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1 Experimental settings and training hyperparameters473

1.1 Multi-Domain474

We refer to benchmarks as "multi-domain" when they contain multiple input visual domains with a475

shared set of output classes (i.e., ∀i ̸= j,Xi ̸= Xj and Yi = Yj).476

CIFAR-10 and STL-10. CIFAR-10 [26] is a classical benchmark for image classification containing477

50k training samples uniformly distributed across 10 classes. STL-10 [9] is a semi-supervised dataset478

which was designed to resemble CIFAR-10. Specifically, we only use the 5000 annotated images479

in STL-10, which are also uniformly distributed across the same 10 classes as CIFAR. In STL-10,480

the images themselves are from the ImageNet [16] dataset, and cropped/resized to 96 pixels. We481

further resize them to 32 pixels to align with CIFAR. In summary, the key difficulties are (i) the input482

distribution shift between the two datasets and (ii) the high imbalance in data availability.483

In terms of architecture, we use a vision transformer backbone (ViT-S) optimized for small-scale484

datasets [15] (compared to the original ViT-S, this backbone contains smaller patch sizes, fewer485

transformer layers and narrower embeddings but a higher number of heads). To control model capacity,486

we vary the depth (number of transformer layers) in {3, 6, 9} and the width (token dimension) in487

{48, 96, 144, 192}, Finally, we train each model from scratch on a single NvidiaV100 GPU with a488

batch size of 256 images for 300 epochs (including 30 epochs of linear learning rate warmup), using489

a learning rate of 0.001 and weight decay of 0.05 with the AdamW optimizer and cosine learning490

rate decay.491

DomainNet. DomainNet [44] is a classification dataset of 6 visual domains annotated for 345492

classes, for a total of roughly 410k training samples. DomainNet was initially introduced for the493

problem of multi-source domain adaption, in which one or more of the domains does not have training494

annotations; the key difficulty is thus to learn representations that are aligned across domains. In495

contrast to the CIFAR+STL example, DomainNet exhibits distribution shifts across both the input496

domains and output classes, as visualized in Figure A.497
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Figure A: Illustrating the data imbalance in DomainNet with a contour plot of the number of samples
per class and domains in DomainNet. Each of the corners of the hexagon represents one of the six
domains in DomainNet, and the lines (levels of the contour plot) represent the number of samples,
drawn every 15 classes. For comparison, a uniformly distributed dataset would yield perfect hexagons.
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Following previous literature [44, 29], we use a ResNet-101 as our main backbone. There is no498

domain-dependent layer in the architecture: the final classifier layer is shared across all domains. We499

first perform a training sweep over the largest domain (real) to select the best-performing learning500

rate from {0.3, 0.03, 0.003, 0.0003} and the number of epochs from {30, 60, 90}. Following these501

results, we use a learning rate of 0.03 and train for 30 epochs with a batch size of 512 in subsequent502

experiments. We train with the AdamW optimizer with a weight decay of 1e − 4. We also apply503

linear learning rate warm-up during the first five training epochs and use cosine schedule learning rate504

decay for the rest of the training. Finally, to control model capacity, we vary the depth (backbone) in505

{ResNet-26, ResNet-50, ResNet-101 } and the width base bottleneck dimension) in {16, 32, 64},506

Multi-domain, resampling and training length In the multi-domain setting, scalarization weights507

become resampling probabilities for each dataset, as shown in (2). Consequently, the notion of508

"epoch" is hard to define compare to the standard mono-dataset setting. To resolve this, we always509

define epochs with respect to one of the domains. For instance, in the CIFAR+STL case, we use STL510

as our reference. Therefore, "one epoch" translates to seeing as many samples as in the original STL511

dataset (5000) using the current batch size (256), i.e. roughly 20 training steps. In the DomainNet512

case, we define epochs relatively to the real domain. This definition has the advantage of not being513

impacted by the sampling weights p; In particular, this means that both the MDL models and the514

single dataset (SD) baselines are trained for as many training steps, and see the same amount of515

training samples, only sampled from different data distributions.516

1.2 Multi-task517

We define multi-task benchmarks as datasets where every image is fully annotated for multiple518

output tasks (i.e., ∀i ̸= j,Xi = Xj and Yi ̸= Yj). This setting is particularly popular for scene519

understanding problems where every scene is labelled with multiple dense predictions (e.g. depth,520

normals, segmentation mas, edges, etc.)521

Celeba. CelebA is a binary attribute classification dataset containing 40 attributes and roughly522

162k training images. To turn CelebA into a multi-task problem, it is common to consider each523

attribute as a binary classification task: More specifically, we use a fully shared backbone with a524

final linear layer of 40 outputs, outputting logits for every task. The model is then trained using 40525

binary cross-entropy losses, one for each attribute. To make our comparative analysis more scalable,526

we define several tasks as subsets of attributes, grouped based on semantic similarity (e.g. all hair527

colors are in the same subgroup). The 8 resulting subsets of attributes are described in Table A. In the528

scalarization setting, this simply means that some of the attributes share the same importance weight.529

