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1 Balancing value of target error bound

In this work, we assume that a target error bound is given which satisfies the form

εT (gα ◦ ϕα) ≤ D(α) + E(α) (1)

such that (a) α 7→ E(α) is continuous and bounded by some constant B > 0, (b) α 7→ D(α) ≥ 0

is continuous, non-increasing and non-degenerate, i.e. D(0) > 0 and (c) limα→∞
D(α)
D(0) <

supα∈[0,∞)
E(α)
B . Under these assumptions, the balancing value α∗ which achieves

D(α∗)

D(0)
=

E(α∗)

B
(2)

exists, where E(α) refers to the least non-decreasing majorant of E(α).

Definition 1 (Least non-decreasing majorant [1]). The least non-decreasing majorant of E(α) is
given by E(α) := supβ∈[0,α] E(β).

Interestingly, the terms D(α∗) and D(α∗) +E(α∗) evaluated at the balancing value α∗ are only a
constant factor away from the minimizer infα∈[0,∞) D(α) + E(α).

Lemma 0. If infα∈[0,∞) D(α) + E(α) is achieved, then

D(α∗) ≤ max

{
D(0)

B
, 1

}
inf

α∈[0,∞)
D(α) + E(α) (3)

D(α∗) + E(α∗) ≤ 2max

{
D(0)

B
,

B

D(0)

}
inf

α∈[0,∞)
D(α) + E(α) (4)
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Lemma 0 proves, under certain assumptions, the optimality of the target error rate for the model
gα∗ ◦ϕα∗ . More precisely, Eq. (4) implies that the error εT (gα∗ ◦ϕα∗) is only a constant factor away
from the optimum infα∈[0,∞) εT (gα ◦ϕα) if, it exists, E(α) is non-decreasing and Eq. (1) holds with
equality.

Proof. Denote by αopt ∈ [0,∞) the value achieving the infimum of D(α) + E(α). If αopt ≤ α∗,
then the definition of α∗ and assumption (b) imply

E(α∗)
D(0)

B
≤ D(α∗) ≤ D(αopt) ≤ inf

α∈[0,∞)
D(α) + E(α) (5)

If αopt > α∗ then the definition of α∗ and Definition 1 imply

D(α∗)
B

D(0)
≤ E(α∗) ≤ E(αopt) ≤ inf

α∈[0,∞)
D(α) + E(α) (6)

Combining Eq. (5) and Eq. (6) for D(α∗) gives

D(α∗) ≤ max

{
D(0)

B
, 1

}
inf

α∈[0,∞)
D(α) + E(α) (7)

Combining Eq. (5) and Eq. (6) for E(α∗) gives

E(α∗) ≤ max

{
B

D(0)
, 1

}
inf

α∈[0,∞)
D(α) + E(α) (8)

Summing Eq. (7) and Eq. (8) yields

D(α∗) + E(α∗) ≤ max

{
D(0)

B
, 1

}
inf

α∈[0,∞)
D(α) + E(α)

+ max

{
B

D(0)
, 1

}
inf

α∈[0,∞)
D(α) + E(α)

≤ 2max

{
B

D(0)
,
D(0)

B

}
inf

α∈[0,∞)
D(α) + E(α)

2 Criterion for approximating the balancing value

Recall that we assume that the target cross-errors satisfy some concentration inequality

|εT (f, g)− ε̂T (f, g)| ≤ ηt,F,δ (9)

which holds with probability at least 1− δ uniformly over all f, g ∈ F for some ηt,F,δ ∈ R such that
ηt,F,δ → 0 for t → ∞. The main criterion used to define the balancing principle is as follows.
Lemma 1. Let δ ∈ (0, 1), α, β ∈ [0,∞) and denote by fα := gα ◦ ϕα. If 0 ≤ α ≤ β ≤ α∗ then the
following holds with probability at least 1− δ:

ε̂T (fα, fβ) ≤ D(α)

(
2 +

2B

D(0)

)
+ ηt,G,δ (10)

