449

450

451
452
453
454
455
456

457

458

460
461
462

463

464

466
467

468

469
470
471
472
473
474
475

A Appendix

A.1 Prior arts tests

To validate the accuracy of prior arts of softmax approximation we have conducted several tests
over DETR models. Since we are interested in the methods which are not using a division opera-
tion, we have considered prior arts where logarithmic transformation was applied. Thus, we have
adopted available pre-trained models from https://github.com/facebookresearch/detr by
substituting a conventional softmax layer by the methods described in [31], [34], [28], and [13]. All
computations were conducted in FP32 precision.

A.1.1 Aggressive approximation

There are several methods, what strongly approximate the original softmax formula and which
showed good results for conventional CV tasks: [34], [28], and [13]. Note, that Eq.(4) in [34]
is mathematically equivalent to Eq.(9) in [13]; and Eq.(5) in [28] is mathematically equivalent to
Eq.(18) in [13]. Unfortunately, if any of those methods is applied to DETR models, the quality of
model collapsed completely, providing zero accuracy as shown in Figure 5.

Accumulating evaluation results...
DONE (t=5.77s).
IoU metric: bbox

Average Precision (AP) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.000
Average Precision (AP) @[Iou=0.50 | area= all | maxDets=100] = 0.000
Average Precision (AP) @[IoU=0.75 | area= all | maxDets=100] = 0.000
Average Precision (AP) @[IoU=0.50:0.95 | area= small | maxDets=100] = 0.000
Average Precision (AP) @[IoU=0.50:0.95 | area=medium | maxDets=100] = 0.000
Average Precision (AP) @[IoU=0.50:0.95 | area= large | maxDets=100] = 0.000
Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets= 1] = 0.000
Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets= 10] = 0.000
Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.000
Average Recall (AR) @[IoU=0.50:0.95 | area= small | maxDets=100] = 0.000
Average Recall (AR) @[IoU=0.50:0.95 | area=medium | maxDets=100] = 0.000
Average Recall (AR) @[IoU=0.50:0.95 | area= large | maxDets=100] = 0.001

Figure 5: Example of DETR (R50) model output due to aggressive approximation of softmax layer.

A.1.2 Exponentiation of logarithmic transformation

Mathematical formula for softmax computation by back exponentiation of logarithmic transformation
is described as Eq.(2) in [31]:

N
o(x;) =exp | a; —In Zexi (i=1,2,...,N). (11)

j=1

To mimic the usage of this method within 8-bit precision hardware, we have applied scaling with
rounding in our code as below:

attn_output_weights = torch.round(Eq.(2) * prec)/prec,

with prec = 2% — 1, were w is the number of bits of the used precision. Thus, for uint8 precision
w = 8 and prec = 255. Note, that we have applied scaling with rounding only to the outer non-linear
operation exp, and if run on real hardware the same limitations would be applied to other inner
operations (1n, exp), thus the accuracy will be even worse in the real case. In Table 3 there are shown
the results of experiments. As it can be seen from the Table 3, the accuracy drop is high (3% to 32%),
therefore we modify the original equation by bringing the input normalization by a max-value as
shown below and run another tests:

N
o(x;) =exp | z; — max(z) —In Z e®i—maw(z) (i=1,2,...,N). (12)
j=1

13

476
477
478
479
480

481

482
483
484
485

487
488
489
490
491

492
493
494
495
496

497

498
499

Table 3: Experimental validation of prior arts over DETR models (Average Precision)

MODEL METRIC ORIGINAL METHOD ACCURACY DROP,
MODEL, FP32 EQ.(2) EQ.(2)+ EQ.(2) EQ.(2)+
IN [31] IN [31] IN [31],% IN[31], %
DETR AP 0.42 0.349 0.395 7.1 2.5
(R50) AP_50 0.624 0.564 0.607 6.0 1.7
AP_75 0.442 0.350 0.41 9.2 3.2
AP_S 0.205 0.113 0.175 9.2 3.0
AP_M 0.458 0.373 0.431 8.5 2.7
AP_L 0.611 0.579 0.592 3.2 1.9
DETR AP 0.433 0.248 0.304 18.5 12.9
+DC5 AP_50 0.631 0.44 0.519 19.1 11.2
(R50) AP_75 0.459 0.24 0.303 21.9 15.6
AP_S 0.225 0.039 0.093 18.6 13.2
AP_M 0.473 0.234 0.325 23.9 14.8
AP_L 0.611 0.473 0.512 13.8 9.9
DETR AP 0.435 0.333 0.379 10.2 5.6
(R101) AP_50 0.638 0.556 0.613 8.2 2.5
AP_75 0.463 0.330 0.385 13.3 7.8
AP_S 0.218 0.100 0.156 11.8 6.2
AP_M 0.479 0.353 0.412 12.6 6.7
AP_L 0.618 0.564 0.583 5.4 3.5
DETR AP 0.449 0.205 0.262 24.4 18.7
+DC5 AP_50 0.647 0.386 0.485 26.1 16.2
(R101) AP_75 0.477 0.193 0.246 28.4 23.1
AP_S 0.237 0.028 0.072 20.9 16.5
AP_M 0.495 0.166 0.253 32.9 24.2
AP_L 0.623 0.428 0.479 19.5 14.4

