-v2 (Lan et al., 2019) for 497

English across both sentiment classification and 498

NER tasks, adapting these base architectures 499

according to the specific task and approach re- 500

quirements. All experiments were conducted using 501

the original scripts of the respective languages 502

rather than transliteration. Following our strict 503

low-resource assumption, we trained tokenizers 504

from scratch for all low-resource languages, as we 505

assumed no availability of pre-trained tokenizers 506

or models for these languages. For Joint Training, 507

HAL, and GETR approaches, we leveraged 508

the pre-trained models and tokenizers from the 509

high-resource languages, augmenting them with 510

new tokens from the low-resource languages. The 511

embeddings for these newly added tokens were 512

randomly initialized, allowing the model to learn 513

appropriate representations during training. 514

4.3 Results on Sentiment Classification Task 515

All reported results are evaluated on the test set 516

of the low-resource language (Marathi), compris- 517

ing 2,000 instances carefully selected to ensure no 518

overlap with the training data (Table 1). All mod- 519

els are trained to minimize the cross-entropy loss, 520

except in HAL where hard labels use cross-entropy 521
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Table 2: Performance comparison of different training
approaches using Macro-F1 on NER dataset using En-
glish and Hindi as HRL and Malayalam as LRL.

HRL LRL Training Type Macro-F1
- Malayalam Scratch Training 0.03± 0.073

English Malayalam Joint Training 0.26± 0.002

English Malayalam Scratch Training + TET 0.11± 0.045
English Malayalam Joint Training + TET 0.27± 0.001
English Malayalam HAL 0.30± 0.003
English Malayalam HAL + TET 0.31± 0.002
English Malayalam GETR-GAT 0.46± 0.001
English Malayalam GETR-GAT + TET 0.47± 0.003
English Malayalam GETR-GAT + HAL 0.51± 0.002
English Malayalam GETR-GAT + HAL + TET 0.52± 0.001

Hindi Malayalam Joint Training 0.28± 0.002

Hindi Malayalam Scratch Training + TET 0.12± 0.045
Hindi Malayalam Joint Training + TET 0.28± 0.001
Hindi Malayalam HAL 0.32± 0.003
Hindi Malayalam HAL + TET 0.32± 0.002
Hindi Malayalam GETR-GAT 0.48± 0.001
Hindi Malayalam GETR-GAT + TET 0.49± 0.003
Hindi Malayalam GETR-GAT + HAL 0.53± 0.002
Hindi Malayalam GETR-GAT + HAL + TET 0.55± 0.001