Proof of Lemma 1. The following inequalities are all to be understood to hold with probability at
least 1− δ. For all α ≤ β ≤ α∗, Eq. (9) and the triangle inequality give

ε̂T (fα, fβ) ≤ εT (fα, fβ) + ηt,G,δ
≤ εT (fα) + εT (fβ) + ηt,G,δ

Using the instantiation bound of the balancing principle in Eq. (1) further implies that

ε̂T (fα, fβ) ≤ D(α) + E(α) +D(β) + E(β) + ηt,G,δ
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Figure 1: The proof of Lemma 1 is based on the monotonicity of D(α)
D(0) (green) and the monotonicity

of the least non-decreasing majorant E(α)
B (red dashed) of E(α)

B (red).

Definition 1 of the least non-decreasing majorant gives

ε̂T (fα, fβ) ≤ D(α) + E(α) +D(β) + E(β) + ηt,G,δ

Finally, we follow [2] and use the monotonicity of D and E to obtain

ε̂T (fα, fβ) ≤ D(α) +
BD(α)

D(0)
+D(β) +

BD(β)

D(0)
+ ηt,G,δ

≤ D(α)

(
2 +

2B

D(0)

)
+ ηt,G,δ

Figure 1 provides a helpful illustration for the last two steps.

3 Generalization guarantee for balancing principle estimate

Our main theorem is stated as follows.
Theorem 1. Let δ ∈ (0, 1) and α1, . . . , αw ∈ [0,∞), α1 = 0 be an increasing sequence such that

D(αl) ≤ q ·D(αl+1) (11)

for all l ∈ {1, . . . , w − 1} and some q > 1. Then, with probability at least 1− δ

εT (gαBP
◦ ϕαBP

) ≤ D(α∗)

(
3 +

3B

D(0)

)
q + ηt,G,δ (12)

The following proof of Theorem 1 follows arguments from the principle of balancing stability and
approximation in the theory of regularized ill-posed inverse problems. See Theorem 1 in [3] for a
similar application to the adaptive choice of parameters in kernel regression.

Proof of Thm. 1. Let us denote by

ᾱ := max

{
αi

∣∣∣∣ E(αi)

B
≤ D(αi)

D(0)
, i ∈ {1, . . . , w}

}
and by fα := gα ◦ ϕα. From Eq. (10) we obtain for all j ∈ {1, . . . , w} such that αj ≤ ᾱ ≤ α∗ with
probability at least 1− δ

εT (fαj , fᾱ) ≤ D(αj)

(
2 +

2B

D(0)

)
+ ηt,G,δ. (13)

Note that ᾱ ∈ {α1, . . . , αw} and that αBP is the maximum of all αi ∈ {α1, . . . , αw} satisfying

εT (fαi
, fαj

) ≤ D(αj)

(
2 +

2B

D(0)

)
+ ηt,G,δ (14)
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for all j ∈ {1, . . . , i− 1}. It follows that ᾱ ≤ αBP. Moreover, with probability at least 1− δ,

εT (fαBP
) ≤ εT (fαBP

, fᾱ) + εT (fᾱ)

≤ D(ᾱ)

(
2 +

2B

D(0)

)
+ ηt,G,δ + εT (fᾱ)

≤ D(ᾱ)

(
2 +

2B

D(0)

)
+ ηt,G,δ +D(ᾱ) + E(ᾱ)

≤ D(ᾱ)

(
2 +

2B

D(0)

)
+ ηt,G,δ +D(ᾱ) +B

D(ᾱ)

D(0)

= D(ᾱ)

(
3 +

3B

D(0)

)
+ ηt,G,δ

where we used the triangle inequality and Lemma 1 to prove the first two inequalities, followed by
Eq. (1) and the same monotonicity argument as used in the proof of Lemma 1, see also Figure 1.

Finally, let l be such that ᾱ =: αl ≤ α∗ ≤ αl+1. Since D is non-increasing, we obtain qD(α∗) ≥
qD(αl+1) and, by assumption, qD(αl+1) ≥ D(αl) = D(ᾱ). The final inequality is shown by
recalling that ᾱ ≤ α∗.

