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Auto-ACD: A Large-scale Dataset for Audio-Language
Representation Learning

Anonymous Author(s)

A singing bowl resonates with
a gentle gong sound, accom-
panied by soft music playing
in a church.

A roaring crowd erupts in che-
ers and battle cries, creating
an electrifying atmosphere du-
ring a lively event.

A train horn blares as a train
approaches, creating a loud
and powerful sound in a rail-
way environment.

Bird wings flap as rustling
and birds chirping in the bac-
kground create a serene ambi-
ance in a garden.

Sheep bleat in the distance as
people talk faintly, creating a
pastoral atmosphere in a whe-
at field.

Rain falls hard on a surface
as people talk in the distance,
creating a soothing ambiance
of a rainy day.

Amelodic accordion tune fil-
ls the air as the musician plays
in a music studio, creating a
pleasant ambiance.

The sound of a bugle playing
is accompanied by the power-
ful brass instruments of an
orchestra.

Figure 1: Eight examples from the proposed Auto-ACD. It is a large-scale audio-language dataset with massive audio-text
pairs (1.5M), long sentences (18 words) and diverse vocabularies (23K), consisting of audio separated from videos and captions
generated by an automatic pipeline. Auto-ACD comprises more elaborate sound descriptions, more abundant auditory incidents
and unique environmental information. The pivotal sound events are highlighted in bold.

ABSTRACT
Recently, the AI community has made significant strides in develop-
ing powerful foundation models, driven by large-scale multimodal
datasets. However, for audio representation learning, the present
datasets suffer from limitations in the following aspects: insufficient
volume, simplistic content, and arduous collection procedures. To
establish an audio dataset with high-quality captions, we propose
an innovative, automatic approach leveraging multimodal inputs,
such as video frames, audio streams. Specifically, we construct a
large-scale, high-quality, audio-language dataset, named as Auto-
ACD, comprising over 1.5M audio-text pairs. We exploit a series
of pre-trained models or APIs, to determine audio-visual synchro-
nisation, generate image captions, object detection, or audio tags
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for specific videos. Subsequently, we employ LLM to paraphrase a
congruent caption for each audio, guided by the extracted multi-
modality clues. To demonstrate the effectiveness of the proposed
dataset, we train widely used models on our dataset and show
performance improvement on various downstream tasks, namely,
audio-language retrieval, audio captioning, zero-shot classification.
In addition, we establish a novel benchmark with environmental
information and provide a benchmark for audio-text tasks.
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1 INTRODUCTION
In recent literature, foundation models, like CLIP [45], variants of
GPT [46], DALL-E 2 [47] and Stable Diffusion [49], have shown
tremendous success in various understanding and generation tasks.
Despite being different in architectural or algorithmic designs, they
are fundamentally lying on a common basis: large-scale multimodal
datasets, for example, MMC4 [59], LAION [50], HowTo100M [36],
indicating an emerging transition from a model-centric to data-
centric representation learning. The former considers pushing the
boundaries of model design within the constraints of a predeter-
mined data budget, while the latter focuses on curating large-scale
and high-quality datasets in a scalable manner.

In the audio community, there have been recent endeavours fo-
cused on constructing audio-language datasets, as demonstrated
in Fig. 2. However, existing datasets potentially suffer from two
limitations, laborious and complicated collection processes and
simplistic descriptions in text. On the one hand, Clotho [10] and
AudioCaps [21], which contain audios typically comprising 1 to 3
sound events, accompanied by high-quality text descriptions pro-
vided by human annotators. They are clearly challenging to scale
up. On the other hand, LAION-Audio-630K [53] and WavCaps [35]
source large amounts of raw data from online foley websites, then
employ sentence templates or keyword-to-caption models to con-
vert the original audio labels into free-form sentences. However,
it is obvious that the resulting language descriptions indeed offer
little additional information beyond simple prompts or sound tags.
Models trained on these datasets are incapable of learning robust
audio-language representations. Furthermore, an exemplary au-
dio caption ought to encapsulate four varieties of information: the
‘what’ - the nature of the sound perceived, the ‘who’ - the entity
producing the sound, the ‘how’ - the characteristics of the sound,
and the ‘where’ - the location the sound occurs.

