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Abstract

Self-Supervised Learning (SSL) has yielded remarkable improvements in many
different domains including computer vision, natural language processing and
speech processing by leveraging large amounts of unlabeled data. In the specific
context of speech, however, and despite promising results, there exists a clear lack
of standardization in the evaluation process for comprehensive comparisons of
these models. This issue gets even worse with the investigation of SSL approaches
for other languages than English. We present LeBenchmark, an open-source and
reproducible framework for assessing SSL from French speech data. It includes
documented, large-scale and heterogeneous corpora, seven pretrained SSL wav2vec
2.0 models shared with the community, and a clear evaluation protocol made of
four downstream tasks along with their scoring scripts: automatic speech recogni-
tion, spoken language understanding, automatic speech translation and automatic
emotion recognition. For the first time, SSL models are analyzed and compared
on the latter domains both from a task-agnostic (i.e. frozen) and task-specific
(i.e. fine-tuned w.r.t the downstream task) perspectives. We report state-of-the-art
performance on most considered French tasks and provide a readable evaluation
set-up for the development of future SSL models for speech processing.

1 Introduction

Self-Supervised Learning (SSL) based on huge amounts of unlabeled data has been explored success-
fully for image and natural language processing [1, 2, 3, 4]. Recently, researchers investigated SSL
from speech as well and successfully improved performance on downstream tasks such as speech
recognition [5, 6]. As SSL from speech is a rapidly evolving domain, new models are unfortunately
evaluated on different datasets, most of which focus on the English language. In order to carefully
assess the progress of speech SSL model-wise and application-wise, common benchmarks are needed.
While NLP benchmarking is now widely discussed [7], multi-task benchmarks are less common in
speech despite the fact that the field has a long tradition of evaluation (see for instance long-term NIST
and DARPA shared tasks for ASR). We propose to contribute to this by providing a reproducible
and multifaceted benchmark for evaluating speech SSL models. By benchmark, and following the
definition of [8], we mean an ensemble of tasks that allow to discriminate learners (i.e. SSL models)
based on their ability to perform well on those tasks. We propose an initial set of four main tasks
(10 sub-tasks overall), measuring specific speech challenges in French language: Automatic Speech
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Recognition (ASR), Spoken Language Understanding (SLU), Speech Translation (AST) and Emotion
Recognition (AER). This enables to assess the impact of pre-trained speech models that differ along
several dimensions: language used for pre-training (French, English, multilingual), amount of raw
speech used for SSL pre-training (1k, 3k or 7k hours), model size (base, large). For reproducibility,
we also provide pre-trained SSL models learned on a large and heterogeneous collection of speech
utterances and believe this is a strong contribution to speech technologies in French. This work
extends a preliminary proposal [9] with a bigger speech corpus for SSL, more SSL models evaluated
and shared, as well as experiments comparing task agnostic models (i.e. SSL models trained with
pre-training objective on general purpose data) and task specific models (i.e. SSL models obtained
after task-adaptive pre-training [10] or after fine-tuning for an ASR task). Our website shares models,
scripts and results for better transparency and reproducibility of research in speech SSL.1

2 Background

SSL has been recently proposed as an interesting alternative for data representation learning, as it
requires no annotated data. Such learned representations have been very successful in vision [1, 2]
and NLP [3, 11]. SSL from speech consists of resolving pseudo-tasks, which do not require human
annotation, as a pre-training for the real tasks to solve. These pseudo-tasks target predicting the
next samples, or solving ordering problems. For instance, Autoregressive Predictive Coding (APC)
considers the sequential structure of speech and predicts information about a future frame [12, 13],
whereas Contrastive Predictive Coding (CPC) distinguishes a future speech frame from distractor
samples [5, 14], which is an easier learning objective compared to APC. Such representations have
been shown to improve performance in several speech tasks [15], while being less sensitive to domain
and/or language mismatch [6] and being transferable to other languages [16]. In 2020, a strong
speech SSL baseline appeared: the Wav2Vec2.0 model [17] which relies on the CPC idea of [5, 14]
but with discrete speech units that are used as latent representations and fed to a Transformer network
to build contextualized representations. Several other bi-directional encoders were also proposed
recently: Speech-XLNet [18], Mockingjay [19] and [20]. A few recent studies were also related to
multilingual SSL models trained on very large multilingual corpora [21, 22].

While there are multiple evaluation benchmarks to assess pretrained models in NLP (see for instance
[23] for English, [24] for French and [25] for Korean), we are aware of only two similar initiatives for
speech SSL models’ evaluation: our own preliminary work [9] and the Speech processing Universal
PERformance Benchmark (SUPERB) [26] which however targets English language only and does
not share pre-trained SSL models as we do.

3 Gathering a Large and Heterogeneous Speech Collection in French

Recently, large multilingual corpora that include French have been made available, such as
MLS [27] (1,096 h), or voxpopuli [22] (+4,500 h). However, these are restricted to either read
or well-prepared speech, failing to provide diversity in the speech samples, such as accented, sponta-
neous and/or affective speech. In this work, we gathered a large variety of speech corpora in French
that cover different accents (MLS, African Accented Speech, CaFE), acted emotions (GEMEP, CaFE,
Att-Hack), telephone dialogues (PORTMEDIA), read (MLS, African Accented French, MaSS) and
spontaneous sentences (CFPP2000, ESLO2, MPF, TCOF, NCCFr), broadcast speech (EPAC) and
professional speech (Voxpopuli). Compared to MLS and Voxpopuli, our dataset is more diverse,
carefully sourced and contains detailed metadata (speech type, and speaker gender). Moreover, it
has a more realistic representation of speech turns in real life, compared to MLS and VoxPopuli (see
average utterance duration in Table 1). Statistics are reported in Table 1.

Pre-processing for SSL training: Recordings were segmented using time stamps from transcriptions.
We retrieved, when available, speaker labels and gender information. Following [17], we removed
utterances shorter than 1 s, and longer than 30 s. When possible, overlapping speech sentences were
also removed. When necessary, audio segments were converted to mono PCM 16 bits, 16 kHz.

Small dataset (≈ 1k hours) is only composed of the MLS corpus for comparison with
Wav2Vec2.0 [17] which uses only read English speech. It is also gender balanced.

1http://lebenchmark.com
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Table 1: Statistics for the speech corpora used to train SSL models according to gender information
(male / female / unknown). The small dataset is from MLS only. Every dataset is composed of the
previous one + additional data; duration: hour(s):minute(s).

CorpusLicense # Utterances Duration # Speakers Mean Utt. Duration Speech type

Small dataset – 1K

MLS FrenchCCBY 4.0 [27] 263,055
124,590 / 138,465 / –

1,096:43
520:13 / 576:29 / –

178
80 / 98 / –

15 s
15 s / 15 s / – Read

Medium dataset – 3K
African Accented
FrenchApache2.0 [28]

16,402
373 / 102 / 15,927

18:56
– / – / 18:56

232
48 / 36 / 148

4 s
– / – / – Read

Att-HackCCBY NCND [29] 36,339
16,564 / 19,775 / –

27:02
12:07 / 14:54 / –

20
9 / 11 / –

2.7 s
2.6 s / 2.7 s / –

Acted
Emotional

CaFECCNC [30] 936
468 / 468 / –

1:09
0:32 / 0:36 / –

12
6 / 6 / –

4.4 s
4.2 s / 4.7 s / –

Acted
Emotional

CFPP2000CCBY NCSA*
[31]

