
Under review as a conference paper at ICLR 2023

A POTENTIAL NEGATIVE SOCIETAL IMPACTS

The meta-training is the most demanding computational step, thus it can incur in high energy
consumption. Additionally, DeepPipe does not handle fairness, so it may find pipelines that are
biased by the data.

B LICENCE CLARIFICATION

The results of this work (code, data) are under license BSD-3-Clause license. Both PMF dataset
Sheth (2018) and Tensor-OBOE dataset Akimoto & Yang (2020) hold the same license.

C DISCUSSION ON NUMBER OF EVALUATED PIPELINES

Table 3: Average Number of Observed Pipelines on OpenML
Datasets

Method 10 Mins 1 Hour
TPOT 45.48 ± 46.25 70.56 ± 41.67

Tensor-OBOE 84.43 ± 57.61 178.95 ± 69.04
OBOE 120.35 ± 70.35 467.09 ± 330.34
SMAC 80.76 ± 115.04 452.35 ± 637.08
PMF 126.37 ± 197.61 523.71 ± 663.07

DeepPipe 94.51 ± 128.62 356.71 ± 379.62

Based on results from Experiment
3, we report the average (and stan-
dard deviation) of the number of ob-
served pipelines among all the com-
pared methods in 10 and 60 minutes
on Table 3. This is an important
metric to understand the optimization
overhead introduced by the method.
For instance, a method that explores
few pipelines during a fixed time win-
dow, might use expensive computa-
tions during the pipeline optimization.
We notice that DeepPipe achieves the best results (see Table 1) by using a reasonable amount of
pipelines, i.e. the optimization overhead introduced our method is small compared to other approaches
such as TPOT and OBOE.

D DISCUSSION ON THE INTERACTIONS AMONG COMPONENTS

5 20 40 60 80 100
No. of Explored Pipelines

2.2

2.4

2.6

2.8

3.0

Interactions Ablation

1-Enc./0-Agg.

2-Enc./0-Agg

1-Enc./1-Agg.

0-Enc./0-Agg.

Figure 5: Average rank for DeepPipe with and
without encoder and and aggregation layers.

The encoder and aggregation layers capture
interactions among the pipeline components,
and therefore are important to attain good per-
formance. These interactions are reflected in
the features extracted by these layers, i.e. the
pipelines representations obtained by DeepPipe.
These representations lie on a metric space that
captures relevant information about the pipelines
and which can be used on the kernel for the
Gaussian Process. Using the original input space
does not allow to extract rich representations.
To test this idea, we meta-train four version of
DeepPipe with and without encoder and aggre-
gation layers on our TensorOBOE meta-train
set and then test on the meta-test split. In Fig-
ure 5, we show that the best version is obtained
when using both encoder (Enc.) and aggregation
(Agg.) layers (green line), whereas the worst ver-
sion is obtained when using the original input
space, i.e. no encoder and no aggregation layers.
Having encoder helps more than not having en-
coder, thus it is important to capture interactions among hyperparameters in the same stage. As having
an aggregation layer is better than not, it is important to capture interactions among components from
different stages.

14

Under review as a conference paper at ICLR 2023

5 20 40 60 80 100
No. of Explored Pipelines

1.4

1.6

TensorOBOE

5 20 40 60 80 100
No. of Explored Pipelines

1.8

2.0

2.2
PMF

5 20 40 60 80 100
No. of Explored Pipelines

1.40

1.45

1.50

1.55

1.60

ZAP

DeepPipe SKL

Figure 6: Comparison with Structured Kernel Learning (SKL)

Table 4: Comparison with AutoPrognosis

EBO Method Avg. Rank Std. Rank Avg. Acc. Std. Acc. Avg Time Std. Time

50 AutoProg. 1.5588 0.4416 0.8637 0.1143 19324 12934
DeepPipe 1.4411 0.4416 0.8692 0.1113 903 1548.

100 AutoProg. 1.5133 0.4694 0.8715 0.0949 18502 11176
DeepPipe 1.4866 0.4694 0.8727 0.0972 2221 5405

E COMPARISON WITH STRUCTURED KERNEL LEARNING (SKL) AND
AUTOPROGNOSIS

AutoPrognosis (Alaa & van der Schaar, 2018) uses Structured Kernel Learning (SKL) and meta-
learning to account for the interactions among the pipelines components. SKL decomposes the
original input space by making up N group of pipelines components, e.g. Random Forest and SVM
in a group separated from Linear Regression and Logistic Regression. The hyperparameters of every
group of pipelines components is then passed through a kernel, and then the N resulting kernels are
added. This effectively builds up a kernel with additive structure (Gardner et al., 2017), however they
are not using a feature extractor like DeepPipe. We compare SKL against a non-pretrained DeepPipe
on Figure 6 on three meta-datasets, where it is noticeable that our method outperforms this strategy.

Additionally we compare DeepPipe with the whole algorithm introduced by AutoPrognosis 2.0 (Imrie
et al., 2022) on the Open ML datasets for 50 and 100 BO iterations (EBO). We report the average and
standard deviation for the rank, accuracy and time. DeepPipe achieves the best average rank, ie. lower
average rank than AutoPrognosis. This is complemented with the having the highest average accuracy.
Interestingly, our method is approximately one order of magnitude faster than AutoPrognosis. We
notice this is due to the time overhead introduced by the Gibbs sampling strategy for optimizing the
structured kernel, whereas our approach uses gradient-based optimization.

Experimental Set-Up for DeepPipe. For our comparison with SKL, we use the same hyperparame-
ters and architecture as for the Experiment 1. When comparing with AutoPrognosis, we use the same
hyperparmeters and architecture as for the Experiment 2, pre-trained on the Tensor-OBOE meta-train
split.

Experimental Set-Up for SKL and AutoPrognosis For SKL we used the default strategy with
N = 3 (Alaa & van der Schaar, 2018). For AutoPrognosis, we use the implementation in the
respective author’s repository 3. We ran it with the default configuration, but limited the search space
of classifiers to match the classifiers on the Tensor-OBOE meta-dataset 4.

3https://github.com/ahmedmalaa/AutoPrognosis
4Specifically, the list of classifiers is: Random Forest, Extra Tree Classifier, Gradient Boosting", Logist

Regression, MLP, linear SVM, kNN, Decision Trees, Adaboost, Bernoulli Naive Bayes, Gaussian Naive Bayes,
Perceptron.

15

https://github.com/ahmedmalaa/AutoPrognosis

Under review as a conference paper at ICLR 2023

F DISCUSSION ON THE INDUCTIVE BIAS VS. PRE-TRAINING EFFECT

How shallow/deep should the encoder networks be compared to the aggregation network? We
hypothesize that deeper encoders help in the transfer-learning setup where there exist only a few
evaluated pipeline configurations on past datasets. To test this hypothesis, we assess the performance
of DeepPipe with different network sizes and meta-trained with different percentages of meta-training
tasks: 0.5%, 1% , 5%, 10%, 50%, and 100%. As we use the Tensor-OBOE meta-dataset, this
effectively means that we use 1, 3, 16, 33, 165, and 330 tasks respectively.

0 1 2

0.5%

1%

5%

10%

50%

100%

Fr
ac

tio
n

of
 M

et
a-

Tr
ai

n
D

at
a

2.05 2.08 1.88

1.96 2.18 1.86

1.88 2.02 2.09

1.91 2.03 2.06

1.9 2.06 2.04

1.81 2.1 2.09

F=4

0 1 2
Encoder Depth

0

1

2

3

4

5

2.0 1.89 2.1

2.11 1.9 1.99

2.01 1.95 2.04

1.87 2.07 2.06

1.94 2.03 2.03

1.89 1.98 2.13

F=6

0 1 2

0

1

2

3

4

5

2.12 2.02 1.86

2.08 1.91 2.01

1.98 2.07 1.96

1.91 1.93 2.16

1.87 2.1 2.04

1.86 2.16 1.98

F=8

Figure 7: Comparison of the average rank for DeepPipe with
different number of encoders under different percentages of
meta-train data. The total number of layers is always the
same.

