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Abstract

There has been a rapid advance of custom hardware (HW) for accelerating the1

inference speed of deep neural networks (DNNs). Previously, the softmax layer2

was not a main concern of DNN accelerating HW, because its portion is relatively3

small in multi-layer perceptron or convolutional neural networks. However, as the4

attention mechanisms are widely used in various modern DNNs, a cost-efficient5

implementation of softmax layer is becoming very important. In this paper, we6

propose two methods to approximate softmax computation, which are based on7

the usage of LookUp Tables (LUTs). The required size of LUT is quite small8

(about 700 Bytes) because ranges of numerators and denominators of softmax are9

stable if normalization is applied to the input. We have validated the proposed10

technique over different AI tasks (object detection, machine translation, speech11

recognition, semantic equivalence) and DNN models (DETR, Transformer, BERT)12

by a variety of benchmarks (COCO17, WMT14, WMT17, GLUE). We showed13

that 8-bit approximation allows to obtain acceptable accuracy loss below 1.0%.14

1 Introduction15

After Vaswani et al. had introduced Transformer model in [27] for machine translation task, the16

attention based architecture became popular firstly in Natural Language Processing (NLP) appli-17

cations, e.g.: speech recognition [16], [21], [9]; summarization [7]; language understanding [5],18

[33], [15], [18]; and video captioning [3]. Recently attention-based models are used in even wider19

practical areas including Computer Vision (CV) tasks for object detection [2]; image transformation20

[26]; image classification [6]; and even symbolic integration and solving differential equations [14].21

Despite the attractiveness of transformer-based models, its direct implementation into the platform22

with constrained computational power (e.g., mobile SoC, edge devices) 1 is very challenging due to23

big memory footprint and latency.24

Therefore, model compression techniques such as quantization, and distillation are needed for those25

models. Many approaches have been introduced on quantizing matrix multiplication of transformer26

architecture. For example, in [22] it was used second order Hessian information, what allows to27

significantly compress the size of the model up to 13× times, while maintaining at most 2.3% of28

performance degradation (for the case of ultra-low precision 2-bits quantization). In [35] it was29

used a quantization-aware training during the fine-tuning phase of BERT, what allows to compress30

BERT model by 4× (with 8-bit quantization) with minimal accuracy loss (less than 1%). In [1], a31

machine language translation model was quantized by 8-bit, while maintaining less than 0.5% drop32

1Recently, interest to the computations performed close to the data sources is growing up aiming to soften the
requirements of continuous access to high-speed and high-bandwidth connections. Moreover, often customers
wanted to keep their security and privacy, and thus do not want to expose their data to the external clouds [32],
[19], [36], [11].
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in accuracy. Moreover, in [20] it was shown that 8-bit quantized models provide the same or even33

higher accuracy as the full-precision models. Most of the above methods consider the quantization of34

matrix multiplications operations only. However, as it is shown in [4], [24] in modern DNNs with35

attention mechanism (e.g., Transformer, BERT, GPT-x) the softmax function is also used intensively,36

especially at the longer sequence lengths, so it is necessary to optimize its performance.37

In this paper we propose methods for efficient computation of the softmax layer at the HW accelerator.38

The method is based on piece-wise-constant approximation and usage of LUTs. To the best of our39

knowledge, it is the first paper where softmax quantization of the models with attention mechanism is40

tested and verified on a variety of AI tasks. In Section 2 we show why our research is important and41

valuable. In Section 3 we consider the drawbacks of existed softmax approximation methods in the42

perspective of HW accelerator, and summarize the differentiation of our methods from the previous43

arts. In Section 4 we describe the details of the proposed methods. Section 5 shows the experimental44

validation over different models and datasets, and Section 6 concludes the paper.45

2 Background and motivation46

Modern GPUs are powerful, but big, expensive, and power-hungry. Therefore, alternative HW47

accelerators (e.g., NPU) for on-device inference are under active development by different vendors,48

especially for Federated Learning and Edge computing. However, such devices mostly are focused on49

the acceleration of matrix multiplication operations, and do not include means to compute complex50

activation functions. Typically, in such devices the data is sent outside of the accelerator to compute51

activations on host CPU. For example, according to the guidelines of Coral (TM), a softmax layer of52

DNN model in Edge TPU have to be run on host CPU 2, what is acceptable for traditional CV tasks53

(which are typically uni-directional, have minimum dependencies, and softmax layer is located at the54

end of the computational graph of DNN model), however is very inefficient for NLP tasks (which are55

typically more complicated with a lot of dependencies and active employment of softmax layer in the56

middle of DNN model). In opposite to traditional logic-centric approach, some researches are trying57

to perform computation closer to the memory (so called memory-centric approach). For example58

in [23], there is shown a DRAM-based AI accelerator. This approach allows significantly speed-up59

the overall computation process, but for the computation of the activations the data should also be60

moved to host processor, what is an even bigger issue in the DRAM environment.61

The Eq. (1) from [27] describes how attention is computed in the model. This particular form,62

named "scaled dot-product attention" takes the matrix multiplication product of queries and keys63

of RN×L×H as input for the softmax layer where N means number of heads, L means sequence64

length and H means hidden size for the case where batch size equals to 1. In other words, performing65

(N × L × L) softmax operations is required per one attention. Furthermore, encoder in typical66

transformer consists of six multi-head attentions which means 6× (N ×L×L) operation is required67

for encoder solely. Assuming the number of heads is 8 and sequence length is 128, it already takes68