9853
166 / 1,184 / 8,503

16:26
0:14 / 1:56 / 14:16

49
2 / 4 / 43

6 s
5 s / 5 s / 6 s Spontaneous

ESLO2NC [32] 62,918
30,440 / 32,147 / 331

34:12
17:06 / 16:57 / 0:09

190
68 / 120 / 2

1.9 s
2 s / 1.9 s / 1.7 s Spontaneous

EPAC**NC [33] 623,250
465,859 / 157,391 / –

1,626:02
1,240:10 / 385:52 / –

Unk
– / – / –

9 s
– / – / –

Radio
Broadcasts

GEMEPNC [34] 1,236
616 / 620 / –

0:50
0:24 / 0:26 / –

10
5 / 5 / –

2.5 s
2.4 s / 2.5 s / –

Acted
Emotional

MPF [35], [36] 19,527
5,326 / 4,649 / 9,552

19:06
5:26 / 4:36 / 9:03

114
36 / 29 / 49

3.5 s
3.7 s / 3.6 s / 3.4 s Spontaneous

PORTMEDIANC

(French) [37]
19,627

9,294 / 10,333 / –
38:59

19:08 / 19:50 / –
193

84 / 109 / –
7.1 s

7.4 s / 6.9 s / –
Acted telephone

dialogue
TCOF

(Adults) [38]
58,722

10,377 / 14,763 / 33,582
53:59

9:33 / 12:39 / 31:46
749

119 / 162 / 468
3.3 s

3.3 s / 3.1 s / 3.4 s Spontaneous

Medium dataset total 1,111,865
664,073 / 379,897 / 67,895

2,933:24
1,824:53 / 1,034:15 / 74:10 - - -

Large dataset – 7K

MaSS [39] 8,219
8,219 / – / –

19:40
19:40 / – / –

Unk
– / – / –

8.6 s
8.6 s / – / – Read

NCCFrNC [40] 29,421
14,570 / 13,922 / 929

26:35
12:44 / 12:59 / 00:50

46
24 / 21 / 1

3 s
3 s / 3 s / 3 s Spontaneous

VoxpopuliCC0 [22]
Unlabeled

568,338
– / – / –

4,532:17
– / – / 4,532:17

Unk
– / – / –

29 s
– / – / – Professional speech

VoxpopuliCC0 [22]
transcribed

76.281
– / – / –

211:57
– / – / 211:57

327
– / – / –

10 s
– / – / – Professional speech

Large dataset total*** 1,814,242
682,322 / 388,217 / 99,084

7,739:22
1,853:02 / 1,041:07 / 4,845:07 - - -

*Composed of audio files not included in the CEFC corpus v2.1, 02/2021; **speakers are not uniquely identified.; ***Stats of CFPP2000,
MPF and TCOF have changed a bit due to a change in data extraction; License: CC=Creative Commons; NC=non-commercial; BY=
Attribution; SA= Share Alike; ND = No Derivative works; CC0 = No Rights Reserved

Medium dataset (≈ 3k hours) includes 2,933 h of speech, from which 1,115 h is read speech,
1,626 h broadcast speech, 123 h spontaneous speech, 38 h acted telephone dialogues, and 29 h acted
emotional speech. Regarding gender, we collected 1,824 h of speech from male speakers, 1,034 h
from female speakers, and 74 h from unknown gender.

Large dataset (≈ 7.7k hours) has 4 additional corpora: MaSS, NCCFr and Voxpopuli (unlabeled
+ transcribed). It includes 7,739 h of speech, from which 1,135 h is read speech, 1,626 h broadcast
speech, 165 h spontaneous speech, 38 h acted telephone dialogues, 29 h acted emotional speech, and
4744 h professional speech. Except for NCCFr, no info about gender is given in the added datasets.

4 Training and Sharing SSL Models

LeBenchmark provides seven Wav2Vec2.0 models [17] pretrained on the gathered French data
described in Section 3. Following [17], two different Wav2Vec2.0 architectures (large and base) are
coupled with our small (1K), medium (3K) and large (7K) corpus to form our set of Wav2Vec2.0
models: W2V2-Fr-1K-base, W2V2-Fr-1K-large, W2V2-Fr-3K-base, W2V2-Fr-3K-large, W2V2-Fr-
7K-base, W2V2-Fr-7K-large. We also provide a specific model (W2V2-Fr-2.7K-base) trained on a
subset of our medium set only containing MLS and EPAC (2.7K hours of audio) to enable further
investigation on the impact of spontaneous speech on SSL representations.

Hyperparameters and architectures for base2 and large3 are identical to the ones first introduced in
[17]. W2V2-Fr-1K, W2V2-Fr-3K, W2V2-Fr-2.7K and W2V2-Fr-7K are trained respectively for
200K, 500K, 500K and 500K updates on 4, 32, 32 and 64 Nvidia Tesla V100 (32GB), with one

2https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/config/
pretraining/wav2vec2_base_librispeech.yaml

3https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/config/
pretraining/wav2vec2_large_librivox.yaml
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update corresponding to a call to the .backward() function in PyTorch. Detailed summary of the
hyperparameters used to train our SSL models can be found in Table 2. In practice, training is
stopped at a round number of updates once the loss observed on the development set of the MLS
corpus reaches a stable point (learning curves are given in Appendix A.1).

Pre-trained Wav2Vec2.0 models are shared with the community via HuggingFace4 for further integra-
tion with well-known toolkits such as SpeechBrain [41], Fairseq [42] or Kaldi [43].

Pre-existing Wav2Vec2.0 models obtained from Fairseq5 are also considered in downstream experi-
ments. First, XLSR-53-large is used as a comparison to multilingual models. Then, W2V2-En-base
and W2V2-En-large (LS960) are used to assess English representations from LibriSpeech.6

Table 2: Hyperparameters of our pre-trained SSL models

Model Training data Transformer blocks Model dimension Inner dimension Heads Updates
W2V2-Fr-1K-base 1,096 h 12 768 3,072 8 200K

W2V2-Fr-1K-large 1,096 h 24 1024 4,096 16 200K

W2V2-Fr-2.7K-base 2,773 h 12 768 3,072 8 500K

W2V2-Fr-3K-base 2,933 h 12 768 3,072 8 500K

W2V2-Fr-3K-large 2,933 h 24 1024 4,096 16 500K

W2V2-Fr-7K-base 7,739 h 12 768 3,072 8 500K

W2V2-Fr-7K-large 7,739 h 24 1,024 4,096 16 500K

5 Benchmarking SSL Models

We benchmark SSL models on four different tasks (ASR, SLU, AST and AER) chosen with respect
to following criteria: (a) diversity of problems: regression (AER), sequence labelling (SLU) and
conditional natural language generation (ASR, AST), (b) diversity of information extracted: tran-
script (ASR), semantics (SLU), translation (AST) and paralinguistics (AER), and (c) diversity of
annotated resources available for downstream task: large (ASR), medium (SLU, AST), small (AER).
As our goal is to evaluate the impact of SSL for the best baselines for each task addressed, we have
a different architecture for each task and it corresponds to the best baseline performance we could
obtain using MFCC/FBANK features. As a different architecture/approach is used for each task, we
evaluate the different SSL models as feature extractors for these tasks. These ‘SSL extractors’ are
either ‘task agnostic’ or ‘task specific’ (SSL models fine-tuned on the task data) as further explained
below.

5.1 Automatic Speech Recognition (ASR)

SSL for ASR is evaluated using both hybrid DNN-HMM and end-to-end approaches. In addition to
the source code used to make these ASR experiments (training + decoding), LeBenchmark provides a
normalization script for French output text derived from the one applied during the official French
ESTER and ETAPE evaluation campaigns [44] and a unique script to compute the Word Error
Rate (WER) from ASR output.

Datasets The ASR tasks target two different types of corpora: Common Voice [45] and ETAPE [44].
Common Voice is a very large crowd-sourced corpus (477 h) of read speech in French with transcripts
– train: 428 h, dev: 24 h, and test: 25 h, while ETAPE is a smaller (36 h) but more challenging corpus
composed of diverse French TV broadcast programs – train: 22 h, dev: 7 h, and test: 7 h.