The results of these experiments are
shown in Figure 7. Here we ablate
DeepPipe with different numbers of
encoder layers while pre-training on
different fractions of the meta-training
tasks. We ran the experiment for three
values of F . The presented scores
are the average ranks among the three
DeepPipe configurations (row-wise).
The average rank is computed across
all the meta-test tasks and across 100
BO iterations. The results indicate
that deeper encoders achieve a bet-
ter performance when a small num-
ber of meta-training tasks is available.
In contrast, shallower encoders are
needed if more meta-training tasks are
available. Apparently the deep aggre-
gation layers ϕ already capture the in-
teraction between the hyperparameter configurations across algorithms when a large meta-dataset of
evaluated pipelines is given. The smaller the meta-data of evaluated pipeline configurations, the more
inductive bias we need to implant in the form of per-algorithm encoders.

G ADDITIONAL INFORMATION ON EXPERIMENTAL SET-UP

In all experiments (except Experiment 1), we meta-train the surrogate following Algorithm 1 in
Appendix J for 10000 epochs with the Adam optimizer and a learning rate of 10−4, batch size
1000, and the Matérn Kernel. During meta-testing, when we perform BO to search for a pipeline,
we fine-tune only the kernel parameters γ for 100 gradient steps. In the non-transfer experiments
(Experiment 1) we use an architecture with F = 8 and fine-tuned the network for 10000 iterations.
The rest of the training settings are similar to the transfer experiments. In Experiment 5 we fine-
tune the whole network for 100 steps when no encoders are used. Otherwise, we fine-tune only
the encoder associated with the omitted estimator and freeze the rest of the network. We ran all
experiments on a CPU cluster, where each node contains two Intel Xeon E5-2630v4 CPUs with
20 CPU cores each, running at 2.2 GHz. We reserved a total maximum memory of 16GB. We
discuss how we implemented DeepPipe efficiently as a MLP with masked layers5 in Appendix N.
We associate algorithms with no hyperparameters to the same encoder. We found that adding the
One-Hot-Encoding of the selected algorithms per stage as an additional input is helpful. Therefore,
the input dimensionality of the aggregated layers is equal to the dimension after concatenating the
encoders output F ·

∑
i(Qi +Mi). Further details on the architectures for each search space are

specified in Appendix M. Finally, we use the Expected Improvement as acquisition function for
DeepPipe and all the baselines.

Initial Configurations For the experiments with the PMF-Dataset, we choose these configurations
with the same procedure as the authors Fusi et al. (2018), where they use dataset meta-features to
find the most similar auxiliary task to initialize the search on the test task. Since we do not have
meta-features for the Tensor-OBOE meta-dataset, we follow a greedy initialization approach Metz
et al. (2020). This was also applied to the ZAP-Dataset. Specifically, we select the best-performing

5We make our code available in https://anonymous.4open.science/r/DeepPipe-E19E

16

https://anonymous.4open.science/r/DeepPipe-E19E

Under review as a conference paper at ICLR 2023

pipeline configuration by ranking their performances on the meta-training tasks. Subsequently, we
iteratively choose four additional configurations that minimize

∑
t∈Tasks r̂t, where r̂t = minp∈X rt,p,

given that rt,p is the rank of the pipeline p on task t.

H ADDITIONAL RELATED WORK

Hyperparameter Optimization (HPO) has been well studied over the past decade (Bergstra &
Bengio, 2012). Techniques relying on Bayesian Optimization (BO) employ surrogates to approximate
the response function of Machine Learning models, such as Gaussian Processes (Snoek et al., 2012),
Random Forests (Bergstra et al., 2011) or Bayesian Neural Networks (Snoek et al., 2015; Springenberg
et al., 2016). Further improvements have been achieved by applying transfer learning, where existing
evaluations on auxiliary tasks help pre-training or meta-learning the surrogate. In this sense, some
approaches use pre-trained neural networks with uncertainty outputs (Wistuba & Grabocka, 2021;
Perrone et al., 2018; Wei et al., 2021b), or ensembles of Gaussian Processes (Feurer et al., 2018).

Deep Kernels propose combining the benefits of stochastic processes such as Gaussian Processes
with neural networks (Calandra et al., 2016; Garnelo et al., 2018; Wilson et al., 2016). Follow-up
work has applied this combination for training few-shot classifiers (Patacchiola et al., 2020). In the
area of Hyperparameter Optimization, (Snoek et al., 2015) achieved success on BO by modeling
the output layer of a deep neural network with a Bayesian linear regression. Perrone et al. (2018)
extended this work by pre-training the Bayesian network with auxiliary tasks. Recent work proposed
to use non-linear kernels, such as the Matérn kernel, on top of the pre-trained network to improve the
performance of BO (Wistuba & Grabocka, 2021; Wei et al., 2021a).

I BAYESIAN OPTIMIZATION (BO)

In BO we fit a surrogate iteratively using the observed configurations and their response. Posteriorly,
its probabilistic output is used to query the next configuration to evaluate (observe) by maximizing an
acquisition function. A common choice for the acquisition is Expected Improvement, defined as:

EI(pλ|H) = E [max {µ(pλ)− ymax, 0}] (6)

where ymax is the largest observed response in the history H and µ is the posterior of the mean
predicted performance given by the surrogate, computed using Equation 2. A common choice as
surrogate is Gaussian Process, but for Pipeline Optimization we introduce DeepPipe.

J DeepPipe META-TRAINING

Given a task t with observations Ht = {(pλ(t,1), y(t,1)), . . . , (pλ(t,Qt), y(t,Qt))}, t ∈ {1, . . . , T},
the objective function to minimize can be derived from the negative log marginal likelihood from the
Gaussian Process p(Ht) ∼ N (0,KT), where K(t) is the covariance matrix induced by DeepPipe
with parameters θ, γ. Specifically, the negative log marginal likelihood is (Rasmussen & Williams,
2006):

− log p (Ht) = − logN (0,K(t)) = y(t)
T
K(t)(θ, γ)−1y(t) + log

∣∣∣K(t)(θ, γ)
∣∣∣ (7)

The Equation 5 is the multi-task objective function that involves all the meta-learning tasks with
indices t ∈ {1..., T}.
We use auxiliary tasks to learn a good initialization for the surrogate. We sample batches from the
meta-training tasks, and make gradient steps that maximize the marginal log-likelihood in Equation
5, similar to previous work (Wistuba & Grabocka, 2021). The training algorithm for the surrogate is
detailed in Algorithm 1. Additionally, we apply Early Convergence by monitoring the performance
on the validation meta-dataset. Every epoch, we perform the following operations for every task
t ∈ 1...T : i) Draw a set of b observations (pipeline configuration and performance), ii) Compute the
negative log marginal likelihood (our loss function) as in Equation 7, iii) compute gradient of the loss
with respect to the DeepPipe parameters and iv) updated DeepPipe parameters.

17

Under review as a conference paper at ICLR 2023

Algorithm 1: DeepPipe Meta-Training

Input: Learning rates η, meta-training data with T tasksH =
⋃

t=1..T H(t), number of epochs
E, batch size b

Output: Parameters w and θ
1 Initialize w and θ at random;
2 for E times do
3 for t ∈ {1, ..., T} do
4 Sample batch B = {(p(t,i)λ , y(t,i))}i=1,...,b ∼ H(t);
5 Compute negative log-likelihood L on B. (Objective Function in Equation 5);
6 θagg ← θagg − η∇θaggL;
7 θenc ← θenc − η∇θencL;
8 γ ← γ − η∇γL;
9 end

10 end

Algorithm 2: Bayesian Optimization (BO) with DeepPipe

Input: Learning rate η, initial observationsH = {(p(i)λ , y(i))}i=1,...,I , pretrained surrogate with
parameters θ and γ, number of surrogate updates ETest, BO iterations EBO, search
space of pipelines P

Output: Pipeline Configuration p∗λ
1 Function FineTune (H, γ, η, Etest):
2 for ETest times do
3 Compute negative log-likelihood L on D. (Objective function in Equation 5 with T = 1);
4 γ ← γ − η∇γL;
5 end
6 return γ
7 Function BO(H, η, θ, γ, Etest, EBO):
8 for EBO times do
9 γ′ ← FineTune(H, γ, η, ETest);

10 Compute p′λ ∈ argmaxpλ∈P EI(pλ, γ′, θ) ;
11 Observe performance y′ of pipeline p′λ ;
12 Add new observationH ← H∪ {(p′λ, y′)} ;
13 end
14 Compute best pipeline index i∗ ∈ argmaxi∈{1...|H|} yi ;

15 return p
(i∗)
λ ;

K DeepPipe META-TESTING

When a new pipeline is to be optimized on a new dataset (task), we apply BO (see Algorithm 2). Every
iteration we update the surrogate by fine-tuning the kernel parameters. However, the parameters of
the MLP layers θ can be also optimized, as we did on the Experiment 1, in which case the parameters
were randomly initialized.