786, 432 operations for softmax of the transformer encoder. This overhead increases as number of69

heads and sequence length increases which is typical case for high-performing models.70

Attention(Q,K, V ) = Softmax

(
QKT

√
dK

)
V (1)

For example, it requires performing 12 × (12 × 128 × 128) = 2, 359, 296 softmax operations for71

one sample inference for typical BERT configuration [5] over sequence of length 128. In the case72

when HW accelerator is used for matrix multiplication only, and activation to be computed at the73

CPU (what is common case for HW accelerators, optimized for CNN-models), the huge amount of74

data must be moved between CPU and the accelerator. Such data movement negatively impacts on75

the overall computation time and power consumption, which can be critical for on-device inference.76

Therefore, HW accelerator must be able to compute softmax layer without CPU involvement.77

3 Related work and key contributions78

The common equation to compute softmax function over the input x is a fraction as shown below:79

2https://coral.ai/docs/reference/edgetpu.learn.backprop.softmax_regression/
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σ(xi) =
exi

Σexi
=

exi−max(x)

Σexi−max(x)
(2)

There are different ways to implement it. For example, some approaches straightforwardly compute80

the numerator and denominator firstly, and then a division operation is performed. In such case the81

HW accelerator should contain a divider, what requires additional HW costs and can also cause82

performance degradation, if divider is not fully pipe-lined.83

In [25] it is proposed to use basic-split calculation method, which allows to split the exponentiation84

calculation of the softmax into several specific basics which are implemented by LUT (ROM). It85

allows to simplify the complexity of hardware and signal propagation delay. However, to recover86

the whole computed value of exponent some additional multiplications are needed. Moreover, to87

obtain the final value of softmax the division is still used. In [30] it is proposed to add threshold88

layers to accelerate the training speed and replace the Euler’s base value with a dynamic base value89

to improve the network accuracy. Such approach allowed to save up to 15% of training model90

convergence time and also increase by 3 to 5% the average accuracy. But during the computation91

of softmax the divider is still used. In [17] the combination of LUT and multi-segment polynomial92

fitting have been used to compute exponential operations of integer and fractional parts in separate.93

In addition, they adopt radix-4 Booth-Wallace based multiplier for computing the whole value94

of exponent, and modified shift-compare divider for computation of the final value of softmax.95

To avoid big area costs for traditional divider, the authors in [8] propose to reduce the operand96

bit-width, and approximate exponential and division operations with cost-effective addition and97

bit shifts operations. In their design they have approximated the division operation in Eq. (2) by98

replacing the denominator with closest 2b value, where b is some integer constant. Then division99

is implemented just as simple bit shifts operation. In [24] it is proposed to replace the base as100

ex → 2x, then all computations are more hardware-friendly, however the division operation is still101

required. Also, to restore accuracy a fine-tuning of the model is needed, what is not applicable102

for post-training quantization paradigm. Although the methods described above are decreasing the103

hardware complexity of softmax computation they all still rely on the division operation.104

To avoid division operation at all, some other solutions apply the logarithmic transformation to105

the original softmax function, and thus substitute costly division operation by subtraction of the106

logarithm. In [34], for example, it is proposed to use a logarithmic operation implemented as a LUT107

and a subtractor to replace the division operation, what allows to further decrease the complexity of108

hardware, as well critical path of the whole design. In [10] simplified version of Integral Stochastic109

Computation is used in order to build FSM-based exponentiation. Division operation is substituted110

by LUT-based logarithmic operation and subtraction, similarly to [34]. In [31] the authors are further111

developing the method proposed in [34], by applying mathematical transformations and linear fitting.112

After optimization, their final design includes only shift operations, leading one detector, and adders.113

Finally, there are some extreme approximation cases represented in [13] and [28], where logarithmic114

computation and subtraction are skipped at all.115

Despite its attractiveness, logarithmic transformation approach can be used only in the cases when116

softmax layer is the last layer in DNN and its functionality is simply “scoring” among the candidates117

for classification tasks. However, if softmax layer is used inside of computational graph of DNN (e.g.,118

DNNs with attention-mechanism) then error caused by quantizations will be accumulated drastically,119

directly impacting on the final accuracy. For example, in Table 1 there is shown the averaged accuracy120

drop for DETR models caused by a softmax approximation in uint8 precision by some prior arts.121

As it can be seen from the Table 1, a straightforward usage of Eq.(2) from [31] causes big accuracy122

drop, and even after applying some improvements to the original method (shown as case Eq.(2)+),123

the accuracy drop is still high (2% to 19%). For more details of the prior arts experiments please refer124

to Appendix A.1. However, if for the same conditions we use the method proposed in Section 4.1, we125

can see that accuracy drop reduced by ×4 to ×20 times, and it is below 0.5% for plain DETR models126

(no DC5 dilation at the last stage).127

The work presented in this paper has focused on the development of methods for efficient computation128

of softmax layer during the inference at the edge devices, what usually have limited computational129

power and suffer from constraints of the bandwidth.130

Previous works for HW accelerator of softmax layer are focused on the logic-centric approach and131

used dedicated hardware for its implementation. In such case the utilization of hardware is low,132

3



Table 1: Averaged accuracy drop by different methods over DETR models (Average Precision), %

METHOD DETR (R50) DETR+DC5(R50) DETR (R101) DETR+DC5(R101)