Hybrid DNN-HMM The acoustic models (AM) are trained on 40-dimensional high-resolution
(hires) MFCC features or SSL features using the Kaldi toolkit [43] with a state-of-the-art factorized
time delay neural network (TDNN-F) architecture [46, 47] on the ETAPE training corpus [44] only.
More details about the AM architecture are given in Appendix A.2.1. Two trigram LMs were used in

4https://huggingface.co/LeBenchmark
5https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
6For the sake of conciseness, we remove the prefix W2V2- in all our results table.
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Table 3: ASR results (WER,%) on the ETAPE corpus for hybrid DNN-HMM AM with TDNN-F
topology. Gray numbers indicate 95% confidence intervals.8

Language Model ETAPE ESTER-1.2 + EPAC

Features Dev Test Dev Test

hires MFCC 36.89±0.66 38.50±0.71 29.56±0.70 31.93±0.75

(a) Task-agnostic pre-training

En-large 37.68±0.71 40.31±0.75 30.51±0.73 33.32±0.79
XLSR-53-large 34.28±0.69 36.03±0.72 27.01±0.68 29.64±0.77

Fr-1K-base 38.91±0.72 41.53±0.80 32.26±0.74 35.69±0.82
Fr-1K-large 38.77±0.71 40.69±0.67 32.29±0.73 34.91±0.79
Fr-2.7K-base 32.35±0.66 34.43 ±0.72 26.65 ±0.67 29.31±0.74
Fr-3K-base 31.98±0.66 33.61±0.73 25.83±0.66 27.82±0.74
Fr-3K-large 31.85±0.64 33.46±0.69 26.54±0.65 28.56±0.72
Fr-7K-base 31.96±0.67 33.36±0.72 26.03±0.67 27.09±0.76
Fr-7K-large 28.75±0.62 30.30±0.68 23.62±0.63 25.64±0.70

(c) Task-specific pre-training (fine-tuned for ASR on ETAPE)

Fr-2.7K-base 32.34±0.64 34.46±0.73 26.44±0.66 29.11±0.75
Fr-3K-base 31.89±0.64 33.47±0.71 26.12±0.66 28.03±0.75
Fr-3K-large 28.82±0.62 30.19±0.67 23.67±0.62 25.22±0.70
Fr-7K-base 31.70±0.65 33.32±0.73 25.84±0.67 28.24±0.76
Fr-7K-large 28.84±0.61 30.29±0.66 23.44±0.62 25.36±0.70

evaluation: (1) trained on ESTER-1.2 and EPAC training data (with a 82k vocabulary) and (2) trained
on ETAPE training data only (with a smaller 17.5k vocabulary).

End-to-End Our end-to-end (e2e) systems are implemented with SpeechBrain toolkit [41]. The
baseline e2e system is fed by 80-dimension log Mel filterbank (MFB) features and based on an
encoder/decoder architecture with attention. When used with a SSL pre-trained Wav2Vec2.0 model,
the e2e system simply adds an additional hidden layer and an output layer on top of Wav2Vec2.0
architecture. Details are given in Appendix A.2.2.

Results The WER results on the ETAPE development and test data sets for the hybrid DNN-HMM
models are given in Table 3. Among the models trained on SSL features (Table 3, (a)) 6 models
provide improvement over the baseline AM trained on MFCC features: XLSR-53, Fr-2.7k-base,
Fr-3k-base, Fr-3k-large, Fr-7k-base, and Fr-7k-large. The best SSL features are the ones from the
Fr-7k models and they clearly outperform the multilingual XLSR-53-large. In the case of task-specific
pre-training,7 we were not able to significantly improve the best results compared to task-agnostic
pre-training. This is probably due to the fact that the obtained representations are not very different
in both cases. These results can be compared to the ones obtained by the best ASR system during the
official ETAPE shared task: by using 511h of training data (external training data were allowed), their
ASR system got a word error rate of 23.6% [48], while in the experiments presented in this paper,
only 22h of ETAPE training data were used. In the next paragraph, we investigate e2e fine-tuning of
the models using transcribed speech.

Table 4 presents the results achieved with e2e ASR systems on French Common Voice 6.1 and on
ETAPE. Before the use of Wav2vec2.0 models for ASR, the baseline MFB-based system (first line)
was the state-of-the-art e2e model on CommonVoice/French. Other lines of table present different
Wav2vec2.0 models fine-tuned on labeled ASR data from CommonVoice or ETAPE. Wav2vec2.0
base and large models provided by LeBenchmark outperform clearly En-large and XLSR-53-large
models. The best model is Fr-3K-large, pretrained on a smaller training dataset than Fr-7K-large, and
it provides the best results on all the experiments. We analyze gender performance in Appendix A.3
and show that female WER is systematically lower than male WER for all systems. Even for our
Fr-3K SSL models trained with 38% of female speech only, female WER are particularly low.

5.2 Spoken Language Understanding (SLU)

Dataset. Spoken Language Understanding (SLU) aims at extracting a semantic representation from a
speech signal in human-computer interaction applications [50, 51, 52, 53, 54]. Given the difficulty of

7Since two types of task-specific pre-training will be provided for SLU and AST, for ASR we only experi-
mented with fine-tuning SSL models for ASR on ETAPE and then using them as feature extractors.

8Error margins corresponding to 95% confidence intervals were computed using bootstrap re-sampling as
proposed in [49].
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Table 4: End-to-end ASR results (WER%) on Common Voice and ETAPE corpora, with pre-trained
wav2vec2.0 models further fine tuned on labeled ASR data.

Corpus CommonVoice ETAPE

Features Dev Test Dev Test

MFB 17.67±0.37 20.59±0.41 54.03±1.33 54.36±1.32

En-large 12.05±0.23 14.17±0.52 42.14±0.72 44.82±0.74
XLSR-53-large 16.41±0.27 19.40±0.29 58.55±0.65 61.03±0.70
Fr-2.7K-base 11.04±0.27 13.09±0.24 26.23±0.78 29.08±0.80
Fr-3K-base 11.25±0.23 13.22±0.24 26.14±0.70 28.86±0.79
Fr-3K-large 8.34±0.18 9.75±0.20 23.51±0.68 26.14±0.77
Fr-7K-base 10.84±0.21 12.88±0.24 25.13±0.68 28.16±0.79
Fr-7K-large 8.55±0.18 9.94±0.21 24.14±0.70 27.25±0.78

Table 5: End-to-end SLU decoding results (Concept Error Rate %) on the MEDIA corpus.

Features Dev Test
(from [9]) spectrogram 33.63±1.28 34.76±0.83
spectrogram 29.07±1.31 31.10±0.83

(a) Task agnostic pre-training
En-base 22.38±1.24 20.84±0.68
En-large 23.31±1.31 25.26±0.77
Fr-1K-base 22.89±1.26 23.27±0.76
Fr-1K-large 20.10±1.10 20.66±0.72
Fr-2.7K-base 18.63±1.13 18.42±0.65
Fr-3K-base 19.44±1.11 18.56±0.67
Fr-3K-large 15.96±1.02 15.95±0.62
Fr-7K-base 20.70±1.07 18.86±0.68
Fr-7K-large 17.25±1.02 16.35±0.66
XLSR-53-large 18.45±1.15 18.78±0.66

(b) Task specific pre-training (self-supervised on MEDIA)
Fr-3K-large 15.93±1.01 14.94±0.60
Fr-7K-large 15.42±1.03 15.17±0.60
XLSR-53-large 16.77±1.09 15.56±0.61

(c) Task specific pre-training (fine-tuned for ASR on MEDIA)
Fr-3K-large 14.49±1.06 13.97±0.59
Fr-7K-large 14.58±1.01 13.78±0.58
XLSR-53-large 16.05±1.05 15.46±0.60

creating an open-domain SLU application, many works focus on specific domains. We focus on the
hotel information and reservation domain provided within the French corpus MEDIA [55, 56]. This
corpus is made of 1 250 human-machine dialogues acquired with a Wizard-of-Oz approach, where
250 users followed 5 different reservation scenarios. Spoken data were manually transcribed and
annotated with domain concepts, following a rich ontology. The official corpus split is made up of
12,908 utterances (41.5 h) for training, 1,259 utterances (3.5 h) for development and 3,005 utterances
(11.3 h) for test. We note that, while all turns have been manually transcribed and can be used to train
ASR models, only user turns have been annotated with concepts and can be used to train SLU models.
This results in only 41.5 hours of speech training data for ASR models, and only 16.8 hours for SLU
models.