As a backbone, we use the same ViT-S/4 based architecture as for CIFAR/STL. We train for 50530

epochs with 5 epochs of learning rate warmup. We use a learning rate of 0.0005 with cosine schedule531

decay anf train with the AdamW optimizer with a weight decay of 0.05. We use input images of size532

32 (with tokens of size 4), a batch size of 256, and RandAugment data augmentations.533

Table A: The eight tasks defined as subsets from CelebA attributes used in our main analysis.
Attributes in the same subset share a common importance weight p

Hair color Hairstyle Facial Hair Mouth Clothes Face Structure Gender Age
Black Hair Bald 5’o’Clock Shadow Big Lips Eyeglasses Big Nose Male Young
Blond Hair Bangs Mustache Mouth Slightly Open Heavy Makeup Chubby
Brown Hair Receding Hairline No Beard Smiling Wearing Earrings Double Chin
Gray Hair Sideburns Goatee Wearing Lipstick Wearing Hat High Cheekbones

Straight Hair Wearing Necklace Oval Face
Wavy Hair Wearing Necktie Pointy Noise

Taskonomy. Taskonomy [61] is a large dataset containing a variety of dense prediction tasks for534

indoor scenes. We use the tiny split of Taskonomy which contains roughly 275k images. Taskonomy535

was originally introduced for the problem of task clustering: The original work [61] proposes a task536

affinity metric to define a taxonomy of tasks. This taxonomy structure is then used to determine537

which tasks should be trained from scratch and which tasks could benefit from others via transfer538

learning. Closer to our setting, follow-up works [54, 13] propose to use this taxonomy to determine539

which tasks should be grouped or not in multi-task learning. Once the groupings are determined, a540
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separate backbone is trained for each group of tasks, typically using standard uniform scalarization.541

Instead, for our analysis, we use Taskonomy-tiny in a more standard multi-task framework, where a542

backbone is shared across tasks.543

For training, we follow the methodology of [54]. We use a ResNet-26 backbone (with varying544

bottleneck width) with a mirrored decoder; By default, only the encoder is shared across tasks and545

each task receives its own decoder. To vary model capacity, we add the option to share more or fewer546

layers of the decoders across tasks. We use the same learning rate of 0.1 and training for 100 epochs547

using a batch size of 256. We train with SGD with a momentum of 0.9 and a weight decay of 1e− 4.548

Following [54], all output prediction maps are rescaled to have zero mean and unit variance on the549

training set, and all dense tasks are trained with L1 loss.550

2 Additional analysis results551

2.1 Complete results and methodology for Figure 2552

In Section 4, we perform MDL and MTL experiments on several pairs of datasets, each time553

comparing to the single dataset (SD) baseline trained for the same model capacity and training length.554

All results are run for three random seeds on CelebA and CIFAR+STL, and two random seeds for555

DomainNet and Taskonomy. To present these results in a condensed form in Figure 2, we first556

find the scalarization weights p∗ = (p∗1, 1 − p∗1) that yield the best average accuracy across both557

datasets. Then we report the difference in metrics between MDL trained with weights p∗ and the558

corresponding SD baseline, for each dataset. Note that for the Taskonomy case, where the tasks are559

evaluated via L1 loss, we measure the negative difference instead to keep the same interpretation as560

the other settings where a positive value means MDL improves over SD.561

For completeness, we report all results for the CIFAR/STL case as trade-off plots (accuracy on dataset562

1 versus accuracy on dataset 2) in Figure B (CIFAR/STL) and in in Figure C (segmentation 2D and563

depth tasks of Taskonomy). We observe the same trends as summarized in the main paper: First,564

when increasing model capacity, the MDL performance over the SD baseline increases; This is best565

seen when width increases (across columns). Second, the optimal weights vary across model sizes:566

At low width, the best performance is reached for a ratio in the range of [0.3, 0.4]. While larger567

models prefer p∗STL ∈ [0.1, 0.3]. Finally, it is interesting to note that these weights also differ from568

heuristics commonly used to set scalarization weights: such as uniform scalarization pSTL = 0.5 or569

for instance setting the weights to match the number of samples in each dataset pSTL = 0.09. This570

further highlights the fact that tuning scalarization weights can make scalarization into a stronger571

baseline for MDL/MTL.572

2.2 MDL helps generalization573

When comparing the MDL/MTL and SD performance, we often observe that MDL/MTL improve-574

ments over SD are visible at inference but not at training time (as illustrated for instance in Figure D).575

This indicates that MDL/MTL training helps generalization of the model compared to training on a576

single dataset. In particular, in the MDL setting, this draws an interesting parallel with data augmen-577

tations: In fact, MDL training can be seen as adding additional input data from a new distribution,578

with a probability given by the scalarization weights p, while sharing the same semantic classes. And579

similarly to data augmentations, adding this extra data source makes the training distribution harder580

to fit (hence the SD baseline outperforming MDL at train time) but can greatly benefit generalization581

performance (hence the inverse trend at inference).582

To push the analogy further, the experimental study of [14] suggests that a good data augmentation583

should be one with a high affinity to the original data distribution (i.e., the distribution shift between584

the original data and augmented one should not be too significant) as well as a high diversity (i.e., the585

added data should be complex enough, which can be measure e.g. with magnitude of the training loss).586

