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Abstract

Despite remarkable advances in natural lan-
guage processing, developing effective sys-
tems for low-resource languages remains a
formidable challenge, with performance typ-
ically lagging far behind high-resource coun-
terparts due to data scarcity and insufficient
linguistic resources. Cross-lingual knowledge
transfer has emerged as a promising approach
to address this challenge by leveraging re-
sources from high-resource languages. In this
paper, we investigate methods for transferring
linguistic knowledge from high-resource lan-
guages to low-resource languages, where the
number of labeled training instances is in hun-
dreds. We focus on sentence-level and word-
level tasks. We examine three approaches for
cross-lingual knowledge transfer: (a) augmen-
tation in hidden layers, (b) token embedding
transfer through token translation, and (c) a
novel method for sharing token embeddings at
hidden layers using Graph Neural Networks.
Experimental results on sentiment classifica-
tion and NER tasks on low-resource languages
Marathi, Bangla (Bengali) and Malayalam us-
ing high-resource languages Hindi and English
demonstrate that our novel GNN-based ap-
proach significantly outperforms existing meth-
ods, achieving a significant improvement of 21
and 27 percentage points respectively in macro-
F1 score compared to traditional transfer learn-
ing baselines such as multilingual joint training.
We also present a detailed analysis of the trans-
fer mechanisms and identify key factors that
contribute to successful knowledge transfer in
this linguistic context. Our findings provide
valuable insights for developing NLP systems
for other low-resource languages.

1 Introduction

Cross-lingual knowledge transfer has emerged
as a crucial approach for improving natural lan-
guage processing capabilities across different lan-
guages. Recent advances in Large Language Mod-
els (LLMs) and multilingual model variants have

demonstrated remarkable success in this domain
by jointly training on multiple languages simulta-
neously, enabling zero-shot and few-shot learning
capabilities (Devlin et al., 2019; Lan et al., 2019).
These models, such as XLM-R (Conneau et al.,
2020), mT5 (Xue et al., 2021), and BLOOM (Scao
et al., 2022), learn shared representations across
languages, thereby facilitating knowledge transfer
from high-resource to low-resource languages. The
success of these models largely stems from their
ability to leverage massive multilingual corpora
and transformer-based architectures (Vaswani et al.,
2017), which effectively capture cross-lingual pat-
terns and relationships.

However, when dealing with extremely low-
resource scenarios where target languages have
very limited labeled data (e.g., only 100 training in-
stances), even state-of-the-art multilingual models
struggle to generalize effectively. This challenge is
particularly acute as these models rely heavily on
substantial training data across languages to learn
robust cross-lingual representations. Traditional ap-
proaches of fine-tuning pre-trained models or em-
ploying joint training on multilingual architectures
often fail to capture the nuanced characteristics of
low-resource languages when working with such
limited data. The problem is further compounded
when the low-resource language lacks pre-trained
models or significant monolingual corpora, making
it challenging to leverage existing transfer learning
techniques effectively.

To address this challenge, we propose a com-
prehensive framework that intelligently transfers
linguistic knowledge from high-resource to low-
resource languages through three complementary
approaches. We name it BhashaSetu after the
words “Bhasha” and “Setu” that mean “language’
and “bridge” respectively in most Indian languages,
highlighting its role in bridging languages.

Our approach is as follows. First, we intro-
duce Hidden Augmentation Layers (HAL) that
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create mixed representations in the hidden space,
allowing controlled knowledge transfer while pre-
serving the target language’s distinctive features.
This approach builds upon and extends previous
work in hidden space augmentation (Chaudhary,
2020; Feng et al., 2021) to the cross-lingual setting.
Second, we develop a token embedding transfer
mechanism that leverages translation-based map-
pings to initialize low-resource language embed-
dings effectively. This is particularly beneficial for
languages sharing similar scripts like Hindi and
Marathi (Joshi, 2022). Finally, we propose a novel
Graph-Enhanced Token Representation (GETR)
approach that uses Graph Neural Networks (Zhou
et al., 2020; Kipf and Welling, 2017; Velickovi¢
et al., 2018) to enable dynamic knowledge sharing
between languages at the token level, thereby cap-
turing complex cross-lingual relationships through
graph-based message passing.

This work contributes to the growing body of
research in cross-lingual transfer learning (Zhang
et al., 2022) while specifically addressing the chal-
lenges of extreme data scarcity in low-resource
languages. In short, our contributions are:

1. We propose a comprehensive framework,
BhashaSetu, for cross-lingual knowledge
transfer in extremely low-resource scenarios,
comprising three complementary approaches:
hidden augmentation layer (HAL), token em-
bedding transfer (TET), and graph-enhanced
token representation (GETR) with GNNs
(Sec. 3).

2. We introduce a novel graph-based token inter-
action mechanism that leverages Graph Neu-
ral Networks to dynamically share knowledge
between high-resource and low-resource lan-
guages.

3. We conduct extensive experiments across mul-
tiple NLP tasks (sentiment classification and
NER) and language pairs spanning multiple
languages, demonstrating the versatility and
robustness of our approach.

4. We provide systematic analysis of the impact
of various factors on cross-lingual knowledge
transfer, including mixing coefficient, archi-
tectural depth and dataset size ratios between
languages.

5. Experimental results on sentiment classifica-
tion and NER tasks on low-resource languages
Marathi, Bangla (Bengali) and Malayalam us-
ing high-resource languages Hindi and En-
glish demonstrate that our novel GNN-based

approach significantly outperforms existing
methods, achieving 21 and 27 percentage
points improvement respectively in macro-F1
score compared to traditional transfer learn-
ing baselines such multilingual joint training,
while requiring only 100 training instances in
the low-resource language (Sec. 4).

2 Related Work

Cross-lingual transfer learning has advanced signif-
icantly with transformer-based models like BERT
(Devlin et al., 2019) and ALBERT (Lan et al.,
2019), particularly with multilingual pre-trained
models such as XLM-R (Conneau et al., 2020),
mT5 (Xue et al., 2021), LLaMA (Touvron et al.,
2023) and PalLM (Chowdhery et al., 2022). While
effective, these approaches require substantial mul-
tilingual training data, limiting their applicability
in extreme low-resource settings. More targeted
approaches include language-specific models, ad-
versarial training (Hu et al., 2020), and language-
specific adapters (Pfeiffer et al., 2020). Source
language selection significantly impacts perfor-
mance (Barnes et al., 2018), while modular task
decomposition (Zhang et al., 2022), two-stage fine-
tuning (Singh and Tiwary, 2023; Singh et al., 2024),
knowledge distillation (Yu et al., 2023), and hybrid
transfer approaches (Guzman Nateras et al., 2023;
Amazon Science, 2023) have shown promising re-
sults for cross-lingual transfer.