L ADDITIONAL RESULTS

In this section, we present further results. Firstly, we show an ablation of the factor that determines
the number of hidden units (F) in Figure 8. It shows that F = 8 attains the best performance after
exploring 100 pipelines in both datasets. Additionally, we present the average regret for the ablation
of F , and the results of Experiment 1 and 2 in Figures 9, 10 and 11 respectively.

Table 5 present the extended results of omitting estimators in the PMF Dataset. From these, we draw
the same conclusion as in the same paper: having encoders help to obtain better performance when a
new algorithm is added to a pipeline.

18

Under review as a conference paper at ICLR 2023

5 20 40 60 80 100
No. of Explored Pipelines

2.5

3.0

3.5
A
ve
ra
ge

R
an
k

Tensor-OBOE Meta-Dataset

5 20 40 60 80 100
No. of Explored Pipelines

2.6

2.8

3.0

3.2

3.4
PMF Meta-Dataset

F=2

F=4

F=6

F=8

F=10

Figure 8: Comparison of different F values in DeepPipe (Rank).

5 20 40 60 80 100
No. of Explored Pipelines

0.01

0.02

0.03

0.04

A
ve
ra
ge

R
eg
re
t

Tensor-OBOE Meta-Dataset

5 20 40 60 80 100
No. of Explored Pipelines

0.10

0.15

0.20

0.25

0.30
PMF Meta-Dataset

F=2

F=4

F=6

F=8

F=10

Figure 9: Comparison of different F values in DeepPipe (Regret).

Table 5: Average rank among DeepPipe variants for newly-added algorithms (PMF)

Enc. MTd. Omitted in Omitted Estimator

MTr. MTe. ET RF XGBT KNN GB DT Q/LDA NB

✓ ✓ ✓ ✓ 3.1527 3.1645 3.2109 3.2541 3.2874 3.2741 3.1911 3.0263
✓ ✗ ✓ ✗ 3.2462 3.3208 3.2592 3.3180 3.2376 3.2249 3.3557 3.3993
✓ ✓ ✗ ✗ 2.5710 2.5996 2.4011 2.5947 2.6301 2.5664 2.6252 2.6214
✗ ✓ ✓ ✗ 3.0464 2.8550 3.0850 2.8845 2.9397 3.0316 2.9530 3.0596
✓ ✓ ✓ ✗ 2.9838 3.0601 3.0439 2.9486 2.9051 2.9029 2.8750 2.8934

We carry out an ablation to understand the difference between the versions of Deep Pipe with/without
encoder and with/without transfer-learning using ZAP Meta-dataset. As shown in Figure 12, the
version with transfer learning and one encoder performs the best, thus, highlighting the importance of
encoders in transfer learning our DeepPipe surrogate.

M ARCHITECTURE DETAILS

The input to the kernel has a dimensionality of Z=20. We fix it, to be the same as the output
dimension for PMFs. The number of neurons per layer, as mentioned in the main paper, depends on F .
Consider an architecture with with no encoder layers and ℓa aggregation layers, and hyperparameters
Λi,j , i ∈ {1 . . . N}, j ∈ {1 . . .Mi} (following the notation in section 4.1) with Qi = maxj |Λi,j |,
then the number of weights (omitting biases for the sake of simplicity) will be:

∑
i,j

|Λi,j |

 ·(F ·∑
i

Qi

)
+ (ℓa − 1)

(
F ·
∑
i

Qi

)2

(8)

19

Under review as a conference paper at ICLR 2023

5 20 40 60 80 100
No. of Explored Pipelines

0.01

0.02

0.03

0.04
A
ve
ra
ge

R
eg
re
t

Tensor-OBOE Meta-Dataset

5 20 40 60 80 100
No. of Explored Pipelines

0.15

0.20

0.25

PMF Meta-Dataset

5 20 40 60 80 100
No. of Explored Pipelines

0.002

0.003

0.004

0.005

ZAP Meta-Dataset

DeepPipe RS GP DNGO SMAC

Figure 10: Comparison of DeepPipe vs. non transfer-learning PO methods in Experiment 1 (Regret)

5 20 40 60 80 100
No. of Explored Pipelines

0.01

0.02

0.03

0.04

A
ve
ra
ge

R
eg
re
t

Tensor-OBOE Meta-Dataset

5 20 40 60 80 100
No. of Explored Pipelines

0.10

0.15

0.20

0.25

PMF Meta-Dataset

5 20 40 60 80 100
No. of Explored Pipelines

0.002

0.004

ZAP Meta-Dataset

DeepPipe

PMF

T-OBOE

OBOE

FMLP

RGPE

RS

Figure 11: Comparison of Regret in DeepPipe vs. transfer-learning PO methods in Experiment 2
(Regret)

If the architecture has ℓe encoder layers and ℓa aggregation layers, then number of weights is given
by:

∑
i,j

|Λi,j | · (F ·Qi) + (ℓe − 1)
∑
i

Mi · (F ·Qi)
2
+ ℓa

(
F ·
∑
i

Qi

)2

(9)

5 20 40 60 80 100
No. of Explored Pipelines

1.6

1.8

2.0

2.2

2.4

A
ve
ra
ge

R
an
k

Ablation of Encoders

One Encoder

No Encoder

RS

5 20 40 60 80 100
No. of Explored Pipelines

2.00

2.25

2.50

2.75

A
ve
ra
ge

R
an
k

Ablation of Transfer

DeepPipe Transfer

DeepPipe Non-Transfer

GP

RS

Figure 12: Ablations on the ZAP meta-dataset

20

Under review as a conference paper at ICLR 2023

2 4 6 8 10
F

104
N

o.
 o

f W
ei

gh
ts

 (L
og

)

Tensor-OBOE

2 4 6 8 10
F

104

105

PMF

Encoder layers
0
1
2

Figure 13: Number of weights in the MLP for a given value of F and encoder layers.

In other words, the aggregation layers have F ·
∑

i Qi hidden neurons, whereas every encoder from
the i-th stage has F ·Qi neurons per layer. The input sizes are

∑
i,j |Λi,j | and |Λi,j | for both cases

respectively. The specific values for |Λi,j | and Qi per search space are specified in Appendix R.

In the search space for PMF, we group the algorithms related to Naive Bayers (MultinomialNB,
BernoulliNB, GaussianNB) in a single encoder. In this search space, we also group LDA and QDA.
In the search space of TensorOboe, we group GaussianNB and Perceptron as they do not have
hyperparameters. Given these considerations, we can compute the input size and the weights per
search space as function of ℓa, ℓe, F as follows:

(i) Input size:

Input size (PMF) =
∑
i,j

|Λi,j | = 72

Input (TensorOboe) =
∑
i,j

|Λi,j | = 37

Input (ZAP) =
∑
i,j

|Λi,j | = 35

(10)

(ii) Number of weights for architecture without encoder layers:

Weights (PMF) = 720 · F + 256 · (ℓa − 1) · F 2

Weights (TensorOboe) = 444 · F + 144 · (ℓa − 1) · F 2

Weights (ZAP) = 1085 · F + 961 · (ℓa − 1) · F 2

(11)

(iii) Number of weights for architecture with encoder layers:

Weights (PMF) = 886 · F + (1376 · (ℓe − 1) + 256 · ℓa) · F 2

Weights (TensorOboe) = 161 · F + (271 · (ℓe − 1) + 144 · ℓa) · F 2

Weights (ZAP) = 35 · F + (965 · (ℓe − 1) + 961 · ℓa) · F 2

(12)

According the previous formulations, Figure 13 shows how many parameters (only weights) the MLP
has given a specific value of F and of encoder layers. We fix the total number of layers to four. Notice
that the difference in the number of parameters between an architecture with 1 and 2 encoder layers
is small in both search spaces.