EQ.(2) IN [31] 7.20 19.30 10.25 25.37
EQ.(2)+ IN [31] 2.50 12.93 5.38 18.85

SECTION 4.1 0.33 2.92 0.22 2.73

performance can be slower, and no reconfigurability is provided. In our paper we have used an133

alternative memory-centric approximate computing approach. It keeps accuracy loss small, while134

allows computing softmax operation with no divider. The size of the required memory (i.e., LUT) is135

reasonably small and can be reconfigured on demand.136

The methods proposed in the paper contribute to building the alternative concept of hardware137

architecture to accelerate essential operations for AI applications, especially for on-device inference.138

To summarize, we have three-fold difference from the previous works:139

• Applicability of our methods to DNN with attention mechanism is experimentally proven140

over variety of the models for different AI applications. All previous methods were used141

only for the cases when softmax is the last layer in DNN, and is used for “scoring”.142

• No divider is needed to fully implement the method. Moreover, for 2D LUT method even143

multiplier is not needed. Thus, hardware overhead is minimal, and is almost free if used in144

the DRAM-based AI accelerator.145

• Our solutions utilize integer precision, what makes it compatible with traditional HW146

accelerators used for matrix multiplication, and simplify the integration of methods into full147

system (all prior methods are based on a fixed point precision).148

4 Proposed methods149

In this paper we use memory-centric approach to build the accelerator for softmax computation150

in hardware platform with limited resources. We propose two LUT-based methods for efficient151

computation, which provide high performance and do not require a divider. The details of the152

methods are described below and appropriate software models are shown in Appendix A.2.153

4.1 Normalization of reciprocal exponentiation154

In this subsection we consider the method, which is based on the normalization of reciprocal155

exponentiation, and hereafter we call it REXP for short.156

The original reciprocal exponentiation method was proposed in [28], where they used the inverse157

way of max-normalization and the reciprocal of exponential function as below:158

σ∗(xi) =
1

emax(x)−xi
(3)

And thus, the final value of softmax can be obtained by reading from a simple LUT-table. Content of159

LUT is computed as shown below:160

LUT1/e[i] =

⌊
1

ei
· (2w − 1)

⌉
,∀i = 0, 1, ..., xq + 1 (4)

where w is a number of bits for quantization, and xq = dln(2w − 1)e is an efficient quantization161

boundary.162

In addition to very low computational complexity, this method has other desired properties [28]:163

• it is positive ( 1
ex > 0 ∀x ∈ (−∞,+∞));164
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• bounded and stable ( 1
emax(x)−xi

∈ (0, 1]);165

• and nonlinear ( 1
eαx 6= α 1

ex ).166

But due to its aggressive approximation nature, it can be applied only to simple CV tasks, and if167

used for attention-based DNN models causes the explosion of accuracy drop (see Appendix A.1 for168

details). Thus, in this paper we further develop that method to be applicable for wider class of DNN169

models.170

During our initial investigations, we have noticed that method described in Eq.( 3) is just scaled171

version of real softmax. So, we proposed to normalize it with some probability density function172

(PDF) scale, such that
∫
PDF = 1. However, if used straight-forwardly, it would need to involve a173

division operation, what is strongly un-desirable for devices with constrained computational power.174

Therefore, instead of dividing, we propose to substitute division by multiplication with some PDF175

normalizing constant as below:176

σ(xi) =
σ∗(xi)

PDFnorm
→ σ∗(xi) · α (5)

where α = e−ln(Σσ∗(xi)) is PDF normalizing constant.177

Then final equation to compute softmax approximation by proposed REXP method is shown below:178

σ(xi) =
e−ln(Σσ∗(xi))

emax(x)−xi
=

1

emax(x)−xi
· e−ln(Σσ∗(xi)) (6)

Thus, to compute the softmax value it requires just two LUTs of considerably small size, where179

content of the first LUT is computed accordingly to Eq.(4), and the second LUT values can be180

computed as below:181

LUTα[j] =

⌊
1

j
· (2w − 1)

⌉
,∀j = 0, 1, ..., xs − 1 (7)

where j = Σσ∗(xi), xs is selected quantization boundary, and LUTα[xs] = 0.182

4.2 2-Dimensional LUT183

In this subsection we propose another method which is based on the substitution of a division184

operation in Eq.( 2) by 2-Dimensional (2D) LUT to speed-up and simplify the computation, while185

maintaining accuracy even for attention-based DNN models. Hereafter we will refer to this method186

as 2D LUT.187

For this purpose, we have started with the estimation of distributions of ex and Σex terms for typical188

inference runs. Our investigation showed that if max-based normalization is applied to the input189

values (i.e., x→ (x – max(x))), the distribution of ex is stable within range ex ∈ (0, 1] regardless of190

the input values, and range of Σex term depends on the length of the input x. Thus, it allows us to191

have stable computation even within small size of LUT.192

Generic architecture and concept of the proposed method for efficient softmax implementation as193

2D LUT is shown in Figure 1. There are two LUTs used: 1D LUT for approximation of ex values,194

and 2D LUT for storing softmax output values dependent on the values of numerator ex (used as195

the 1-st index in the table), and denominator Σex (used as the 2-nd index) of Eq.(2). As it can be196

seen from Figure 1(right), to calculate the indexes for corresponded value in 2D LUT table, only197

most-significant bits (MSB) are needed. Thus, the simplest hardware realization can be done within198

wiring only (when MSB bits are directly connected to the appropriate address selectors) 3. Also, the199

proposed method can be easily modified to the case where, 1-st index of 2D LUT table is calculated200

not from ex but directly from input x. In such case there is no need to store intermediate values of ex.201

While the content of 1D LUT for approximation of ex values is straightforward, 2D LUT contains202

the family of linear approximations where each row contains the softmax output scaled according to203

3Other hardware realization are also possible, but not considered here for simplicity of the explanation.
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Figure 1: Generic concept of the proposed 2D LUT method (left). Reading softmax output value
from pre-computed 2D LUT(right). Computational flow consists from two steps: a) obtaining of exi
values by reading from 1D LUT and accumulation of Σex term, b) obtaining σ(xi) values by reading
from 2D LUT.