Data augmentation techniques in hidden spaces,
including wordMixup and sentMixup (Chaudhary,
2020), have proven valuable for low-resource sce-
narios and are comprehensively surveyed by Feng
et al. (Feng et al., 2021). Token-level trans-
fer approaches like trans-tokenization (Minixhofer
et al., 2023) and vocabulary replacement (Artetxe
et al., 2022) enable cross-lingual embedding trans-
fer without requiring parallel data, addressing a
critical challenge for low-resource languages.

Graph-based cross-lingual methods such as Het-
erogeneous GNNs (Wang et al., 2021) depend on
external semantic parsers and operate solely at the
GNN level, without integrating graph knowledge
into transformer models. Colexification-based mul-
tilingual graphs (Liu et al., 2023) construct graphs
from colexification relations rather than token in-
teractions, and similarly do not infuse graph infor-
mation into transformers. While recent work has
employed graph-based transformers with UCCA
semantic graphs (Wan and Li, 2024), such ap-



proaches require pre-trained semantic parsers that
are typically unavailable for low-resource Indian
languages. In contrast, our GETR method con-
structs token-level graphs directly from training
data and uniquely integrates GNN-based token
interactions within the transformer, enabling dy-
namic, fine-grained cross-lingual knowledge shar-
ing without external linguistic resources.

3 Methodology

This section presents three approaches for cross-
lingual knowledge transfer: (a) augmentation
in hidden layers, (b) token embedding transfer
through translation, and (c) sharing token embed-
dings at hidden layers utilizing graph neural net-
works. Before delving into the technical details of
these approaches, we first formally define the prob-
lem statement for cross-lingual knowledge transfer
in low-resource scenarios.

3.1 Problem Statement

Let us formally define our notation for cross-lingual
knowledge transfer. For a high-resource language,
we denote the dataset of textual instances as Xy =
{z1,22,..., 2N, }, Where each z; represents an
individual text instance (e.g., a sentence). The cor-
responding task-specific outputs are represented
as Yy = {v1,y2, ..., Yny }, where Ny represents
the total number of instances in the high-resource
dataset, typically in the order of thousands. Simi-
larly, we denote the low-resource language dataset
as X7y, and its corresponding outputs as Y7, where
|Xy| = N < Ny, with Ny, being extremely
small (approximately 100 instances). This extreme
data scarcity in the low-resource setting presents
the core challenge in our task.

We define the combined dataset as X = {Xg U
Xp}tand Y = {Yy UYr}. Our objective is to
learn a model M : X — Y that maps input text
instances from either or both Xy and Xy, to their
respective outputs, while effectively leveraging the
high-resource language data to compensate for the
limited low-resource samples. The output space
Y can correspond to any encoder-based task, with
two common task variants. The first is for sentence-
level tasks (such as sentiment analysis) where y; €
{0,1,...,¢ — 1}, c being the number of classes.
The second is for sequence-labeling tasks (such
as NER): vi = [¥iy, Yigs - - -, Yip]» Wwhere T is the
sequence length and each token-level label y;; €
Viags rEpresents a class (such as an NER tag).

Despite the different output structures, the core
challenge of effective cross-lingual knowledge
transfer remains consistent across tasks, allowing
us to apply the same methodological approaches
with task-specific adaptations. We next describe
the three methods.

3.2 Augmentation in Hidden Layers (HAL)

Hidden layer augmentation has emerged as a preva-
lent technique for generating synthetic training data
in the latent space when working with textual in-
puts (Zhang, 2022; Chaudhary, 2020; Feng et al.,
2021). While this approach has been successfully
applied for domain adaptation within the same lan-
guage (Zhang et al., 2022), its application to cross-
lingual knowledge transfer, particularly from high-
resource to low-resource languages, represents a
novel direction. This method is particularly ver-
satile as it can be applied to any high-resource
and low-resource language pair, regardless of their
script similarities or differences.

Let Eng ¢ X — H denote the encoder compo-
nent of the model M that maps each input text x; to
its final encoded CLS representation h1Si. We pro-
pose a hidden augmentation mechanism that fuses
knowledge from high-resource and low-resource
languages through a weighted combination in the
latent space. Formally, we generate new training
pairs A; = (h%s, ya,) as follows:

WeS =a-hg®+(1—a)-RES (D)
where « € [0, 1] is a mixing coefficient that con-
trols the contribution of each language. This co-
efficient can be either fixed through training or
randomly sampled per iteration. For sentence-level
prediction tasks, the label mixing is defined as:

where yy, € R¢and y;, € R€ are typically one-
hot encoded vectors with c classes. The resulting
Y4, € R becomes a soft probability distribution
over the c classes as it is augmented from both yp,
and yy,,. For sequence-level prediction tasks, the
label augmentation requires modification to handle
token-level outputs:

Ya e =a -yt +(1—a) yr,. (3)

where y 4, + represents the augmented label for the
t™ token in the i text, and both yp, ; and yy, + are
one-hot encoded vectors in RIYtass| representing
the tag distribution at position .



Empirically, o values between 0.1 and 0.4 yield
optimal results, as they maintain the primary char-
acteristics of the low-resource language while
supplementing it with knowledge from the high-
resource language. Since the augmentation pro-
duces soft labels, we employ KL-divergence loss
(Cui et al., 2023) instead of standard cross-entropy
loss (Zhong et al., 2023) for soft labels and cross-
entropy for hard labels during training. This frame-
work can be further extended by adding multiple
transformer layers above Fj; and performing aug-
mentation at each layer’s CLS output, thus enabling
hierarchical knowledge fusion.

3.3 Token Embedding Transfer through
Translation (TET)

Traditional approaches often initialize token em-
beddings for low-resource languages randomly,
which can lead to suboptimal performance, espe-
cially when training data is scarce. We propose an
initialization strategy that leverages token embed-
dings from a high-resource language through trans-
lation mapping. This approach provides a more
informed starting point for the embedding matrix
of the low-resource language, enabling effective
fine-tuning even with limited training samples. The
core idea is to initialize the token embeddings of
the low-resource language using the semantic in-
formation captured in the pre-trained embeddings
of their translated counterparts in the high-resource
language. While this method assumes the avail-
ability of word-level translations for the training
data of the low-resource language, it does not re-
quire any pre-trained models or large corpora in
the low-resource language.