N COMPUTATIONAL IMPLEMENTATION

DeepPipe’s architecture (encoder layers + aggregated layers) can be formulated as a Multilayer
Perceptron (MLP) comprising three parts (Figure 14). The first part of the network that builds the

21

Under review as a conference paper at ICLR 2023

Input
Layer

Encoder
Layer

Selection

and

Concatenation
Aggregation

Layer

Learneable Weights

Weights set to zero

Weights set to one

Figure 14: Example of the Implementation of DeepPipe as MLP. λ(k)
i,j indicates the k-th hyperparam-

eter of the j-th algorithm in the i-th stage. In this architecture, the first stage has two algorithms, thus
two encoders. The algorithm 1 is active for stage 1. The second stage has only one algorithm.

layers with encoders is implemented as a layer with masked weights. We connect the input values
corresponding to the hyperparameters λ(i,j) of the j-th algorithm of the i-th stage to a fraction of
the neurons in the following layer, what builds the encoder. The fraction of neurons, as explained
in section 5.4 is F · maxj |λ(i,j)|. The rest of the connections are dropped. The second part is a
layer that selects the output of the encoders associated with the active algorithms (one per stage), and
concatenates their outputs (Selection & Concatenation). The layer’s connections are fixed to be either
to one or zero during forward and backward pass. Specifically, they are one if they are connecting
outputs of encoders of active algorithms, and zero otherwise. The last part, an aggregation layer, is a
fully connected layer that learn interactions between the concatenated output of the encoders. By
implementing the architecture as a MLP instead of a multiplexed list of nodes (e.g. with a module list
in PyTorch), faster forward and backward passes are obtained. We only need to specify the selected
algorithms in the forward-pass so that the weights in the Encoder Layer are masked and the ones in
the Selection & Concatenation are accordingly set. After this implementation, notice that DeepPipe
is a MLP with sparse connections.

O VISUALIZING THE LEARNT REPRESENTATIONS

We train a DeepPipe with 2-layer encoders, 2 aggregation layers, 20 output size and F = 8. To
visualize the pipelines embeddings, we apply TSNE (T-distributed Stochastic Neighbor Embedding).
As plotted in Figure 15, the pipelines with the same estimator and dimensionality reducer are creating
clusters. The groups in this latent space are also indicators of the performance on a specific task. In
Figure 16 we show the same embeddings of the pipelines with a color marker indicating its accuracy
on two meta-testing tasks. Top-performing pipelines (yellow color) are relatively close to each other
in both tasks, building up regions of good performing pipelines. These groups of good pipelines
are different in both cases, which indicates that there is not a single pipeline that works for all
tasks. DeepPipe maps the pipelines to an embedding space where it is easier to assess the similarity
between pipelines and to search for good-performing pipelines. However, the type of pipeline (good
performing pipelines, bad performing pipelines) depends on the task.

22

Under review as a conference paper at ICLR 2023

100 50 0 50 100
100

75

50

25

0

25

50

75

100

ExtraTrees
GBT
Logit
MLP

RF
lSVM
KNN

DT
AB
GNB-Perc.

100 50 0 50 100
100

75

50

25

0

25

50

75

100

PCA
SelectKBest

VarianceThreshold

Figure 15: Learnt representations in 2 dimensions for estimators (left) and dimensionality reducers
(right) from the Tensor-OBOE meta-dataset.

100 50 0 50 100
100

75

50

25

0

25

50

75

100

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

100 50 0 50 100
100

75

50

25

0

25

50

75

100

0.2 0.3 0.4 0.5 0.6 0.7

Figure 16: Learnt representations for two tasks with different accuracy levels.

23

Under review as a conference paper at ICLR 2023

P META-DATASET PREPROCESSING

We obtained the raw data for the meta-datasets from the raw repositories of PMF 6 and TensorOBOE 7.
PMF repo provides an accuracy matrix, while Tensor-OBOE specifies the error. We take the pipelines’
configurations and concatenate the hyperparameters in both meta-datasets. Then we proceed with the
following steps: 1) One-Hot encode the categorical hyperparameters, 2) apply a log transformation
xnew = ln(x) to the hyperparameters whose value is greater than 3 standard deviations, 3) scale all
the values to be in the range [0,1]. The variables coming from categorical hyperparameters are named
original-variable-name_category.

Q ABBREVIATIONS

(i) Abbreviations in Table 2:

1) ET: ExtraTrees, 2) GBT: Gradient Boosting, 3) Logit: Logistict Regression 4) MLP: Multilayer
Perceptron 5) RF: Random Forest, 6) lSVM: Linear Support Vector Machine, 7) kNN: k Nearest
Neighbours, 8) DT: Decision Trees, 9) AB: AdaBoost, 10) GB/PE= Gaussian Naive Bayes/Perceptron.

(ii) Abbreviations in Table 3:

1) ET: ExtraTrees, 2) RF: Random Forest , 3) XGBT: Extreme Gradient Boosting, 4) kNN: K-Nearest
Neighbours, 5) GB: Gradient Boosting, 6) DT: Decision Trees, 7) Q/LDA: Quadratic Discriminant
Analysis/ Linear Discriminant Analysis, 8) NB: Naive Bayes.

R META-DATASET SEARCH SPACES

We detail the search spaces composition in Tables 6 and 7. We specify the stages, algorithms,
hyperparameters, number of components per stage Mi, the number of hyperparameters per algorithm
|λi,j |, and the maximum number of hyperparameters found in an algorithm per stage Qi. For the
ZAP meta-dataset, we defined a pipeline with two stages: (i) Architecture, which specifies the type
or architecture used (i.e. ResNet18, EfficientNet-B0, EfficientNet-B1, EfficientNet-B2), and (ii)
Optimization-related Hyperparameters that are shared by all the architectures.

6https://github.com/rsheth80/pmf-automl
7https://github.com/udellgroup/oboe/tree/master/oboe/defaults/TensorOboe

24

Under review as a conference paper at ICLR 2023

Table 6: Search Space for PMF Meta-Dataset

Stage Qi Mi Algorithm |Λi,j | Hyperparameters

Preprocessor 3 2 Polynomial 3 include_bias, interaction_only, degree

PCA 2 keep_variance, whiten

Estimator 13 8

ExtraTrees 9 bootstrap, min_samples_leaf, n_estimators, max_features,
min_weight_fraction_leaf, min_samples_split, max_depth

RandomForest 10
bootstrap, min_samples_leaf, n_estimators, max_features,
min_weight_fraction_leaf, min_samples_split, max_depth,
criterion_entropy, criterion_gini

XgradientBoosting 13

reg_alpha, col_sample_bytree, colsample_bylevel, scale_pos_weight,
learning_rate,
max_delta_step, base_score, n_estimators, subsample,
reg_lambda, min_child_weight, max_depth, gamma

kNN 4 p, n_neighbors, weights_distance, weights_uniform

GradientBoosting 10
max_leaf_nodes, learning_rate, min_samples_leaf,
n_estimators, subsample, min_weight_fraction_leaf, max_features,
min_samples_split, max_depth, loss_deviance

DecisionTree 9
max_leaf_nodes, min_samples_leaf, max_features,
min_weight_fraction_leaf, min_samples_split, max_depth,
splitter_best, criterion_entropy, criterion_gini

LDA 6 shrinkage_factor, n_components, tol, shrinkage_-1,
shrinkage_auto, shrinkage_manual

QDA 1 reg_param

BernoulliNB 2 alpha, fit_prior

MultinomialNB 2 alpha, fit_prior

GaussianNB 1 apply_gaussian_nb

Table 7: Search Space for Tensor-OBOE Meta-Dataset

Stage Qi Mi Algorithm |Λi,j | Hyperparameters

Imputer 4 1 SimpleImputer 4 Strategy_constant, Strategy_mean,Strategy_median,
Strategy_most_frequent

Encoder 1 1 OneHotEncoder 1 Handle_unknown_ignore

Scaler 1 1 StandardScaler 1 -

Dim. Reducer 1 3
PCA 1 N_components

SelectKBest 1 K

VarianceThreshold 1 -

Estimator 5 10

ExtraTrees 3 min_samples_split, criterion_entropy, criterion_gini

Gradient Boosting 4 learning_rate, max_depth, max_features_None,
max_features_log2