Experiments. All our models are based on LSTM [57] seq2seq with attention [58]. Model details
and training strategy are described in Appendix A.2.3. We use a total of 3 bidirectional LSTM layers
of size 256 stacked in a pyramidal fashion in our encoder and the LSTM decoder has 2 layers of size
256. In addition to using spectrogram features and features from task agnostic SSL models, we also
use features from task specific models (SLU on MEDIA). Two types of task-specific pre-training are
performed: self-supervised which consists in resuming the SSL model training using the MEDIA
training data and minimizing the Wav2Vec 2.0 loss (‘(b) self-supervised on MEDIA’ in the table, also
called task-adaptive pre-training in [10]); and ASR supervised ((c) fine-tuned for ASR on MEDIA in
the table) which consists in fine-tuning the full SSL model for a supervised downstream task with a
CTC loss minimization objective [59]. In this work we chose to fine-tune models with respect to the
ASR task on MEDIA (not the SLU one) to see how it compares to self-supervised fine-tuning. We
leave fine-tuning with respect to SLU for future work.
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Results for SLU obtained with different speech representations are shown in Table 5. They are given
in terms of Concept Error Rate (CER), computed the same way as Word Error Rate (WER) but
on concept sequences. CER are accompanied by standard deviations (in gray), computed with the
bootstrap method of [49]. We provide ASR results in supplementary material (table 10). We first note
that our spectrogram baseline obtains a substantial improvement over the one in [9]. Such gain is due
to the slightly different settings and model architecture described in the Appendix. Using SSL model
features as input resulted in an impressive drop in CER, even when using English SSL models (CER
from 31.10 to 20.84 on the test set with the base model). At best, among task-agnostic pre-trained
models, we achieve a CER of 15.95 on the test data with Fr-3K-large features. Surprisingly, using
features from the model trained with 7k hours of speech (Fr-7K-large), results are worse on both dev
and test. In contrast, the 7k-model led to the best results in terms of ASR evaluation (see Table 10 in
the Appendix). We performed task-specific pre-training only with the most effective SSL models:
French 3k and 7k models and multi-lingual XLSR-53-large. The best overall pre-trained model is the
7k-model fine-tuned for ASR on MEDIA, though results are close to those obtained with features
from the 3k-model (13.97 vs. 13.78). Indeed, significance tests in table 11 in the Appendix confirm
that these two models are equivalent and they are significantly better than all the others. This shows
that pre-trained SSL speech models can be specialized using task specific pre-training with either
self-supervised learning on raw speech (block (b) in the table), or fine-tuning on raw speech and
associated transcripts (block (c) in the table), the latter being slightly better than the former.

5.3 Automatic Speech-to-text Translation (AST)

Automatic speech-to-text translation (AST) consists in translating a speech utterance in a source
language to a text in a target language. In this work, we are interested in translating directly from
French speech to text in another language.

Dataset We selected subsets having French as the source in the multilingual TEDx dataset [60]. Our
benchmark covers translation directions from French to three target languages: English (en), Spanish
(es), and Portuguese (pt), with following training sizes 50 h (en), 38 h (es), and 25 h (pt).

Experiments Our baselines are models using 80-dimensional MFB features. For learned representa-
tions derived from SSL models, we focused on the feature extraction approach where features are
extracted from either task-agnostic or task-specific pre-training. Task-agnostic pre-training refers to
the direct use of SSL models as feature extractors whereas task-specific method consists in one addi-
tional phase where the SSL models are further trained on the in-domain task data, with (supervised
fine-tuned) or without (self-supervised fine-tuned) labels. We performed supervised fine-tuning with
speech transcriptions as labels and leave supervised fine-tuning with AST data for future work. In
the task-specific scenario, we only considered three SSL models: two best French SSL models (Fr-
3K-large and Fr-7K-large) and one best non-French SSL model (XLSR-53-large). Since the French
speech is overlapped between the language pairs, we selected the pair having the most speech data
(fr-en) to perform task-specific pre-training and used the obtained models to extract features for the
remaining pairs (fr-es and fr-pt). For a fair comparison, we did not use additional data augmentation
technique nor ASR encoder pre-training in the experiments. We refer to Appendix A.2.4 for details
on the model architecture and implementation.

Results Table 6 displays the results of AST experiments. One can observe that SSL features, whether
task-agnostic or task-specific and whether being pre-trained on English, French, or multilingual
data, outperform the baselines using MFB features by a large margin (except for the task-agnostic
multilingual model XLSR-53 on the two pairs fr-es and fr-pt, which are in very low-resource settings).
Among the three groups using SSL features (task-agnostic pre-training, task-specific self-supervised,
and task-specific fine-tuned for ASR), the ASR fine-tuning approach (c) yields the best results.
We observe considerable improvements from task-specific self-supervised (b) to task-specific fine-
tuned (c) (+6.19, +8.50, +8.53 on average for en, es, and pt, respectively) while the benefits of
using self-supervised fine-tuning compared to task-agnostic pre-training are only marginal or even
slightly negative. The substantial gains when using supervised fine-tuning approach (even with
a somehow indirect signal which is transcripts for the AST downstream task) shows that giving
more signals of the task-specific data to the SSL models is helpful. In particular, in the case of
task-specific self-supervised fine-tuning (b), we further trained the SSL models for more steps on the
raw task-specific data whereas in ASR fine-tuned scenario (c), we used raw data plus the transcripts
to guide the SSL models. Focusing on task-agnostic block (a), we see that French SSL models
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Table 6: BLEU on valid and test sets of multilingual TEDx (mTEDx). The highest value in each group
(task-agnostic pre-training, task-specific self-supervised, and supervised fine-tuning) is underlined
while the best value in each column is highlighted in bold. Gray numbers denote the standard
deviation computed using bootstrap re-sampling [61].

Features Valid Test
en es pt en es pt

MFB 1.15±0.17 0.67±0.15 0.61±0.13 1.10±0.14 0.87±0.12 0.32±0.03

(a) Task agnostic pre-training
En-base 5.54±0.27 1.30±0.17 0.54±0.11 5.20±0.28 1.47±0.15 0.38±0.05

En-large 4.11±0.25 1.67±0.20 0.32±0.03 3.56±0.22 2.29±0.18 0.43±0.05

Fr-1K-base 9.18±0.36 5.09±0.27 0.39±0.05 8.98±0.36 5.64±0.30 0.49±0.08

Fr-1K-large 15.31±0.46 13.74±0.43 8.29±0.34 14.46±0.46 14.77±0.46 9.37±0.38

Fr-2.7K-base 15.09±0.49 13.27±0.43 4.72±0.27 14.69±0.48 14.04±0.43 5.51±0.28

Fr-3K-base 15.05±0.49 13.19±0.44 4.44±0.29 14.80±0.47 14.27±0.44 4.72±0.25

Fr-3K-large 17.94±0.51 16.40±0.49 8.64±0.34 18.00±0.51 18.12±0.48 9.55±0.36

Fr-7K-base 15.13±0.45 12.78±0.40 2.65±0.20 14.50±0.45 13.61±0.44 2.66±0.23

Fr-7K-large 19.23±0.54 17.59±0.49 9.68±0.37 19.04±0.53 18.24±0.49 10.98±0.41

XLSR-53-large 7.81±0.33 0.49±0.13 0.43±0.07 6.75±0.29 0.52±0.08 0.36±0.05

(b) Task specific pre-training (self-supervised on mTEDx)
Fr-3K-large 18.54±0.53 16.40±0.48 8.81±0.36 18.38±0.52 17.84±0.48 10.57±0.41