Algorithm 1 details our systematic process
for transferring token embeddings from a high-
resource language (e.g., English) to a low-resource
language (e.g., Marathi). To illustrate this process,
consider transferring embeddings for the Marathi
word "antarbhasika" meaning "cross-lingual" in En-
glish. The word would be tokenized in Marathi,
potentially splitting it into subword tokens like
"antar" + "bhasika". Then, it is translated to En-
glish as "cross-lingual", which might be tokenized
as "cross" + "lingual" in English. The pre-trained
embeddings for these English tokens are retrieved
and averaged. For each Marathi token, we col-
lect all instances where it appears across different
words in the Marathi corpus. For example, the
token "bhasika" might also appear in words like
"bahubhasika" (meaning "multi-lingual"). Finally,

Algorithm 1 Token Embedding Transfer through
Translation (TET)

1 Vi, < Set of unique words from LRL corpus
: forallw; € V do > For each LRL word
T; < LRLTokenize(w;)
wp, < TranslateTOHRL (w; )
Ty, < HRLTokenize(wp,)
Ej, + {GetPretrainedEmbeddings(t)|t € Tn} >
HRL token embeddings
7: €avg < Mean(Ey)

AR A i

8: forall ¢, € T; do > For each LRL token
9: P, <+ 0 v Initialize projected embeddings set
10: for all w’ € V;, do > Check all LRL words
11 if t; € LRLTokenize(w’) then
12: Ptz < Pf,l U{eavg}
13: end if
14: end for
15: Ei[t;] < Mean(P;,) > Final embedding for LRL
token
16: end for
17: end for
18: return E; > Dictionary of LRL token embeddings

we average all corresponding English embedding
projections to create the final embedding for each
Marathi token. While we show transliterated exam-
ples here for clarity, in our actual experiments we
used the original scripts for all languages.

3.4 Graph-Enhanced Token Representation
for Cross-lingual Learning (GETR)

We propose a novel approach leveraging Graph
Neural Networks (GNN) (Zhou et al., 2020) to
enable dynamic knowledge sharing between high-
resource and low-resource languages at the token
level. For each batch of mixed-language inputs,
we construct an undirected graph G = (T, C),
where T' = {t1,t2,...,vn, } represents the set of
N unique tokens in batch k. The edge set C' cap-
tures sequential relationships between tokens, de-
fined as C' C {tij, ti(j+1)|tij, tz‘(j+1) € T}, where
tokens t;1, t;2, . . . t;; form sentence s;.

To illustrate the mechanism, consider two sen-
tences: "The movie was good" from a high-
resource language and "I was impressed with the
movie" from a low-resource language. As shown
in Figure 1, tokens are represented as nodes with
edges connecting consecutive tokens within each
sentence. When computing the representation for
shared tokens (e.g., "was"), the model incorporates
contextual information from both language environ-
ments. This allows the CLS embedding of the low-
resource sentence to benefit from the high-resource
language’s token representations through neighbor-
hood aggregation.

Given the encoder output H € RB*SXD (where



Figure 1: Graphical representation of tokens of two
sentences in a batch: “The movie was good” and “I was
impressed with the movie”.

B, S, and D denote batch size, sequence length,
and embedding dimension respectively), we re-
shape it to H' € RY*P (L = BS) for GNN pro-
cessing. We employ either GCN (Kipf and Welling,
2017) or GAT (Velickovi€ et al., 2018) layers with
an adjacency matrix A € {0, 1}*F that captures
token relationships such as A;; = 1if /; and [;
are consecutive tokens in a sentence. Notably, we
construct A using the flattened dimension L rather
than unique tokens, allowing for token repetition
which makes the array multiplication simpler and
straight-forward. The GNN output is then reshaped
to generate query Q and key K matrices for the
subsequent transformer layer, while the value V
matrix maintains its original computation path:

H’ = Reshape(H) € RE*P

o = GNN(H)

Hg = Reshape(Hg) € RSP (4)
Q=Hg xWq
K = Hg x Wy

where W, € RP*P', Wy € RP*P' are query
and key weight matrices respectively. The subse-
quent transformer operations remain unchanged,
following the standard sequence of cross-attention,
feed-forward networks, layer normalization, and
residual connections.

V=HxW, &)

where Wy, € RP*D" is the value weight matrix.
Once Q, K and V are computed, the rest of the
transformer encoder (Vaswani et al., 2017) block
is unchanged, i.e., cross-attention block followed
by feed-forward, layer normalization and residual
connection. Figure 2 illustrates our modified BERT
architecture with GNN layers (gray shaded area).
Multiple GNN layers can be stacked sequentially
to enable deeper cross-lingual knowledge transfer.
Strategic Batch Formation for Graph Construc-
tion: We propose a batch formation strategy
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Figure 2: BERT encoder architecture incorporating the
GNN layer for cross-lingual knowledge transfer.
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that balances high-resource and low-resource in-
stances while maximizing token overlap between
languages. For every batch of size B, we ensure
exactly B/2 instances from each language domain.
Our construction alternates between low-resource
and high-resource anchors: we first select a random
low-resource instance, then add (n/2 — 1) neigh-
bors from low-resource language and n/2 from
high-resource language based on maximum token
overlap. These n instances are removed from the
available pool to prevent repetition within an epoch.
We then select a high-resource anchor and repeat
the process, and continue this alternation until the
batch is filled.

To improve robustness, 70% of the batches fol-
low this strategic formation while the remaining
30% maintain an equal language distribution that
selects instances randomly. This prevents over-
reliance on specific token patterns while preserving
structured knowledge transfer. The process contin-
ues across epochs until all low-resource instances
are utilized.

During inference, we apply the same principle
using training data to form neighborhoods for test
instances based on token overlap. This balanced
batch construction creates our token interaction
graph G = (T, '), enabling effective cross-lingual
token relationships without requiring pre-trained
resources for the low-resource language.

4 Experiments and Results

4.1 Dataset

Our experiments evaluate cross-lingual knowledge
transfer across multiple languages and tasks. For
sentiment classification, we employ two high-
resource languages: Hindi (Yadav, 2023; Sawant,
2023) and English (Akanksha, 2023), each with
12,000 labeled instances. We use two low-resource



Table 1: Performance comparison of different training
approaches on sentiment classification dataset when
Hindi and English are considered as HRL and Marathi
as LRL.