4 MiniDomainNet dataset

The parameter selection methods for domain adaptation require to train several models with various
parameters. Furthermore, evaluation of such methods include applying various domain adaptation
techniques, which results in high computational demand when using large-scale datasets. In order to
reduce the computational resources needed in this area, while keeping the difficulty of working with
high-resolution images, and working on a problem with several domains, we fork a smaller version
of the DomainNet dataset [4], which we call the MiniDomainNet dataset. MiniDomainNet makes
research on the area of parameter selection for domain adaptation more accessible, by significantly
reducing the computational needs, while providing a challenging, and sufficiently-large test bed for
evaluating deep models.

The DomainNet dataset consists of approximately 0.6 million images divided into 6 domains (Quick-
draw, Real, Clipart, Sketch, Infograph, and Painting), with each domain having 345 classes. The
average count of images of DomainNet in each class, and across all domains is approx. 288. We
curate the MiniDomainNet dataset from the DomainNet dataset as follows. We select the top-five
largest classes in the training set of DomainNet, based on the highest average image-count per class
across all domains. This selection process will result in a dataset with the largest amount of training
data per class, which is ideal for training deep models.

In our experiments with MiniDomainNet, we follow a recommendation in [4], that uses a combined-
source setting. To define our domain adaptation tasks, we select 5 out of the 6 domains and combine
them into our combined source dataset. We use the remaining domain as our target dataset. By
permuting all source combinations, we then define 6 domain adaptation tasks, which we refer to as
combined-source datasets (CS, as denoted in Table 5).

In addition to providing the MiniDomainNet, we further address an issue regarding the currently
available version of the DomainNet dataset. During our development process, we found that 10 files
from the class 327 (t-shirt) in the painting domain sub-set, were missing in the file list of the training
set (painting_train.txt). We provide a fix for this issue in our source code, by inserting the
missing class references and their corresponding files. The fix can be found in the source code, in
dataloaders/domainnet.py.

5 Extended empirical evaluations

In this section, we provide details of our training setup, the computational resources used to conduct
the experiments, the model selection procedures, and, our evaluation results.

4



5.1 Details for training

Transformed Moons On the Transformed Moons dataset, we use a feed-forward network with
two fully-connected layers, with 16 nodes each, followed by ReLU non-linearity. The network is
optimized by Adam [5] optimizer for 250 epochs, with β1 = 0.9, β2 = 0.999, and the initial learning
rate of 0.01, using a MultiStep scheduler which halved the learning rate in epochs 50, 100, and 150.
To train proxy-A classifiers (required in [6]), we use 1 fully-connected layer with 16 nodes; and are
trained with Adam optimizer for 200 epochs, with β1 = 0.9, β2 = 0.999, and an initial learning rate
of 0.01, and a MultiStep scheduler halving learning rate on epochs 50, 100, 150.

Amazon Reviews For Amazon Reviews, we follow [7] and use a feed-forward network three
fully-connected layers, with 100 nodes each, and sigmoid non-linearity. The optimizer, learning
rate, and scheduler are the same as in the Transformed Moons experiments (see above). We train
each model for CMD and MMD experiments for 50 epochs and for DANN for 500. To estimate
the G△G-divergence, we follow [7] and train a classifier for separating the source sample and the
target sample. In particular we apply 2 fully-connected layers with 100 nodes each and use the
Adam optimizer for 200 epochs, with β1 = 0.9, β2 = 0.999, the initial learning rate of 0.01, and, a
MultiStep scheduler halving learning rate on epochs 50, 100, 150.