Σex term as shown in Eq.(8). The indexes of LUT are computed according to Eq.(9) and Eq.(10), w204

means the number of bits for the value in selected precision.205

LUTσ[i][j] =

⌊
i · scaleex
j · scaleΣ

· (2w − 1)

⌉
(8)

where206

i = 0, ...,

⌊
max(ex)

scaleex

⌉
(9)

j = 1, ...,

⌊
max(Σex)

scaleΣ

⌉
(10)

Since x → (x – max(x)) normalization was used, so max(ex) = 1.0. Therefore, scaleex factor207

allows to define the number of columns in LUT to make it small enough for practical applications. In208

our experiment we have selected scaleex = 0.1 for all precisions, what allows us to reduce the size209

of LUT significantly (i.e., i = 0, ..., 10 for all versions of LUTσ). The value of max(Σex) depends210

on the distribution of input values. Our experiments showed that max(Σex) = 60 is big enough for211

the tested NLP applications. We also selected scaleΣ = 1.0 for simplicity of the computations. Thus,212

finally, those parameters give us LUTσ of typical size 11× 60.213

5 Experimental validation214

To validate the proposed methods and check how well they generalize we have conducted several215

experiments with different models (DETR, Transformer, and BERT) for different applications (object216

detection, machine translation, sentiment analysis, and semantic equivalence) over variety of datasets.217

In all those experiments we have used available pre-trained models, where we applied dynamic post-218

training quantization (hereafter we referred to quantized models as PTQ-D) 4. Then we substituted a219

conventional softmax layer in quantized models with the LUT-based computation as described in220

Section 4. We did not consider any retraining or fine-tuning of the models after quantization, and221

the same off-line generated LUTs were used among all models. Our code allows to select LUTs222

with different precision from int16 down to uint2, what allows to analyze the sensitivity of the model223

to softmax approximation even for ultra-low 2-bits quantization. The details of experiments are224

described below, and results are summarized in Figure 2, Figure 3, and Table 2 . For more details225

4See more details in Appendix A.3.
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please refer to Table 6, and Table 7 in Appendix. As it can be seen from figures, proposed LUT-based226

softmax computation methods maintain accuracy drop below 1.0% down to 8-bit quantization for all227

NLP and DETR (no DC5) models.228

5.1 Object detection229

For our first experiments we have used DEtection TRansformer (DETR) models for object detec-230

tion [2], with available pre-trained models 5. As it can be seen from Table 6, we were able to231

reproduce the same results for original FP32 reference model over COCO dataset. We have used232

the same IoU metric by Average Precision (AP) as in Table 1 in [2]. Then we run a bunch of233

experiments to check how accuracy of object detection will be decreased due to PTQ-D quantization234

and LUT-based approximation as proposed in REXP method (see Section 4.1). Table 5 in Appendix235

shows the LUTs size for several pre-selected cases in int16 and uint8 precision. There are three cases236

selected which are different in the size of LUTα: it is 1 × 256 for case 1, 1 × 320 for case 2, and237

1× 512 for case 3.238

Analysis of Figure 2 shows that accuracy drop caused by application of softmax approximation is239

small (< 1%) and acceptable for plain DETR models (no DC5 used). Bigger accuracy drop for +DC5240

cases is caused by the bigger size of self-attentions of the encoder (see details in Section 5.3). We241

expect that increasing size of LUTs will help to solve this issue. The behavior of average recall values242

is similar to average precision values.243

Figure 2: DETR averaged accuracy drop of PTQ-D models with softmax approximations vs. original
FP32 models: average precision (left) and average recall (right). As it can be seen from the figure, for
DETR models without dilation at the last stage (no DC5) the accuracy drop for all cases is below 1%
and shows very similar behavior.

5.2 NLP tasks244

Next, we have validated the proposed methods by experimenting with several NLP tasks. Similarly,245

to DETR case, Table 8 in Appendix shows the LUTs size for several pre-selected cases for those246

experiments. In Table 2 below there are accumulated values from the experiments with NLP models.247

The bold values in the table shows highest values per model per method after applying quantization248

and softmax approximation. As it follows from the analysis of experiment results, about 700 Bytes for249

2D LUT method, and up to 50 Bytes for REXP method would be enough for practical applications.250

5.2.1 Machine Translation251

Among NLP tasks we have started with machine translation. For our experiments we have used252

transformer-base model for En-Ge translation [12] from OpenNMT library, with available pre-trained253

model 6, configured to replicate the results from original paper. To avoid dependency of the evaluation254

5https://github.com/facebookresearch/detr
6https://opennmt.net/Models-py/
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Table 2: Experimental validation over different NLP models and datasets

PRECISION TRANSFORMER BERT
2D LUT REXP 2D LUT REXP

WMT WMT WMT WMT SST-2 MRPC SST-2 MRPC
2014 2017 2014 2017

(BLEU) (BLEU) (BLEU) (BLEU) (%) (F1) (%) (F1)