This paper presents our recent efforts for constructing a large-
scale, high-quality, audio-language dataset, with minimal manual ef-
forts, termed Auto-ACD (Audio Captioning Dataset by Automatic
Collection), with massive audio-text pairs (1.5M), long texts (18
words) and diverse vocabularies (23K). Our key insight is that hu-
mans do not solely rely on audio to understand audio accurately.
A comprehensive understanding of the visual scene is expected to
serve as a valuable information source and is sometimes necessary
for understanding the audio content. Therefore, we build Auto-
ACD on the prior of robust audio-visual correspondence in existing
audio-visual datasets, for example, VGGSound [6], AudioSet [12].
Particularly, we employ a range of publicly available tools or APIs
across the general AI community, e.g., vision, language and audio
models, to generate comprehensive language descriptions for the
audio of the given video datasets. As a result, such descriptions not
only depict the type of sound and its source, but also describe the
auditory attributes and the specific location of its occurrence. Due
to the limited information in audio tags, these pieces of information
are infrequently present within the existing datasets.

The factual robustness in audio-visual correspondence signifi-
cantly surpasses the capabilities of AI tools or APIs. Distinct from
approaches that employ the ‘teacher-student’ model for data syn-
thesis to augment training, we enrich audio captioning generation
with information from an additional modality. Furthermore, we

311K

7.3

630K 1.5M

18.1

22K
29K

7.8

400K30K 57K

8.8
11.3

4K
5K

Figure 2: Comparison with other audio caption datasets.
“Length” and “# Vocab.” refer to average length and vocabu-
lary. “Env.” and “Auto.” refer to environmental information
and automatic pipeline, respectively.

utilize multiple cross-modality models to generate a variety of
multi-modality inputs. We then employ a large language model
(LLM) to collectively assimilate all inputs, identify and eliminate
any illogical information, and generate comprehensive descriptions
for the audio. These rich and complementary multi-modality inputs
offer extensive guidance information that surpasses what audio
captioning requires. Models trained on our dataset will transcend
the limitations typically associated with AI tools and learn more
robust audio-language representations.

To comprehensively validate auditory representation, for in-
stance, audio events, and ambient information, learned from the
text descriptions of Auto-ACD, we conduct experiments from four
perspectives: First, we launch a joint audio-language representa-
tion learning using InfoNCE loss [15, 42], and evaluate the model
through a retrieval task between audio and language, showing no-
ticeable improvement over existing datasets; Second, we conduct
zero-shot classification experiments, thus substantiating the accu-
rate environmental information encapsulated within our dataset;
Third, we benchmark on audio-language generation task, specifi-
cally, automatic audio captioning, by training a lightweight map-
ping network between the pre-trained audio backbone andGPT2 [46],
showing superior performance on the widely used benchmark, e.g.,
Clotho [10]; Fourth, we manually filter a test set and introduce a
novel benchmark for audio-text tasks. This benchmark assesses the
ability of models to grasp information beyond mere audio tags, for
example, the environment and fine-grained categories of sound, we
set a baseline for future research in this field.
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BLIP-2

GroundingDINO

Place365

CLIP

A train horn blows as a 
train passes by, creating a 
loud and distinct sound in 

a railway station.

visual-audio label

audio

frame 

video
PANNs

AudioCaption

a train pulling into a station.

train [𝑝𝑟𝑜𝑏: 0.907], rail transport [𝑝𝑟𝑜𝑏: 
0.858], railroad car, train wagon [𝑝𝑟𝑜𝑏: 0.833]

a train horn blows.

train_station [𝑝𝑟𝑜𝑏:0.657]

passenger_car

train [𝑥!:0.5921, 𝑦!:0.5947, 𝑤:0.7879, ℎ:0.3298]

train horning

prompt

Figure 3: Automatic pipeline for Auto-ACD collection. We utilize four open-source computer vision models to extract visual
clues from the middle frame of videos, and two open-source audio understanding models to analyze the entirety of the audio
content. Consequently, we combine the labels from the original dataset, and leverage Large LanguageModels (LLMs) to interpret
and paraphrase these components into the final description.

2 RELATEDWORK
2.1 Audio-visual Learning
Within in-the-wild videos, audio-visual events occur simultane-
ously, establishing a profound connection between sound and im-
agery. [1, 2, 20, 43] employ audio-visual self-supervised learning
to leverage audio-visual correspondence for enhancing represen-
tation learning. Specifically, [13, 52, 56] learn audio-text repre-
sentation based on such correspondence. Audio-visual localisa-
tion [5, 18, 37, 38, 51] concentrates on identifying the positions
of visual sound sources within video. Audio-visual segmentation
[11, 26, 29, 39, 58] aims at predicting pixel-wise segmentation masks
of sounding objects in visual scenes precisely. Such studies have
further demonstrated the intrinsic correlation between audio and
visual events in in-the-wild videos, which inspires us to create an
audio-language dataset anchored in visual information.