Logit 5 C, penalty_l1, penalty_l2, sovler_liblinear, solver_saga

MLP 5 alpha, learning_rate_init, learning_rate_adaptive,
solver_adam, solver_sgd

Random Forest 3 min_samples_split, criterion_entropy, criterion_gini

lSVM 1 C

kNN 2 n_neighbors, p

Decision Trees 1 min_samples_split

AdaBoost 2 learning_rate, n_estimators

GaussianNB 1 -

Perceptron 1 -

25

Under review as a conference paper at ICLR 2023

Table 8: Search Space for ZAP Meta-Dataset

Stage Qi Mi Algorithm |Λi,j | Hyperparameters

Architecture 1 4

ResNet 1 IsActive

EfficientNet-B0 1 IsActive

EfficientNet-B1 1 IsActive

EfficientNet-B2 1 IsActive

Common Hyperparameters 31 1 - 31

early_epoch, first_simple_model,
max_inner_loop_ratio,
skip_valid_score_threshold, test_after_at_least_seconds,
test_after_at_least_seconds_max,
test_after_at_least_seconds_step,
batch_size, cv_valid_ratio, max_size,
max_valid_count, steps_per_epoch,
train_info_sample,
optimizer.amsgrad, optimizer.freeze_portion, optimizer.lr,
optimizer.min_lr, optimizer.momentum, optimizer.nesterov,
optimizer.warm_up_epoch,
warmup_multiplier, optimizer.wd,
simple_model_LR, simple_model_NuSVC, simple_model_RF,
simple_model_SVC, optimizer.scheduler_cosine,
optimizer.scheduler_plateau,
optimizer.type_Adam,
optimizer.type_AdamW

S THEORETICAL INSIGHT OF HYPOTHESIS 5

Here, we formally demonstrate that the DeepPipe with encoder layers is grouping hyperparameters
from the same algorithm in the latent space, better than DeepPipe without encoders, formulated on
Corollary S.4, which is supported by Proposition S.3.

Lemma S.1. Given w ∈ RM , a vector of weights with independent and identically distributed
components wi ∈ {w1, ..., wM} such that wi ∼ p(w), the expected value of the square of the norm
Ep(w)(||w||2) is given by M · (µ2

w + σ2
w), where µw and σw are the mean and standard deviation of

p(w) respectively.

Proof.

Ep(w)

(
||w||2

)
= Ep(w)

(
M∑
i=1

w2
i

)
(13)

=

M∑
i=1

Ep(w)(w
2
i) (14)

=

M∑
i=1

µ2
w + σ2

w (15)

= M · (µ2
w + σ2

w) (16)

Lemma S.2. Consider a linear function with scalar output z = wTx where w ∈ RM×1 is the
vector of weights with components wi, i ∈ {1, ...,M}, x ∈ RM×1 are the input features. Moreover,
consider the weights are independently and identically distributed wi ∼ p(w). The expected value of
the norm of the output is given by Ep(w)

(
||wTx||2

)
= (µ2

w +σ2
w) · ||x||2 +µ2

w ·
∑M

i=1

∑i−1
j=1 xi ·xj .

26

Under review as a conference paper at ICLR 2023

Proof.

Ep(w)

(
(wTx)2

)
= Ep(w)

(
M∑
i=1

wi · xi

)2

(17)

= Ep(w)

 M∑
i=1

(wi · xi)
2 +

M∑
i=1

i−1∑
j=1

wi · wj · xi · xj

 (18)

=

M∑
i=1

Ep(w)(w
2
i) · x2

i + 2 ·
M∑
i=1

i−1∑
j=1

Ep(w)(wi · wj) · xi · xj (19)

(20)

Since wi, wj are independent then Ep(w)(wi · wj) = Ep(w)(wi) · Ep(w)(wj) = µ2
w. Moreover, with

a slight abuse in notation, we denote
∑M

i=1

∑i−1
j=1 xi · xj = x⊗ x. Given lemma S.1, we obtain:

Ep(w)

(
(wTx)2

)
= (µ2

w + σ2
w) · ||x||2 + 2 · µ2

w · x⊗ x = Dw(x) (21)

(22)

where Dw(·) is introduced as an operation to simplify the notation.

Proposition S.3. Consider two vectors x′, x̂ ∈ RM , and two weight vectors ŵ and w′,
ŵT x̂ ∈ R,w′Tx′ ∈ R, such that the weights are iid. Then Ep(w)

(
(ŵT x̂−w′Tx′)2

)
>

Ep(w)

(
(ŵT x̂− ŵTx′)2

)
.

Proof. Using lemma S.2 and decomposition the argument within square:

Ep(w)((ŵ
T x̂−w′Tx′)2) = Ep(w)

(
(ŵT x̂)2 + (w′Tx′)2 − 2 · ŵT x̂ ·w′Tx′

)
(23)

= Dw(x̂) +Dw(x
′)− 2 · Ep(w)(ŵ

T x̂ ·w′Tx′) (24)

= Dw(x̂) +Dw(x
′)− 2 · Ep(w)(

M̂∑
i=1

ŵi · x̂i

M ′∑
j=1

wj
′ · xj

′) (25)

= Dw(x̂) +Dw(x
′)− 2 · Ep(w)(

M̂∑
i=1

M ′∑
j=1

wj
′ · xj

′ · ŵi · x̂i) (26)

= Dw(x̂) +Dw(x
′)− 2 ·

M̂∑
i=1

M ′∑
j=1

Ep(w)(wj
′ · ŵi) · xj

′ · x̂i (27)

Since ŵ and w′ are independent, then Ep(w)(wj
′ · ŵi) = Ep(w)(wj

′) · Ep(w)(ŵi) = µ2
w. Thus,

Ep(w)

(
(ŵT x̂−w′Tx′)2

)
= Dw(x̂) +Dw(x

′)− 2 · µ2
w ·

M̂∑
i=1

M ′∑
j=1

xj
′ · x̂i (28)

When computing Ep(w)

(
(ŵT x̂− ŵTx′)2

)
, we see that the weights are not independent, thus

Ep(w)(ŵi · ŵi) = µ2
w + σ2

w, and

27

Under review as a conference paper at ICLR 2023

Ep(w)

(
(ŵT x̂− ŵTx′)2

)
= Dw(x̂) +Dw(x

′)− 2 · (µ2
w + σ2

w) ·
M̂∑
i=1

M ′∑
j=1

x′
j · x̂i (29)

< Dw(x̂) +Dw(x
′)− 2 · µ2

w ·
M̂∑
i=1

M ′∑
j=1

xj
′ · x̂i (30)

< Ep(w)

(
(ŵT x̂−w′Tx′)2

)
(31)

Corollary S.4. A random initialized DeepPipe with encoder layers induces an assumption that
two hyperparameter configurations of an algorithm should have more similar performance than
hyperparameter configurations from different algorithms.

Proof. Given two hyperparameter configurations λ(l), λ(m) from an algorithm, and a third hyper-
parameter configuration λ(n) from a different algorithm, every random initialized encoder layer
from DeepPipe maps the hyperparameters λ(l), λ(m) to latent dimensions z(l), z(m) that are closer
to each other than to z(n), i.e. the expected distance among the output of the encoder layer will be
Ep(w)(||zl − zm||) < Ep(w)(||zl − zn||) based on Proposition S.3. Since DeepPipe uses a kernel
such that κ(x,x′) = κ(x− x′), their similarity will increase, when the distance between two config-
urations decreases. Thus, according to the Equation 2, they will have correlated performance.

T META-DATASET SPLITS

We specify the IDs of the task used per split. The ID of the tasks are taken from the original
meta-dataset creators.