FP32 26.98 28.09 26.98 28.09 92.32 90.19 92.32 90.19
PTQ-D 26.86 27.95 26.86 27.95 91.74 89.53 91.74 89.53

INT16 26.87 28.02 26.89 27.64 91.63 89.50 91.74 89.26
UINT8 26.76 27.9 26.8 27.66 91.63 89.35 91.17 89.34
UINT4 26.26 27.43 26.68 28.02 91.40 88.01 91.17 88.77
UINT2 24.42 25.06 25.29 25.86 89.22 56.67 91.63 86.12

results on the selected tokenization scheme, we have used spm_decode 7 to detokenize the output of255

translation, and then applied multi− bleu.perl script 8 to calculate BLEU score.256

Thus, as it can be seen from Table 2, we were able to reproduce the same BLEU score for FP32257

reference model as in original model. Then we run several experiments to check how accuracy of258

the translation will be changed due to LUT-based quantization in different precisions, and we can259

confirm that down up to 8-bit quantization the deviation of BLEU score from reference is small for260

both datasets (< 0.5%). Also, if we consider impact of the proposed methods only, then we can261

see that accuracy drop is much smaller, and sometimes even recovers vs. PTQ-D quantization (see262

Figure 3 (right)).263

Figure 3: Accuracy drop for NLP experiments: PTQ-D models + softmax approximations vs. FP32
models (left), and PTQ-D models + softmax approximations vs. plain PTQ-D models (right). As it
can be seen from the figure, down to uint8 precision the accuracy drop for all cases is below 1% and
shows very similar behavior. This confirm very good generalization of the proposed method over
different models and applications.

5.2.2 Sentiment analysis264

To extend the variety of NLP applications, we also tested the same LUTs with BERT model [5].265

We have used sentiment analysis task from GLUE benchmark [29] to test the model. We have used266

huggingface library 9, and trained the model with the hyper-parameters described in 10. The results267

of our experiments showed, that similarly to machine translation, the impact of proposed method268

(softmax layer approximation by LUTs) is smaller vs. accuracy drop caused by PTQ-D quantization269

(see Figure 3).270

7https://github.com/google/sentencepiece
8https://github.com/moses-smt/mosesdecoder
9https://github.com/huggingface/transformers

10https://github.com/google-research/bert
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5.2.3 Semantic equivalence271

For semantic equivalence test we used The Microsoft Research Paraphrase Corpus (MRPC) 11 in272

GLUE benchmark. As the classes are imbalanced (68% positive, 32% negative), we follow the273

common practice and used F1 score as a metric. We have used huggingface library and followed274

the guidelines from PyTorch tutorial 12 to obtain PTQ-D quantized model. Then, similarly to previous275

tests we have substituted a conventional softmax layer with the proposed LUT-based methods. The276

results of our experiments showed the similar trend with sentiment analysis test.277

5.3 Ablation study of DETR models experiment278

As it is stated in [2], to increase the feature resolution for small objects, a dilation to the last stage of279

the backbone was added (+DC5 cases of DETR models). This modification increases the cost in the280

self-attentions of the encoder, leading to an overall ×2 increase in computational cost. Such changes281

also reflect on the properties of softmax factors. In Figure 4 there are shown the histogram of Σex282

values distributions for the first 200 tensors of DETR model run for bins = 50, range = (0, 500).283

As it can be seen from the figure, the distribution of DETR+DC5 (R50) variant is more right-tailed,284

due to the bigger number of high-magnitude values. This causes the bigger accuracy drop when285

LUT-based quantization method is used, due to the lack of the discrepancy for those values. Thus,286

for such models (DETR with added dilation at the last stage) the accuracy of object detection after287

application of the proposed method can be limited. However, as we can see from Figure 2) increasing288

of the size of LUTα from 256 Bytes to 512 Bytes allows to decrease the accuracy drop from 9% to289

3% for DETR+DC5 (R101) unit8 case. Thus, we expect that further increasing the size of LUTs will290

help to obtain even more accurate results for DETR models with dilation.291

Figure 4: Histogram of Σex values distributions for DETR model variants: plain DETR (R50) (left),
and with dilation DETR+DC5 (R50) (right). Red dot line represents the average of the all values
per one run of the inference of DETR model. It is clearly seen from the figure that distribution of
DETR+DC5 (R50) variant is more flat, having more high-magnitude values. This causes the bigger
accuracy drop for the quantized model due to lack of the discrepancy for those values.

6 Conclusion292

In this paper two alternative methods for efficient softmax computation for DNN models with293

attention mechanism are proposed. The methods are memory-centric in contrast to known logic-294

centric approach and are based on the usage of LUTs for reading of the pre-computed values, instead295

of the direct computation. Thus, it allows to build the HW accelerator without usage of costly and296

power-hungry divider. In turn, it allows to decrease the power consumption and latency of the whole297

inference, what is crucial for edge computing. All results obtained in the paper were validated298

over different AI tasks (object detection, machine translation, sentiment analysis, and semantic299

equivalence) and models (DETR, Transformer, BERT) by variety of benchmarks (COCO2017,300

WMT14, WMT17, GLUE), showing acceptable accuracy and good generalization of the proposed301

methods.302

11https://www.microsoft.com/en-us/download/details.aspx?id=52398
12https://pytorch.org/tutorials/intermediate/dynamic_quantization_bert_tutorial.html
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A Appendix449

A.1 Prior arts tests450

To validate the accuracy of prior arts of softmax approximation we have conducted several tests451

over DETR models. Since we are interested in the methods which are not using a division opera-452

tion, we have considered prior arts where logarithmic transformation was applied. Thus, we have453

adopted available pre-trained models from https://github.com/facebookresearch/detr by454

substituting a conventional softmax layer by the methods described in [31], [34], [28], and [13]. All455

computations were conducted in FP32 precision.456

A.1.1 Aggressive approximation457

There are several methods, what strongly approximate the original softmax formula and which458

showed good results for conventional CV tasks: [34], [28], and [13]. Note, that Eq.(4) in [34]459

is mathematically equivalent to Eq.(9) in [13]; and Eq.(5) in [28] is mathematically equivalent to460

Eq.(18) in [13]. Unfortunately, if any of those methods is applied to DETR models, the quality of461

model collapsed completely, providing zero accuracy as shown in Figure 5.462

Figure 5: Example of DETR (R50) model output due to aggressive approximation of softmax layer.