MiniDomainNet Following the pre-trained setup from [4], we use a frozen ResNet-18 backbone
model which was trained on ImageNet [8], and operate subsequent computations on the 512 dimen-
sional extracted features. To alleviate overfitting effects on pre-computed features, we perform data
augmentation on each batch and forward the images through the backbone each time. We incorporate
zero padding before resizing the images to 256× 256 to avoid image distortions. Following the guid-
ance for data augmentation techniques from [9], we perform random resized cropping to 224× 224
with a random viewport between 70% and 100% of the original image, random horizontal flipping,
color jittering of 0.25% on each RGB channel, and a ±2 degree rotation. After the ResNet-18
backbone output, we add several projection layers, and define the domain adaptation layers on which
we use the domain adaptation methods to align the representations. The first layers are defined
as a common architecture across the different domain adaptation methods. Additional layers are
further added for the classification networks, according to the requirements of the individual domain
adaptation methods in CMD or MMD. The number of layers/neurons in the upper layers of our
architecture have been tuned in order to achieve the best performance in the source-only setup. See
Table 1 for a detailed description of the architecture used. We perform experiments on all 6 domain
adaptation tasks as defined in 5.4 for each of the previously listed methods. All methods have been
trained for 50 epochs with Adam optimizer, an initial learning rate of 0.001, β1 = 0.9, β2 = 0.999,
and a MultiStep learning rate scheduler, halving the learning rate after 15 and 35 epochs.

To apply the balancing principle, we require the training of an additional MDD classifier, see [10]),
using the features of the adaptation layer from CMD and MMD, which is further used to calculate
the MDD distance. The architecture of the MDD classifier is listed in Table 2. The MDD classifiers
are trained with Adam optimizer, initial learning rate of 0.0001, and a MultiStep scheduler halving
the learning rate after 15 and 25 epochs, and in total we run them for 35 epochs. For selecting the
disparity parameters we followed the guidance from [11], and set γ = 1.1 in the MDD training loss,
and ρ = 0 for calculating the MDD distance employed in BPDA.

5.2 Details for computational resources and source code

In experiments on Transformed Moons and Amazon Reviews, we used two HPC stations with in total
8xNVIDIA TITAN RTX 24GB, 4xIntel Xeon Scalable Processors Skylake Gold 6130 (2.10 GHz)
and Ubuntu 18.04. All methods have been implemented in python using the Pytorch library [12]. We
use Scikit-learn library [13] for evaluation measures and toy datasets, and the TQDM library [14],
and Tensorboard [15] for keeping track of the progress of our experiments.

5.3 Details for model selection

Transformed Moons and Amazon Reviews IWV [16], DEV [11], and BPDA are used to choose
the best parameter α ∈ {0, 10−6, 10−5, . . . , 103, 104}, for three different distance-regularized do-
main adaptation methods, namely DANN [7], MMD [17, 18] and CMD [19]. The Transformed
Moons and Amazon Reviews datasets contain only 2 classes; hence, BPDA is employed using the
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Table 1: Architectural listing of all layers for training on the MiniDomainNet dataset.

Common Architecture
Layers Values

Backbone Output Layer ResNet-18 (Adaptive Average Pooling Layer) 512

Projection Layers Fully-connected Layer 1024
Batch Normalization 1D Layer
ReLU
Fully-connected Layer 1024
Batch Normalization 1D Layer
ReLU Activation
Dropout Layer 0.5
Fully-connected Layer 1024
Batch Normalization 1D Layer
ReLU Activation
Dropout Layer 0.5
Fully-connected Layer 1024
Batch Normalization 1D Layer
ReLU Activation
Dropout Layer 0.5

Adaptation Layers Fully-connected Layer 512
Batch Normalization 1D Layer
ReLU Activation
Dropout Layer 0.5
Fully-connected Layer 512
Batch Normalization 1D Layer
ReLU Activation

CMD
Class Output Layer Fully-connected Layer 5

MMD
Class Output Layer Fully-connected Layer 5

Table 2: MDD classifier architecture for CMD and MMD.