In Table 3 improved method is labeled as Eq.(2)+. Analysis of the table shows that even after usage
of max-based normalization as in Eq.(12), the accuracy drop still remains too high for practical
applications. The bold values in the table shows lowest accuracy drop per model per column. From
Table 3 an averaged accuracy drop w.r.t. to original FP32 models was calculated and shown in
Table 1.

A.2 Software models of the proposed methods

To validate the proposed methods by simulation, we have developed a software models in pytorch,
the pseudocode of which is shown below. These codes mimics the functionality of the proposed
HW-method to better understand the computational flow. This code in no matter is representing
performance, or latency of the proposed methods.

Algorithms 1 and 2 take several inputs:

e Data tensor = which is input values to be computed. The dimensions of the input tensor can
be any shape, in our code we resize it to 1-dimensional tensor first, and then restore it to
the original dimensions after the computation. In Algorithms 1 and 2 we assume that input
tensor x is already quantized by previous layer. However, our code allows quantization from
FP32 precision as well.

e Scale for de-quantization scale. As our code is designed to support different precisions, this
is the parameter to restore the softmax value back to floating-point precision. The value
of the scale for de-quantization depends on the selected precision (e.g., for int16 precision
scale = 32,768). It can be selected as scale = 1 if no de-quantization is required (e.g., if
the next layer will compute the tensor in the same precision as softmax layer).

e For Algorithm 1
- LUT . is 1D LUT where the reciprocal exponentiation values are stored for e%
computation

14

500
501
502

503

504

505
506
507

508
509

510

511
512
513

514

516
517
518
519

Algorithm 1 REXP method

1: Input: data tensor x, LUTl/e, LoT,,
scale for de-quantization scale
Output: softmax tensor o ()
Normalize input data tensor: © — (max(x) —)
for i = 1 to size(x) do
idry, = MSB(x;)
e’ = LUT . lidzy,,]
end for
Accumulate normalization factor: e®’
9: idzer; = MSB(e%);idx, = MSB(3e™)
10: for i = 1 to size(x) do
11: o(x;) = LUT jelidxee:] - LUT, [idx,].
12: end for
13: De-quantize o(x) =

o(x)
scale

Algorithm 2 2D LUT method

1: Input: data tensor x, LUT,y,, LUTy,
scale for de-quantization scale
Output: softmax tensor o ()
Normalize input data tensor: — (x — max(z))
for i = 1 to size(x) do
idr,, = MSB(x;)
e = LUTegplidr,,, .
end for
Accumulate normalization factor: Ye®
9: idrer; = MSB(e®);ides = MSB(Xe®)
10: for i = 1 to size(x) do
11: o(x;) = LUT,[idzee: , idzy).
12: end for
13: De-quantize o(z) =

A A

o(x)
scale

- LUT, is 1D LUT with precomputed PDF normalizing constant values in chosen
precision. There are already several pre-defined versions of LUT, with different
precision (e.g., int16, int8) in our code, see Section 5 for more details.

e For Algorithm 2

— LUT,;, is 1D LUT where exponentiation values are stored for e** computation

- LUT, is 2D LUT for softmax computation with the precomputed values in chosen
precision. There are already several pre-defined versions of LUT, with different
precision (e.g., int16, int8) in our code, see Section 5 for more details.

The output of Algorithm 1 and 2 is the tensor with computed softmax values o (z). The shape of the
tensor is exactly same, as the shape of the input tensor .

A.3 PTQ-D dynamic quantization

To obtain dynamically quantized models (referred as PTQ-D) we have followed PyTorch method-
ology described at https://pytorch.org/docs/stable/quantization.html# and https:
//pytorch.org/tutorials/recipes/recipes/dynamic_quantization.html.