(i) PMF Meta-Dataset

Meta-training: 4538, 824, 1544, 1082, 1126, 917, 1153, 1063, 722, 1145, 1106, 1454, 4340, 477,
938, 806, 866, 333, 995, 1125, 924, 298, 755, 336, 820, 1471, 1120, 1520, 1569, 829, 958, 997, 472,
1442, 1122, 868, 313, 928, 921, 1446, 1536, 1025, 4534, 480, 723, 835, 1081, 950, 300, 1162, 821,
469, 933, 343, 766, 936, 1568, 785, 31, 164, 395, 761, 1534, 1056, 685, 1459, 230, 867, 828, 161,
742, 1136, 385, 877, 11, 1066, 1532, 1533, 941, 468, 1542, 795, 329, 792, 782, 1131, 796, 4153, 448,
1508, 1065, 1046, 1014, 54, 780, 748, 1150, 793, 1441, 1531, 717, 819, 1151, 287, 1016, 4135, 874,
162, 1148, 1005, 956, 1528, 23, 1516, 446, 1567, 41, 729, 910, 1156, 32, 1041, 1501, 955, 1129, 827,
937, 180, 1038, 973, 36, 44, 1496, 855, 400, 754, 1557, 1413, 758, 817, 1563, 181, 1127, 43, 444,
277, 1141, 715, 725, 884, 790, 880, 853, 155, 223, 1529, 1535, 6, 1009, 744, 1107, 1158, 830, 859,
947, 1475, 813, 734, 976, 227, 1137, 762, 777, 751, 784, 886, 885, 843, 1055, 1486, 1237, 225, 39,
778, 721, 392, 312, 857, 457, 1450, 209, 779, 479, 718, 801, 770, 1049, 391, 12, 730, 759, 1013, 338,
719, 988, 974, 787, 60, 741, 865, 1050, 735, 1079, 1482, 1143, 954, 1020, 1236, 814, 1048, 892, 879,
745, 971, 913, 1152, 694, 1133, 765, 905, 804, 848, 40477, 846, 334, 791, 923, 377, 1530, 889, 1163,
1006, 749, 922, 10, 59, 1541, 310, 461, 1538, 398, 870, 1481, 970, 1036, 1044, 1068, 187, 476, 1157,
40478, 1124, 1045, 845, 62, 915, 1167, 1059, 458, 815, 28, 797, 462, 21, 952, 467, 1505, 375, 882,
1011, 1460, 964, 1104, 275, 732, 189, 478, 1464, 979, 40474, 772, 720, 1022, 823, 811, 463, 61,
1451, 1067, 1165, 184, 716, 962, 978, 916, 1217, 935, 900, 925, 919, 871, 808, 335, 1457, 799, 983,
1169, 1004, 837, 1507, 4134, 890, 1062, 1510, 818, 728, 1135, 1147, 1019, 450, 1561, 40476, 816,
1562, 740, 864, 942, 151, 713, 953, 737, 1115, 1123, 1545, 1498, 850, 873, 959, 951, 987, 991, 1132,
1154, 294, 1040, 894, 26, 878, 307, 881, 746, 679, 872, 863, 943, 18, 1537, 767, 794, 1121, 1448,
401, 14, 1026, 833, 875, 1488, 383, 914, 20, 1043, 1116, 292, 847, 1540, 1069, 1155, 1015, 1238,
1149, 1546, 841, 1565, 1556, 1527, 682, 465, 1144, 769, 1517, 756, 834, 912, 807, 904, 16, 1061,
386, 805, 3, 775, 464, 50, 1455, 1021, 1160, 1140, 1489, 1519, 946, 994, 46, 22, 1443, 339, 969, 965,
30, 977, 860, 1500, 1064, 776, 822, 182, 743, 934, 1060, 803, 980, 1539, 346, 788, 1444, 1467, 727,
1509, 903, 832.

Meta-Test: 906, 789, 1159, 1600, 48, 1453, 876, 929, 1012, 891, 1164, 726, 459, 37, 812, 909, 927,
774, 278, 279, 1054, 918, 763, 394, 948, 40, 1100, 736, 1503, 1071, 1512, 1483, 53, 869, 285, 773,

28

Under review as a conference paper at ICLR 2023

1518, 197, 926, 836, 826, 907, 920, 1080, 1412, 276, 764, 945, 1543, 1472, 996, 908, 896, 851, 397,
783, 1084, 731, 888, 733, 1473, 753, 683, 893, 825, 902, 750, 1078, 8, 1073, 1077, 475, 724, 1513,
384, 388, 887, 714, 771, 1117, 1487, 337, 1447, 862, 838, 949, 800, 931, 911.

Meta-Validation: 1075, 747, 901, 1452, 389, 387, 752, 932, 768, 40475, 849, 1564, 1449, 895, 183.

(ii) TensorOBOE Meta-Dataset

Meta-Training 210, 20, 491, 339, 14, 170, 483, 284, 543, 220, 493, 64, 524, 485, 120, 81, 495, 362,
243, 545, 538, 532, 160, 541, 238, 436, 320, 272, 497, 412, 51, 195, 191, 116, 345, 400, 164, 106,
376, 63, 105, 308, 523, 490, 319, 93, 468, 517, 198, 145, 150, 39, 502, 364, 253, 303, 471, 2, 221,
518, 146, 241, 457, 114, 372, 176, 168, 536, 350, 338, 136, 416, 254, 337, 311, 464, 424, 255, 232,
133, 33, 88, 290, 44, 61, 199, 492, 529, 500, 343, 218, 302, 297, 73, 295, 35, 344, 29, 432, 410, 417,
309, 527, 217, 27, 402, 351, 156, 403, 414, 138, 212, 104, 438, 415, 421, 215, 466, 189, 214, 508,
204, 234, 259, 67, 24, 216, 300, 223, 129, 458, 111, 166, 505, 477, 40, 274, 427, 79, 375, 380, 327,
13, 287, 326, 496, 251, 228, 420, 161, 83, 117, 25, 110, 149, 152, 16, 407, 331, 109, 441, 422, 139,
237, 260, 352, 428, 317, 323, 484, 248, 449, 467, 19, 328, 296, 454, 269, 363, 226, 465, 3, 542, 125,
280, 286, 77, 184, 371, 455, 540, 275, 294, 521, 182, 32, 80, 307, 258, 11, 360, 447, 86, 266, 36, 193,
58, 41, 270, 411, 50, 209, 481, 480, 504, 503, 123, 222, 419, 62, 456, 377, 130, 187, 23, 451, 479, 43,
370, 394, 0, 383, 201, 405, 368, 515, 98, 387, 349, 304, 418, 292, 178, 369, 256, 94, 197, 95, 535,
163, 169, 69, 305, 48, 341, 373, 397, 207, 279, 514, 227, 148, 143, 334, 180, 356, 460, 131, 127, 47,
452, 262, 324, 203, 84, 426, 121, 544, 520, 534, 398, 384, 91, 82, 430, 267, 119, 358, 291, 57, 425,
487, 321, 257, 442, 42, 388, 335, 273, 488, 53, 522, 128, 28, 183, 459, 510, 151, 244, 265, 288, 423,
147, 177, 99, 448, 431, 115, 72, 537, 174, 87, 486, 314, 396, 472, 70, 277, 9, 359, 192

Meta-Test 118, 159, 548, 453, 385, 31, 512, 353, 247, 179, 332, 379, 10, 489, 112, 293, 219, 395,
281, 65, 409, 126, 401, 526, 342, 346, 413, 137, 366, 7, 381, 506, 289, 539, 282, 101, 97, 278, 54, 30,
298, 49, 100, 474, 461, 322, 283, 56, 144, 60, 6, 8, 507, 310, 336, 225, 261, 38, 329, 365, 445, 429,
513, 188, 469, 124, 154, 340, 59, 312, 473, 498, 546, 528, 263, 194, 55, 171, 236, 206, 158, 196, 34,
408, 18, 501, 250, 533, 52, 74, 26, 173, 92, 167, 4, 382, 181, 208, 354, 249, 450, 5, 141, 525, 200,
135, 531, 122, 22, 68

Meta-Validation 85, 446, 96, 172, 134, 37, 392, 90, 509, 389, 378, 435, 66, 391, 530, 333, 462, 231,
330, 301, 325, 268, 434, 318, 233, 213, 549, 140, 264, 482, 155, 235, 175, 157, 113, 165, 245, 246,
15, 361, 547, 470, 17, 306, 190, 153, 357, 45, 443, 162, 475, 186, 224, 494, 393, 399, 444, 550, 439,
516, 433, 230, 108, 89, 406, 46, 102, 463, 21, 107, 374, 211, 103, 71, 75, 316, 78, 240, 205, 386, 202,
142, 313, 252, 348, 511, 437, 347, 478, 355, 476, 242, 276, 519, 499, 285, 271, 229, 1, 390, 12, 132,
299, 404, 440, 239, 185, 76, 367, 315