loss while soft labels employ KL-divergence loss.522

Following our strict low-resource assumption of no523

pre-existing resources, we first trained a tinyBERT524

(Jiao et al., 2019) model from scratch using only525

100 Marathi training instances, including training526

a new tokenizer. As expected, with such limited527

data and no pre-trained knowledge, the model fails528

to learn meaningful patterns, defaulting to single-529

class prediction.530

We establish Joint Training as our primary base-531

line, as it mimics the approach used by current532

multilingual language models such as XLM-R533

(Conneau et al., 2020), mT5 (Xue et al., 2021),534

LLaMA (Touvron et al., 2023), and InstructGPT535

(Ouyang et al., 2022), which learn shared repre-536

sentations by training multiple languages together.537

Using English as the high-resource language with538

albert/albert-base-v2 (Lan et al., 2019) as the539

pre-trained model, Joint Training achieves 56%540

accuracy and 0.53 macro-F1. Token Embedding541

Transfer provides moderate improvements (57%542

accuracy, 0.51 macro-F1). HAL with α = 0.2 and543

two layers enhances results (63% accuracy, 0.63544

macro-F1 with TET). The GETR approaches with545

three GNN layers demonstrate significant gains,546

with GETR-GAT combined with HAL achieving547

the best performance (75% accuracy, 0.75 macro-548

F1), representing a 22 percentage points improve-549

ment over the baseline.550

With Hindi as the high-resource language, us-551

ing l3cube-pune/hindi-albert (Joshi, 2022) as552

the pre-trained model, we observe substantially553

stronger performance across all approaches. We554

did not employ TET for Hindi-Marathi experiments555

as they share the same Devanagari script, ensuring556

that Marathi tokens already have pre-trained em-557

beddings from the Hindi model. Joint Training 558

shows remarkable improvement (77% accuracy, 559

0.75 macro-F1), likely due to this script similarity. 560

HAL with α = 0.2 and two layers further boosts 561

performance (80% accuracy, 0.80 macro-F1), while 562

GETR-GAT with three GAT layers combined with 563

HAL achieves the highest scores (86% accuracy, 564

0.87 macro-F1), a 12 percentage points improve- 565

ment over the baseline. 566

GETR’s superior performance can be attributed 567

to its ability to create dynamic, contextualized 568

connections between tokens across languages, en- 569

abling more effective knowledge transfer at a gran- 570

ular level. Unlike static approaches, GETR al- 571

lows low-resource language tokens to directly in- 572

corporate relevant semantic information from high- 573

resource contexts through the graph structure, creat- 574

ing richer representations that better capture cross- 575

lingual patterns. This transfer mechanism operates 576

efficiently through the transformer’s multi-head 577

attention, where Q and K matrices capture the 578

graph-based knowledge of tokens while preserving 579

the original value computations, allowing cross- 580

lingual information to propagate throughout the net- 581

work. Additionally, GETR-GAT consistently out- 582

performs GETR-GCN because the attention mech- 583

anism in GAT provides adaptive edge weights that 584

better model the varying importance of connections 585

between tokens across languages, whereas GCN 586

treats all connections with equal importance. 587

We chose ALBERT-based models for both En- 588

glish and Hindi to maintain architectural consis- 589

tency. Interestingly, we observed that when us- 590

ing more complex approaches like HAL or GETR, 591

TET’s contribution diminishes. This is because 592

these approaches perform numerous updates to the 593

low-resource language tokens through augmenta- 594

tion or neighborhood aggregation, allowing the em- 595

beddings to converge to optimal values even from 596

random initialization. As the test sets are mostly 597

balanced, we observe similar accuracy and macro- 598

F1 scores across experiments. Therefore, subse- 599

quently, we report only the macro-F1 metric for 600

clarity and conciseness. 601

To validate our approaches on another language 602

pair, we tested Bangla as the low-resource language 603

with Hindi and English as high-resource languages 604

(Table 4 in appendix). GETR-GAT+HAL+TET 605

consistently achieved the best results: with Hindi 606

as HRL, we reached 0.81 macro-F1 (14 percentage 607

points improvement over Joint Training’s 0.70); 608

with English as HRL, we achieved 0.75 macro- 609
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Table 3: NER performance comparison based on Macro-
F1 between Joint Training (JT) and our approach
(BhashaSetu) with Hindi as high-resource and Marathi
as low-resource language under varying dataset sizes.

LRL Size HRL Size Macro F1 + JT Macro F1 + BhashaSetu

10 12000 0.05± 0.001 0.11± 0.001
50 12000 0.17± 0.002 0.34± 0.002

100 12000 0.35± 0.001 0.44± 0.003
500 12000 0.39± 0.001 0.49± 0.002

1000 12000 0.42± 0.002 0.52± 0.001
5000 12000 0.55± 0.002 0.64± 0.003

10000 12000 0.71± 0.003 0.79± 0.002

100 12000 0.35± 0.001 0.44± 0.003
100 5000 0.22± 0.002 0.41± 0.002
100 1000 0.11± 0.028 0.25± 0.032
100 500 0.04± 0.025 0.10± 0.023