We have used the default PyTorch quantization scheme, thus the linear layers of the
model have been quantized with the following properties: dtype = torch.qint8 and
gscheme = torch.per_tensor_affine. As a result the size of quantized models was reduced, but
there is some accuracy drop for some of the models as shown in Table 4. This accuracy drop should
be taken into account when overall accuracy of the model (including approximation of softmax layer)
is analyzed.

15

520

521
522
523
524

525
526
527

529
530

531

532

533

535
536

537
538
539

540
541
542
543

Table 4: Properties of dynamically quantized PTQ-D models

MODEL FP32, PTQ-D, SiZEREDUCE ACCURACY
MB MB RATIO, % DROP, %
DETR (R50) 166.69 128.49 77 0.0
DETR+DC5 (R50) 166.69 128.49 77 0.0
DETR (R101) 242,96 204.77 84 0.0
DETR+DC5 (R101) 242.96 204.77 84 0.0
TRANSFORMER (WMT14) 390.99 210.47 54 0.12
TRANSFORMER (WMT17) 390.99 210.47 54 0.14
BERT (SST-2) 437.98 181.43 41 0.58
BERT (MRPC) 437.98 181.43 41 0.66
Table 5: LUTs size used for DETR experiments
PRECISION BITS CASE 1 CASE 2 CASE 3
PER SIZE TOTAL SIZE TOTAL SIZE TOTAL
ENTRY OF SIZE, OF SIZE, OF SIZE,
LUTs ByTes LUTs ByTEs LUTs BYTES
INT16 1x13 538 1x13 666 1x13 1,050
1x256 1x320 1x512
UINT8 I1x8 264 I1x8 328 1x8 520
1x256 1x320 1x512

A4 DETR quantization experiment

Table 5 shows the LUTSs size for several pre-selected cases in int16 and uint8 precision. The first
row shows the dimensions for LUT . (e.g., 1x13) and second for LUT,, (e.g., 1x256). Total
required size in Bytes for both tables is also shown. Note, that the total size of LUTs in Table 5 is just
estimation for comparison purpose, and can be slightly different due to real hardware specification.

In Table 6 and Table 7 below there are accumulated values of Average Precision (AP) and Average
Recall (AR) from the experiments with DETR models, as described in Section 5.1. The behavior
of Average Recall values is similar to Average Precision values. The bold values in the table shows
highest values per model per method after applying dynamic quantization and softmax approximation.
From Table 6 and Table 7 an averaged accuracy drop w.r.t. to original FP32 models was calculated
and shown in Figure 2.

A.5 NLP quantization experiment
Table 8 shows the LUTs size for several pre-selected cases for NLP experiments in different precision:

e For 2D LUT method the first row shows the dimensions for LUT, (e.g., 1 x101) and second
for LUT, (e.g., 11x60).

e For REXP method the first row shows the dimensions for LUT /. (e.g., 1 x13) and second
for LUT, (e.g., 1x16).

Total required size in Bytes for both tables is also shown. Note, that the total size of LUTs in
Table 8 is just estimation for comparison purpose, and can be slightly different due to real hardware
specification.

In Table 2 there are accumulated values from the experiments with NLP models, as described in
Section 5.2. The bold values in the table shows highest values per model per method after applying
dynamic quantization and softmax approximation. From Table 2 an accuracy drop w.r.t. to original
(FP32) and quantized (PTQ-D) models was calculated and shown in Figure 3.

16

Table 6: Experimental validation over DETR models (Average Precision)