Metrics on Test Dataset

HRL LRL Training Type
Accuracy Macro-F1
Marathi ~ Scratch Training 0.50 £0.168 0.33 £ 0.000
English ~ Marathi  Joint Training 0.56 £ 0.001 0.53 £ 0.002
English  Marathi ~ Scratch Training + TET 0.57 £0.052 0.51 £ 0.061
English  Marathi  Joint Training + TET 0.58 £ 0.002 0.56 £ 0.003
English  Marathi HAL 0.61 £ 0.001 0.60 £ 0.001
English  Marathi HAL + TET 0.63 £ 0.002 0.63 £ 0.001
English  Marathi GETR-GCN 0.67 £ 0.002 0.69 £ 0.002
English  Marathi GETR-GCN + TET 0.68 £ 0.001 0.68 £ 0.001
English  Marathi GETR-GCN + HAL 0.69 £ 0.001 0.70 4 0.001
English  Marathi GETR-GCN +HAL + TET  0.69 + 0.001 0.70 4 0.002
English  Marathi GETR-GAT 0.74 4 0.001 0.73 4 0.001
English  Marathi GETR-GAT + TET 0.74 £ 0.002 0.74 £ 0.001
English  Marathi GETR-GAT + HAL 0.75£0.001 0.75+0.001
English  Marathi GETR-GAT + HAL + TET  0.75 £ 0.001 0.74 £ 0.001
Hindi Marathi  Joint Training 0.77 £ 0.004 0.75 £ 0.004
Hindi Marathi ~ Scratch Training + TET 0.56 £ 0.052 0.52 £ 0.061
Hindi Marathi HAL 0.80 4 0.003 0.80 4 0.005
Hindi Marathi  GETR-GCN 0.82 4 0.001 0.82 £ 0.001
Hindi Marathi ~ GETR-GCN + HAL 0.83 4 0.002 0.83 4 0.002
Hindi Marathi ~ GETR-GAT 0.86 +0.003 0.85 4 0.001
Hindi Marathi ~ GETR-GAT + HAL 0.86+0.001 0.87 +0.001

target languages: Marathi (Pingle et al., 2023),
which shares the Devanagari script with Hindi, and
Bangla (Bengali) (Sazzed and Jayarathna, 2019),
a language close to Hindi but with its own script.
All sentiment classification datasets contain binary
labels (positive and negative) with balanced class
distributions.

The original Marathi dataset contained 12,113
training and 1,000 test instances. To simulate an
extreme low-resource scenario, we created three
distinct splits: a training set of 100 instances ran-
domly sampled from the original training set, a
validation set of 1,500 instances also from the orig-
inal training set, and a test set of 2,000 instances
by combining the original 1,000 test instances with
1,000 additional samples from the training set. We
deliberately increased the test set size to evaluate
robustness. Similarly, for Bengali, we created non-
overlapping splits of 100 training, 1,500 validation,
and 2,000 test instances. Throughout our experi-
ments, we maintain the strict constraint that no pre-
trained models or significant linguistic resources
are available for the low-resource languages.

For Named Entity Recognition, we maintain En-
glish and Hindi as high-resource languages, with
the English NER dataset (Jain, 2022) comprising
12,000 training instances (17 unique entity tags)
and the Hindi dataset (Murthy et al., 2022) con-
taining 12,084 training instances (13 unique entity
tags). We apply our methods to two low-resource
target languages: Marathi (Patil et al., 2022) with
100 training instances, 1,500 validation and 2,000
test instances (14 unique entity tags), and Malay-
alam (Mhaske et al., 2022) (that uses a completely

different script from both Hindi and English) with
100 training instances, 1,500 validation instances,
and 2,000 test instances (7 unique entity tags).

4.2 Implementation Details

We conducted all experiments on an Amazon EC2
p4de.24xlarge instance, which is equipped with
8 NVIDIA A100 Tensor Core GPUs (80 GB each),
96 vCPUs, and 1,152 GB of system memory. For
most training approaches, we used a batch size of
128, except for scratch training and scratch training
+ TET where we used a smaller batch size of 8
due to memory constraints. In GETR methods,
we used 10 neighbors per instance with a batch
size of 120 to accommodate the graph construction
overhead. We employed the AdamW optimizer
with learning rates ranging from 3e-5 to 3e-7 when
using pre-trained models. For scratch training, we
found that a relatively higher learning rate (3e-4)
provided decent results when combined with TET.
Throughout experiments, we monitored validation
loss across 50 epochs to select the best checkpoint
for test evaluation.

For our high-resource languages, we uti-
lized 13cube-pune/hindi-albert (Joshi,
2022) as the pre-trained model for Hindi and
albert/albert-base-v2 (Lan et al., 2019) for
English across both sentiment classification and
NER tasks, adapting these base architectures
according to the specific task and approach re-
quirements. All experiments were conducted using
the original scripts of the respective languages
rather than transliteration. Following our strict
low-resource assumption, we trained tokenizers
from scratch for all low-resource languages, as we
assumed no availability of pre-trained tokenizers
or models for these languages. For Joint Training,
HAL, and GETR approaches, we leveraged
the pre-trained models and tokenizers from the
high-resource languages, augmenting them with
new tokens from the low-resource languages. The
embeddings for these newly added tokens were
randomly initialized, allowing the model to learn
appropriate representations during training.

4.3 Results on Sentiment Classification Task

All reported results are evaluated on the test set
of the low-resource language (Marathi), compris-
ing 2,000 instances carefully selected to ensure no
overlap with the training data (Table 1). All mod-
els are trained to minimize the cross-entropy loss,
except in HAL where hard labels use cross-entropy



Table 2: Performance comparison of different training
approaches using Macro-F1 on NER dataset using En-
glish and Hindi as HRL and Malayalam as LRL.

HRL LRL

Malayalam  Scratch Training

Macro-F1
0.03+£0.073
0.26 £ 0.002
0.11 £0.045
0.27 £0.001
0.30 £ 0.003
0.31 £0.002
0.46 £ 0.001

Training Type

English Malayalam Joint Training

English Malayalam  Scratch Training + TET
English  Malayalam Joint Training + TET
English Malayalam HAL

English Malayalam HAL + TET

English Malayalam GETR-GAT

English Malayalam GETR-GAT + TET 0.47 4 0.003
English Malayalam GETR-GAT + HAL 0.51 £ 0.002
English Malayalam GETR-GAT + HAL + TET 0.52 + 0.001

0.28 £ 0.002

0.12 £ 0.045
0.28 £ 0.001
0.32 4 0.003
0.32 £ 0.002
0.48 £ 0.001

Hindi Malayalam Joint Training

Hindi Malayalam  Scratch Training + TET
Hindi Malayalam Joint Training + TET
Hindi Malayalam HAL

Hindi Malayalam HAL + TET

Hindi Malayalam GETR-GAT

Hindi Malayalam GETR-GAT + TET 0.49 £ 0.003
Hindi Malayalam GETR-GAT + HAL 0.53 £ 0.002
Hindi Malayalam GETR-GAT + HAL + TET 0.55 + 0.001

loss while soft labels employ KL-divergence loss.
Following our strict low-resource assumption of no
pre-existing resources, we first trained a tinyBERT
(Jiao et al., 2019) model from scratch using only
100 Marathi training instances, including training
a new tokenizer. As expected, with such limited
data and no pre-trained knowledge, the model fails
to learn meaningful patterns, defaulting to single-
class prediction.