2.2 Audio-visual Dataset
Large-scale audio-visual datasets are crucial for effective audio and
video understanding. Two datasets are often involved in audio-
visual learning: AudioSet and VGGSound. AudioSet [12] is a large-
scale audio-visual dataset with multiple audio events labelled for
each audio clip. It contains over 2M 10-second audio clips. AudioSet
is a manually annotated dataset, with the help of a well-structured
hierarchical ontology consisting of 632 audio classes guided by
literature and manual curation. VGGSound [6] comprises 200K
10-second videos for 309 audio classes. This dataset was collected
and annotated through an automated pipeline, with each video
assigned only one label. Due to the strong correlation between
in-the-wild video and audio, in this paper, we extract audio from
audio-visual datasets and generate corresponding audio captions
with the assistance of audio-visual clues.

2.3 Audio-language Dataset
Audio-language tasks, including audio-text retrieval, audio caption-
ing, audio question answering and text-guided audio generation,

have greatly benefited from the availability of two widely-used
audio captioning datasets: AudioCaps and Clotho. AudioCaps [21],
a subset of AudioSet, consists of 50K 10-second-long audio clips,
each with a single caption annotated. The annotators were provided
with AudioSet tags as hints and videos if necessary. Clotho [10], on
the other hand, comprises 6K audio clips lasting between 15 to 30
seconds, each with five captions annotated through a three-step
process involving captioning, grammar correction, and rating by
human annotators. However, due to the human annotation process,
these datasets are limited in size, expensive and time-consuming.
LAION-Audio-630K [53] acquires audio and descriptions from on-
line foley websites, including popular platforms like Freesound1
and BBC Sound Effects2. WavCaps [35] utilizes ChatGPT to filter
and paraphrase these raw descriptions, resulting in a dataset of
400K audio-text pairs with cleaned text data resembling human
annotations. The sentence is mostly simple since there is often
only one sound event in an audio clip. As a result, models trained
on these datasets could only learn the category of sound while
neglecting rich information like the environment. To enhance the
comprehension capabilities of the audio-text model, we need a more
diverse set of textual and audio data.

2.4 Audio-language Learning
In the evolving landscape of AI research, the application of visual-
language models in the audio-language arena marks a significant
leap forward. Notably, [53] have adapted the CLIP model for audio-
language contrastive learning, setting a precedent for innovative
cross-modal research. This pioneering work exemplifies the grow-
ing interest in leveraging the success of visual-language models to
enhance audio-language understanding. The audio-language do-
main is currently experiencing an explosion of interest across a
variety of tasks. Researchers are not merely focusing on extracting
semantic information from audio through tasks such as audio clas-
sification [17, 44], automatic audio captioning [34, 54], and audio

1https://freesound.org/
2https://sound-effects.bbcrewind.co.uk/
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question answering [23, 28]. They are also venturing into more nu-
anced aspects of auditory perception, including the exploration of
temporal dynamics in sound through audio event detection [3, 25].
This broadening scope encompasses additional auditory attributes
such as counting sounds within scenes [41] and classifying environ-
ments based on their acoustic characteristics[9]. Undoubtedly, it is
paramount to construct a comprehensive, large-scale, high-quality
and information-rich audio-language dataset.

3 DATASET CONSTRUCTION
To develop a large-scale, audio dataset with rich language descrip-
tions, we base on the assumption that visual scene understanding
serves as a strong prior. For instance, synchronized videos fre-
quently showcase auditory cues, and visual information serves as
a precise representation of the acoustic environment in which the
sound happens.

In an audio caption, it is desirable to incorporate sound attributes,
location, and fine-grained labels. To achieve this, we can leverage
publicly available tools or APIs to gather the necessary information
for audio description and mutually verify the results. For instance,
we can employ an object detection model to identify potential
sources of sound, and an environmental classification model to
extract scene categories. By extracting a wealth of information, we
ensure the maximum coverage of accurate details, providing the
language model with ample references.

3.1 Tools or APIs
Given one sample from existing large-scale video datasets, for ex-
ample, AudioSet, VGGSound [6, 12], i.e., denoted asV = {𝑓 ;𝑎;𝑦},
where 𝑓 , 𝑎 and 𝑦 correspond to frame sequence, audio stream, and
visual or audio labels, respectively. Our goal is to adopt a range of
publicly available tools or APIs across the general AI community,
i.e., using off-the-shelf vision, language and audio models to con-
struct language descriptions for audios, as shown in Fig. 3. In this
section, we describe these tools in detail.

3.1.1 Image Captioning. We employ the off-the-shelf BLIP-2 [24]
model, which obtains competitive results for image captioning. This
tool has the ability to generate captions that encompass the entire
image and accurately depict the primary subject or environment.
In our case, we input the middle frame of the video into this model.