(iii) ZAP Meta-Dataset

Meta-Train 0-svhn_cropped, 1-svhn_cropped, 2-svhn_cropped, 3-svhn_cropped, 4-
svhn_cropped, 5-svhn_cropped, 6-svhn_cropped, 7-svhn_cropped, 8-svhn_cropped, 9-
svhn_cropped, 10-svhn_cropped, 11-svhn_cropped, 12-svhn_cropped, 13-svhn_cropped, 14-
svhn_cropped, 0-cycle_gan_apple2orange, 1-cycle_gan_apple2orange, 2-cycle_gan_apple2orange,
3-cycle_gan_apple2orange, 4-cycle_gan_apple2orange, 5-cycle_gan_apple2orange, 6-
cycle_gan_apple2orange, 7-cycle_gan_apple2orange, 8-cycle_gan_apple2orange, 9-
cycle_gan_apple2orange, 10-cycle_gan_apple2orange, 11-cycle_gan_apple2orange, 12-
cycle_gan_apple2orange, 13-cycle_gan_apple2orange, 14-cycle_gan_apple2orange, 0-cats_vs_dogs,
1-cats_vs_dogs, 2-cats_vs_dogs, 3-cats_vs_dogs, 4-cats_vs_dogs, 5-cats_vs_dogs, 6-cats_vs_dogs, 7-
cats_vs_dogs, 8-cats_vs_dogs, 9-cats_vs_dogs, 10-cats_vs_dogs, 11-cats_vs_dogs, 12-cats_vs_dogs,
13-cats_vs_dogs, 14-cats_vs_dogs, 0-stanford_dogs, 1-stanford_dogs, 2-stanford_dogs, 3-
stanford_dogs, 4-stanford_dogs, 5-stanford_dogs, 6-stanford_dogs, 7-stanford_dogs, 8-
stanford_dogs, 9-stanford_dogs, 10-stanford_dogs, 11-stanford_dogs, 12-stanford_dogs, 13-
stanford_dogs, 14-stanford_dogs, 0-cifar100, 1-cifar100, 2-cifar100, 3-cifar100, 4-cifar100,
5-cifar100, 6-cifar100, 7-cifar100, 8-cifar100, 9-cifar100, 10-cifar100, 11-cifar100, 12-
cifar100, 13-cifar100, 14-cifar100, 0-coil100, 1-coil100, 2-coil100, 3-coil100, 4-coil100,
5-coil100, 6-coil100, 7-coil100, 8-coil100, 9-coil100, 10-coil100, 11-coil100, 12-coil100, 13-
coil100, 14-coil100, 0-omniglot, 1-omniglot, 2-omniglot, 3-omniglot, 4-omniglot, 5-omniglot,
6-omniglot, 7-omniglot, 8-omniglot, 9-omniglot, 10-omniglot, 11-omniglot, 12-omniglot,
13-omniglot, 14-omniglot, 0-cars196, 1-cars196, 2-cars196, 3-cars196, 4-cars196, 5-cars196,
6-cars196, 7-cars196, 8-cars196, 9-cars196, 10-cars196, 11-cars196, 12-cars196, 13-cars196,

29

Under review as a conference paper at ICLR 2023

14-cars196, 0-horses_or_humans, 1-horses_or_humans, 2-horses_or_humans, 3-horses_or_humans,
4-horses_or_humans, 5-horses_or_humans, 6-horses_or_humans, 7-horses_or_humans, 8-
horses_or_humans, 9-horses_or_humans, 10-horses_or_humans, 11-horses_or_humans, 12-
horses_or_humans, 13-horses_or_humans, 14-horses_or_humans, 0-tf_flowers, 1-tf_flowers,
2-tf_flowers, 3-tf_flowers, 4-tf_flowers, 5-tf_flowers, 6-tf_flowers, 7-tf_flowers, 8-tf_flowers,
9-tf_flowers, 10-tf_flowers, 11-tf_flowers, 12-tf_flowers, 13-tf_flowers, 14-tf_flowers, 0-
cycle_gan_maps, 1-cycle_gan_maps, 2-cycle_gan_maps, 3-cycle_gan_maps, 4-cycle_gan_maps, 5-
cycle_gan_maps, 6-cycle_gan_maps, 7-cycle_gan_maps, 8-cycle_gan_maps, 9-cycle_gan_maps, 10-
cycle_gan_maps, 11-cycle_gan_maps, 12-cycle_gan_maps, 13-cycle_gan_maps, 14-cycle_gan_maps,
0-rock_paper_scissors, 1-rock_paper_scissors, 2-rock_paper_scissors, 3-rock_paper_scissors,
4-rock_paper_scissors, 5-rock_paper_scissors, 6-rock_paper_scissors, 7-rock_paper_scissors,
8-rock_paper_scissors, 9-rock_paper_scissors, 10-rock_paper_scissors, 11-rock_paper_scissors,
12-rock_paper_scissors, 13-rock_paper_scissors, 14-rock_paper_scissors, 0-cassava, 1-cassava,
2-cassava, 3-cassava, 4-cassava, 5-cassava, 6-cassava, 7-cassava, 8-cassava, 9-cassava, 10-cassava,
11-cassava, 12-cassava, 13-cassava, 14-cassava, 0-cmaterdb_devanagari, 1-cmaterdb_devanagari,
2-cmaterdb_devanagari, 3-cmaterdb_devanagari, 4-cmaterdb_devanagari, 5-cmaterdb_devanagari,
6-cmaterdb_devanagari, 7-cmaterdb_devanagari, 8-cmaterdb_devanagari, 9-cmaterdb_devanagari, 10-
cmaterdb_devanagari, 11-cmaterdb_devanagari, 12-cmaterdb_devanagari, 13-cmaterdb_devanagari,
14-cmaterdb_devanagari, 0-cycle_gan_vangogh2photo, 1-cycle_gan_vangogh2photo, 2-
cycle_gan_vangogh2photo, 3-cycle_gan_vangogh2photo, 4-cycle_gan_vangogh2photo,
5-cycle_gan_vangogh2photo, 6-cycle_gan_vangogh2photo, 7-cycle_gan_vangogh2photo,
8-cycle_gan_vangogh2photo, 9-cycle_gan_vangogh2photo, 10-cycle_gan_vangogh2photo,
11-cycle_gan_vangogh2photo, 12-cycle_gan_vangogh2photo, 13-cycle_gan_vangogh2photo,
14-cycle_gan_vangogh2photo, 0-cycle_gan_ukiyoe2photo, 1-cycle_gan_ukiyoe2photo,
2-cycle_gan_ukiyoe2photo, 3-cycle_gan_ukiyoe2photo, 4-cycle_gan_ukiyoe2photo, 5-
cycle_gan_ukiyoe2photo, 6-cycle_gan_ukiyoe2photo, 7-cycle_gan_ukiyoe2photo, 8-
cycle_gan_ukiyoe2photo, 9-cycle_gan_ukiyoe2photo, 10-cycle_gan_ukiyoe2photo, 11-
cycle_gan_ukiyoe2photo, 12-cycle_gan_ukiyoe2photo, 13-cycle_gan_ukiyoe2photo, 14-
cycle_gan_ukiyoe2photo, 0-cifar10, 1-cifar10, 2-cifar10, 3-cifar10, 4-cifar10, 5-cifar10,
6-cifar10, 7-cifar10, 8-cifar10, 9-cifar10, 10-cifar10, 11-cifar10, 12-cifar10, 13-cifar10, 14-cifar10, 0-
cmaterdb_bangla, 1-cmaterdb_bangla, 2-cmaterdb_bangla, 3-cmaterdb_bangla, 4-cmaterdb_bangla,
5-cmaterdb_bangla, 6-cmaterdb_bangla, 7-cmaterdb_bangla, 8-cmaterdb_bangla, 9-cmaterdb_bangla,
10-cmaterdb_bangla, 11-cmaterdb_bangla, 12-cmaterdb_bangla, 13-cmaterdb_bangla, 14-
cmaterdb_bangla, 0-cycle_gan_iphone2dslr_flower, 1-cycle_gan_iphone2dslr_flower, 2-
cycle_gan_iphone2dslr_flower, 3-cycle_gan_iphone2dslr_flower, 4-cycle_gan_iphone2dslr_flower, 5-
cycle_gan_iphone2dslr_flower, 6-cycle_gan_iphone2dslr_flower, 7-cycle_gan_iphone2dslr_flower, 8-
cycle_gan_iphone2dslr_flower, 9-cycle_gan_iphone2dslr_flower, 10-cycle_gan_iphone2dslr_flower,
11-cycle_gan_iphone2dslr_flower, 12-cycle_gan_iphone2dslr_flower, 13-
cycle_gan_iphone2dslr_flower, 14-cycle_gan_iphone2dslr_flower, 0-emnist_mnist, 1-emnist_mnist,
2-emnist_mnist, 3-emnist_mnist, 4-emnist_mnist, 5-emnist_mnist, 6-emnist_mnist, 7-emnist_mnist,
8-emnist_mnist, 9-emnist_mnist, 10-emnist_mnist, 11-emnist_mnist, 12-emnist_mnist, 13-
emnist_mnist, 14-emnist_mnist, 0-eurosat_rgb, 1-eurosat_rgb, 2-eurosat_rgb, 3-eurosat_rgb,
4-eurosat_rgb, 5-eurosat_rgb, 6-eurosat_rgb, 7-eurosat_rgb, 8-eurosat_rgb, 9-eurosat_rgb, 10-
eurosat_rgb, 11-eurosat_rgb, 12-eurosat_rgb, 13-eurosat_rgb, 14-eurosat_rgb, 0-colorectal_histology,
1-colorectal_histology, 2-colorectal_histology, 3-colorectal_histology, 4-colorectal_histology,
5-colorectal_histology, 6-colorectal_histology, 7-colorectal_histology, 8-colorectal_histology,
9-colorectal_histology, 10-colorectal_histology, 11-colorectal_histology, 12-colorectal_histology,
13-colorectal_histology, 14-colorectal_histology, 0-cmaterdb_telugu, 1-cmaterdb_telugu, 2-
cmaterdb_telugu, 3-cmaterdb_telugu, 4-cmaterdb_telugu, 5-cmaterdb_telugu, 6-cmaterdb_telugu, 7-
cmaterdb_telugu, 8-cmaterdb_telugu, 9-cmaterdb_telugu, 10-cmaterdb_telugu, 11-cmaterdb_telugu,
12-cmaterdb_telugu, 13-cmaterdb_telugu, 14-cmaterdb_telugu, 0-uc_merced, 1-uc_merced,
2-uc_merced, 3-uc_merced, 4-uc_merced, 5-uc_merced, 6-uc_merced, 7-uc_merced, 8-uc_merced,
9-uc_merced, 10-uc_merced, 11-uc_merced, 12-uc_merced, 13-uc_merced, 14-uc_merced, 0-kmnist,
1-kmnist, 2-kmnist, 3-kmnist, 4-kmnist, 5-kmnist, 6-kmnist, 7-kmnist, 8-kmnist, 9-kmnist, 10-kmnist,
11-kmnist, 12-kmnist, 13-kmnist, 14-kmnist