F1 (12 percentage points improvement over Joint610

Training’s 0.63).611

4.4 Results on NER Task612

We extended our evaluation beyond sentiment clas-613

sification to Named Entity Recognition using test614

sets of 2,000 instances for Malayalam and 1,999615

instances for Marathi. For Malayalam (Table 2;616

detailed results with GETR-GCN in Table 9 in ap-617

pendix), GETR-GAT+HAL+TET achieved macro-618

F1 scores of 0.55 with Hindi as HRL (27 percent-619

age points improvement over Joint Training’s 0.28)620

and 0.52 with English (26 percentage points im-621

provement over Joint Training’s 0.26). Similar pat-622

terns appear for Marathi (Table 8 in the appendix),623

with GETR-GAT achieving macro-F1 scores of624

0.44 with Hindi (9 percentage points improvement625

over Joint Training) and 0.40 with English (11 per-626

centage points improvement over Joint Training).627

These consistent improvements across different628

tasks and language families (Indo-Aryan and Dra-629

vidian) demonstrate that our approach effectively630

transfers knowledge regardless of task type or tar-631

get language.632

To evaluate the robustness of our approach633

and demonstrate its advantage over current mul-634

tilingual methods, we compared BhashaSetu (our635

best-performing GETR-GAT+HAL configuration)636

with Joint Training (JT) across varying dataset637

sizes for NER with Hindi as HRL and Marathi638

as LRL (Table 3). The results reveal two criti-639

cal insights. First, with extremely limited low-640

resource data (10-50 instances), Joint Training641

achieves modest performance (0.05-0.17 F1), while642

BhashaSetu demonstrates substantially better re-643

sults even with minimal data, achieving 0.11 F1644

with just 10 LRL instances and 0.34 F1 with 50645

instances—representing a 17 percentage points im-646

provement over Joint Training at these data scales.647

The fixed HRL size (12,000) experiment shows 648

BhashaSetu’s consistent advantage across all LRL 649

sizes, with improvements of 9-17 percentage points, 650

though the relative gap narrows as low-resource 651

data increases. 652

The second exepriment, keeping LRL fixed at 653

100 instances while varying HRL size, reveals 654

that Joint Training performance degrades dramat- 655

ically with decreasing HRL data (from 0.35 F1 656

with 12,000 instances to just 0.04 F1 with 500 in- 657

stances). While BhashaSetu also shows decreased 658

performance with less HRL data, it maintains sub- 659

stantially better results (0.10 F1 even with just 500 660

HRL instances) and demonstrates greater resilience 661

to HRL data reduction. These results highlight 662

both BhashaSetu’s effectiveness at enabling cross- 663

lingual knowledge transfer and its superior ability 664

to leverage limited high-resource data compared to 665

standard joint training approaches. Our additional 666

experiments on sentiment classification (details in 667

Tables 7 and 10 in appendix) reinforce these find- 668

ings, with BhashaSetu outperforming Joint Train- 669

ing by 14-28 percentage points for Hindi-Bangla 670

and 12-27 percentage points for English-Bangla 671

pairs across various dataset sizes. 672

5 Conclusions 673

In this paper, we addressed the challenge of cross- 674

lingual knowledge transfer for low-resource scenar- 675

ios. We proposed three approaches: hidden layer 676

augmentation, token embedding transfer, and a 677

novel graph-based token interaction mechanism us- 678

ing GNNs. Experimental results demonstrate that 679

while traditional multilingual models struggle with 680

extreme data scarcity, our proposed approaches ef- 681

fectively leverage knowledge from high-resource 682

languages. 683

Future work includes exploring self-supervised 684

pre-training strategies specific to low-resource 685

languages, more efficient graph construction al- 686

gorithms, memory-optimized implementations of 687

graph neural networks, and cross-lingual transfer 688

for a wider range of tasks and language pairs. 689

Acknowledgements 690

Following ARR’s AI Writing/Coding Assistance 691

Policy, we acknowledge using Claude 3.7 Son- 692

net (Anthropic, 2025) for editorial refinements 693

while emphasizing that all scientific contributions, 694

methodology, analysis, and conclusions are entirely 695

our own work. 696

8



Limitations697

While our proposed approaches demonstrate strong698

performance across different tasks and language699

pairs, we acknowledge certain aspects that present700

opportunities for future research. Our experiments701

primarily focus on Indian languages from both702

Indo-Aryan and Dravidian families, which could703

be extended to typologically more distant language704

pairs with different word orders or morphological705

systems in future work.706

Although BhashaSetu is effective with minimal707