3.1.2 Object Detection. We use the pre-trained Grounding DINO
model [30], to identify objects within themiddle frame, and preserve
all the detected entities along with their corresponding prediction
confidence scores to ensure a comprehensive analysis.

3.1.3 Image Labeling. We adopt the pre-trained OpenAI CLIP [45]
model for image classification. In this application, we utilize the
prompt: “a photo of a {label}" to generate textual embedding, lever-
aging the category ontology from ImageNet [8].

3.1.4 Place Recognition. Weemploy the pre-trained PlaceCNN [57],
to infer the environment context captured in videos. Given the
robust correspondence between audio and visual signals, the en-
vironment depicted in the video is highly likely to represent the
acoustic ambience in which the sound occurs.

I will give you some information from a video and an audio, this audio is
separated from the video.

There is a caption for an audio, simple audio caption, this sentence simply
describe what happens in the audio.

There are some audio tags: multiple audio tags, they indicate the audio
events in this audio. number indicates the probability.

The audio-visual label is dataset visual-audio label.

I extract a key frame from one video, and this is the image caption of this
frame: image caption; this is the image label: image label; this is the object
detection: object detection; this is the place detection: place label.

Now, please help me write one audio caption using common vocabulary
and no more than 24 words, providing a description of what happened in
the audio, and infer where the audio happened. You can refer the above
information, and some visual information is inaccurate and can be ignored.
please using the audio-visual label check the audio event in your caption.

The sentence you write need to be like these following examples:
A bell chimes thrice as birds chirp in the background in the forest.
A lawnmower engine buzzing and stopping to take a few breaks on the
lawn.
A machine being operated intermittently and people talking in the
background in a factory.

Prompting ChatGPT to generate caption for audio 

Figure 4: Detailed prompt provided to ChatGPT. For visuali-
sation purposes, we use different colors to highlight diverse
visual-audio cues.

3.1.5 Audio Tagging. We use the pre-trained PANNs [22] to predict
the tags of sounds within the audio, and preserve the top three
predictions with their confidence scores. This represents a crucial
source of auditory temporal information, particularly for sounds
emanating from entities not visible within the frame.

3.1.6 Audio Captioning. We use the existing AudioCaption [55]
model, to generate concise and brief captions. These captions re-
semble the style of AudioCaps, focusing solely on the categorical
information of audio events, devoid of any additional descriptive
attributes about the sound.

3.1.7 Audio-visual Synchonisation. Weemploy the pre-trained Synch-
former [19] to conduct synchronization detection between video
and audio. This process could filter out samples consisting of irrele-
vant or unsynchronized video and audio content. In this case, we
input both video and audio respectively into this model for analysis.

3.1.8 Existing Audio-Visual Labels. In addition to the predictions
from models, we also incorporate the provided labels of existing
datasets into our pipeline. For instance, VGGSound [6] gives a
single label for each video, while AudioSet [12] provides multiple
labels. These labels serve in the original dataset, offering accurate
yet incomplete audio-visual information.

3.1.9 Summary. As for the language model, we use the OpenAI
ChatGPT3, which demonstrates formidable capabilities in reason-
ing and inductive summarization, to assemble the above-mentioned
descriptions or labels into comprehensive descriptions for audio.
Many works, like BLIP-2[24], show that utilizing existing tools

3https://openai.com/chatgpt
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Table 1: The results of generated captions in Auto-ACD, with
accurate content and ample surrounding information. Green
and Yellow refer to “where" and “how" the audio sounds like.

No. Generated Caption

1. Loud pops and bangs resonate as timbales are being played,
creating rhythmic music in a room.

2. Water gurgles and bubbles as a boat glides through, creating
a soothing and peaceful underwater ambience.

3. A woman speaks softly amidst the soothing sound of birds
chirping, creating a serene atmosphere in a garden.

4. A motorcycle engine idles before revving up, creating a loud
sound in an urban environment.

appropriately can significantly enhance model performance. By
leveraging audio-visual correspondence and the profound under-
standing capabilities of LLM, we generate precise audio captioning
from the rich multi-modality clues acquired. In this case, we feed
in a special prompt as shown in Section 3.2.

3.2 Caption Generation
Based on the visual and acoustic clues present in the video, we craft
a structured language paragraph, and use it to prompt ChatGPT to
generate descriptions for audio. As illustrated in Fig. 4, the process
begins with formulating the specific task and criteria for the desired
outcome, followed by inputting seven distinctive audio-visual cues
into the prompt, accompanied by their corresponding confidence
score. Additionally, we provide three sentence examples from Au-
dioCaps or Clotho as instruction. For visualisation purposes, we
here use a colour-coded system to distinguish various cues.