MDD Classifier
Layers Values

Backbone Output Layer CMD/MMD-Method Adaptation Layer 512

Projection Layers Fully-connected Layer 512
Batch Normalization 1D Layer
ReLU

Class Output Layer Fully-connected Layer 5

bound introduced in [6]. All the methods (DANN, MMD and CMD) are repeated 10 times for each
parameter α. The if-statement in the BPDA in Algorithm 1 is considered violated, if there is a
violation of the statement for at least one of the repetitions. For a fair comparison, the evaluations of
IWV and DEV are also based on 10 repetitions. More precisely, for IWV and DEV, we choose the pa-
rameter with the lowest average importance weighted risk and lowest average DEV-risk, respectively,
where the average is computed over all 10 repetitions.

MiniDomainNet IWV, DEV, and BPDA are used to choose the best parameter α ∈
{0, 10−3, 10−2, 10−1, 1, 10}, for two different distance-regularized domain adaptation methods,
namely MMD, and CMD. Since the MiniDomainNet dataset contains 5 classes, we use the bound
proposed in [10] to instantiate the BPDA. The training procedure is the same as for Transformed
Moons and Amazon Reviews.
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Figure 2: Average and standard deviation over 10 repetitions of estimated learning errors E
(in unsupervised domain adaptation unknown) and the domain distance D of the accompanying
target error bound [6] for distance-regularized domain adaptation models with the Maximum Mean
Discrepancy [20] (left) and the Central Moment Discrepancy (right).

5.4 Results

This section provides empirical evidence for the compliance of the empirical settings with our
assumptions made in Section 4.1 of the main document, and, gives results on the three aforementioned
datasets, comparing our approach with the state of the art in parameter selection for domain adaptation.

Verification of assumptions Figure 2 shows the behaviour of the curves D(α)/D(0), E(α)/B and
E(α)/B for the two methods CMD and MMD and the Transformed Moons dataset. The following
observations can be made.

• E is bounded, the mean curves of D(α) tend to be non-increasing and the technical assump-
tion D(α)/D(0) < supα∈[0,∞)

E(α)/B is satisfied for α ≥ 103. That is, the mean curves tend
to follow the assumptions.

• The mean curves E and E tend to be similar. That is, the risk which is described in the main
document when considering label shift, does not apply.

• The average parameters chosen by the balancing principle (see αBP in Figure) are the
maximum values for which the mean curves of E(α)/B are smaller than the mean curves of
D(α)/D(0). That is, the BPDA described in Algorithm 1 tends to perform as expected.

• There is a small trend towards a violation of the monotonicity assumption for D in the right
sub-figure for CMD. However, the BPDA is (on average) robust w.r.t. this violation as it
picks nearly the optimal value. The corresponding numbers can be found in Table 2.

Transformed Moons The results are provided in Table 3. It can be observed that BPDA achieves
the lowest average classification error among all methods, over all domain adaptation techniques.

Table 3: Average target classification error (and standard deviation) for different regularization param-
eter choices on the Transformed Moons dataset. 10 repetitions with different random initialization of
model weights are used to estimate the importance weighted risk, the DEV risk and the BPDA. The
BPDA is computed using the bound in [6].

Method SO IWV DEV BPDA TB

MMD 0.205 (±0.025) 0.199 (±0.031) 0.339 (±0.065) 0.157 (±0.069) 0.157 (±0.069)
DANN 0.177 (±0.032) 0.177 (±0.032) 0.169 (±0.075) 0.115 (±0.098) 0.115 (±0.098)
CMD 0.205 (±0.026) 0.198 (±0.022) 0.190 (±0.051) 0.185 (±0.039) 0.181 (±0.038)

Avg. 0.196 (±0.028) 0.191 (±0.028) 0.232 (±0.064) 0.152 (±0.069) 0.151 (±0.068)

Amazon Reviews Table 4 shows the results of three model selection methods IWV, DEV, and
BPDA which are used to choose the best parameter α in the sequence of 0, 10−6, 10−5, . . . , 103, 104,
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for three different distance-regularized domain adaptation methods, namely DANN, MMD, and CMD.
The 4 domains contained in Amazon Reviews are denoted in the tables as: books (B), DVDs (D),
electronics (E), and kitchen appliances (K). As can be seen, our method achieves the lowest averaged
classification error across all tasks using the MMD method. These results are consistent across all
domain adaptation techniques.