This hypothesis also matches our observations: For instance adding infograph data to the real587

domain leads to a low affinity pairing but with high diversity and yields weaker MDL performance588

on the real images compared to the SD baseline (see Figure 2).589

Finally, we note that the problem of finding optimal scalarization weights mirrors the one of finding590

data augmentation hyperparameters, which has been extensively explored for the task of image591
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Figure B: Complete analysis results for the CIFAR+STL scenario. Each row corresponds to a different
model depth and each column to a model width, in increasing order. In each plot, we plot the model’s
test accuracy on CIFAR-10 versus the test accuracy on STL-10. The single dataset baseline (SD)
is drawn in black and corresponds to the accuracy obtained when training two separate networks,
one on each dataset independently. The circle markers correspond to the MDL model trained for
different scalarization weights p. The value of pSTL is represented as the color of the marker, while
the remaining weight is always set to pCIFAR = 1− pSTL.

classification. It has led to now commonly-adopted augmentation strategies such as RandAugment [3],592

AutoAugment [2], or PBA [20], which also uses Population-based training to tackle this problem.593

3 Methodology for measuring gradients conflicts594

In this appendix, we briefly describe our methodology for Section 4.2. We use the same definition of595

gradient conflicts as in PCGrad [60]: Two task/domain specific gradients are conflicting if and only if596

the cosine of the angle between them is strictly negative. We train a model using standard uniform597

scalarization, measure the number of conflicting pairs of task/domain gradients over one epoch of598

training, and report it as a percentage (of all pairs), for each epoch during training.599

We report these results in the main text in Figure 3. Our main observation is that the presence or600

absence of gradient conflicts does not correlate well with actual MDL/MTL performance. This601

challenges the assumption underlying many multi-task optimization (MTO) methods [60, 36, 58]602

that reducing gradient conflicts leads to improved MTL performance. This also aligns well with603

recent results of [59, 27] showing that MTO methods that reduce gradient conflicts do not outperform604

simpler scalarization approaches in practice, and with the hypothesis of [27] that most MTO methods605

are in reality only adding a regularization effect.606
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Figure C: Complete analysis results for the segmentation 2D and depth prediction tasks in the
Taskonomy scenario. Each row corresponds to a different number of layers shared in the decoder
(shr) and each column to a model width. In each plot, we plot the model’s test Le loss of each task
on either axis. The single dataset baseline (SD) is drawn in black and corresponds to the accuracy
obtained when training two separate networks, one on each dataset independently. The circle markers
correspond to the MDL model trained for different scalarization weights p. The value of psegmentation2D
is represented as the color of the marker.

4 Consistency of optimal scalarization weights607

As noted in the analysis from Section 4, the optimal weights p∗ is rather consistent across model608

depths and widths. For instance, on the CIFAR/STL case, p∗ always falls in the range of [0.2, 0.4].609

This can also be seen from the qualitative results of the population-based training search of scalariza-610

tion weights in Section 5.2: While the history of hyperparameter changes during the search differ,611

PBT tends to converge to similar distribution for the scalarization weights p across different model612

depths and widths.613

This suggests that the theoretical search space for p may be reduced in practice leading to a more614

computationally efficient search: Performing a rough initial search on a smaller model from the same615

architecture family can provide a promising range for p, and can then be refined by searching with616

the larger target architecture.617

5 PBT results618

Because the search space for scalarization weights p grows exponentially with the number of tasks,619

classical hyperparameter search methods such as grid search or random search would struggle to620

scale as the number of tasks increases. Bayesian optimization (BO) [14] allows for faster results621

by browsing the search space in a smart way by building and following a probabilistic model of622

the hyperparameters. However, BO still requires training models to convergence (or until an early623

stopping criterion is met) which can be computationally expensive. Instead, we experiment with the624

Population-based Training framework [21] for searching for the optimal scalarization weights. PBT625

relies on the assumption that the "goodness" of a certain hyperparameter choice can be evaluated in a626

few epochs during training, rather than having to finish a full run of training.627
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Figure D: Train-test Discrepancy when comparing MDL/MTL improvement over the SD baseline
visualized on the CIFAR+STL example. In particular, in the MDL setting, this matches the classical
interpretation of data augmentations: Adding additional semantically relevant data from an input
distribution may be harder to fit at training time but leads to improved generalization performance at
inference.

5.1 Compute resources628

As mentioned in the main paper we perform all training runs on a single NVIDIA V100 machine629

with 32GB of memory. However, both the PBT and MTO models require higher compute resources630

than a single normal run of training, which we discuss below.631

• PBT requires training a population of N models that are regularly synchronized; then fol-632

lowed by a final training run with the found optimal weights. Following previous works [20],633

we perform the hyperparameter search on a smaller subset of the data (in our experiments634

r = 0.7 fraction of the training set). In summary, the expected computational cost is roughly635

Nr + 1 times higher than standard training. On the CelebA example, we also observe that636

using PB2 [43], which combines the benefits of Bayesian Optimisation and PBT, yields637

better hyperparameters using a smaller population size. In terms of memory usage, PBT is638

the same as a standard training run: Synchronization is handled via checkpoints saving and639

loading, such that only one model lives in memory. Finally, we use the publicly available640