low-resource data (100 instances), we observe that708

transfer performance correlates with high-resource709

language data availability, a common pattern in710

transfer learning approaches. This relationship be-711

tween source data volume and transfer effective-712

ness presents an interesting direction for develop-713

ing more data-efficient transfer techniques.714

The Token Embedding Transfer approach ben-715

efits from word-level translation capabilities be-716

tween language pairs. While such resources ex-717

ist for many language combinations, future work718

could explore unsupervised methods for establish-719

ing cross-lingual correspondences when traditional720

bilingual dictionaries are unavailable.721

Our Graph-Enhanced Token Representation ap-722

proach introduces additional computational com-723

plexity during training and inference due to graph724

construction operations and GNN computations725

compared to simpler methods. However, this com-726

putational investment delivers substantially im-727

proved performance (21-27 percentage points gain728

in F1 scores), representing a favorable trade-off in729

many practical scenarios. Future implementations730

could explore optimization techniques to reduce731

this overhead.732

Finally, while we demonstrate effectiveness on733

classification tasks (sentiment analysis and NER),734

extending these approaches to generative tasks in-735

volving neural machine translation or summary736

generation represents a promising direction for fu-737

ture research. This would further validate the ver-738

satility of our framework across the broader NLP739

task spectrum.740

Ethics Statement741

This research aims to promote linguistic inclusiv-742

ity by addressing the technological disparity be-743

tween high-resource and low-resource languages.744

We acknowledge that NLP capabilities have pre-745

dominantly benefited widely-spoken languages, po-746

tentially exacerbating digital divides along linguis- 747

tic lines. All datasets used in our experiments are 748

publicly available with appropriate citations, and 749

we did not collect or annotate new data that might 750

introduce privacy concerns. 751

We recognize that transfer learning approaches 752

may inadvertently propagate biases from source 753

to target languages; however, our work takes a 754

step toward mitigating representation disparities 755

by enabling better performance with minimal la- 756

beled data in low-resource languages. Due to the 757

focus on extremely low-resource settings (approxi- 758

mately 100 training instances), the computational 759

requirements for target language adaptation were 760

substantially lower than those typically needed for 761

high-resource language model development, reduc- 762

ing the environmental impact compared to training 763

large language models from scratch. While the 764

GETR approaches do introduce additional compu- 765

tational overhead during the knowledge transfer 766

process, the overall resource consumption remains 767

modest relative to pre-training large multilingual 768

models. This efficiency is particularly beneficial for 769

researchers and practitioners with limited computa- 770

tional resources working on low-resource language 771

technologies. 772

While we focused on Indian languages in this 773

study, we believe that similar approaches could 774

benefit other low-resource languages globally, con- 775

tributing to more equitable language technology 776

development. We emphasize that the performance 777

improvements demonstrated should be considered 778

within the context of the limitations described in 779

our paper, and that practical applications would 780

require careful consideration of cultural and lin- 781

guistic nuances specific to each target community. 782
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A Appendix 997

A.1 HAL 998

Figure 3 illustrates our modified architecture in- 999

corporating the hidden augmentation layer. The 1000

framework can be further extended by adding mul- 1001

tiple transformer layers above EM and performing 1002

augmentation at each layer’s CLS output, thus en- 1003

abling hierarchical knowledge fusion. 1004

A.2 Results on Sentiment Classification Task 1005

To validate our approaches on another language 1006

pair, we tested Bangla as the low-resource language 1007

with Hindi and English as high-resource languages 1008

(Table 4 in appendix). GETR-GAT+HAL+TET 1009

consistently achieved the best results: with Hindi 1010

as HRL, we reached 0.81 macro-F1 (14 percentage 1011

points improvement over Joint Training’s 0.70); 1012
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Figure 3: Architecture incorporating the Hidden Aug-
mentation Layer (HRL and LRL inputs are high- and
low-resource language inputs respectively)