A.1.2 Exponentiation of logarithmic transformation463

Mathematical formula for softmax computation by back exponentiation of logarithmic transformation464

is described as Eq.(2) in [31]:465

σ(xi) = exp

xi − ln
 N∑
j=1

exj

 (i = 1, 2, . . . , N) . (11)

To mimic the usage of this method within 8-bit precision hardware, we have applied scaling with466

rounding in our code as below:467

attn_output_weights = torch.round(Eq.(2) ∗ prec)/prec,468

with prec = 2w − 1, were w is the number of bits of the used precision. Thus, for uint8 precision469

w = 8 and prec = 255. Note, that we have applied scaling with rounding only to the outer non-linear470

operation exp, and if run on real hardware the same limitations would be applied to other inner471

operations (ln, exp), thus the accuracy will be even worse in the real case. In Table 3 there are shown472

the results of experiments. As it can be seen from the Table 3, the accuracy drop is high (3% to 32%),473

therefore we modify the original equation by bringing the input normalization by a max-value as474

shown below and run another tests:475

σ(xi) = exp

xi −max(x)− ln

 N∑
j=1

exj−max(x)

 (i = 1, 2, . . . , N) . (12)
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Table 3: Experimental validation of prior arts over DETR models (Average Precision)

MODEL METRIC ORIGINAL METHOD ACCURACY DROP,
MODEL, FP32 EQ.(2) EQ.(2)+ EQ.(2) EQ.(2)+

IN [31] IN [31] IN [31], % IN [31], %

DETR AP 0.42 0.349 0.395 7.1 2.5
(R50) AP_50 0.624 0.564 0.607 6.0 1.7

AP_75 0.442 0.350 0.41 9.2 3.2
AP_S 0.205 0.113 0.175 9.2 3.0
AP_M 0.458 0.373 0.431 8.5 2.7
AP_L 0.611 0.579 0.592 3.2 1.9

DETR AP 0.433 0.248 0.304 18.5 12.9
+DC5 AP_50 0.631 0.44 0.519 19.1 11.2
(R50) AP_75 0.459 0.24 0.303 21.9 15.6

AP_S 0.225 0.039 0.093 18.6 13.2
AP_M 0.473 0.234 0.325 23.9 14.8
AP_L 0.611 0.473 0.512 13.8 9.9

DETR AP 0.435 0.333 0.379 10.2 5.6
(R101) AP_50 0.638 0.556 0.613 8.2 2.5

AP_75 0.463 0.330 0.385 13.3 7.8
AP_S 0.218 0.100 0.156 11.8 6.2
AP_M 0.479 0.353 0.412 12.6 6.7
AP_L 0.618 0.564 0.583 5.4 3.5

DETR AP 0.449 0.205 0.262 24.4 18.7
+DC5 AP_50 0.647 0.386 0.485 26.1 16.2
(R101) AP_75 0.477 0.193 0.246 28.4 23.1

AP_S 0.237 0.028 0.072 20.9 16.5
AP_M 0.495 0.166 0.253 32.9 24.2
AP_L 0.623 0.428 0.479 19.5 14.4

In Table 3 improved method is labeled as Eq.(2)+. Analysis of the table shows that even after usage476

of max-based normalization as in Eq.( 12), the accuracy drop still remains too high for practical477

applications. The bold values in the table shows lowest accuracy drop per model per column. From478

Table 3 an averaged accuracy drop w.r.t. to original FP32 models was calculated and shown in479

Table 1.480

A.2 Software models of the proposed methods481

To validate the proposed methods by simulation, we have developed a software models in pytorch,482

the pseudocode of which is shown below. These codes mimics the functionality of the proposed483

HW-method to better understand the computational flow. This code in no matter is representing484

performance, or latency of the proposed methods.485

Algorithms 1 and 2 take several inputs:486

• Data tensor x which is input values to be computed. The dimensions of the input tensor can487

be any shape, in our code we resize it to 1-dimensional tensor first, and then restore it to488

the original dimensions after the computation. In Algorithms 1 and 2 we assume that input489

tensor x is already quantized by previous layer. However, our code allows quantization from490

FP32 precision as well.491

• Scale for de-quantization scale. As our code is designed to support different precisions, this492

is the parameter to restore the softmax value back to floating-point precision. The value493

of the scale for de-quantization depends on the selected precision (e.g., for int16 precision494

scale = 32, 768). It can be selected as scale = 1 if no de-quantization is required (e.g., if495

the next layer will compute the tensor in the same precision as softmax layer).496

• For Algorithm 1497

– LUT1/e is 1D LUT where the reciprocal exponentiation values are stored for 1
ex498

computation499
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Algorithm 1 REXP method
1: Input: data tensor x, LUT1/e, LUTα,

scale for de-quantization scale
2: Output: softmax tensor σ(x)
3: Normalize input data tensor: x→ (max(x)− x)
4: for i = 1 to size(x) do
5: idxxi = MSB(xi)
6: exi = LUT1/e[idxxi , ]
7: end for
8: Accumulate normalization factor: Σexi