PBT implementation from Raytune[30] which handles all synchronization operations across641

the population. The implementation would also scale well to more compute resources, as642

the Ray API allows for easy parallelization.643

• MTO. As shown in Figure 1, the bottleneck in most gradient-based methods is memory644

usage. Consequently, this requires us to decrease the batch size to meet memory requirements645

and compensate with gradient accumulation (or data parallelism if multiple devices are646

available). For instance, on the DomainNet experiments with all 6 domains, we need to647

decrease from a batch size of 512 to a batch size of 128 with 4 steps of accumulation to still648

fit in memory requirements. For some of these methods, this also raises the question of how649

to handle synchronization across batches: For instance, in PCGrad, the gradient conflicts650

(and projections) can be computed either (i) per local batch, before accumulation: this651

may lead to noisier updates; or (ii) after gradients are accumulated: However this is more652

memory-intensive as this requires to store the previously accumulated per-task gradient as653

well as the one being currently computed. In practice we use the implementation of [28] for654

all MTO methods.655
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In summary, when comparing different hyperparameter searches for scalarization, PBT allows for656

much faster exploration of the search space than classical techniques such as grid search.657

Comparing PBT+scalarization with MTO is less straightforward as the computational cost depends on658

many factors (e.g. population size, number of tasks, and impact on memory usage, etc.), but generally,659

the "scalarization + hyperparameter search" approach is more favorable in case of low memory660

requirements as it does not change memory costs compared to standard training. However, soTA661

gradient-based methods are not very costly for a low number of tasks (e.g. 2-3) as shown in Table 1662

which makes them appealing in settings with a few tasks. Nevertheless, one of our key takeaways is663

that allocating extra resources for tuning scalarization weights, to mirror the extra resources needed664

for MTO training, makes scalarization into a much stronger baseline, on-par or even outperforming665

MTO methods as shown in Section 5. Finally, another important difference is that hyperparameter666

search methods directly optimize for the target objective: the optimal hyperparameters are found by667

maximizing the average task/domain accuracy on a hold-out validation dataset. In contrast, MTO668

methods optimize for a proxy metric (such as reducing gradients conflicts) that may not always669

correlate with final performance as shown in Section 4.2.670

5.2 Qualitative results671

In this section, we report some qualitative results of the hyperparameter scheduled found by PBT672

and PB2. At the end of PBT search, we select the model with the highest validation performance673

and backtrack its history to backtrack its choices of hyperparameter values during training: This674

yields the policy of optimal weights found by PBT which is then used to retrain a model on the full675

training set. We also experimented with retraining a model using the last weights of the policy, but676

this usually slightly underperform using the whole history of weights in the majority of cases.677

In Figure E, we report examples of the policy of weights found by PBT and PB2 search for the678

parameters Eready = 3, Q = 40% and N = 12 for PBT (respectively N = 8 for PB2).679

5.3 Complete quantitative results680

Here we report additional results for the CelebA and DomainNet experiments of Section 5, in the681

style of Table 1 and Table 2 in the main text: We include results using a ResNet-50 on DomainNet in682

Table B, and results for additional widths in CelebA in Table C and Table D.683
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(a) Comparing Population-based training results for a depth of 9 layers with full width (left) and a

smaller model with a quarter of the width (right). While both policy are quite different across training
epochs, they converge towards similar distribution: For instance the weights for tasks "hair style",
"gender" and "age" are significantly smaller than the one for the "mouth" and "hair style" tasks.
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depth = 6

(b) Comparing Population-based training results for a depth of 9 layers with full width (left) and a
smaller model with a depth of 6 layers (right). Similarly to the results on varying width in (a), both

search converge to similar distribution in task weights
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Population-based Training (PBT)
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Population-based Bandit (PB2)

(c) Comparing Population-based training results for a depth of 9 layers with full width (left) and the
same search with Population-based bandit (right). The two search algorithms converge to

significantly different results in particular regarding weights for the "mouth" and "facial hair" tasks.
This suggests that (i) there may be multiple good local minima in the search space of p and (ii) the

heuristic used in the explore step has a significant impact on how the resulting policy.

Figure E: Qualitative results for Population-based training search on CelebA. The x-axis represents
training epochs. The y-axis represents the policy scalarization weights for each task as a cumulative
histogram for the run of the population with highest validation accuracy
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Table B: Results of MDL when jointly training on all 6 domains of DomainNet for scalarization
(uniform and PBT-found weights) and MTO methods with a ResNet50 backbone. PBT is run with a
population size of N = 12 models, such that every Eready = 5 epochs, Q = 25% of the population
triggers an exploit/explore.