with English as HRL, we achieved 0.75 macro-1013

F1 (12 percentage points improvement over Joint1014

Training’s 0.63). Hindi consistently provided1015

stronger transfer to Bangla than English, demon-1016

strating that language similarity benefits cross-1017

lingual transfer even when scripts differ, as Hindi1018

and Bangla share more linguistic features than En-1019

glish and Bangla.1020

To understand the impact of mixing coefficient1021

α in Hidden Augmentation Layer (HAL), we con-1022

ducted experiments with different α values ranging1023

from 0.1 to 0.8 (Table 5). For both English and1024

Hindi as high-resource languages, α=0.2 yields the1025

best performance, achieving accuracy/F1 scores of1026

0.610/0.590 and 0.860/0.860 respectively. The per-1027

formance gradually degrades as α increases, with1028

a more pronounced decline after α=0.5. This sug-1029

gests that while knowledge from the high-resource1030

language provides useful linguistic patterns and1031

semantic structures, excessive reliance on it di-1032

minishes the model’s ability to capture the unique1033

characteristics and nuances of the low-resource lan-1034

guage. The optimal performance at α=0.2 indi-1035

cates that a balanced approach, where the model1036

primarily learns from the low-resource language1037

while leveraging complementary features from the1038

high-resource language, is most effective. Notably,1039

even with declining performance at higher α val-1040

ues, the model maintains reasonable performance1041

Table 4: Performance comparison of different training
approaches using F1 on sentiment classification dataset
using English and Hindi as HRL and Bangla as LRL.

HRL LRL Training Type Macro F1
- Bangla Scratch Training 0.33± 0.000

English Bangla Scratch + TET 0.47±0.042
English Bangla Joint Training 0.63±0.001
English Bangla Joint + TET 0.64±0.002
English Bangla HAL 0.64±0.001
English Bangla HAL + TET 0.65±0.003
English Bangla GETR-GAT 0.72±0.001
English Bangla GETR-GAT + TET 0.73±0.002
English Bangla GETR-GAT + HAL 0.74±0.001
English Bangla GETR-GAT + HAL + TET 0.75±0.001

Hindi Bangla Scratch Training + TET 0.48± 0.042
Hindi Bangla Joint Training 0.67± 0.003
Hindi Bangla Joint Training + TET 0.70± 0.002
Hindi Bangla HAL 0.72± 0.004
Hindi Bangla HAL + TET 0.73± 0.002
Hindi Bangla GETR-GAT 0.79± 0.002
Hindi Bangla GETR-GAT + TET 0.80± 0.001
Hindi Bangla GETR-GAT + HAL 0.80± 0.003
Hindi Bangla GETR-GAT + HAL + TET 0.81± 0.002

(minimum accuracy of 0.590 for English and 0.830 1042

for Hindi as HRL), indicating the robustness of the 1043

HAL approach across different mixing ratios. 1044

Table 5: Performance comparison of HAL approach
with different high-resource languages and varying α
values. HRL: High Resource Language, LRL: Low
Resource Language

HRL LRL α
Metrics

Accuracy F1

English Marathi

0.1 0.602±0.004 0.582±0.005
0.2 0.610±0.004 0.590±0.005
0.3 0.605±0.003 0.578±0.004
0.4 0.598±0.004 0.571±0.005
0.5 0.595±0.005 0.565±0.004
0.6 0.592±0.004 0.558±0.005
0.7 0.591±0.005 0.552±0.004
0.8 0.590±0.004 0.550±0.005

Hindi Marathi

0.1 0.852±0.004 0.848±0.005
0.2 0.860±0.003 0.860±0.005
0.3 0.848±0.004 0.845±0.004
0.4 0.842±0.005 0.840±0.005
0.5 0.838±0.004 0.835±0.004
0.6 0.834±0.005 0.832±0.005
0.7 0.832±0.004 0.831±0.004
0.8 0.830±0.005 0.830±0.005