MiniDomainNet Table 5 shows the results of the three model selection methods IWV, DEV,
and BPDA. We omitted the experiments with DANN on the MiniDomainNet dataset due to our
computational limits. The 6 domains in the MiniDomainNet are denoted in the tables as: Quickdraw
(Q), Real (R), Sketch (S), Clipart (C), Infograph (I), and Painting (P). Since the source domain is
always a combination of all the other domains except the target, we refer to the source as Combined
Source (CS). As can be seen, our method achieves the lowest averaged classification error across all
tasks using the CMD method. When using MMD, the three parameter selection methods perform
very similar on average, with BPDA and DEV achieving the lowest average error across all tasks.

6 Discussion of risks and limitations

A constructive discussion with anonymous reviewers resulted in the following list of risks and
limitations of the proposed BPDA method.

Label shift In this work, we do not assume a unique labeling function lS = lT for source and target
domain (covariate shift assumption), but lS and lT should be similar. In fact, even if the labeling
functions are different lS ̸= lT , the balancing value α∗ can be well estimated by the balancing
principle estimate αBP as proven by Lemma 1. However, the quality of the balancing value α∗ itself
can be negatively affected by excessive label shift. For example, the function E can first increase
strongly and then decrease (caused by label shift) which implies an increasing difference between
E(α) and E(α) for increasing α. In such situations, the target error of the model gα∗ ◦ ϕα∗ can be
high and consequently also the one of the model gαBP

◦ ϕαBP
identified by the BPDA. However, note

that our experiments (see also Figure 2) indicate similar values for E and E.

Loose instantiation bound Our model is agnostic w.r.t. the property that different target error
bounds can be chosen as a basis. However, it is known in inverse problem literature [21, 3] that a
loose bound can lead to a low performance of the balancing principle which also holds for the BPDA.
This problem can be approached by choosing target error bounds that take into account the specific
domain shift situation, e.g. the bound [22] is suitable for general domain shift scenarios.

Low performance of all models Situations exist which hinder distance-regularized domain adap-
tation methods to perform well. One such situation is excessive label shift as discussed above, see
also [23] and references therein. Such scenarios can cause all models f1, . . . , fw to be inaccurate or
unstable. The BPDA will select a model fi ∈ {f1, . . . , fn} with low target error εT (fi) compared to
other models in the set {f1, . . . , fn}. Nevertheless, in such situations, fi might have a high target
error εT (fi) or it might be unstable. As a solution, distance-regularized domain adaptation methods
can be applied with modifications, see e.g. [22, 24, 25, 26].

Focus on weight parameter Our theoretical guarantees and the high empirical performance come
at the cost of focusing the selection process on the distance-penalizing parameter α. This is in contrast
to other model selection methods, such as [16, 11, 27, 28, 29], which can select different types of
parameters. This limitation can be approached by employing ideas from multipenalty regularization
of inverse problems to combine the BPDA with related approaches [30]. One approach is to explore
a grid of admissible values of several parameters by applying the balancing principle with respect
to one of them and allowing others to take all corresponding grid values. As the result of such an
application, one obtains a much reduced set of parameter combinations of interest and one can apply
the balancing principle or related approaches w.r.t. the other parameters. See e.g. [31] for a recent
application of this approach.
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Table 4: Average target classification error (and standard deviation) for different regularization
parameter choices on the Amazon Reviews dataset. 10 repetitions with different random initialization
of model weights are used to estimate the importance weighted risk, the DEV risk and the BPDA.
The BPDA is computed using the bound in [6].