While generating captions, we explicitly ask ChatGPT to remove
information that is inaudible, i.e., illogical and visually oriented
elements, for example, colours. As a result, the large language
model is able to analyze the scenario from all provided clues, and
generate language description for audio, with sound category, and
environment. The generated caption results are shown in Table. 1.

3.3 Dataset Filtering
AudioSet is vast and diverse, while heavily marred by noise in
many instances, for instance, gameplay live streams and explana-
tory videos. Conversely, VGGSound significantly emphasises the
robust correlation between video and audio within the automated
collection pipeline, thus requiring no further processing. As shown
in Figure. 5, we formulate filtering criteria grounded in both the
video-audio correspondence and the original labels. For each filter
criterion, we conduct numerous trials followed by a manual verifi-
cation, each filtering criterion achieves an accuracy rate exceeding
90%, resulting in the removal of 0.4 million videos in total.

3.3.1 Raw labels. AudioSet contains a plethora of explanatory
videos with background music, wherein the visual and auditory in-
formation often do not correspond. Therefore, we eliminate videos
from the multi-labels that encompass both speech and music.

Synchformer

labels

video-audio

labels analysis

error 

tolerant right

right

music & speech

others

Figure 5: Filtering process for AudioSet. We filter the dataset
by assessing whether the video and audio are synchronized
and analyzing the labels in the original dataset.

3.3.2 Audio-visual synchronisation. To obviate the possibility of
fortuitous inference errors, we subject each video to five synchro-
nization evaluations, featuring random variations in start time
and offset, with a tolerance threshold established at 0.6 seconds.
Synchformer[19] employs a 0.2s offset to ascertain the precise audio-
visual synchronization, whereas we utilize a broader offset to de-
termine the audio-visual correspondence. The outcomes are cate-
gorized as follows: (1) Predictions aligning with the ground truth
are deemed “correct”; (2) Predictions that diverge from the ground
truth while with a discrepancy within 0.6 seconds are designated as
“tolerant right”; (3) All other results are termed “error”. To preserve
as much accurate data as possible, videos classified as “error” in all
five tests are removed from the dataset.

3.4 Dataset Statistics
As depicted in Fig. 2, we collect 1.5 million audio-language pairs
fromAudioSet and VGGSound in total. To the best of our knowledge,
Auto-ACD is the first million-level audio-language dataset to date,
with train, validation and manually filtered test sets. Auto-ACD sur-
passes the other datasets in terms of data volume, average sentence
length, and contains a relatively wide verbal vocabulary. LAION-
Audio-630K[53] sources from user uploads, contains a plethora of
noisy details, for instance, device and timestamps, and features an
exceptionally extensive vocabulary. Additionally, Auto-ACD stands
as the only audio-language dataset that encompasses environmen-
tal information, not only delineates the type and source of sounds
but also specifies the location of their occurrence, increasing the
richness of contextual details.

In Table. 2, we present present a comparative analysis of captions
from LAION-Audio-630K, WavCaps, and Auto-ACD for the same
audio sample. Specifically, LAION-Audio-630K employs a keyword-
to-captionmodel to transform the tag labels into captions.WavCaps
utilizes ChatGPT to rephrase the tag labels into simple captions. It
can be observed that captions in LAION-Audio-630K and WavCaps
are concise and contain minimal information beyond the audio
tags. In particular, LAION-Audio-630K may include sentences that
deviate from common sense, for example, describing “rapping a
tree” for an audio tag of “rapping”. WavCaps, on the other hand,
exhibits a monotonous sentence structure, such as “... sound can
be heard”. In contrast, Auto-ACD features longer sentences that
provide a richer depiction of the audio scenes.
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Table 2: Caption comparison with LAION-Audio-630K and WavCaps, “LA.”, “WavC.” and “ACD” refer to LAION-Audio-630K,
WavCaps and Auto-ACD, respectively.

No. Dataset Generated Caption

1.
LA. A person is rapping a tree.
WavC. Music plays with a man rapping.
ACD. A woman sings while hip-hop music plays in the background, creating a rapping audio event in a computer room.

2.
LA. a slushy water lily.
WavC. Stream noise, crowd and splashing sounds.
ACD. A crowd of people yells and cheers as water sloshes in the background at a water park.

3.
LA. a truck with a siren and a fire engine in an emergency.
WavC. A fire engine siren is heard.
ACD. An emergency vehicle siren blares loudly as a fire truck rushes through a residential neighbourhood.

4.
LA. a vehicle with a medium frequency of engine idling.
WavC. A medium engine sound can be heard.
ACD. A medium-sized engine is idling and vibrating, while an adult male speaks in the background near a running vehicle.