We establish Joint Training as our primary base-
line, as it mimics the approach used by current
multilingual language models such as XLM-R
(Conneau et al., 2020), mT5 (Xue et al., 2021),
LLaMA (Touvron et al., 2023), and InstructGPT
(Ouyang et al., 2022), which learn shared repre-
sentations by training multiple languages together.
Using English as the high-resource language with
albert/albert-base-v2 (Lan et al., 2019) as the
pre-trained model, Joint Training achieves 56%
accuracy and 0.53 macro-F1. Token Embedding
Transfer provides moderate improvements (57%
accuracy, 0.51 macro-F1). HAL with a = 0.2 and
two layers enhances results (63% accuracy, 0.63
macro-F1 with TET). The GETR approaches with
three GNN layers demonstrate significant gains,
with GETR-GAT combined with HAL achieving
the best performance (75% accuracy, 0.75 macro-
F1), representing a 22 percentage points improve-
ment over the baseline.

With Hindi as the high-resource language, us-
ing 13cube-pune/hindi-albert (Joshi, 2022) as
the pre-trained model, we observe substantially
stronger performance across all approaches. We
did not employ TET for Hindi-Marathi experiments
as they share the same Devanagari script, ensuring
that Marathi tokens already have pre-trained em-

beddings from the Hindi model. Joint Training
shows remarkable improvement (77% accuracy,
0.75 macro-F1), likely due to this script similarity.
HAL with o = 0.2 and two layers further boosts
performance (80% accuracy, 0.80 macro-F1), while
GETR-GAT with three GAT layers combined with
HAL achieves the highest scores (86% accuracy,
0.87 macro-F1), a 12 percentage points improve-
ment over the baseline.

GETR’s superior performance can be attributed
to its ability to create dynamic, contextualized
connections between tokens across languages, en-
abling more effective knowledge transfer at a gran-
ular level. Unlike static approaches, GETR al-
lows low-resource language tokens to directly in-
corporate relevant semantic information from high-
resource contexts through the graph structure, creat-
ing richer representations that better capture cross-
lingual patterns. This transfer mechanism operates
efficiently through the transformer’s multi-head
attention, where Q and K matrices capture the
graph-based knowledge of tokens while preserving
the original value computations, allowing cross-
lingual information to propagate throughout the net-
work. Additionally, GETR-GAT consistently out-
performs GETR-GCN because the attention mech-
anism in GAT provides adaptive edge weights that
better model the varying importance of connections
between tokens across languages, whereas GCN
treats all connections with equal importance.

We chose ALBERT-based models for both En-
glish and Hindi to maintain architectural consis-
tency. Interestingly, we observed that when us-
ing more complex approaches like HAL or GETR,
TET’s contribution diminishes. This is because
these approaches perform numerous updates to the
low-resource language tokens through augmenta-
tion or neighborhood aggregation, allowing the em-
beddings to converge to optimal values even from
random initialization. As the test sets are mostly
balanced, we observe similar accuracy and macro-
F1 scores across experiments. Therefore, subse-
quently, we report only the macro-F1 metric for
clarity and conciseness.

To validate our approaches on another language
pair, we tested Bangla as the low-resource language
with Hindi and English as high-resource languages
(Table 4 in appendix). GETR-GAT+HAL+TET
consistently achieved the best results: with Hindi
as HRL, we reached 0.81 macro-F1 (14 percentage
points improvement over Joint Training’s 0.70);
with English as HRL, we achieved 0.75 macro-



Table 3: NER performance comparison based on Macro-
F1 between Joint Training (JT) and our approach
(BhashaSetu) with Hindi as high-resource and Marathi
as low-resource language under varying dataset sizes.

LRL Size HRL Size Macro F1+JT Macro F1 + BhashaSetu

10 12000  0.05 £ 0.001 0.11 £ 0.001
50 12000  0.17 £0.002 0.34 £0.002
100 12000 0.35 £ 0.001 0.44 £0.003
500 12000 0.39 £ 0.001 0.49 £ 0.002
1000 12000  0.42 £0.002 0.52 £ 0.001
5000 12000 0.55 £ 0.002 0.64 £0.003
10000 12000 0.71 £0.003 0.79 £0.002
100 12000 0.35 £ 0.001 0.44 £0.003
100 5000  0.22 4 0.002 0.41 £ 0.002
100 1000 0.11+0.028 0.25 £0.032
100 500  0.04+0.025 0.10 £0.023

F1 (12 percentage points improvement over Joint
Training’s 0.63).

4.4 Results on NER Task

We extended our evaluation beyond sentiment clas-
sification to Named Entity Recognition using test
sets of 2,000 instances for Malayalam and 1,999
instances for Marathi. For Malayalam (Table 2;
detailed results with GETR-GCN in Table 9 in ap-
pendix), GETR-GAT+HAL+TET achieved macro-
F1 scores of 0.55 with Hindi as HRL (27 percent-
age points improvement over Joint Training’s 0.28)
and 0.52 with English (26 percentage points im-
provement over Joint Training’s 0.26). Similar pat-
terns appear for Marathi (Table 8 in the appendix),
with GETR-GAT achieving macro-F1 scores of
0.44 with Hindi (9 percentage points improvement
over Joint Training) and 0.40 with English (11 per-
centage points improvement over Joint Training).
These consistent improvements across different
tasks and language families (Indo-Aryan and Dra-
vidian) demonstrate that our approach effectively
transfers knowledge regardless of task type or tar-
get language.

To evaluate the robustness of our approach
and demonstrate its advantage over current mul-
tilingual methods, we compared BhashaSetu (our
best-performing GETR-GAT+HAL configuration)
with Joint Training (JT) across varying dataset
sizes for NER with Hindi as HRL and Marathi
as LRL (Table 3). The results reveal two criti-
cal insights. First, with extremely limited low-
resource data (10-50 instances), Joint Training
achieves modest performance (0.05-0.17 F1), while
BhashaSetu demonstrates substantially better re-
sults even with minimal data, achieving 0.11 F1
with just 10 LRL instances and 0.34 F1 with 50
instances—representing a 17 percentage points im-
provement over Joint Training at these data scales.

The fixed HRL size (12,000) experiment shows
BhashaSetu’s consistent advantage across all LRL
sizes, with improvements of 9-17 percentage points,
though the relative gap narrows as low-resource
data increases.

The second exepriment, keeping LRL fixed at
100 instances while varying HRL size, reveals
that Joint Training performance degrades dramat-
ically with decreasing HRL data (from 0.35 F1
with 12,000 instances to just 0.04 F1 with 500 in-
stances). While BhashaSetu also shows decreased
performance with less HRL data, it maintains sub-
stantially better results (0.10 F1 even with just 500
HRL instances) and demonstrates greater resilience
to HRL data reduction. These results highlight
both BhashaSetu’s effectiveness at enabling cross-
lingual knowledge transfer and its superior ability
to leverage limited high-resource data compared to
standard joint training approaches. Our additional
experiments on sentiment classification (details in
Tables 7 and 10 in appendix) reinforce these find-
ings, with BhashaSetu outperforming Joint Train-
ing by 14-28 percentage points for Hindi-Bangla
and 12-27 percentage points for English-Bangla
pairs across various dataset sizes.