Fr-7K-large 19.65±0.55 17.53±0.47 9.35±0.36 19.36±0.54 18.95±0.53 10.94±0.38

XLSR-53-large 6.83±0.33 0.54±0.14 0.34±0.03 6.75±0.32 0.34±0.03 0.29±0.03

(c) Task specific pre-training (fine-tuned for ASR on mTEDx)
Fr-3K-large 21.09±0.53 19.28±0.53 14.40±0.47 21.34±0.58 21.18±0.52 16.66±0.49

Fr-7K-large 21.41±0.51 20.32±0.49 15.14±0.48 21.69±0.58 21.57±0.52 17.43±0.52

XLSR-53-large 21.09±0.54 20.38±0.56 14.56±0.45 20.68±0.53 21.14±0.55 17.21±0.54

clearly outperform those pre-trained on English and multilingual data. Multilingual XLSR-53 model
surpasses the English models on fr-en, yet all of them fail to generate meaningful translations on
fr-es and fr-pt where little training data is available. Comparing across different French SSL model
sizes (base vs. large), the large architecture yields considerable improvement (nearly 3 to 6 BLEU
points) over its base counterpart. When looking into the French SSL models with different amounts of
pre-training data (1K, 2.7K, 3K, and 7K), we observe large gains for the base architecture from using
1K to using 2.7K or more pre-training data. There is, however, no significant difference between base
models using 2.7K, 3K, and 7K data. Using 7K data even hurts the performance on the pair fr-pt.
On the other hand, for the large network, using more data consistently improves the performance on
all language pairs. Finally, moving on to task-specific models, Fr-7K-large is the best-performing
model (or being on par with the best one) in each group. Noticeably, there is a huge improvement
when using the ASR fine-tuning approach (c) for the multilingual XLSR-53 model. The method
considerably boosts the performance of the multilingual model (compared to using it directly or
further pre-training it on the task data) and makes it even on par with the best French SSL models.

5.4 Automatic Emotion Recognition (AER)

Automatic Emotion Recognition (AER) research mostly relies on detecting either different emotion
categories such as happiness or sadness, or different emotion dimensions such as arousal and valence.
Here, we use sequence-to-sequence models on continuous dimensions of emotion.

Datasets We use RECOLA [62] and AlloSat [63] datasets as in [9]. RECOLA is a well-known
corpus for benchmarking emotion recognition systems, which contains recordings of spontaneous
interactions between French-speaking subjects in lab environments. AlloSat is a more recent dataset
that contains real-life call center conversations in French. Both datasets are time-continuously
annotated by several annotators. The different annotations are averaged to define an emotional
dimension gold-standard: arousal (from passive to active) and valence (from negative to positive)
for RECOLA with a sampling rate of 25 Hz, and a dimensional axis ranging from frustration to
satisfaction for AlloSat with a sampling rate of 4 Hz.

Experiments In addition to using SSL features, we extracted 40-dimensional MFB features normal-
ized to have zero mean and unit standard deviation over the training set. We used simple regression
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Table 7: Concordance Correlation Coefficient of emotion predictions on the RECOLA and AlloSat
test sets.

Features

Corpus - Task
RECOLA - Arousal RECOLA - Valence AlloSat - Satisfaction

Model
LinTh GRU-32 GRU-64 LinTh GRU-32 GRU-64 LinTh GRU-32 GRU-64

MFB .139 .655 .649 .107 .373 .421 .121 .611 .612

En-large .465 .517 .542 .154 .220 .221 .102 .490 .480
XLSR-53-large .237 .661 .669 .005 .322 .200 .242 .578 .582

Fr-1K-base .505 .654 .661 .243 .331 .301 .403 .641 .558
Fr-1K-large .507 .709 .708 .196 .555 .234 .175 .601 .597

Fr-2.7K-base .521 .720 .741 .208 .498 .530 .437 .646 .687

Fr-3K-base .474 .700 .686 .183 .388 .228 .356 .732 .740
Fr-3K-large .378 .267 .349 .130 .202 .033 .009 .468 .473

Fr-7K-base .502 .700 .702 .214 .406 .358 .394 .653 .653
Fr-7K-large .310 .203 .078 .020 .214 .068 .007 .510 .474

models similar to the ones presented in [9]. The LinTh model only consists of a linear layer fol-
lowed by a tangent hyperbolic function and the GRU models are 1-layer GRU with the hidden
layer D = [32, 64], followed by the LinTh layer. Evaluation metric is Concordance Correlation
Coefficient [64] between model predictions and human annotations, as in [65, 66].

Results are presented in Table 7. One noticeable result is that, while MFB features cannot reach
acceptable performance with the simple LinTanh model, SSL features achieve much better results.
As the models get more complex (GRU-32 and GRU-64), the advantage of using SSL features
compared to MFB features is less clear. This shows the effectiveness of providing higher level
representations (SSL) for AER only when a less complex model (LinTanh) is used. One interesting
finding is the ability of the Fr-2.7k-base feature to reach close to best results for most cases even
though this SSL model has only been trained on non-emotional speech (Fr-2.7K-base is trained on
a subset of our medium set where spontaneous and emotional speech were removed and only read
speech was left). Also, since these models are not always better than MFB features when using a more
complex model, might show that even though SSL models are able to reach higher level information
than MFB, they struggle to extract information related to emotion. We should however highlight the
fact that pre-training of 3k models involved less than 1% emotional data (cf. Table 13). Moreover,
Fr-1k models, which also only use read speech (but using less data), perform mostly better than Fr-3k
and Fr-7k models, which were trained on data containing spontaneous and emotional speech. This
shows that by using more data to train SSL models, if mostly non-emotional, we cannot expect better
results for the task of emotion recognition. We also observe large variations of performance from
one SSL model to another, probably because AER is a very low resource task in this setting. It is
thus difficult to conclude on the effectiveness of our SSL models trained on French data compared
to the ones trained on multi-lingual or English data. Finally, task-specific pre-training attempts (not
reported here) were also made on RECOLA with Fr-3k models but in both self-supervised and ASR
based fine-tuning scenarios models did not converge. Further investigations are needed in order to
better understand this behavior.

6 Discussion

On societal and environmental impacts. As an increasing number of NLP papers discussed the
potential biases and harms of pre-trained language models and call for more careful design of datasets
[67], we set up our large speech corpus with the objective of limiting those in the shared SSL models.
First, our speech dataset is carefully documented with relevant metadata (see Table 1) so that it is
feasible to analyze the diversity of existing speech sources in terms of social contexts represented
(gender, accent, style). As far as gender balance is concerned, we did not manage to have an exact
parity in SSL data (our 1k and 3k models have 52% and 38% of female speakers respectively; bigger
7k model do not have enough gender metadata to allow a correct evaluation of gender balance) but
we believe the corpus is diverse enough as it was observed that ASR systems, for instance, are overall
robust to a certain degree of gender imbalance in the training data [68] (and our gender analysis for
ASR confirms this). Also it is worth mentioning that one corpus in our dataset (TCOF) may contain
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offensive speech but we believe this is not a problem as we only distribute the SSL models (not the
signal). License information is also displayed for all sub-corpora (see Table 1). As environmental
impact has been highlighted for NLP recently [69], we used for training SSL models the CNRS Jean
Zay supercomputer9 which is a low carbon data center situated in a low carbon area (France). In
particular, and following the carbon footprint methodology given in [70], we estimate that 270kg of
CO2 was emitted to train our largest 7K model. In comparison, GPT -3 may emit 10 Tons of CO2
while being trained in France (i.e. lower carbon rate than the USA) [71]. Sharing our seven models
mitigates this impact by alleviating multiple training from the community.