DomainNet (ResNet50 with 0.25 width)
average clipart infograph painting quickdraw real sketch

Scalarization
Uniform 49.69 ± 0.05 59.90 ± 0.15 22.45 ± 0.01 43.90 ± 0.14 63.13 ± 0.15 58.95 ± 0.09 49.79 ± 0.10
PBT 50.69 ± 0.10 61.69 ± 0.45 21.27 ± 0.10 44.72 ± 0.27 63.96 ± 0.13 62.43 ± 0.13 50.06 ± 0.17

MTO - Loss-based
Uncertainty [23] 40.51 ± 0.19 53.33 ± 0.67 15.70 ± 0.02 34.44 ± 0.41 54.27 ± 0.61 47.86 ± 0.39 37.45 ± 0.37
IMTL-L [36] 37.04 ± 0.17 48.85 ± 0.59 13.93 ± 0.42 30.64 ± 0.36 51.60 ± 0.34 44.12 ± 0.21 33.12 ± 0.50

MTO - Gradient-based
CAGrad [34] 39.82 ± 0.10 50.68 ± 0.05 16.94 ± 0.04 34.37 ± 0.35 52.16 ± 0.47 46.59 ± 0.00 38.20 ± 0.07
GradDrop [8] 39.18 ± 0.15 49.80 ± 0.04 16.77 ± 0.65 33.95 ± 0.52 51.18 ± 0.06 46.04 ± 0.28 37.36 ± 0.20
PCGrad [60] 39.48 ± 0.31 50.42 ± 0.97 16.83 ± 0.31 34.63 ± 0.92 51.14 ± 0.53 46.37 ± 0.51 37.49 ± 0.98

DomainNet (ResNet50 with original width)
average clipart infograph painting quickdraw real sketch

Scalarization
Uniform 51.53 ± 0.06 61.89 ± 0.12 23.63 ± 0.01 45.87 ± 0.01 64.50 ± 0.08 61.46 ± 0.09 51.83 ± 0.33
PBT 51.83 ± 0.06 62.22 ± 0.06 22.61 ± 0.20 46.61 ± 0.29 64.71 ± 0.05 61.91 ± 0.05 52.93 ± 0.10

MTO - Loss-based
Uncertainty [23] 42.90 ± 0.20 56.24 ± 0.44 17.36 ± 0.12 36.91 ± 0.82 56.11 ± 0.08 50.33 ± 0.48 40.49 ± 0.51
IMTL-L [36] 39.69 ± 0.13 52.51 ± 0.59 15.51 ± 0.14 33.45 ± 0.14 53.54 ± 0.05 46.37 ± 0.48 36.75 ± 0.17

MTO - Gradient-based
CAGrad [34] 41.90 ± 0.13 53.32 ± 0.41 17.94 ± 0.42 36.72 ± 0.39 54.15 ± 0.03 48.31 ± 0.25 40.94 ± 0.14
GradDrop [8] 42.15 ± 0.14 53.38 ± 0.54 18.68 ± 0.33 37.00 ± 0.45 53.85 ± 0.11 49.04 ± 0.27 40.95 ± 0.04
PCGrad [60] 41.94 ± 0.20 53.46 ± 0.69 18.20 ± 0.28 36.95 ± 0.66 53.29 ± 0.13 48.88 ± 0.48 40.87 ± 0.49
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Table C: (Table best seen zoomed in PDF) Results of MTL when training on all 8 tasks (subset of
attributes) of CelebA for a depth of 6 layers For PBT and PB2 we use slightly different parameters
than DomainNet to account for the fact that CelebA contains more tasks, and hence has a larger search
space: All PBT runs use a population size of N = 12 models, such that every Eready = 3 epochs,
Q = 40% of the population triggers an exploit/explore step. For PB2 runs we use a population size
of N = 8 and otherwise the same Q and Eready hyperparameters.

ViT-S/4, 6 layers, 0.25 width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 90.82 ± 2.1e-04 86.96 ± 8.5e-04 92.23 ± 6.8e-04 84.64 ± 6.6e-04 95.30 ± 1.8e-04 97.61 ± 7.1e-04 92.58 ± 3.4e-04 91.03 ± 5.8e-04 86.23 ± 4.4e-04
PBT 90.93 ± 1.8e-04 86.94 ± 7.6e-04 92.37 ± 3.3e-04 84.78 ± 4.5e-04 95.18 ± 2.1e-04 97.58 ± 5.3e-04 92.82 ± 4.3e-04 91.48 ± 3.5e-04 86.25 ± 7.0e-04
PB2 90.90 ± 2.0e-04 87.10 ± 1.2e-03 92.13 ± 3.2e-04 84.82 ± 5.6e-04 95.32 ± 2.8e-04 97.41 ± 4.8e-04 92.67 ± 5.6e-04 91.23 ± 2.3e-04 86.50 ± 2.1e-04

MTO - Loss-based
Uncertainty [23] 90.82 ± 1.9e-04 86.94 ± 1.1e-03 92.22 ± 7.2e-04 84.63 ± 3.0e-04 95.32 ± 2.7e-05 97.62 ± 2.8e-04 92.57 ± 3.9e-04 91.02 ± 4.1e-04 86.22 ± 1.9e-04
IMTL-L [36] 90.82 ± 2.0e-04 86.94 ± 1.2e-03 92.22 ± 7.3e-04 84.63 ± 3.1e-04 95.32 ± 2.7e-05 97.62 ± 3.2e-04 92.57 ± 3.8e-04 91.02 ± 4.1e-04 86.22 ± 1.6e-04