5 Conclusions

In this paper, we addressed the challenge of cross-
lingual knowledge transfer for low-resource scenar-
ios. We proposed three approaches: hidden layer
augmentation, token embedding transfer, and a
novel graph-based token interaction mechanism us-
ing GNNs. Experimental results demonstrate that
while traditional multilingual models struggle with
extreme data scarcity, our proposed approaches ef-
fectively leverage knowledge from high-resource
languages.

Future work includes exploring self-supervised
pre-training strategies specific to low-resource
languages, more efficient graph construction al-
gorithms, memory-optimized implementations of
graph neural networks, and cross-lingual transfer
for a wider range of tasks and language pairs.
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Limitations

While our proposed approaches demonstrate strong
performance across different tasks and language
pairs, we acknowledge certain aspects that present
opportunities for future research. Our experiments
primarily focus on Indian languages from both
Indo-Aryan and Dravidian families, which could
be extended to typologically more distant language
pairs with different word orders or morphological
systems in future work.

Although BhashaSetu is effective with minimal
low-resource data (100 instances), we observe that
transfer performance correlates with high-resource
language data availability, a common pattern in
transfer learning approaches. This relationship be-
tween source data volume and transfer effective-
ness presents an interesting direction for develop-
ing more data-efficient transfer techniques.

The Token Embedding Transfer approach ben-
efits from word-level translation capabilities be-
tween language pairs. While such resources ex-
ist for many language combinations, future work
could explore unsupervised methods for establish-
ing cross-lingual correspondences when traditional
bilingual dictionaries are unavailable.

Our Graph-Enhanced Token Representation ap-
proach introduces additional computational com-
plexity during training and inference due to graph
construction operations and GNN computations
compared to simpler methods. However, this com-
putational investment delivers substantially im-
proved performance (21-27 percentage points gain
in F1 scores), representing a favorable trade-off in
many practical scenarios. Future implementations
could explore optimization techniques to reduce
this overhead.

Finally, while we demonstrate effectiveness on
classification tasks (sentiment analysis and NER),
extending these approaches to generative tasks in-
volving neural machine translation or summary
generation represents a promising direction for fu-
ture research. This would further validate the ver-
satility of our framework across the broader NLP
task spectrum.

Ethics Statement

This research aims to promote linguistic inclusiv-
ity by addressing the technological disparity be-
tween high-resource and low-resource languages.
We acknowledge that NLP capabilities have pre-
dominantly benefited widely-spoken languages, po-

tentially exacerbating digital divides along linguis-
tic lines. All datasets used in our experiments are
publicly available with appropriate citations, and
we did not collect or annotate new data that might
introduce privacy concerns.

We recognize that transfer learning approaches
may inadvertently propagate biases from source
to target languages; however, our work takes a
step toward mitigating representation disparities
by enabling better performance with minimal la-
beled data in low-resource languages. Due to the
focus on extremely low-resource settings (approxi-
mately 100 training instances), the computational
requirements for target language adaptation were
substantially lower than those typically needed for
high-resource language model development, reduc-
ing the environmental impact compared to training
large language models from scratch. While the
GETR approaches do introduce additional compu-
tational overhead during the knowledge transfer
process, the overall resource consumption remains
modest relative to pre-training large multilingual
models. This efficiency is particularly beneficial for
researchers and practitioners with limited computa-
tional resources working on low-resource language
technologies.

While we focused on Indian languages in this
study, we believe that similar approaches could
benefit other low-resource languages globally, con-
tributing to more equitable language technology
development. We emphasize that the performance
improvements demonstrated should be considered
within the context of the limitations described in
our paper, and that practical applications would
require careful consideration of cultural and lin-
guistic nuances specific to each target community.
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A Appendix
A.1 HAL

Figure 3 illustrates our modified architecture in-
corporating the hidden augmentation layer. The
framework can be further extended by adding mul-
tiple transformer layers above Fj; and performing
augmentation at each layer’s CLS output, thus en-
abling hierarchical knowledge fusion.

A.2 Results on Sentiment Classification Task

To validate our approaches on another language
pair, we tested Bangla as the low-resource language
with Hindi and English as high-resource languages
(Table 4 in appendix). GETR-GAT+HAL+TET
consistently achieved the best results: with Hindi
as HRL, we reached 0.81 macro-F1 (14 percentage
points improvement over Joint Training’s 0.70);
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Figure 3: Architecture incorporating the Hidden Aug-
mentation Layer (HRL and LRL inputs are high- and
low-resource language inputs respectively)

with English as HRL, we achieved 0.75 macro-
F1 (12 percentage points improvement over Joint
Training’s 0.63). Hindi consistently provided
stronger transfer to Bangla than English, demon-
strating that language similarity benefits cross-
lingual transfer even when scripts differ, as Hindi
and Bangla share more linguistic features than En-
glish and Bangla.

To understand the impact of mixing coefficient
« in Hidden Augmentation Layer (HAL), we con-
ducted experiments with different v values ranging
from 0.1 to 0.8 (Table 5). For both English and
Hindi as high-resource languages, a=0.2 yields the
best performance, achieving accuracy/F1 scores of
0.610/0.590 and 0.860/0.860 respectively. The per-
formance gradually degrades as « increases, with
a more pronounced decline after a=0.5. This sug-
gests that while knowledge from the high-resource
language provides useful linguistic patterns and
semantic structures, excessive reliance on it di-
minishes the model’s ability to capture the unique
characteristics and nuances of the low-resource lan-
guage. The optimal performance at a=0.2 indi-
cates that a balanced approach, where the model
primarily learns from the low-resource language
while leveraging complementary features from the
high-resource language, is most effective. Notably,
even with declining performance at higher o val-
ues, the model maintains reasonable performance
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Table 4: Performance comparison of different training
approaches using F1 on sentiment classification dataset
using English and Hindi as HRL and Bangla as LRL.

HRL LRL Training Type Macro F1
- Bangla Scratch Training 0.33 £ 0.000
English Bangla Scratch + TET 0.4740.042
English Bangla Joint Training 0.63£0.001
English Bangla Joint + TET 0.64+0.002
English Bangla HAL 0.64+0.001
English Bangla HAL + TET 0.65+0.003
English Bangla GETR-GAT 0.72£0.001
English Bangla GETR-GAT + TET 0.73£0.002
English Bangla GETR-GAT + HAL 0.74+0.001
English Bangla GETR-GAT + HAL + TET  0.75+0.001
Hindi Bangla Scratch Training + TET 0.48 £0.042
Hindi Bangla Joint Training 0.67 £+ 0.003
Hindi Bangla Joint Training + TET 0.70 £ 0.002
Hindi Bangla HAL 0.72 £ 0.004
Hindi Bangla HAL + TET 0.73 £ 0.002
Hindi Bangla GETR-GAT 0.79 £ 0.002
Hindi Bangla GETR-GAT + TET 0.80 £ 0.001
Hindi Bangla GETR-GAT + HAL 0.80 £ 0.003
Hindi Bangla GETR-GAT + HAL + TET 0.81 £ 0.002

(minimum accuracy of 0.590 for English and 0.830
for Hindi as HRL), indicating the robustness of the
HAL approach across different mixing ratios.