LeBenchmark We have set up a website10 for LeBenchmark with the aim to: (a) link to the pre-
trained models and scripts to reproduce experiments presented in this paper, (b) keep track, through a
Leaderboard, of future papers and results that would use our evaluation framework, and (c) support
contributions for other languages in order to grow LeBenchmark dynamically.

Takeaways After training our own SSL models for French, we evaluated them on 4 speech tasks (ASR,
SLU, AST, and AER). For all of them SSL models were beneficial with respect to conventional
filterbank of MFCC features. Tasks such as SLU improved drastically with SSL. We also observed
that low and medium resource tasks (SLU and AST) and simpler neural architectures (AER with
LinTh) benefited more from task-agnostic SSL features than high resource tasks (ASR). We verified
the impact of the language used for pre-training: French SSL models are better than multilingual or
English SSL models for ASR, SLU and AST in French. SSL architecture size also matters as large
models obtained the best performance compared to base ones for ASR, SLU and AST. Regarding
amount of SSL pre-training data, setting aside AER for which we observe a lot of variability, training
on 3k hours is beneficial compared to 1k but jumping further to 7k is less conclusive (i.e. improves
ASR and AST only, not SLU). As task-agnostic SSL pre-training already provides strong results, we
demonstrated that performance can be further improved using task specific pre-training: adding a
few iterations of self-supervised pre-training on task specific data allows to improve SLU and AST
performance. If transcribed speech is available, it is even better to fine-tune SSL models for ASR
on data of interest and then use the obtained model as feature extractor for a downstream task. This
worked well for SLU and AST and is, to our knowledge, the first time such a task-specific pre-training
is efficiently applied to non-ASR speech systems. Finally, while some SSL models were beneficial to
AER, this task needs more exhaustive and reliable evaluations to assess the real impact of SSL.

Limitations and future work We currently cover only French language but hope that contributions
for other languages would follow in order to grow LeBenchmark dynamically. A more fine-grained
analysis of the SSL models’ performance (beyond single average metric per sub-task) would be
also important to fully understand the pros and cons of each SSL model. Finally, as our collection
comes with reliable metadata, it should trigger future analysis works on speech SSL such as training
gender/style specific models and analyzing speech SSL biases.
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Appendix and Supplementary Material

A Appendix

A.1 Wav2Vec2.0 training behavior

In this Appendix, we report the losses on the development set of the MLS corpus obtained for our
different models. Models are stopped at 500.000 steps due to the lack of improvement observed when
trained for longer.

Figure 1: Evolution of the loss on the development set during the pre-training of the SSL models.

A.2 Architecture and Training details

A.2.1 ASR: Hybrid DNN-HMM

Model

The acoustic models (AM) have been trained trained on 40-dimensional high-resolution (hires) MFCC
features or SSL feature using the Kaldi toolkit with a state-of-the-art factorized time delay neural
network (TDNN-F) architecture [46, 47] on the ETAPE training corpus [44] only. For experiments in
this paper, the dimensions of SSL features extracted by ’small’ and ’large’ models are 768 and 1024
respectively. The models have 12 TDNN-F layers (1,024-dimensional, with projection dimension of
128) and a 3,432-dimensional output layer. 100-dimensional speaker i-vectors were appended to the
input features for all the models.

Training Strategy. The acoustic model was trained using lattice-free maximum mutual informa-
tion (LF-MMI) [72] and cross-entropy criteria. Speed and volume perturbation have been applied for
data augmentation [73]. We used a similar topology to train all systems with different types of input
features.

A.2.2 ASR: End-to-End models

Model The end-to-end system fed by 80-dimension log Mel filterbank (MFB) features is based on an
encoder/decoder architecture with attention: the encoder is a Convolutional Recurrent Deep Neural
Network (CRDNN: VGG + RNN + DNN), and the decoder is a joint CTC/Attention LSTM neural
network. For this ASR system, the neural network output corresponds to 500 byte pair encoding
(BPE) units [74] computed on the manual transcriptions of the respective training datasets. This
model is used to present baseline results from a system that does not use pretrained models.

When used with a pretrained Wav2Vec2.0 model, the end-to-end model is made of this Wav2Vec2.0
model with an additional hidden layer and an output layer on the top. The hidden layer has the same
dimension as the Wav2vec2.0 model output (i.e 768 for base models, 1024 for large ones.) The output
layer dimension depends on the number of characters in the training data (78 for CommonVoice, 60
for ETAPE).

Training Strategy No additional language model is used in these experiments, neither data augmen-
tation. To train (with supervision, by exploiting the manual transcriptions) the Wav2Vec2.0-based
end-to-end models, two disjoint Adam optimizers are applied: one to handle the Wav2Vec2.0 pre-
trained weights and another one to update the randomly initialized weights of the hidden and output
layers on the top of the model.
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A.2.3 SLU

Model The end-to-end SLU model used in this work is similar to the one proposed in previous works
[75, 76, 77, 9]. In particular we use a similar speech encoder employing a pyramidal hierarchy of
RNN layers like [78, 9]. The decoder has been also improved integrating two attention mechanisms:
one as usual for attending the encoder’s hidden states; the other for attending all previous decoder
prediction’s embeddings, instead of the previous prediction only like in the original LSTM-based
encoder-decoder models [58]. Our model is implemented using the Fairseq library [42].

Training Strategy We use a similar incremental training strategy as [77]. In particular we train
first only the encoder of our model for decoding tokens as an ASR model. In order to do so we
add a linear layer on top of the encoder which maps the hidden states into the output dictionary
size. We use the same dictionary for all symbols in our system. We can thus use the token-level
model to initialize parameters of an equivalent model which performs SLU by decoding all together
tokens, concepts and their boundaries. For instance, given a sequence of N tokens wj+1, ..., wj+N

instantiating a concept Ci in a sentence S = w1, ..., wM , we use special boundary markers boc
and eoc (for start and end of concept) for each concept, modifying the original sequence into
S = w1, ..., soc, wj+1, ..., wj+N , Ci, eoc, ..., wM . This output format has already been used in
previous work [79, 80], and it is needed for extracting concept values (or attribute values) together
with concepts (or attribute names), as described in [51, 53]. In this work we focus on concept
extraction only, we leave the concept value extraction phase for future work. The SLU model trained
for predicting the output described above has the same decoder as the token-level model used for
initializing its parameters, that is just a linear layer. This first SLU model is used for initializing
the parameters of our final SLU model, which has the same encoder, but uses the LSTM decoder
described in the previous paragraph. Our training strategy can thus be summarized in the following
3 steps, where the model trained at step i is initialized with parameters of the model trained at step
i− 1: (1) Encoder+Linear decoder (ASR), (2) Encoder+Linear decoder (SLU), (3) Encoder+LSTM
decoder (SLU).

Implementation details All models are learned with an Adam optimizer [81], initial learning rate
5e−5 which is shrinked by a factor of 0.98 at each training epoch, and batches of size 10 for the first
2 training steps (linear decoder), 5 for the last step (LSTM decoder). Models learn to minimize the
CTC loss [59], and we keep the models showing the best error rate on the development data. When
learning the final SLU models with a LSTM decoder, we start training with a small warm-up learning
rate which is increased linearly up to the initial learning rate during the first 2 epochs. We use this
strategy, together with regularization, to avoid catastrophic forgetting [82], as these model’s encoders
are initialized with a model already trained to perform SLU, as mentioned in the previous paragraph.
At the decoding phase we average the scores of the 5 best checkpoints on development data.