We analyzed the impact of HAL depth by vary- 1045

ing the number of layers from 1 to 6 (Table 6). 1046

For both English and Hindi as high-resource lan- 1047

guages, 2 HAL layers yield optimal performance 1048

(accuracy/F1: 0.610/0.590 and 0.860/0.860 respec- 1049

tively), with secondary peaks at depth 4 for English 1050

(0.598/0.582) and depth 5 for Hindi (0.848/0.845), 1051

suggesting that while multiple HAL layers aid in 1052

knowledge transfer, excessive depth might lead to 1053
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over-abstraction of features. Similarly, for both1054

GETR-GCN and GETR-GAT approaches, three1055

GNN layers demonstrated the best performance on1056

the test set metrics, indicating an optimal depth for1057

graph-based token interaction.1058

Table 6: Impact of HAL depth on model performance.
HRL: High Resource Language, LRL: Low Resource
Language

HRL LRL HAL Metrics
Depth Accuracy F1

English Marathi

1 0.592±0.004 0.575±0.005
2 0.610±0.004 0.590±0.005
3 0.588±0.003 0.562±0.004
4 0.598±0.004 0.582±0.005
5 0.575±0.005 0.545±0.004
6 0.570±0.004 0.540±0.005

Hindi Marathi

1 0.842±0.004 0.838±0.005
2 0.860±0.003 0.860±0.005
3 0.835±0.004 0.832±0.004
4 0.825±0.005 0.818±0.005
5 0.848±0.004 0.845±0.004
6 0.810±0.005 0.800±0.005

We extended our robustness evaluation to senti-1059

ment classification with Bangla as the low-resource1060

language, testing both Hindi and English as high-1061

resource languages (Table 7). The results reveal1062

consistent advantages for BhashaSetu across all1063

data configurations. With minimal low-resource1064

data (10 instances), Joint Training achieves only1065

0.33 macro-F1 for both HRLs, while BhashaSetu1066

reaches 0.61 with Hindi and 0.60 with English—an1067

approximately 85% improvement. This advantage1068

persists across all LRL sizes, though the gap nar-1069

rows as training data increases. Hindi consistently1070

outperforms English as the high-resource language,1071

with BhashaSetu reaching 0.94 F1 using Hindi ver-1072

sus 0.89 F1 using English at 8,000 LRL instances.1073

The fixed LRL experiments (100 instances) with1074

varying HRL size reveal BhashaSetu’s remarkable1075

resilience to limited high-resource data. With just1076

500 HRL instances, BhashaSetu maintains 0.62 F11077

(Hindi) and 0.57 F1 (English), while Joint Training1078

drops to 0.43 and 0.41 respectively. Most impres-1079

sively, BhashaSetu with just 1,000 Hindi instances1080

(0.73 F1) outperforms Joint Training with the full1081

12,000 instances (0.67 F1). These results demon-1082

strate BhashaSetu’s exceptional data efficiency in1083

leveraging limited resources for cross-lingual trans-1084

fer and confirm its effectiveness across both NER1085

and sentiment classification tasks, regardless of the1086

specific high-resource language used.1087

Table 7: Sentiment Classification performance compar-
ison based on Macro-F1 between Joint Training (JT)
and our approach (BhashaSetu) with Hindi and English
as high-resource and Bangla as low-resource language
under varying dataset sizes.

HRL HRL Size LRL Size Macro F1 + JT Macro F1 + BhashaSetu
Fixed HRL Size, Varying LRL Size

Hindi 12000 10 0.33± 0.001 0.61± 0.001
Hindi 12000 50 0.51± 0.002 0.72± 0.002
Hindi 12000 100 0.67± 0.001 0.81± 0.003
Hindi 12000 500 0.69± 0.001 0.83± 0.002
Hindi 12000 1000 0.73± 0.002 0.87± 0.001
Hindi 12000 5000 0.79± 0.002 0.92± 0.003
Hindi 12000 8000 0.82± 0.003 0.94± 0.002

English 12000 10 0.33± 0.001 0.60± 0.001
English 12000 50 0.49± 0.002 0.68± 0.002
English 12000 100 0.63± 0.001 0.75± 0.003
English 12000 500 0.65± 0.001 0.78± 0.002
English 12000 1000 0.69± 0.002 0.81± 0.001
English 12000 5000 0.74± 0.002 0.87± 0.003
English 12000 8000 0.78± 0.003 0.89± 0.002