MMD
Task SO IWV DEV BPDA TB

B→D 0.225 (±0.004) 0.190 (±0.004) 0.211 (±0.005) 0.190 (±0.004) 0.190 (±0.004)
B→E 0.307 (±0.010) 0.307 (±0.010) 0.211 (±0.005) 0.221 (±0.008) 0.206 (±0.012)
B→K 0.266 (±0.004) 0.185 (±0.009) 0.266 (±0.004) 0.185 (±0.009) 0.185 (±0.009)
D→B 0.278 (±0.008) 0.240 (±0.007) 0.268 (±0.006) 0.243 (±0.006) 0.230 (±0.007)
D→E 0.273 (±0.004) 0.273 (±0.007) 0.249 (±0.007) 0.207 (±0.004) 0.189 (±0.008)
D→K 0.266 (±0.004) 0.266 (±0.004) 0.197 (±0.006) 0.197 (±0.006) 0.187 (±0.007)
E→B 0.306 (±0.003) 0.306 (±0.003) 0.310 (±0.007) 0.295 (±0.013) 0.282 (±0.014)
E→D 0.307 (±0.007) 0.285 (±0.006) 0.288 (±0.009) 0.264 (±0.016) 0.255 (±0.020)
E→K 0.162 (±0.004) 0.145 (±0.003) 0.193 (±0.004) 0.145 (±0.003) 0.145 (±0.003)
K→B 0.337 (±0.007) 0.337 (±0.007) 0.334 (±0.006) 0.290 (±0.010) 0.261 (±0.010)
K→D 0.293 (±0.005) 0.294 (±0.007) 0.306 (±0.007) 0.268 (±0.010) 0.235 (±0.014)
K→E 0.167 (±0.002) 0.169 (±0.004) 0.167 (±0.002) 0.169 (±0.004) 0.145 (±0.002)

Avg. 0.266 (±0.005) 0.249 (±0.005) 0.250 (±0.005) 0.223 (±0.008) 0.209 (±0.009)

DANN
Task SO IWV DEV BPDA TB

B→D 0.228 (±0.003) 0.220 (±0.011) 0.509 (±0.001) 0.233 (±0.053) 0.220 (±0.011)
B→E 0.322 (±0.009) 0.327 (±0.007) 0.498 (±0.000) 0.313 (±0.081) 0.235 (±0.017)
B→K 0.276 (±0.003) 0.296 (±0.010) 0.272 (±0.013) 0.247 (±0.103) 0.219 (±0.023)
D→B 0.290 (±0.006) 0.290 (±0.009) 0.253 (±0.045) 0.253 (±0.045) 0.245 (±0.008)
D→E 0.284 (±0.004) 0.274 (±0.003) 0.299 (±0.007) 0.252 (±0.084) 0.221 (±0.013)
D→K 0.270 (±0.004) 0.300 (±0.006) 0.303 (±0.007) 0.217 (±0.008) 0.217 (±0.008)
E→B 0.312 (±0.005) 0.310 (±0.005) 0.312 (±0.005) 0.372 (±0.056) 0.310 (±0.005)
E→D 0.317 (±0.007) 0.313 (±0.006) 0.313 (±0.006) 0.327 (±0.075) 0.277 (±0.031)
E→K 0.170 (±0.004) 0.170 (±0.004) 0.170 (±0.004) 0.172 (±0.011) 0.170 (±0.004)
K→B 0.345 (±0.006) 0.337 (±0.006) 0.338 (±0.017) 0.314 (±0.053) 0.314 (±0.053)
K→D 0.313 (±0.003) 0.360 (±0.005) 0.360 (±0.005) 0.298 (±0.053) 0.296 (±0.019)
K→E 0.174 (±0.002) 0.183 (±0.003) 0.221 (±0.004) 0.194 (±0.057) 0.172 (±0.010)

Avg. 0.275 (±0.005) 0.282 (±0.006) 0.321 (±0.010) 0.266 (±0.057) 0.241 (±0.017)