A.2.4 AST

Model We used a small Transformer [83] architecture having 6 layers of encoder, 3 layers of decoder,
and hidden dimension D = 256 in all experiments. Following previous work [84, 9], we inserted a
block of Linear-ReLU before convolutional layers in the speech encoder for parameter efficiency and
model performance reasons.

Implementation details Our experiments are performed using the FAIRSEQ S2T toolkit [85]. For
text pre-processing, we normalize the punctuation and build 1K unigram vocabularies using Senten-
cepiece [86] without pre-tokenization. Following common practice [85, 87], utterances having more
than 3000 frames are removed for GPU efficiency. All AST models are trained for 500 epochs using
the Adam optimizer [88] in which the learning rate is linearly increased for the first 10K warm-up
steps then decreased proportionally to the inverse square root of the step counter. The learning
rate for all experiments is set to 2× 10−3. We averaged the last 10 checkpoints and used beam
search with a beam size of 5 for decoding. The reported results are detokenized case-sensitive BLEU
computed using sacreBLEU [89]. As far as task specific pre-training is concerned, for self-supervised
fine-tuning (b) we continued training the SSL models on the task data from the last optimizer state
for an additional 20K steps. For ASR supervised fine-tuning (c), we used the same hyper-parameters
setup as proposed in the original wav2vec 2.0 paper for fine-tuning large models on 100 h of labeled
data. We then used the best checkpoints (fine-tuned on the pair fr-en) to extract features, which are
the inputs for the downstream AST models.
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Table 8: WER results by gender on the ETAPE test dataset for end-to-end ASR.

Features WER Male WER Female Relative WER difference between
Male and Female speakers, %

MFB 60.2 53.6 11.6

XLSR-53-large 60.1 57.4 4.6
En-large 44.3 39.3 12.0

Fr-3K-large 27.5 21.4 24.9

Table 9: WER results by gender on the ETAPE test dataset for hybrid ASR.

Features WER Male WER Female Relative WER difference between
Male and Female speakers, %

hires MFCC 32.0 20.9 21.0

XLSR-53-large 33.3 22.6 19.1
En-large 30.2 19.8 20.8

Fr-3K-large (task-agnostic pretraining) 29.7 17.7 25.3

Fr-3K-large (task-specific pretraining) 26.4 15.7 25.4

A.2.5 AER

Implementation details Training was achieved by Adam optimizer with 250 as the maximum
number of epochs; it was stopped after 15 epochs if no improvement over the development set was
observed. The loss (and evaluation metric) used here is Concordance Correlation Coefficient [64]
between model predictions and human annotations, as in [65, 66]. Sampling frequencies of different
features, which was 100 Hz for MFB and 50 Hz for the Wav2Vec models, are different from the
sampling frequencies of the annotations. Thus, during the training, we re-sampled the annotations
to match the sampling frequency of the features and for testing, we re-sampled the output of the
model to match the target annotation. Reported numbers on the paper are averaged results over three
different random seeds.

A.3 Additional Results for ASR

Tables 8 and 9 present the WER by gender reached by different ASR systems on the ETAPE test
dataset for end-to-end and hybrid ASR respectively. While in this dataset the WER is lower for
female speakers than for male speakers for each ASR system, the relative difference between the
results obtained on female voice and the ones obtained on male voices is higher with our Fr-3K-large
SSL model.

A.4 Additional Results for SLU

Table 10 reports ASR results on the MEDIA corpus. These ASR models have been used to initialize
parameters of basic SLU models with a linear decoder.

Table 11 reports significance test results with the bootstrap method of [49]. As named in the reference
paper, the values reported in the table are the Probability of improvement (Poi) of a system B over
a system A, they can be interpreted as 1−p-value. In the table system B are “Fr-3K-large SV” and
“Fr-7K-large SV”, the two best SLU systems in terms of Concept Error Rate (CER). Between the
two best systems, “Fr-7K-large SV” seems to be slightly better with a Poi of 0.78 over “Fr-3K-large
SV”. But a stronger computation intensive significance test [90, 91] shows that “Fr-7K-large SV”
and “Fr-3K-large SV” are in fact equivalent (p-value of 0.6 in both directions). The same test gave a
p-value < 0.01 in all the other cases, conforming that “Fr-7K-large SV” and “Fr-3K-large SV” are
indeed the two best models.
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Table 10: End-to-end ASR results on the MEDIA corpus (Word Error Rate %).

Features Dev Test
(from [9]) spectrogram 35.37 35.98
spectrogram 32.22 33.95

(a) Task agnostic pre-training
En-base 19.49 20.36
En-large 22.88 25.59
Fr-1k-base 21.74 23.90
Fr-1k-large 18.01 19,29
Fr-2.7k-base 14.23 15.40
Fr-3k-base 14.58 15.37
Fr-3k-large 11.05 11.87
Fr-7k-base 14.18 15.22
Fr-7k-large 10.62 11.55
XLSR-53-large 15.17 16.69

(b) Task specific pre-training (self-supervised on MEDIA)
Fr-3k-large 10.34 11.59
Fr-7k-large 10.65 11.25
XLSR-53-large 11.71 12.58

(c) Task specific pre-training (fine-tuned for ASR on MEDIA)
Fr-3k-large 9.21 10.29
Fr-7k-large 9.08 9.95
XLSR-53-large 10.63 11.45

Table 11: Significance tests with the bootstrap method [49] between the two best SLU models, in
terms of CER, with respect to all the other models. SS and SV in the table mean Self-supervised
(block (b)) and Supervised (block (c)) pre-training approaches, respectively.

Significance tests (Probability of improvement [49])
Fr-3K-large SV Fr-7K-large SV

Tested Model
Fr-2.7K-base 1.0 1.0
Fr-3K-base 1.0 1.0
Fr-3K-large 1.0 1.0
Fr-3K-large SS 1.0 1.0
Fr-3K-large SV - 0.78

Fr-7K-base 1.0 1.0
Fr-7K-large 1.0 1.0
Fr-7K-large SS 1.0 1.0
Fr-7K-large SV 0.21 -

XLSR53 1.0 1.0
XLSR53 SS 1.0 1.0
XLSR53 SV 1.0 1.0
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B Details of the corpora used in the paper

Table 12: Corpora/sub-corpora details (at download time). Click on the Corpus name to access its
web page.

*t=tokens, w=words, h=hours, min=minutes, sent=sentences, d=dialogues
Corpus (sub-
corpus) name

Identifier (ISLRN,
DOI...)

Size* Modality Dataset use License

African Ac-
cented French

SLR57 22 h speech, written SSL Apache 2.0

Allosat 37 h speech, written AER CC
Att-HACK SLR88 >300 sent speech, written SSL CC BY-NC-ND
CaFE 10.5281/zenodo.1478765 1 h speech, written SSL CC-BY-NC-SA

4.0
CFPP2000
(CEFC com-
plement)

20 h speech, written SSL CC BY-NC-SA
3.0

CommonVoice
fr_604h_2020-
06-22

604 h speech, written ASR CC 0

EPAC 483-703-007-740-8 1677 h speech, written SSL ELRA NC
ESLO
(ESLO2)

>400 h speech, written SSL CC BY-NC-SA
4.0

ETAPE 425-777-374-455-4 30 h speech, written ASR ELRA NC
GEMEP 0.9 h speech SSL academic only,

NC
MaSS ≈ 20 h speech, written SSL MIT License
MEDIA 699-856-029-354-6 1,258 d speech, written SLU ELRA NC
MLS (French) 1,096 h speech, written SSL CC BY 4.0
MPF 78 h speech, written SSL CC BY-NC-SA

4.0
mTEDx (fr-*) SLR100 25h - 50h speech, written AST CC BY-NC-ND

4.0
NCCFr 35 h Multimedia, written SSL academic only,

NC
Portmedia
(PM_DOM)