MTO - Gradient-based
CAGrad [34] 90.92 ± 2.7e-04 86.96 ± 2.1e-03 92.35 ± 3.0e-05 84.92 ± 1.2e-04 95.38 ± 3.9e-04 97.56 ± 1.4e-04 92.73 ± 3.8e-04 91.30 ± 2.2e-04 86.14 ± 8.9e-05
GradDrop [8] 90.65 ± 2.9e-04 86.76 ± 1.7e-03 92.03 ± 8.1e-05 84.48 ± 1.2e-04 95.23 ± 3.9e-04 97.41 ± 5.7e-04 92.46 ± 2.1e-04 90.83 ± 1.4e-03 85.98 ± 3.5e-05
PCGrad [60] 90.86 ± 1.5e-04 87.04 ± 1.1e-04 92.32 ± 7.3e-04 84.65 ± 4.0e-04 95.27 ± 1.9e-04 97.62 ± 3.2e-04 92.64 ± 3.7e-04 91.16 ± 2.8e-04 86.22 ± 5.9e-04

ViT-S/4, 6 layers, 0.5 width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 91.28 ± 2.8e-04 87.33 ± 1.9e-03 92.71 ± 8.6e-05 85.15 ± 2.8e-04 95.49 ± 2.2e-04 98.03 ± 6.0e-04 92.99 ± 3.2e-04 91.63 ± 5.8e-04 86.87 ± 3.8e-04
PBT 91.29 ± 1.7e-04 87.56 ± 3.3e-04 92.77 ± 1.6e-04 85.34 ± 2.5e-04 95.40 ± 2.9e-04 97.81 ± 6.4e-04 92.99 ± 2.1e-04 91.56 ± 7.2e-04 86.89 ± 7.6e-04
PB2 91.38 ± 2.3e-04 87.71 ± 1.1e-03 92.84 ± 3.3e-04 85.20 ± 6.0e-04 95.54 ± 4.5e-04 98.00 ± 7.3e-04 92.95 ± 6.2e-04 91.73 ± 2.2e-04 87.05 ± 7.0e-04

MTO - Loss-based
Uncertainty [23] 91.30 ± 3.1e-04 87.52 ± 2.2e-03 92.72 ± 1.4e-04 85.14 ± 4.6e-04 95.48 ± 4.7e-04 98.08 ± 5.3e-04 92.97 ± 3.5e-04 91.65 ± 1.9e-04 86.86 ± 6.4e-04
IMTL-L [36] 91.30 ± 2.6e-04 87.49 ± 1.4e-03 92.74 ± 6.6e-05 85.14 ± 1.0e-04 95.51 ± 1.3e-04 98.06 ± 7.8e-04 92.98 ± 5.8e-04 91.66 ± 6.7e-04 86.85 ± 1.0e-03

MTO - Gradient-based
CAGrad [34] 91.32 ± 3.2e-04 87.47 ± 2.3e-03 92.86 ± 4.9e-04 85.26 ± 3.1e-04 95.51 ± 4.3e-04 98.03 ± 0.0e+00 93.00 ± 5.9e-04 91.73 ± 1.5e-04 86.72 ± 2.3e-04
GradDrop [8] 91.19 ± 2.3e-04 87.42 ± 8.5e-04 92.65 ± 5.2e-04 85.03 ± 9.5e-04 95.43 ± 2.9e-04 97.96 ± 6.7e-04 92.80 ± 1.8e-04 91.54 ± 8.5e-04 86.70 ± 3.0e-04
PCGrad [60] 91.30 ± 4.6e-04 87.45 ± 2.8e-03 92.72 ± 6.0e-04 85.16 ± 8.9e-04 95.54 ± 5.0e-04 98.08 ± 2.1e-03 92.97 ± 1.6e-04 91.63 ± 1.2e-04 86.82 ± 3.8e-04

ViT-S/4, 6 layers, full width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 91.23 ± 3.6e-04 86.70 ± 2.7e-03 92.79 ± 4.5e-04 85.16 ± 4.8e-04 95.45 ± 4.8e-04 98.10 ± 2.1e-04 92.99 ± 3.6e-04 91.68 ± 4.7e-05 86.95 ± 4.8e-04
PBT 91.21 ± 2.7e-04 86.79 ± 1.1e-03 92.77 ± 5.8e-04 85.18 ± 3.6e-04 95.42 ± 8.9e-04 98.02 ± 4.5e-04 92.92 ± 6.4e-04 91.66 ± 1.0e-03 86.95 ± 6.7e-04
PB2 91.28 ± 2.5e-04 86.96 ± 1.5e-03 92.87 ± 2.7e-04 85.17 ± 2.4e-04 95.47 ± 6.5e-05 98.10 ± 3.9e-04 92.90 ± 5.8e-04 91.81 ± 2.6e-04 86.94 ± 1.1e-03

MTO - Loss-based
Uncertainty [23] 91.22 ± 2.1e-04 86.60 ± 1.3e-03 92.85 ± 6.4e-04 85.24 ± 1.7e-04 95.43 ± 8.0e-05 98.07 ± 3.5e-04 92.91 ± 7.7e-04 91.72 ± 2.1e-04 86.93 ± 4.4e-05
IMTL-L [36] 91.21 ± 2.0e-04 86.65 ± 7.1e-04 92.83 ± 5.2e-04 85.17 ± 1.8e-04 95.42 ± 5.5e-04 98.01 ± 6.0e-04 92.99 ± 8.9e-04 91.70 ± 6.4e-04 86.93 ± 1.1e-04