4 ARCHITECTURE
We construct architectures targeting two general audio-language
tasks, audio-language contrastive pre-training and automatic audio
captioning, to further validate the effectiveness of Auto-ACD. In
Section 4.1, we provide a detailed exposition of the architecture for
audio-language contrastive learning. Further in Section 4.2, we in-
troduce the framework for lightweight automatic audio captioning
along with its loss function.

4.1 Audio-Language Constrastive Pre-training
To validate the efficacy of our proposed dataset, we train an audio-
languagemodel with standard contrastive learning, e.g., infoNCE [45]
loss, as shown in Fig.6. Specifically, we employ the pre-trained HT-
SAT [7] as the audio encoder, and the pre-trained RoBERTa [32]
as the language encoder. Both encoders were initialised from the
pre-trained CLAP model [53], and further finetuned on our dataset.
We term our final model as Audio-Text Retrieval (ATR).

Given an audio-text pair (𝑎𝑖 , 𝑡𝑖 ), we utilise audio encoder Aenc
and text encoder Tenc to extract audio embedding 𝑒𝑖𝑎 and text em-
bedding 𝑒𝑖𝑡 , respectively:

𝑒𝑖𝑎 = Aenc (𝑎𝑖 ), 𝑒𝑖𝑡 = Tenc (𝑡𝑖 )

The model is then trained with contrastive loss, wherein the paired
audio and language embeddings are treated as positive, and un-
paired ones as negative, with the following loss function:

L =
1
2𝑁

𝑁∑︁
𝑖=1

(log
exp 𝑒𝑖𝑎 ·𝑒𝑖𝑡

𝜏∑𝑁
𝑗=1 exp

𝑒𝑖𝑎 ·𝑒 𝑗𝑡
𝜏

+ log
exp 𝑒𝑖𝑡 ·𝑒𝑖𝑎

𝜏∑𝑁
𝑗=1 exp

𝑒𝑖𝑡 ·𝑒
𝑗
𝑎

𝜏

)

where 𝜏 represents the learnable temperature parameters.
During the training phase, we introduced word-level text mask-

ing. Before feeding sentences into the retrieval network, we ran-
domly mask words within the sentences.

4.2 Automatic Audio Captioning
To demonstrate the effectiveness of our pre-trained audio back-
bone, we also use audio captioning for evaluation. Inspired by Clip-
Cap [40] and AutoAD [14], we adopt a lightweight audio captioning
model, where both the audio backbone and language model (GPT-2)
are fixed, and only a mapping network is trained, as shown in Fig. 6.

Given an audio-text pair (𝑎𝑖 , 𝑐𝑖 ), we use the pre-trained audio
encoder to extract audio features 𝑒𝑖𝑎 = Aenc (𝑎𝑖 ), and we convert
the caption into a token sequence, 𝑐𝑖1, . . . , 𝑐

𝑖
𝑘
, where 𝑘 indicates the

maximal length of text. Then, we design a mapping network 𝑓map to
transform the extracted embedding into a set of prefix embeddings:

P𝑖 = 𝑓map (𝑒𝑖𝑎) .

Like ClipCap and AutoAD, we take the prefix embedding set as
the condition for predicting the next token in an auto-regressive lan-
guage model. Therefore, during training, we minimize the negative
log-likelihood of predicting the correct word:

L = −
𝑁∑︁
𝑖=1

ℓ∑︁
𝑗=1

log𝑝𝜃
(
𝑐𝑖𝑗 | P

𝑖 , 𝑐𝑖1, . . . , 𝑐
𝑖
𝑗−1

)
where 𝜃 represents the trainable parameters.

5 EXPERIMENTS
In this section, we evaluate three tasks, namely, audio-language
retrieval, audio captioning and zero-shot classification.

5.1 Audio-language Retrieval
5.1.1 Dataset. We conduct audio-text retrieval experiments across
several datasets: AudioCaps, Clotho, Auto-ACDVS, and Auto-ACD.
The distributions for the train, validation, and test sets in Audio-
Caps, Clotho, and Auto-ACD are 50K/495/975, 3.8K/1045/1045, and
1.5M/2K/1K data pairs, respectively. Auto-ACDVS, a subset of Auto-
ACD, contains 190K data pairs exclusively sourced from VGGSound.
Notably, in the case of Clotho, validation and test set in AudioCaps,
each data pair consists of one audio sample accompanied by five cor-
responding captions, while the remaining data pairs only comprise
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Figure 6: Audio-language retrieval model and automatic audio captioning model frameworks. Similar to CLIP, the audio-
language retrieval model consists of an audio encoder, text encoder, and contrastive loss. The automatic audio captioning
model comprises a frozen audio encoder and language model, and a trainable mapping network.