Table 5: Performance comparison of HAL approach
with different high-resource languages and varying «
values. HRL: High Resource Language, LRL: Low
Resource Language

Metrics

HRL LRL @ Accuracy F1
0.1  0.602+0.004  0.582+0.005

02 0.610+0.004 0.590--0.005

03 0.605+0.003  0.578+0.004

. . 04 0.59840.004  0.571-£0.005
English | Marathi '3 50510005 0.565+0.004
06  0.59240.004  0.558+0.005

07 0.59140.005  0.552+0.004

08  0.590+0.004  0.550+0.005

0.1  0.85240.004  0.848+0.005

02 0.860+0.003 0.860-:0.005

03  0.848+0.004  0.845+0.004

bindi | Maa 04 08420005 0.840:0.005
05  0.83840.004  0.835+0.004

0.6  0.834+0.005  0.832+0.005

07  0.83240.004  0.831%0.004

08  0.83040.005  0.830+0.005

We analyzed the impact of HAL depth by vary-
ing the number of layers from 1 to 6 (Table 6).
For both English and Hindi as high-resource lan-
guages, 2 HAL layers yield optimal performance
(accuracy/F1: 0.610/0.590 and 0.860/0.860 respec-
tively), with secondary peaks at depth 4 for English
(0.598/0.582) and depth 5 for Hindi (0.848/0.845),
suggesting that while multiple HAL layers aid in
knowledge transfer, excessive depth might lead to



over-abstraction of features. Similarly, for both
GETR-GCN and GETR-GAT approaches, three
GNN layers demonstrated the best performance on
the test set metrics, indicating an optimal depth for
graph-based token interaction.

Table 6: Impact of HAL depth on model performance.
HRL: High Resource Language, LRL: Low Resource
Language

HAL Metrics

HRL LRL Depth Accuracy F1
1 0.59240.004  0.57540.005

2 0.610+0.004 0.590+0.005

. . 3 0.58840.003  0.562-0.004
English | Marathi 4 0.59840.004  0.582-0.005
5 0.57540.005  0.545-0.004

6 0.57040.004  0.540-0.005

1 0.84240.004  0.838-0.005

2 0.860+0.003 0.860+0.005

. _ 3 0.835+0.004  0.832+0.004
Hindi | Marathi 4 0.82540.005  0.81840.005
5 0.84840.004  0.845+0.004

6 0.81040.005  0.800-0.005

We extended our robustness evaluation to senti-
ment classification with Bangla as the low-resource
language, testing both Hindi and English as high-
resource languages (Table 7). The results reveal
consistent advantages for BhashaSetu across all
data configurations. With minimal low-resource
data (10 instances), Joint Training achieves only
0.33 macro-F1 for both HRLs, while BhashaSetu
reaches 0.61 with Hindi and 0.60 with English—an
approximately 85% improvement. This advantage
persists across all LRL sizes, though the gap nar-
rows as training data increases. Hindi consistently
outperforms English as the high-resource language,
with BhashaSetu reaching 0.94 F1 using Hindi ver-
sus 0.89 F1 using English at 8,000 LRL instances.

The fixed LRL experiments (100 instances) with
varying HRL size reveal BhashaSetu’s remarkable
resilience to limited high-resource data. With just
500 HRL instances, BhashaSetu maintains 0.62 F1
(Hindi) and 0.57 F1 (English), while Joint Training
drops to 0.43 and 0.41 respectively. Most impres-
sively, BhashaSetu with just 1,000 Hindi instances
(0.73 F1) outperforms Joint Training with the full
12,000 instances (0.67 F1). These results demon-
strate BhashaSetu’s exceptional data efficiency in
leveraging limited resources for cross-lingual trans-
fer and confirm its effectiveness across both NER
and sentiment classification tasks, regardless of the
specific high-resource language used.
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Table 7: Sentiment Classification performance compar-
ison based on Macro-F1 between Joint Training (JT)
and our approach (BhashaSetu) with Hindi and English
as high-resource and Bangla as low-resource language
under varying dataset sizes.

HRL HRL Size LRL Size Macro F1+JT Macro F1 + BhashaSetu
Fixed HRL Size, Varying LRL Size
Hindi 12000 10 0.33+£0.001 0.61 £+ 0.001
Hindi 12000 50  0.5140.002 0.72 £ 0.002
Hindi 12000 100 0.67 £ 0.001 0.81 £ 0.003
Hindi 12000 500  0.69 £0.001 0.83 £ 0.002
Hindi 12000 1000 0.73 £0.002 0.87 £ 0.001
Hindi 12000 5000  0.79 £ 0.002 0.92 £ 0.003
Hindi 12000 8000  0.82 4 0.003 0.94 £ 0.002
English 12000 10 0.33+£0.001 0.60 £ 0.001
English 12000 50  0.49 £0.002 0.68 £ 0.002
English 12000 100 0.63 £ 0.001 0.75 £+ 0.003
English 12000 500  0.65 4 0.001 0.78 £ 0.002
English 12000 1000 0.69 % 0.002 0.81£0.001
English 12000 5000  0.74 £0.002 0.87 £+ 0.003
English 12000 8000  0.78 +0.003 0.89 £ 0.002
Fixed LRL Size, Varying HRL Size
Hindi 12000 100 0.67 +0.001 0.81 £ 0.003
Hindi 5000 100 0.61 £ 0.002 0.76 £ 0.002
Hindi 1000 100 0.5240.023 0.73 £ 0.003
Hindi 500 100 0.43 £0.022 0.62 £ 0.006
English 12000 100 0.63 £ 0.001 0.75 £ 0.003
English 5000 100 0.55+0.002 0.71 £ 0.002
English 1000 100 0.50 4+ 0.023 0.65 £ 0.003
English 500 100 0.41 £0.022 0.57 £ 0.006

A.3 Results on NER Task

We extended our evaluation beyond sentiment clas-
sification to Named Entity Recognition using test
sets of 2,000 instances for Malayalam and 1,999
instances for Marathi, all carefully constructed to
ensure no overlap with training data. For Malay-
alam (Table 2), GETR-GAT+HALA+TET achieved
macro-F1 scores of 0.55 with Hindi as HRL (27
percentage points improvement over Joint Train-
ing’s 0.28) and 0.52 with English (26 percentage
points improvement over Joint Training’s 0.26).
Similar patterns appear for Marathi (Table 8 in the
appendix), with GETR-GAT achieving macro-F1
scores of 0.44 with Hindi (9 percentage points im-
provement over Joint Training) and 0.40 with En-
glish (11 percentage points improvement over Joint
Training). These consistent improvements across
different tasks and language families (Indo-Aryan
and Dravidian) demonstrate that our approach ef-
fectively transfers knowledge regardless of task
type or target language.