Meta-Test 0-cycle_gan_summer2winter_yosemite, 1-cycle_gan_summer2winter_yosemite,
2-cycle_gan_summer2winter_yosemite, 3-cycle_gan_summer2winter_yosemite, 4-
cycle_gan_summer2winter_yosemite, 5-cycle_gan_summer2winter_yosemite, 6-

30

Under review as a conference paper at ICLR 2023

cycle_gan_summer2winter_yosemite, 7-cycle_gan_summer2winter_yosemite, 8-
cycle_gan_summer2winter_yosemite, 9-cycle_gan_summer2winter_yosemite, 10-
cycle_gan_summer2winter_yosemite, 11-cycle_gan_summer2winter_yosemite, 12-
cycle_gan_summer2winter_yosemite, 13-cycle_gan_summer2winter_yosemite, 14-
cycle_gan_summer2winter_yosemite, 0-malaria, 1-malaria, 2-malaria, 3-malaria, 4-malaria,
5-malaria, 6-malaria, 7-malaria, 8-malaria, 9-malaria, 10-malaria, 11-malaria, 12-malaria,
13-malaria, 14-malaria, 0-cycle_gan_facades, 1-cycle_gan_facades, 2-cycle_gan_facades,
3-cycle_gan_facades, 4-cycle_gan_facades, 5-cycle_gan_facades, 6-cycle_gan_facades, 7-
cycle_gan_facades, 8-cycle_gan_facades, 9-cycle_gan_facades, 10-cycle_gan_facades, 11-
cycle_gan_facades, 12-cycle_gan_facades, 13-cycle_gan_facades, 14-cycle_gan_facades,
0-emnist_balanced, 1-emnist_balanced, 2-emnist_balanced, 3-emnist_balanced, 4-emnist_balanced,
5-emnist_balanced, 6-emnist_balanced, 7-emnist_balanced, 8-emnist_balanced, 9-emnist_balanced,
10-emnist_balanced, 11-emnist_balanced, 12-emnist_balanced, 13-emnist_balanced, 14-
emnist_balanced, 0-imagenette, 1-imagenette, 2-imagenette, 3-imagenette, 4-imagenette,
5-imagenette, 6-imagenette, 7-imagenette, 8-imagenette, 9-imagenette, 10-imagenette, 11-
imagenette, 12-imagenette, 13-imagenette, 14-imagenette, 0-mnist, 1-mnist, 2-mnist, 3-mnist,
4-mnist, 5-mnist, 6-mnist, 7-mnist, 8-mnist, 9-mnist, 10-mnist, 11-mnist, 12-mnist, 13-mnist,
14-mnist, 0-cycle_gan_horse2zebra, 1-cycle_gan_horse2zebra, 2-cycle_gan_horse2zebra,
3-cycle_gan_horse2zebra, 4-cycle_gan_horse2zebra, 5-cycle_gan_horse2zebra, 6-
cycle_gan_horse2zebra, 7-cycle_gan_horse2zebra, 8-cycle_gan_horse2zebra, 9-
cycle_gan_horse2zebra, 10-cycle_gan_horse2zebra, 11-cycle_gan_horse2zebra, 12-
cycle_gan_horse2zebra, 13-cycle_gan_horse2zebra, 14-cycle_gan_horse2zebra

Meta-Validation 0-emnist_byclass, 1-emnist_byclass, 2-emnist_byclass, 3-emnist_byclass,
4-emnist_byclass, 5-emnist_byclass, 6-emnist_byclass, 7-emnist_byclass, 8-emnist_byclass,
9-emnist_byclass, 10-emnist_byclass, 11-emnist_byclass, 12-emnist_byclass, 13-emnist_byclass, 14-
emnist_byclass, 0-imagenet_resized_32x32, 1-imagenet_resized_32x32, 2-imagenet_resized_32x32,
3-imagenet_resized_32x32, 4-imagenet_resized_32x32, 5-imagenet_resized_32x32, 6-
imagenet_resized_32x32, 7-imagenet_resized_32x32, 8-imagenet_resized_32x32, 9-
imagenet_resized_32x32, 10-imagenet_resized_32x32, 11-imagenet_resized_32x32, 12-
imagenet_resized_32x32, 13-imagenet_resized_32x32, 14-imagenet_resized_32x32, 0-
fashion_mnist, 1-fashion_mnist, 2-fashion_mnist, 3-fashion_mnist, 4-fashion_mnist, 5-fashion_mnist,
6-fashion_mnist, 7-fashion_mnist, 8-fashion_mnist, 9-fashion_mnist, 10-fashion_mnist, 11-
fashion_mnist, 12-fashion_mnist, 13-fashion_mnist, 14-fashion_mnist

(iv) OpenML Datasets

10101, 12, 146195, 146212, 146606, 146818, 146821, 146822, 146825, 14965, 167119, 167120,
168329, 168330, 168331, 168332, 168335, 168337, 168338, 168868, 168908, 168909, 168910,
168911, 168912, 189354, 189355, 189356, 3, 31, 34539, 3917, 3945, 53, 7592, 7593, 9952, 9977,
9981

We checked that there is not overlap between the tasks used for meta-training from the TensorOBOE
and the tasks used on OpenML Datasets.

31

	Introduction
	Related Work
	Preliminaries
	Pipeline Optimization
	Bayesian Optimization

	DeepPipe: BO with Deep Pipeline Configurations
	Pipeline Embedding Network
	Meta-learning our pipeline embedding

	Experiments and Results
	Meta-Datasets
	Baselines
	Research Hypotheses and Associated Experiments
	Experimental Setup for DeepPipe

	Results
	Conclusion
	Potential Negative Societal Impacts
	Licence Clarification
	Discussion on Number of Evaluated Pipelines
	Discussion on the Interactions among Components
	Comparison with Structured Kernel Learning (SKL) and AutoPrognosis
	Discussion on the Inductive Bias vs. Pre-training Effect
	Additional Information on Experimental Set-up
	Additional Related Work
	Bayesian Optimization (BO)
	DeepPipe Meta-Training
	DeepPipe Meta-Testing
	Additional Results
	Architecture Details
	Computational Implementation
	Visualizing the Learnt Representations
	Meta-Dataset Preprocessing
	Abbreviations
	Meta-Dataset Search Spaces
	Theoretical Insight of Hypothesis 5
	Meta-Dataset Splits