CMD
Task SO IWV DEV BPDA TB

B→D 0.230 (±0.011) 0.193 (±0.006) 0.231 (±0.007) 0.193 (±0.006) 0.193 (±0.006)
B→E 0.319 (±0.013) 0.309 (±0.010) 0.308 (±0.009) 0.218 (±0.011) 0.218 (±0.011)
B→K 0.269 (±0.005) 0.230 (±0.007) 0.269 (±0.006) 0.186 (±0.010) 0.186 (±0.010)
D→B 0.290 (±0.015) 0.258 (±0.009) 0.245 (±0.008) 0.228 (±0.006) 0.228 (±0.006)
D→E 0.280 (±0.009) 0.267 (±0.007) 0.280 (±0.006) 0.203 (±0.007) 0.203 (±0.007)
D→K 0.264 (±0.004) 0.194 (±0.006) 0.194 (±0.006) 0.194 (±0.006) 0.194 (±0.006)
E→B 0.314 (±0.009) 0.307 (±0.006) 0.302 (±0.005) 0.279 (±0.010) 0.279 (±0.010)
E→D 0.320 (±0.020) 0.287 (±0.006) 0.287 (±0.006) 0.258 (±0.014) 0.258 (±0.014)
E→K 0.174 (±0.013) 0.152 (±0.005) 0.169 (±0.006) 0.139 (±0.005) 0.139 (±0.005)
K→B 0.346 (±0.022) 0.264 (±0.007) 0.331 (±0.006) 0.264 (±0.007) 0.264 (±0.007)
K→D 0.314 (±0.013) 0.248 (±0.006) 0.248 (±0.006) 0.248 (±0.006) 0.248 (±0.006)
K→E 0.178 (±0.007) 0.147 (±0.004) 0.178 (±0.007) 0.147 (±0.004) 0.147 (±0.004)

Avg. 0.275 (±0.012) 0.238 (±0.007) 0.254 (±0.007) 0.213 (±0.008) 0.213 (±0.008)
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Table 5: Average target classification error (and standard deviation) for different regularization pa-
rameter choices on the Transformed Moons dataset. 3 repetitions with different random initialization
of model weights are used to estimate the importance weighted risk, the DEV risk and the BPDA.
The BPDA is computed using the bound in [10].

MMD
Task SO IWV DEV BPDA TB

CS→Q 0.568(±0.007) 0.629(±0.023) 0.629(±0.023) 0.629(±0.023) 0.568(±0.007)
CS→R 0.068(±0.009) 0.102(±0.020) 0.102(±0.020) 0.098(±0.006) 0.068(±0.009)
CS→S 0.309(±0.010) 0.307(±0.001) 0.324(±0.021) 0.296(±0.012) 0.296(±0.012)
CS→C 0.246(±0.016) 0.264(±0.013) 0.264(±0.013) 0.264(±0.013) 0.246(±0.016)
CS→I 0.605(±0.012) 0.577(±0.004) 0.564(±0.001) 0.589(±0.021) 0.564(±0.001)
CS→P 0.178(±0.006) 0.212(±0.012) 0.202(±0.011) 0.214(±0.007) 0.178(±0.006)

Avg. 0.329(±0.010) 0.349(±0.012) 0.348(±0.015) 0.348(±0.014) 0.320(±0.009)

CMD
Task SO IWV DEV BPDA TB

CS→Q 0.568(±0.007) 0.568(±0.007) 0.812(±0.000) 0.410(±0.008) 0.410(±0.008)
CS→R 0.068(±0.009) 0.068(±0.009) 0.841(±0.000) 0.100(±0.010) 0.068(±0.009)
CS→S 0.309(±0.010) 0.305(±0.012) 0.875(±0.000) 0.298(±0.005) 0.298(±0.005)
CS→C 0.246(±0.016) 0.257(±0.023) 0.850(±0.000) 0.282(±0.032) 0.246(±0.016)
CS→I 0.605(±0.012) 0.556(±0.031) 0.883(±0.000) 0.601(±0.016) 0.556(±0.031)
CS→P 0.178(±0.006) 0.246(±0.022) 0.986(±0.000) 0.293(±0.019) 0.178(±0.006)

Avg. 0.329(±0.010) 0.333(±0.017) 0.875(±0.000) 0.331(±0.015) 0.293(±0.013)
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