135-793-959-390-8 40.5 h speech, written SSL ELRA NC

RECOLA 9.5 h Multimedia, written AER End User License
Agreement

TCOF 146 h speech, written SSL CC BY-NC-SA
Voxpopuli un-
labeled

≈ 4.5k h speech SSL CC0

Voxpopuli tran-
scribed

≈ 215 h speech, written SSL CC0

21

https://www.openslr.org/57/
https://www.openslr.org/57/
https://lium.univ-lemans.fr/allosat/
http://www.openslr.org/88/
https://zenodo.org/record/1478765#.YR5ZlFs6-00
http://cfpp2000.univ-paris3.fr/index.html
http://cfpp2000.univ-paris3.fr/index.html
http://cfpp2000.univ-paris3.fr/index.html
https://commonvoice.mozilla.org/en/datasets
https://commonvoice.mozilla.org/en/datasets
https://commonvoice.mozilla.org/en/datasets
https://catalogue.elra.info/en-us/repository/browse/ELRA-S0305/
http://eslo.huma-num.fr/index.php
http://eslo.huma-num.fr/index.php
https://catalogue.elra.info/en-us/repository/browse/ELRA-E0046/
https://www.unige.ch/cisa/gemep
https://github.com/getalp/mass-dataset
https://catalogue.elra.info/en-us/repository/browse/ELRA-S0272/
http://www.openslr.org/94/
https://www.ortolang.fr/market/corpora/mpf
http://www.openslr.org/100
https://mirjamernestus.nl/Ernestus/NCCFr/index.php
https://catalogue.elra.info/en-us/repository/browse/ELRA-S0371/
https://catalogue.elra.info/en-us/repository/browse/ELRA-S0371/
https://diuf.unifr.ch/main/diva/recola/download.html
https://www.ortolang.fr/market/corpora/tcof?path=%2FCorpus%2FAdultes
https://github.com/facebookresearch/voxpopuli
https://github.com/facebookresearch/voxpopuli
https://github.com/facebookresearch/voxpopuli
https://github.com/facebookresearch/voxpopuli


C Description of the corpora used in the paper

Table 13: Corpora description.
Corpus name Description Used subcorpus

(if existing)

African
Accented
French[28]

Recordings of African Accented French speech.

Allosat [63] The corpus is composed of real-life call center conversations in French
and is continuously annotated in frustration and satisfaction.

Att-HACK [29] This data is acted expressive speech in French, 100 phrases with multiple
versions (3 to 5) in four social attitudes : friendly, distant, dominant and
seductive.

CaFE [30] The Canadian French Emotional (CaFE) speech dataset contains six
different sentences, pronounced by six male and six female actors, in
six basic emotions plus one neutral emotion. The six basic emotions are
acted in two different intensities.

CFPP2000 [31] Interviews in Paris and its suburb. Files not included in the CEFC corpus
v2.1, 02/2021.

All CFPP2000
files not in CEFC
corpus v2.1,
02/2021

CommonVoice
[45]

It is a massively-multilingual collection of read sentences. French:
fr_604h_2020-
06-22

EPAC [44] Conversational speech in French broadcast news. Sub-part from the
ESTER Evaluation Campaign (ELRA-E0021).

ESLO [32] Contains two subcorpora: ESLO1 + ESLO2 (telephone dialogues, public
meetings, etc).

ESLO2

ETAPE [33] Consists of French radio and TV data, selected to include mostly non
planned speech and a reasonable proportion of multiple speaker data.

GEMEP [34] Audio and video recordings featuring 10 actors portraying 18 effective
states, with different verbal contents and different modes of expression.

MaSS [39] The Multilingual corpus of Sentence-aligned Spoken utterances has eight
languages, and it is made of audio books from the new testament of the
Bible.

French

MEDIA [55] A corpus simulating a vocal tourist information server by a Wizard of
Oz system.

MLS [27] A large multilingual corpus derived from LibriVox audio books. French
MPF [35] Open corpus, created to study the evolution of French language, the

growing of a vernacular language, and the effects of the contacts with
immigration languages on French.

mTEDx [60] The corpus is a collection of audio recordings from TEDx talks in 8
source languages.

fr-en, fr-es, and fr-
pt

NCCFr [40] Corpus composed of filmed casual speech conversations between friends.
Portmedia [37] Human-machine interaction, using the Wizard of Oz technique. Two

sub-corpora: PM_LANG: dialogues about tourism in Italian. PM_DOM:
dialogues about festival ticket booking in French.

PM_DOM

RECOLA [62] Audio, visual, and physiological recordings of online dyadic interac-
tions between French speaking participants, who were solving a task in
collaboration.

TCOF [38] "Children" sub-corpus : interactions between adults and children (up to
7 years old). "Adults" sub-corpus : interactions between adults.

Adults

Voxpopuli [92] This data was collected from 2009-2020 European Parliament event
recordings.

French unla-
beled + French
transcribed
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Table 14: The Machine Learning Reproducibility Checklist, version 1.2
*Possible answers: Yes, No, Not applicable.

Status* To do Comment
For all models and algorithms presented, check if you
include:

Not applicable A clear description of the mathematical setting, algorithm,
and/or model.

Not applicable An analysis of the complexity (time, space, sample size)
of any algorithm.

Yes A link to a downloadable source code, with specification
of all dependencies, including external libraries.

https://github.com/
LeBenchmark/NeurIPS2021

For any theoretical claim, check if you include:
Not applicable A statement of the result.
Not applicable A clear explanation of any assumptions.
Not applicable A complete proof of the claim.

For all figures and tables that present empirical re-
sults, check if you include:

Not applicable A complete description of the data collection process,
including sample size.

The paper does not report a dataset
collection.

Yes A link to a downloadable version of the dataset or simula-
tion environment.

The link to all datasets used in the
paper is provided Table 12.

Yes An explanation of any data that were excluded, description
of any pre-processing step.

The pre-processing steps are sum-
marized in section 3.

Yes An explanation of how samples were allocated for training
/ validation / testing.

For all Task, we use the standard par-
titioning as provided in the datasets.
Further information can be found in
appendix A.2.

Yes The range of hyper-parameters considered, method to
select the best hyper-parameter configuration, and specifi-
cation of all hyper-parameters used to generate results.

In appendix A.2, the reader can find
which hyper-parameters were con-
sidered and how their value has beeb
chosen. The main reference is the
provided github code.

Yes The exact number of evaluations runs.
Yes A description of how experiments were run.
Yes A clear definition of the specific measure or statistics used

to report results.
Standard, sufficiently well-known,
evaluation metrics (WER, CER,
BLEU, and CCC) were used.

Yes Clearly defined error bars. Given that several different tasks
were used with different measure,
we used different methods to assess
the robustness of the results (con-
fidence interval, significance test).
These are described in their respec-
tive task subsection.

Yes A description of results with central tendency (e.g. mean)
and variation (e.g. stddev).

Most result tables provide the global
score as well as its variation either
in the form of stddev or CI.

Yes A description of the computing infrastructure used. The supercomputer used is men-
tioned with an hyperlink providing
all the necessary details.

23

https://github.com/LeBenchmark/NeurIPS2021
https://github.com/LeBenchmark/NeurIPS2021

	Introduction
	Background
	Gathering a Large and Heterogeneous Speech Collection in French
	Training and Sharing SSL Models
	Benchmarking SSL Models 
	Automatic Speech Recognition (ASR)
	Spoken Language Understanding (SLU)
	Automatic Speech-to-text Translation (AST)
	Automatic Emotion Recognition (AER)

	Discussion
	Acknowledgements
	Appendix
	Wav2Vec2.0 training behavior
	Architecture and Training details
	ASR: Hybrid DNN-HMM
	ASR: End-to-End models
	SLU
	AST
	AER

	Additional Results for ASR
	Additional Results for SLU

	Details of the corpora used in the paper
	Description of the corpora used in the paper
	The Machine Learning Reproducibility Checklist (Ver 1.2, Mar.27 2019)