Fixed LRL Size, Varying HRL Size

Hindi 12000 100 0.67± 0.001 0.81± 0.003
Hindi 5000 100 0.61± 0.002 0.76± 0.002
Hindi 1000 100 0.52± 0.023 0.73± 0.003
Hindi 500 100 0.43± 0.022 0.62± 0.006

English 12000 100 0.63± 0.001 0.75± 0.003
English 5000 100 0.55± 0.002 0.71± 0.002
English 1000 100 0.50± 0.023 0.65± 0.003
English 500 100 0.41± 0.022 0.57± 0.006

A.3 Results on NER Task 1088

We extended our evaluation beyond sentiment clas- 1089

sification to Named Entity Recognition using test 1090

sets of 2,000 instances for Malayalam and 1,999 1091

instances for Marathi, all carefully constructed to 1092

ensure no overlap with training data. For Malay- 1093

alam (Table 2), GETR-GAT+HAL+TET achieved 1094

macro-F1 scores of 0.55 with Hindi as HRL (27 1095

percentage points improvement over Joint Train- 1096

ing’s 0.28) and 0.52 with English (26 percentage 1097

points improvement over Joint Training’s 0.26). 1098

Similar patterns appear for Marathi (Table 8 in the 1099

appendix), with GETR-GAT achieving macro-F1 1100

scores of 0.44 with Hindi (9 percentage points im- 1101

provement over Joint Training) and 0.40 with En- 1102

glish (11 percentage points improvement over Joint 1103

Training). These consistent improvements across 1104

different tasks and language families (Indo-Aryan 1105

and Dravidian) demonstrate that our approach ef- 1106

fectively transfers knowledge regardless of task 1107

type or target language. 1108

To evaluate the robustness of our approach on 1109

sentiment classification, we conducted extensive 1110

experiments varying dataset sizes with both Hindi 1111

and English as high-resource languages for Bangla 1112

(Table 7). With Hindi as HRL, BhashaSetu demon- 1113

strates remarkable effectiveness, achieving 0.61 1114

macro-F1 with just 10 LRL instances compared 1115

to Joint Training’s 0.33—an improvement of 28 1116

percentage points. This advantage persists as LRL 1117
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Table 8: Performance comparison of different training
approaches using Macro F1 on NER dataset using En-
glish and Hindi as HRL and Marathi as LRL.

HRL LRL Training Type Macro F1
- Marathi Scratch Training -

English Marathi Scratch Training + TET 0.09± 0.061
English Marathi Joint Training 0.29± 0.001
English Marathi Joint Training + TET 0.30± 0.001
English Marathi HAL 0.32± 0.001
English Marathi HAL + TET 0.33± 0.001
English Marathi GETR-GCN 0.36± 0.001
English Marathi GETR-GCN + TET 0.36± 0.001
English Marathi GETR-GCN + HAL 0.39± 0.001
English Marathi GETR-GCN + HAL + TET 0.39± 0.001
English Marathi GETR-GAT 0.40± 0.001
English Marathi GETR-GAT + TET 0.40± 0.001
English Marathi GETR-GAT + HAL 0.40± 0.001
English Marathi GETR-GAT + HAL + TET 0.40± 0.001

Hindi Marathi Scratch Training + TET 0.12± 0.052
Hindi Marathi Joint Training 0.35± 0.002
Hindi Marathi HAL 0.38± 0.001
Hindi Marathi GETR-GCN 0.42± 0.002
Hindi Marathi GETR-GCN + HAL 0.43± 0.001
Hindi Marathi GETR-GAT 0.44± 0.001
Hindi Marathi GETR-GAT + HAL 0.44± 0.001

