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1 DATASET ANALYSIS
In this section, we conduct amore thorough analysis of the proposed
dataset, Auto-ACD. In Section 1.1, we meticulously examine the
distribution of vocabulary within the dataset. In Section 1.2, we
further elaborate on the reasons and methods for data filtering, and
display the data that have been excluded. Additionally, in Section 1.3,
we compare Auto-ACD with existing audio-language datasets of
many aspects. In Section 1.4, we present additional examples from
Auto-ACD, which contains diverse information and corpus.

1.1 Dataset Corpus
For better analysis, we visualize the corpus within our dataset. As
depicted in Figure. 2, and the common audio tags, man speak and
music play still predominate in frequency within our data. It is
noteworthy that terms describing settings, such as small room and
music studio, also emerge with considerable frequency, corroborat-
ing the presence of descriptive elements related to soundscapes
within Auto-ACD. Moreover, numerous adjectives like lively and
passionately which characterize the attributes of sounds, feature
prominently, suggesting that Auto-ACD not only catalogues sound
events but also intricately describes the qualities of these auditory
phenomena. These are a plethora of audio events, such as birds
chirping, engine idling and water splashing, further demonstrating
the diverse audio events in Auto-ACD.

“Anyways, so I run pretty much full arms 
except for drums of war and one point 
in …”

“Would be equal to 3 divided by 5. So now 
looking at the tangent of theta. There's 
two different ways we can do this now.”

[only background music]

[only background music]

Figure 1: Samples deleted in filter processing. The text on the
right side represents transcriptions of speech from the audio
in the video, processed using WhisperX.

1.2 Dataset Filtering
Our data relies on strong audio-visual correspondence. However,
many entries within AudioSet contain considerable noise, posing
challenges to achieving such coherence, for instance, videos syn-
thesized background music alongside serene speeches or videos
depicting gameplay or software tutorials. Such videos typically

only encompass two types of audio events: speech and music. Con-
sequently, the generated captions often contain sparse informa-
tion and exhibit high error rates. Hence, we employ an analysis of
audio-visual labels and synchronization to filter these samples. The
specific details of this filtering process are described in Section 3.3
of the main text.

In Figure. 1, we present the video frame sequences and the out-
comes of audio ASR (Automatic Speech Recognition) by Whis-
perX [1] for the excluded data. It is evident that the majority of
discarded entries are primarily due to the audio and video are not
unrelated or not synchronized.

1.3 Dataset Statistics
In total, we collect 1.5 million audio samples, each with a duration
of 10 seconds, accompanied by one detailed caption. As indicated
in Table 1, in comparison to other datasets, Auto-ACD not only
surpasses them significantly in terms of volume, but also boasts a
longer average sentence length. It stands as the sole automatically
collected dataset that includes contextual information within its
descriptions. Laion-Audio-630k may possess a higher vocabulary
count, but the majority of its lexicon comprises user-uploaded
device information and timestamps, which are irrelevant noise to
the audio content.

Dataset Quantity Length # Vocab. Env. Auto.

AudioCaps [3] 57K 8.8 5K × ×
Clotho [2] 30K 11.3 4K × ×

LAION-Audio-630K [5] 630K 7.3 311K × ✓
WavCaps [4] 400K 7.8 29K × ✓

Auto-ACD (ours) 1.5M 18.1 22K ✓ ✓

Table 1: Comparation with other audio caption datasets.
“Length” and “# Vocab.” refer to average length and vocabu-
lary. “Env.” and “Auto.” refer to environmental information
and automatic pipeline, respectively.

1.4 Dataset Visualization
As shown in Table. 2, we show more generated captions for audios
from VGGSound and AudioSet. Note that, we present the video
sequences to demonstrate how visual information can assist the
language description for audio. It can be observed that, the captions
in Auto-ACD not only accurately depict sound events but also infer
contextual information based on visual priors, that can also be
inferred from audios, for example, (i) environmental details, for
instance, “a lively performance arena", “in a music studio" and “a
peaceful zen garden", (ii) sound attributes like “A civil defense siren
blares loudly" and “music plays in the background", (iii) sound
variations, for example, “motorcycle engine revs up and down" and
“a car speeds down a dirt track".
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Table 2: Data visualization in Auto-ACD. In each sample, the top line showcases the video frame sequence, the bottom line
presents the corresponding audio caption. The sound events in the caption are highlighted in bold text, and environmental
information is indicated in italics text.

No. Generated Caption

1.
A man sings while playing the guitar, accompanied by country music and the sound of drums, in a music studio.

2.
A civil defense siren blares loudly, indicating an emergency situation, possibly in a city or urban environment.

3.
The motorcycle engine revs up and down while driving through a residential neighborhood, accompanied by some speech and

light engine sounds.

4.
A crowd of people cheer while music plays in the background, creating a lively atmosphere in a concert.

5.
The sound of a loud engine revving can be heard as a car speeds down a dirt track at night.

6.
The sound of a singing bowl resonates, accompanied by faint tones of a sine wave and a tuning fork in a peaceful zen garden.

7.
A group of people cheer and sing while an urban battle cry echoes in the background.

8.
Music plays as a crowd cheers and a band performs on stage with vibrant lights in a lively performance arena.
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Figure 2: Corpus in Auto-ACD. The higher the frequency of occurrence, the larger the font size of the respective word.
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