MTO - Gradient-based
CAGrad [34] 91.25 ± 2.2e-04 86.79 ± 1.7e-03 92.88 ± 7.1e-05 85.12 ± 1.4e-04 95.46 ± 4.6e-04 98.17 ± 1.1e-04 92.91 ± 2.1e-04 91.74 ± 3.6e-05 86.88 ± 1.5e-04
GradDrop [8] 91.29 ± 2.3e-04 87.01 ± 5.0e-04 92.80 ± 1.0e-03 85.22 ± 8.0e-04 95.50 ± 2.7e-04 98.15 ± 6.0e-04 93.00 ± 9.1e-04 91.65 ± 1.5e-04 86.97 ± 4.0e-04
PCGrad [60] 91.21 ± 3.9e-04 86.55 ± 2.3e-03 92.81 ± 9.3e-04 85.15 ± 8.4e-04 95.44 ± 9.3e-04 98.16 ± 5.0e-04 92.92 ± 2.8e-04 91.75 ± 1.3e-03 86.87 ± 4.8e-04
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Table D: (Table best seen zoomed in PDF) Results of MTL when training on all 8 tasks (subset of
attributes) of CelebA for a depth of 9 layers. For PBT and PB2 we use slightly different parameters
than DomainNet to account for the fact that CelebA contains more tasks, and hence has a larger search
space: All PBT runs use a population size of N = 12 models, such that every Eready = 3 epochs,
Q = 40% of the population triggers an exploit/explore step. For PB2 runs we use a population size
of N = 8 and otherwise the same Q and Eready hyperparameters.

ViT-S/4, 9 layers, 0.25 width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 91.00 ± 2.5e-04 87.24 ± 1.6e-03 92.40 ± 7.6e-05 84.85 ± 4.5e-04 95.34 ± 5.7e-04 97.77 ± 5.0e-04 92.68 ± 3.5e-04 91.31 ± 5.8e-04 86.40 ± 8.0e-05
PBT 90.97 ± 1.7e-04 86.96 ± 1.1e-03 92.34 ± 2.5e-04 84.91 ± 8.4e-04 95.30 ± 8.1e-05 97.76 ± 2.9e-05 92.55 ± 1.1e-04 91.35 ± 6.3e-05 86.59 ± 2.1e-04
PB2 91.04 ± 2.7e-04 87.22 ± 1.9e-03 92.40 ± 2.5e-04 84.96 ± 4.2e-04 95.35 ± 3.5e-04 97.70 ± 4.0e-04 92.67 ± 1.4e-04 91.36 ± 3.1e-04 86.67 ± 4.8e-04

MTO - Loss-based
Uncertainty [23] 91.01 ± 2.3e-04 87.18 ± 1.4e-03 92.40 ± 4.5e-04 84.87 ± 3.5e-04 95.34 ± 6.6e-04 97.81 ± 5.7e-04 92.70 ± 3.9e-04 91.30 ± 4.5e-04 86.44 ± 1.1e-04
IMTL-L [36] 91.00 ± 2.4e-04 87.18 ± 1.5e-03 92.40 ± 4.6e-04 84.87 ± 4.0e-04 95.34 ± 6.6e-04 97.81 ± 5.0e-04 92.70 ± 3.3e-04 91.30 ± 4.7e-04 86.44 ± 6.2e-05

MTO - Gradient-based
CAGrad [34] 91.07 ± 1.3e-04 87.19 ± 4.3e-04 92.55 ± 3.5e-04 85.03 ± 4.8e-04 95.41 ± 2.7e-05 97.79 ± 6.0e-04 92.82 ± 1.8e-04 91.52 ± 3.5e-04 86.23 ± 2.3e-04
GradDrop [8] 90.83 ± 1.8e-04 86.91 ± 4.6e-04 92.23 ± 1.4e-04 84.66 ± 1.0e-03 95.26 ± 6.1e-04 97.66 ± 3.2e-04 92.58 ± 3.9e-04 91.14 ± 2.8e-04 86.18 ± 4.6e-04
PCGrad [60] 90.95 ± 2.4e-04 87.13 ± 1.2e-03 92.29 ± 4.2e-04 84.77 ± 4.7e-04 95.32 ± 3.6e-04 97.72 ± 3.5e-04 92.70 ± 8.0e-05 91.21 ± 1.6e-04 86.44 ± 1.3e-03