Table 3: The audio-text retrieval results on AudioCaps, Clotho and ACD test sets. “basic”, “LA.” “Wav.” and “ACD" refer to the
combination of AudioCaps and Clotho, LAION-Audio-630K, WavCaps and Auto-ACD, respectively. “ACDVS” is a subset of
Auto-ACD, curated from VGGSound. “ * FT” refers to fine-tuning the model on the target dataset.

Train Set Model
AudioCaps Eval. Clotho Eval. Auto-ACD Eval.

Audio→Text Text→Audio Audio→Text Text→Audio Audio→Text Text→Audio
R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

basic+LA.[53] HTSAT-RoBERTa 45.0 88.0 36.2 82.5 24.2 66.9 17.2 55.4 20.0 65.0 17.9 59.7
basic+Wav.[35] HTSAT-BERT 51.7 90.6 39.7 86.1 23.4 63.4 19.5 58.2 - - - -

basic+ACDVS HTSAT-RoBERTa 50.5 90.6 39.8 86.9 24.2 62.9 20.0 58.9 39.2 86.2 39.6 85.7
basic+ACD HTSAT-RoBERTa 53.7 91.7 39.5 85.4 17.7 52.6 15.3 52.1 47.1 91.2 49.0 92.3

basic+ACD*FT HTSAT-RoBERTa 56.3 93.9 42.7 88.5 26.2 67.5 21.7 61.7 - - - -

one audio-caption pair. It is worth mentioning that we manually
filter and revise the Auto-ACD test set, to ensure the accuracy of
the included information. During the annotation process, annota-
tors review the original audio-visual data, amending or removing
inaccuracies generated by the automatic pipeline, to guarantee the
accuracy of the Auto-ACD test dataset.

5.1.2 Auto-ACD Benchmark. In addition to the Auto-ACD training
set, we also randomly selected 2K data samples to form the vali-
dation set and 1K samples for the test set. We conduct amanual
verification of the test set, by removing incorrect information from
the language descriptions and rewriting inappropriate vocabulary
expressions. This test set is used for evaluating both audio-language
retrieval and automatic audio captioning tasks.

5.1.3 Metrics. In order to validate the rich and accurate informa-
tion of our dataset, we compare the traditional metrics, Recall@𝑘

performance, on commonly used datasets, for example, AudioCaps
and Clotho. Simultaneously, we provide these metrics on the Auto-
ACD test set, offering a comprehensive overview.

5.1.4 Training Details. We train our proposed Audio-Text Retrieval
(ATR) model for 20 epochs, employing a batch size of 768, and
utilizing the Adam optimizer with a warm-up phase, and an initial
learning rate of 1e-4 with a cosine learning rate decay schedule.
We use the same hyperparameters as those in the existing CLAP
model configuration. The dimensions of both the audio encoder
and text encoder output are 512. Additionally, we introduce 25%
random masking on words in the sentences and randomly apply
augmentations such as Noise and Gain to 50% of audio samples
to enhance the model training. We further fine-tune the model
on specific datasets, for example, Clotho and AudioCaps, with an
initial learning rate of 2e-5 for 15 epochs.

5.1.5 Results. As shown in Table.3, we can draw the following
key observations: (i) training on our proposed Auto-ACDVS dataset
leads to a significant improvement in Recall@𝑘 metrics. (ii) train-
ing on Auto-ACD results in a remarkable performance gain. This
improvement is particularly evident when evaluating the model on
the test set of AudioCaps, as AudioCaps is a subset of AudioSet and
shares a similar data distribution with Auto-ACD. Such fine-tuning
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processes enable the model to acquire a more comprehensive un-
derstanding of both audio and text information, thus enhancing
retrieval performance. (iii) on the Auto-ACD benchmark, character-
ized by a more diverse lexicon and abundant language description,
training on Auto-ACD datasets significantly outperforms the model
trained on Laion-Audio-630K.

5.2 Automatic Audio Captioning
5.2.1 Dataset. In addition to the datasets mentioned in Section 5.1,
we also use theMACS dataset [33], which comprises 3.9K audio-text
data pairs, with each audio accompanied by two to five captions and
several audio tags. In total, we train the automatic audio captioning
model utilizing a total of 58k data pairs from Clotho, AudioCaps
and MACS, and evaluate on Clotho and Auto-ACD test set.

5.2.2 Metrics. In addition to conventional captioning metrics, for
example, Meteor [4], RougeL [27], Spider [31], we incorporate Sen-
tenceBERT [48] as additional evaluation metrics, that not solely rely
on lexical alignment, but rather prioritize the semantic resemblance
and accuracy of the captions’ content.