To evaluate the robustness of our approach on
sentiment classification, we conducted extensive
experiments varying dataset sizes with both Hindi
and English as high-resource languages for Bangla
(Table 7). With Hindi as HRL, BhashaSetu demon-
strates remarkable effectiveness, achieving 0.61
macro-F1 with just 10 LRL instances compared
to Joint Training’s 0.33—an improvement of 28
percentage points. This advantage persists as LRL



Table 8: Performance comparison of different training
approaches using Macro F1 on NER dataset using En-
glish and Hindi as HRL and Marathi as LRL.

HRL LRL Training Type Macro F1
- Marathi ~ Scratch Training -
English Marathi  Scratch Training + TET 0.09 £+ 0.061
English Marathi Joint Training 0.29 £+ 0.001
English Marathi Joint Training + TET 0.30 £ 0.001
English Marathi HAL 0.32 £ 0.001
English Marathi HAL + TET 0.33 £ 0.001
English Marathi GETR-GCN 0.36 £+ 0.001
English Marathi GETR-GCN + TET 0.36 = 0.001
English Marathi GETR-GCN + HAL 0.39 £ 0.001
English Marathi GETR-GCN +HAL + TET  0.39 £ 0.001
English Marathi GETR-GAT 0.40 +0.001
English Marathi GETR-GAT + TET 0.40 +0.001
English Marathi GETR-GAT + HAL 0.40 = 0.001
English Marathi GETR-GAT + HAL + TET 0.40 + 0.001
Hindi Marathi  Scratch Training + TET 0.12 £ 0.052
Hindi Marathi  Joint Training 0.35 £+ 0.002
Hindi Marathi HAL 0.38 £0.001
Hindi Marathi GETR-GCN 0.42 4 0.002
Hindi Marathi GETR-GCN + HAL 0.43 +0.001
Hindi Marathi GETR-GAT 0.44 +0.001
Hindi Marathi GETR-GAT + HAL 0.44 +0.001

size increases, maintaining improvements of 12-
21 percentage points up to 8,000 instances (the
maximum available in our Bangla dataset), where
BhashaSetu achieves 0.94 macro-F1 compared to
Joint Training’s 0.82.

Similar patterns emerge with English as HRL,
though with slightly lower absolute performance
due to script differences. BhashaSetu achieves 0.60
macro-F1 with 10 LRL instances (27 percentage
points over Joint Training) and maintains substan-
tial improvements through 8,000 instances (0.89 vs
0.78 macro-F1). The fixed LRL experiments (100
instances) reveal BhashaSetu’s superior resilience
to HRL data reduction: with Hindi, performance
drops from 0.81 to 0.62 macro-F1 as HRL size
decreases from 12,000 to 500, while Joint Train-
ing falls more sharply from 0.67 to 0.43. English
shows similar trends, with BhashaSetu maintain-
ing better performance (0.75 to 0.57) compared
to Joint Training’s steeper decline (0.63 to 0.41).
These results demonstrate BhashaSetu’s effective-
ness across different data regimes and language
pairs, with particularly strong performance when
languages share scripts.
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Table 9: Performance comparison of different training
approaches using Macro F1 on NER dataset using En-
glish and Hindi as HRL and Malayalam as LRL.

HRL LRL Training Type Macro F1
- Malayalam  Scratch Training -
English Malayalam  Scratch Training + TET 0.12 £ 0.045
English Malayalam Joint Training 0.28 +0.002
English Malayalam Joint Training + TET 0.28 +0.001
English Malayalam HAL 0.32 £ 0.003
English Malayalam HAL + TET 0.32 £ 0.002
English Malayalam GETR-GCN 0.37 £ 0.001
English Malayalam GETR-GCN + TET 0.37 £ 0.002
English Malayalam GETR-GCN + HAL 0.43 £ 0.003
English Malayalam GETR-GCN + HAL + TET ~ 0.43 £ 0.002
English Malayalam GETR-GAT 0.47 £ 0.001
English Malayalam GETR-GAT + TET 0.48 +0.003
English Malayalam GETR-GAT + HAL 0.51 £ 0.002
English Malayalam GETR-GAT + HAL + TET 0.52 4+ 0.001
Hindi Malayalam  Scratch Training + TET 0.12 £ 0.045
Hindi Malayalam Joint Training 0.28 +0.002
Hindi Malayalam Joint Training + TET 0.28 +0.001
Hindi Malayalam HAL 0.32 £ 0.003
Hindi Malayalam HAL + TET 0.32 £ 0.002
Hindi Malayalam GETR-GCN 0.38 +0.001
Hindi Malayalam GETR-GCN + TET 0.38 £ 0.002
Hindi Malayalam GETR-GCN + HAL 0.44 £ 0.003
Hindi Malayalam GETR-GCN + HAL + TET ~ 0.44 £ 0.002
Hindi Malayalam GETR-GAT 0.48 +0.001
Hindi Malayalam GETR-GAT + TET 0.49 +0.003
Hindi Malayalam GETR-GAT + HAL 0.53 £ 0.002
Hindi Malayalam GETR-GAT + HAL + TET 0.55 £+ 0.001

Table 10: NER performance comparison based on
Macro-F1 between Joint Training (JT) and our approach
(BhashaSetu) with English as high-resource and Marathi
as low-resource language under varying dataset sizes.

LRL Size HRL Size Macro F1+ ]JT Macro F1 + BhashaSetu

Fixed HRL Size, Varying LRL Size

10 12000  0.02 £+ 0.001 0.11 £+ 0.001

50 12000  0.13 £ 0.002 0.34 £+ 0.002

100 12000  0.29 +0.001 0.40 £ 0.003

500 12000  0.34 +0.001 0.46 £ 0.002

1000 12000  0.39 +0.002 0.49 £+ 0.001

5000 12000  0.51 +0.002 0.57 £ 0.002

10000 12000  0.64 £ 0.001 0.73 £0.001
Fixed LRL Size, Varying HRL Size

100 12000  0.29 £+ 0.001 0.40 £ 0.003

100 5000  0.18 +0.002 0.34 £0.002

100 1000 0.07 +£0.025 0.20 £ 0.034

100 500  0.03 +£0.022 0.07 £ 0.031
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