ViT-S/4, 9 layers, 0.5 width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 91.32 ± 3.2e-04 87.26 ± 2.3e-03 92.81 ± 2.4e-04 85.19 ± 9.4e-05 95.51 ± 3.4e-04 98.15 ± 7.1e-04 93.03 ± 8.9e-06 91.66 ± 4.0e-04 86.93 ± 7.3e-04
PBT 91.36 ± 2.3e-04 87.45 ± 1.5e-03 92.86 ± 6.5e-05 85.31 ± 5.2e-04 95.50 ± 2.8e-04 97.98 ± 2.2e-04 93.03 ± 2.4e-04 91.70 ± 5.4e-04 87.06 ± 5.4e-04
PB2 91.36 ± 1.4e-04 87.45 ± 7.8e-04 92.82 ± 2.7e-04 85.17 ± 3.1e-04 95.55 ± 4.4e-04 98.14 ± 3.4e-04 93.06 ± 1.2e-04 91.76 ± 4.3e-04 86.89 ± 1.7e-04

MTO - Loss-based
Uncertainty [23] 91.33 ± 1.4e-04 87.32 ± 4.3e-04 92.84 ± 2.0e-05 85.19 ± 2.1e-04 95.52 ± 4.9e-04 98.15 ± 7.8e-04 92.96 ± 2.0e-04 91.69 ± 6.5e-05 86.93 ± 2.5e-04
IMTL-L [36] 91.29 ± 1.5e-04 87.25 ± 5.0e-04 92.79 ± 2.0e-04 85.17 ± 7.1e-05 95.50 ± 4.9e-04 98.10 ± 8.5e-04 92.97 ± 1.4e-04 91.66 ± 4.8e-04 86.92 ± 9.7e-05

MTO - Gradient-based
CAGrad [34] 91.37 ± 1.8e-04 87.42 ± 2.1e-04 92.90 ± 4.1e-05 85.24 ± 1.3e-03 95.53 ± 2.3e-04 98.20 ± 1.1e-04 92.98 ± 2.6e-04 91.78 ± 2.7e-04 86.88 ± 3.4e-04
GradDrop [8] 91.27 ± 1.8e-04 87.50 ± 7.1e-05 92.71 ± 3.5e-05 85.10 ± 1.1e-04 95.46 ± 6.2e-05 98.04 ± 1.3e-03 92.94 ± 4.3e-04 91.57 ± 3.2e-04 86.85 ± 1.9e-04
PCGrad [60] 91.29 ± 1.6e-04 87.10 ± 3.2e-04 92.83 ± 4.3e-04 85.18 ± 6.1e-04 95.47 ± 1.1e-04 98.11 ± 6.4e-04 93.01 ± 8.9e-05 91.67 ± 6.3e-04 86.96 ± 2.6e-04

ViT-S/4, 9 layers, full width

average age clothes face facial gender hair hair mouthstructure hair color style
Scalarization

Uniform 91.17 ± 1.7e-04 87.33 ± 5.7e-04 92.50 ± 8.1e-04 85.10 ± 4.2e-04 95.45 ± 1.9e-04 97.93 ± 1.1e-04 92.85 ± 2.9e-04 91.39 ± 1.2e-04 86.80 ± 6.9e-04
PBT 91.15 ± 2.7e-04 87.43 ± 3.1e-04 92.51 ± 3.6e-04 85.18 ± 1.1e-03 95.46 ± 3.1e-04 97.78 ± 1.5e-03 92.51 ± 1.4e-04 91.36 ± 8.0e-04 87.00 ± 5.8e-04
PB2 91.25 ± 2.3e-04 86.83 ± 1.2e-03 92.85 ± 4.8e-04 85.12 ± 7.3e-04 95.49 ± 5.6e-04 98.19 ± 6.0e-04 92.90 ± 5.6e-04 91.78 ± 4.5e-04 86.81 ± 3.7e-04

MTO - Loss-based
Uncertainty [23] 91.17 ± 1.8e-04 87.36 ± 6.4e-04 92.50 ± 8.0e-04 85.11 ± 3.0e-04 95.45 ± 1.6e-04 97.93 ± 1.4e-04 92.84 ± 3.8e-04 91.39 ± 5.3e-05 86.81 ± 8.3e-04
IMTL-L [36] 91.18 ± 1.6e-04 87.37 ± 4.3e-04 92.50 ± 8.0e-04 85.11 ± 2.8e-04 95.45 ± 1.7e-04 97.94 ± 2.1e-04 92.84 ± 3.7e-04 91.39 ± 6.5e-05 86.81 ± 7.8e-04

MTO - Gradient-based
CAGrad [34] 91.21 ± 1.4e-04 87.34 ± 4.3e-04 92.64 ± 3.7e-04 85.16 ± 4.0e-04 95.43 ± 4.3e-04 97.91 ± 1.1e-04 92.89 ± 4.3e-04 91.58 ± 3.6e-04 86.70 ± 5.5e-04
GradDrop [8] 91.20 ± 1.4e-04 86.55 ± 2.1e-04 92.81 ± 2.6e-04 85.19 ± 4.3e-04 95.40 ± 8.1e-04 98.09 ± 4.6e-04 92.91 ± 2.6e-04 91.71 ± 3.4e-04 86.90 ± 8.9e-06
PCGrad [60] 91.13 ± 3.5e-04 87.35 ± 2.4e-03 92.50 ± 1.1e-03 85.04 ± 5.3e-04 95.40 ± 3.5e-04 97.87 ± 0.0e+00 92.82 ± 2.8e-04 91.37 ± 1.2e-04 86.71 ± 5.0e-04
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