5.2.3 Training Details. We devise two mapping networks, MLP
and transformer, and selectively fine-tune the parameters of GPT
during the training process. We set the number of prefixes to be
8, each with a dimension of 512. We train this audio captioning
model on the MACS [33], Clotho and AudioCaps for 15 epochs with
a batch size of 128 and an initial learning rate of 5e-4. In this task,
we compare the audio encoder from our ATR model and the pre-
trained CLAP [53], by only training the mapping network of both
models on the benchmark datasets, namely, Clotho, and Auto-ACD.

5.2.4 Results. As shown in Table. 4, we can draw two observations:
(i) The automatic audio captioning model, with the audio encoder
initialised from our pre-trained ATR model, shows improved per-
formance across all evaluation metrics than baseline. (ii) There is
a more pronounced outcome when evaluated on Auto-ACD: the
baseline approach’s performance oversees a sharp decrease in the
test set of Auto-ACD. We conjecture this is because the baseline
features extracted from the CLAP model lack detailed descriptions
of environmental information. While captioning model based on
our ATR model shows a significant performance improvement, and
is able to infer where the sound occurs precisely. This observation
signifies that Auto-ACD showcases an extensive lexicon, enabling
the portrayal of a given audio using various sentence structures.
On the other side, it illustrates that models trained on our dataset
will deduce the context in which the sound emanates.

Table 4: The automatic audio captioning results on Clotho
and Auto-ACD test sets. “S-BERT” refers to SentenceBERT,
“Env.” refers to whether the predicted captions contain envi-
ronmental information.

Eval Set Audio Encoder Meteor RougeL Spider S-BERT Env.

Clotho CLAP 15.5 34.9 20.6 46.0 ×
Ours 16.6 36.2 21.2 47.4 ×

Auto-ACD CLAP 9.9 23.0 19.6 8.7 ×
Ours 21.3 37.9 56.7 10.1 ✓

5.3 Zero-shot Classification
5.3.1 Dataset. Auto-ACD stands out for integrating its incorpo-
ration of environmental information within its text descriptions.
Following the training on Auto-ACD, we conduct environmental
classification in two distinct scenarios. One scenario involved uti-
lizing the urban acoustic scene dataset [16], known as DCASE 2020
Mobile, previously utilized in the DCASE 2020 challenge. The sec-
ond scenario involved a collection of samples from the AudioSet
evaluation set, annotated with child classes of "Acoustic environ-
ment" within the AudioSet ontology, referred to as AudioSet Env.
To prevent data leakage, here we exclusively utilize the model pre-
trained on Auto-ACDVS for this experiment.

5.3.2 Metrics. We approach zero-shot environment classification
as an audio-text retrieval experiment, employing a conventional
paraphrasing template: "The sound in [environment label]." We
utilize Recall@1 as the metric for evaluating the environment clas-
sification outcomes in this experiment.

5.3.3 Results. The experimental results, as illustrated in Table. 5,
highlight the superior environmental recognition capability of ATR
pre-trained on Auto-ACD in comparison to CLAP. Notably, on the
AudioSet Env, our model significantly outperforms CLAP, even
though we only utilize a subset of Auto-ACD, Auto-ACDVS, for pre-
training without any data leakage from AudioSet into our training
dataset, further serving as a testament to the rich and accurate
environmental information in Auto-ACD.

Table 5: Zero-Shot Acoustic Environment Classification. “*"
refers to pre-training model on Auto-ACDVS.

Model DCASE 2020 Mobile AudioSet Env

CLAP 32.2 19.5
Ours 36.5 39.5*

6 CONCLUSION
In this paper, we present an automatic pipeline for audio caption
generation, accompanied by a large-scale and comprehensive audio
captioning dataset comprising 1.5M data pairs. Furthermore, we
evaluate the performance of various audio-language models on our
dataset to authenticate the effectiveness, and provide a manually
verified test set along with a benchmark for audio-language tasks.
These experimental findings unveil the wealth of information and
precise descriptions inherent in our data, facilitating the models to
learn more robust audio-language representations.

Owing to the fact that a portion of our dataset originates from
VGGSound, procured through an automatic pipeline. The trans-
formation from online videos to precise audio-language pairs has
evolved into a thoroughly automated and replicable procedure. Con-
sequently, the acquisition of an expanded corpus of audio-language
datasets is now a straightforward endeavour. Furthermore, as open-
source computer vision models and Large Language Models (LLMs)
undergo continuous refinement and advancement, the capacity
to extract more precise audio-visual indicators improves, subse-
quently enhancing the precision of inferences and the quality of
paraphrasing the final audio captions.
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