size increases, maintaining improvements of 12-1118

21 percentage points up to 8,000 instances (the1119

maximum available in our Bangla dataset), where1120

BhashaSetu achieves 0.94 macro-F1 compared to1121

Joint Training’s 0.82.1122

Similar patterns emerge with English as HRL,1123

though with slightly lower absolute performance1124

due to script differences. BhashaSetu achieves 0.601125

macro-F1 with 10 LRL instances (27 percentage1126

points over Joint Training) and maintains substan-1127

tial improvements through 8,000 instances (0.89 vs1128

0.78 macro-F1). The fixed LRL experiments (1001129

instances) reveal BhashaSetu’s superior resilience1130

to HRL data reduction: with Hindi, performance1131

drops from 0.81 to 0.62 macro-F1 as HRL size1132

decreases from 12,000 to 500, while Joint Train-1133

ing falls more sharply from 0.67 to 0.43. English1134

shows similar trends, with BhashaSetu maintain-1135

ing better performance (0.75 to 0.57) compared1136

to Joint Training’s steeper decline (0.63 to 0.41).1137

These results demonstrate BhashaSetu’s effective-1138

ness across different data regimes and language1139

pairs, with particularly strong performance when1140

languages share scripts.1141

Table 9: Performance comparison of different training
approaches using Macro F1 on NER dataset using En-
glish and Hindi as HRL and Malayalam as LRL.

HRL LRL Training Type Macro F1
- Malayalam Scratch Training -

English Malayalam Scratch Training + TET 0.12± 0.045
English Malayalam Joint Training 0.28± 0.002
English Malayalam Joint Training + TET 0.28± 0.001
English Malayalam HAL 0.32± 0.003
English Malayalam HAL + TET 0.32± 0.002
English Malayalam GETR-GCN 0.37± 0.001
English Malayalam GETR-GCN + TET 0.37± 0.002
English Malayalam GETR-GCN + HAL 0.43± 0.003
English Malayalam GETR-GCN + HAL + TET 0.43± 0.002
English Malayalam GETR-GAT 0.47± 0.001
English Malayalam GETR-GAT + TET 0.48± 0.003
English Malayalam GETR-GAT + HAL 0.51± 0.002
English Malayalam GETR-GAT + HAL + TET 0.52± 0.001

Hindi Malayalam Scratch Training + TET 0.12± 0.045
Hindi Malayalam Joint Training 0.28± 0.002
Hindi Malayalam Joint Training + TET 0.28± 0.001
Hindi Malayalam HAL 0.32± 0.003
Hindi Malayalam HAL + TET 0.32± 0.002
Hindi Malayalam GETR-GCN 0.38± 0.001
Hindi Malayalam GETR-GCN + TET 0.38± 0.002
Hindi Malayalam GETR-GCN + HAL 0.44± 0.003
Hindi Malayalam GETR-GCN + HAL + TET 0.44± 0.002
Hindi Malayalam GETR-GAT 0.48± 0.001
Hindi Malayalam GETR-GAT + TET 0.49± 0.003
Hindi Malayalam GETR-GAT + HAL 0.53± 0.002
Hindi Malayalam GETR-GAT + HAL + TET 0.55± 0.001

Table 10: NER performance comparison based on
Macro-F1 between Joint Training (JT) and our approach
(BhashaSetu) with English as high-resource and Marathi
as low-resource language under varying dataset sizes.

LRL Size HRL Size Macro F1 + JT Macro F1 + BhashaSetu
Fixed HRL Size, Varying LRL Size

10 12000 0.02± 0.001 0.11± 0.001
50 12000 0.13± 0.002 0.34± 0.002

100 12000 0.29± 0.001 0.40± 0.003
500 12000 0.34± 0.001 0.46± 0.002

1000 12000 0.39± 0.002 0.49± 0.001
5000 12000 0.51± 0.002 0.57± 0.002

10000 12000 0.64± 0.001 0.73± 0.001

Fixed LRL Size, Varying HRL Size

100 12000 0.29± 0.001 0.40± 0.003
100 5000 0.18± 0.002 0.34± 0.002
100 1000 0.07± 0.025 0.20± 0.034
100 500 0.03± 0.022 0.07± 0.031
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