9: idxexi = MSB(exi); idxα = MSB(Σexi)
10: for i = 1 to size(x) do
11: σ(xi) = LUT1/e[idxexi ] · LUTα[idxα].
12: end for
13: De-quantize σ(x) = σ(x)

scale

Algorithm 2 2D LUT method
1: Input: data tensor x, LUTexp, LUTσ ,

scale for de-quantization scale
2: Output: softmax tensor σ(x)
3: Normalize input data tensor: x→ (x – max(x))
4: for i = 1 to size(x) do
5: idxxi = MSB(xi)
6: exi = LUTexp[idxxi , ].
7: end for
8: Accumulate normalization factor: Σexi

9: idxexi = MSB(exi); idxΣ = MSB(Σexi)
10: for i = 1 to size(x) do
11: σ(xi) = LUTσ[idxexi , idxΣ].
12: end for
13: De-quantize σ(x) = σ(x)

scale

– LUTα is 1D LUT with precomputed PDF normalizing constant values in chosen500

precision. There are already several pre-defined versions of LUTα with different501

precision (e.g., int16, int8) in our code, see Section 5 for more details.502

• For Algorithm 2503

– LUTexp is 1D LUT where exponentiation values are stored for exi computation504

– LUTσ is 2D LUT for softmax computation with the precomputed values in chosen505

precision. There are already several pre-defined versions of LUTσ with different506

precision (e.g., int16, int8) in our code, see Section 5 for more details.507

The output of Algorithm 1 and 2 is the tensor with computed softmax values σ(x). The shape of the508

tensor is exactly same, as the shape of the input tensor x.509

A.3 PTQ-D dynamic quantization510

To obtain dynamically quantized models (referred as PTQ-D) we have followed PyTorch method-511

ology described at https://pytorch.org/docs/stable/quantization.html# and https:512

//pytorch.org/tutorials/recipes/recipes/dynamic_quantization.html.513

We have used the default PyTorch quantization scheme, thus the linear layers of the514

model have been quantized with the following properties: dtype = torch.qint8 and515

qscheme = torch.per_tensor_affine. As a result the size of quantized models was reduced, but516

there is some accuracy drop for some of the models as shown in Table 4. This accuracy drop should517

be taken into account when overall accuracy of the model (including approximation of softmax layer)518

is analyzed.519
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Table 4: Properties of dynamically quantized PTQ-D models

MODEL FP32, PTQ-D, SIZE REDUCE ACCURACY
MB MB RATIO, % DROP, %

DETR (R50) 166.69 128.49 77 0.0
DETR+DC5 (R50) 166.69 128.49 77 0.0
DETR (R101) 242.96 204.77 84 0.0
DETR+DC5 (R101) 242.96 204.77 84 0.0

TRANSFORMER (WMT14) 390.99 210.47 54 0.12
TRANSFORMER (WMT17) 390.99 210.47 54 0.14
BERT (SST-2) 437.98 181.43 41 0.58
BERT (MRPC) 437.98 181.43 41 0.66

Table 5: LUTs size used for DETR experiments

PRECISION BITS CASE 1 CASE 2 CASE 3
PER SIZE TOTAL SIZE TOTAL SIZE TOTAL

ENTRY OF SIZE, OF SIZE, OF SIZE,
LUTS BYTES LUTS BYTES LUTS BYTES

INT16 15 1×13 538 1×13 666 1×13 1,050
1×256 1×320 1×512

UINT8 8 1×8 264 1×8 328 1×8 520
1×256 1×320 1×512

A.4 DETR quantization experiment520

Table 5 shows the LUTs size for several pre-selected cases in int16 and uint8 precision. The first521

row shows the dimensions for LUT1/e (e.g., 1×13) and second for LUTα (e.g., 1×256). Total522

required size in Bytes for both tables is also shown. Note, that the total size of LUTs in Table 5 is just523

estimation for comparison purpose, and can be slightly different due to real hardware specification.524

In Table 6 and Table 7 below there are accumulated values of Average Precision (AP) and Average525

Recall (AR) from the experiments with DETR models, as described in Section 5.1. The behavior526

of Average Recall values is similar to Average Precision values. The bold values in the table shows527

highest values per model per method after applying dynamic quantization and softmax approximation.528

From Table 6 and Table 7 an averaged accuracy drop w.r.t. to original FP32 models was calculated529

and shown in Figure 2.530

A.5 NLP quantization experiment531

Table 8 shows the LUTs size for several pre-selected cases for NLP experiments in different precision:532

• For 2D LUT method the first row shows the dimensions for LUTe (e.g., 1×101) and second533

for LUTσ (e.g., 11×60).534

• For REXP method the first row shows the dimensions for LUT1/e (e.g., 1×13) and second535

for LUTα (e.g., 1×16).536

Total required size in Bytes for both tables is also shown. Note, that the total size of LUTs in537

Table 8 is just estimation for comparison purpose, and can be slightly different due to real hardware538

specification.539

In Table 2 there are accumulated values from the experiments with NLP models, as described in540

Section 5.2. The bold values in the table shows highest values per model per method after applying541

dynamic quantization and softmax approximation. From Table 2 an accuracy drop w.r.t. to original542

(FP32) and quantized (PTQ-D) models was calculated and shown in Figure 3.543
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Table 6: Experimental validation over DETR models (Average Precision)