MODEL METRIC FP32 PTQ-D INT16 UINT8
CASEl CASE2 CASE3 CASEl CASE2 CASE3
DETR AP 0.42 0.42 0.413 0417 0418 0411 0.417 0.417
(R50) AP_50 0.624 0.624 0.618 0.621 0.622 0.616 0.62 0.621
AP_75 0.442 0.442 0.434 0.439 0.44 0.434 0.439 0.439
AP_S 0.205 0.205 0.19 0.198 0.202 0.19 0.197 0.199
AP_M 0.458 0.458 0.453 0.456 0.457 0.451 0.455 0.456
AP_L 0.611 0.611 0.609 0.609 0.609 0.608 0.608 0.608
DETR AP 0.433 0.433 0.382 0.394 0411 0.376 0.392 0.401
+DC5 AP_50 0.631 0.631 0.603 0.613 0.623 0.599 0.61 0.615
(R50) AP_75 0.459 0.459 0.396 0.41 0.431 0.386 0.411 0.419
AP_S 0.225 0.225 0.164 0.176 0.199 0.159 0.174 0.181
AP_M 0.473 0.473 0.417 0432 0449 0411 0.431 0.44
AP_L 0.611 0.611 0.578 0.589 0.600 0.575 0.592 0.601
DETR AP 0.435 0.435 0.426 0.431 0.433 0.426 0.431 0.432
(R101) AP_50 0.638 0.638 0.633 0.635 0.637 0.632 0.636 0.636
AP_75 0.463 0.463 0.452 0.458 0.459 0.452 0.459 0.459
AP_S 0.218 0.218 0.208 0.215 0.218 0.207 0.218 0.218
AP_M 0.479 0.479 0.47 0.475 0.476 0.471 0.477 0.476
AP_L 0.618 0.618 0.614 0.617 0.617 0.615 0.619 0.617
DETR AP 0.449 0.449 0.363 0.388 0.426 0.358 0.387 0.42
+DC5 AP_50 0.647 0.647 0.589 0.612 0.636 0.586 0.61 0.632
(R101) AP_75 0.477 0.477 0.371 0.401 0.451 0.365 0.400 0.444
AP_S 0.237 0.237 0.136 0.16 0.206 0.128 0.155 0.196
AP_M 0.495 0.495 0.397 0.426 0.468 0.391 0.426 0.464
AP_L 0.623 0.623 0.578 0.591 0.611 0.575 0.594 0.608

Table 7: Experimental validation over DETR models (Average Recall)

MoODEL METRIC FP32 PTQ-D INT16 UINTS8
CASEl CASE2 CASE3 CASEl CASE2 CASE3
DETR AR 0.333 0.333 0.33 0.332 0.332 0.329 0.331 0.331
(R50) AR_50 0.533 0.533 0.525 0.53 0.531 0.524 0.529 0.53
AR_75 0.574 0.574 0.568 0.571 0.573 0.565 0.571 0.572
AR_S 0.312 0.312 0.296 0.31 0.308 0.301 0.305 0.307
AR_M 0.628 0.628 0.624 0.626 0.627 0.621 0.626 0.625
AR_L 0.805 0.805 0.806 0.803 0.803 0.804 0.803 0.805
DETR AR 0.342 0.342 0.312 0.319 0.328 0.31 0.318 0.324
+DC5 AR_50 0.551 0.551 0.498 0.511 0.529 0.492 0.509 0.519
(R50) AR_75 0.594 0.594 0.539 0.553 0.571 0.533 0.55 0.562
AR_S 0.344 0.344 0.266 0.283 0.307 0.261 0.279 0.288
AR_M 0.646 0.646 0.591 0.605 0.624 0.586 0.605 0.617
AR_L 0.814 0.814 0.785 0.791 0.802 0.778 0.79 0.803
DETR AR 0.344 0.344 0.338 0.342 0.342 0.339 0.342 0.342
(R101) AR_50 0.549 0.549 0.541 0.544 0.546 0.539 0.545 0.546
AR_75 0.59 0.59 0.582 0.586 0.589 0.581 0.586 0.587
AR_S 0.337 0.337 0.324 0.332 0.336 0.322 0.333 0.335
AR_M 0.644 0.644 0.638 0.641 0.642 0.637 0.641 0.641
AR_L 0.815 0.815 0.814 0.812 0.812 0.809 0.814 0.814
DETR AR 0.35 0.35 0.303 0.317 0.337 0.301 0.317 0.334
+DC5 AR_50 0.561 0.561 0.477 0.501 0.538 0.472 0.501 0.533
(R101) AR_75 0.604 0.604 0.517 0.541 0.58 0.511 0.541 0.575
AR_S 0.348 0.348 0.24 0.266 0.315 0.23 0.262 0.305
AR_M 0.662 0.662 0.57 0.596 0.637 0.561 0.597 0.636
AR_L 0.81 0.81 0.771 0.784 0.80 0.769 0.784 0.801

17

Table 8: LUTs size used for NLP experiments

PRECISION BITS 2D LUT REXP
PER SIZE TOTAL SIZE, SIZE TOTAL SIZE,
ENTRY OF LUTS BYTES OF LUTs BYTES

INT16 15 1x101 1,522 1x13 58
11x60 1x16

UINTS8 8 1x101 761 1x8 24
11x60 1x16

UINT4 4 1x48 367 1x5 21
11x29 1x16

UINT2 2 Ix12 100 1x3 10
11x8 1x7

18