MODEL METRIC FP32 PTQ-D INT16 UINT8
CASE1 CASE2 CASE3 CASE1 CASE2 CASE3

DETR AP 0.42 0.42 0.413 0.417 0.418 0.411 0.417 0.417
(R50) AP_50 0.624 0.624 0.618 0.621 0.622 0.616 0.62 0.621

AP_75 0.442 0.442 0.434 0.439 0.44 0.434 0.439 0.439
AP_S 0.205 0.205 0.19 0.198 0.202 0.19 0.197 0.199
AP_M 0.458 0.458 0.453 0.456 0.457 0.451 0.455 0.456
AP_L 0.611 0.611 0.609 0.609 0.609 0.608 0.608 0.608

DETR AP 0.433 0.433 0.382 0.394 0.411 0.376 0.392 0.401
+DC5 AP_50 0.631 0.631 0.603 0.613 0.623 0.599 0.61 0.615
(R50) AP_75 0.459 0.459 0.396 0.41 0.431 0.386 0.411 0.419

AP_S 0.225 0.225 0.164 0.176 0.199 0.159 0.174 0.181
AP_M 0.473 0.473 0.417 0.432 0.449 0.411 0.431 0.44
AP_L 0.611 0.611 0.578 0.589 0.600 0.575 0.592 0.601

DETR AP 0.435 0.435 0.426 0.431 0.433 0.426 0.431 0.432
(R101) AP_50 0.638 0.638 0.633 0.635 0.637 0.632 0.636 0.636

AP_75 0.463 0.463 0.452 0.458 0.459 0.452 0.459 0.459
AP_S 0.218 0.218 0.208 0.215 0.218 0.207 0.218 0.218
AP_M 0.479 0.479 0.47 0.475 0.476 0.471 0.477 0.476
AP_L 0.618 0.618 0.614 0.617 0.617 0.615 0.619 0.617

DETR AP 0.449 0.449 0.363 0.388 0.426 0.358 0.387 0.42
+DC5 AP_50 0.647 0.647 0.589 0.612 0.636 0.586 0.61 0.632
(R101) AP_75 0.477 0.477 0.371 0.401 0.451 0.365 0.400 0.444

AP_S 0.237 0.237 0.136 0.16 0.206 0.128 0.155 0.196
AP_M 0.495 0.495 0.397 0.426 0.468 0.391 0.426 0.464
AP_L 0.623 0.623 0.578 0.591 0.611 0.575 0.594 0.608

Table 7: Experimental validation over DETR models (Average Recall)

MODEL METRIC FP32 PTQ-D INT16 UINT8
CASE1 CASE2 CASE3 CASE1 CASE2 CASE3

DETR AR 0.333 0.333 0.33 0.332 0.332 0.329 0.331 0.331
(R50) AR_50 0.533 0.533 0.525 0.53 0.531 0.524 0.529 0.53

AR_75 0.574 0.574 0.568 0.571 0.573 0.565 0.571 0.572
AR_S 0.312 0.312 0.296 0.31 0.308 0.301 0.305 0.307
AR_M 0.628 0.628 0.624 0.626 0.627 0.621 0.626 0.625
AR_L 0.805 0.805 0.806 0.803 0.803 0.804 0.803 0.805

DETR AR 0.342 0.342 0.312 0.319 0.328 0.31 0.318 0.324
+DC5 AR_50 0.551 0.551 0.498 0.511 0.529 0.492 0.509 0.519
(R50) AR_75 0.594 0.594 0.539 0.553 0.571 0.533 0.55 0.562

AR_S 0.344 0.344 0.266 0.283 0.307 0.261 0.279 0.288
AR_M 0.646 0.646 0.591 0.605 0.624 0.586 0.605 0.617
AR_L 0.814 0.814 0.785 0.791 0.802 0.778 0.79 0.803

DETR AR 0.344 0.344 0.338 0.342 0.342 0.339 0.342 0.342
(R101) AR_50 0.549 0.549 0.541 0.544 0.546 0.539 0.545 0.546

AR_75 0.59 0.59 0.582 0.586 0.589 0.581 0.586 0.587
AR_S 0.337 0.337 0.324 0.332 0.336 0.322 0.333 0.335
AR_M 0.644 0.644 0.638 0.641 0.642 0.637 0.641 0.641
AR_L 0.815 0.815 0.814 0.812 0.812 0.809 0.814 0.814

DETR AR 0.35 0.35 0.303 0.317 0.337 0.301 0.317 0.334
+DC5 AR_50 0.561 0.561 0.477 0.501 0.538 0.472 0.501 0.533
(R101) AR_75 0.604 0.604 0.517 0.541 0.58 0.511 0.541 0.575

AR_S 0.348 0.348 0.24 0.266 0.315 0.23 0.262 0.305
AR_M 0.662 0.662 0.57 0.596 0.637 0.561 0.597 0.636
AR_L 0.81 0.81 0.771 0.784 0.80 0.769 0.784 0.801
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Table 8: LUTs size used for NLP experiments

PRECISION BITS 2D LUT REXP
PER SIZE TOTAL SIZE, SIZE TOTAL SIZE,

ENTRY OF LUTS BYTES OF LUTS BYTES

INT16 15 1×101 1,522 1×13 58
11×60 1×16

UINT8 8 1×101 761 1×8 24
11×60 1×16

UINT4 4 1×48 367 1×5 21
11×29 1×16

UINT2 2 1×12 100 1×3 10
11×8 1×7
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