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ABSTRACT

Recently, diffusion- and flow-based generative models of protein structures have
emerged as a powerful tool for de novo protein design. Here, we develop Proteina,
a new large-scale flow-based protein backbone generator that utilizes hierarchical
fold class labels for conditioning and relies on a tailored scalable transformer ar-
chitecture with up to 5x as many parameters as previous models. To meaningfully
quantify performance, we introduce a new set of metrics that directly measure the
distributional similarity of generated proteins with reference sets, complementing
existing metrics. We further explore scaling training data to millions of synthetic
protein structures and explore improved training and sampling recipes adapted
to protein backbone generation. This includes fine-tuning strategies like LoRA
for protein backbones, new guidance methods like classifier-free guidance and
autoguidance for protein backbones, and new adjusted training objectives. Proteina
achieves state-of-the-art performance on de novo protein backbone design and
produces diverse and designable proteins at unprecedented length, up to 800
residues. The hierarchical conditioning offers novel control, enabling high-level
secondary-structure guidance as well as low-level fold-specific generation.

1 INTRODUCTION

De novo protein design, the rational design of new proteins from scratch with specific functions
and properties, is a grand challenge in molecular biology (Richardson & Richardson, 1989; Huang
et al., 2016; Kuhlman & Bradley, 2019). Recently, deep generative models emerged as a novel data-
driven tool for protein design. Since a protein’s function is mediated through its structure, a popular
approach is to directly model the distribution of three-dimensional protein structures (Ingraham
et al., 2023; Watson et al., 2023; Yim et al., 2023b; Bose et al., 2024; Lin & Alquraishi, 2023),
typically with diffusion- or flow-based methods (Ho et al., 2020; Lipman et al., 2023). Such protein
structure generators usually synthesize backbones only, without sequence or side chains, in contrast to
protein language models, which often model sequences instead (Elnaggar et al., 2022; Lin et al., 2023;
Alamdari et al., 2023), and sequence-to-structure folding models like AlphaFold (Jumper et al., 2021).

Previous unconditional protein structure generative models have only been trained on small datasets,
consisting of no more than half a million structures at maximum (Lin et al., 2024). Moreover, their
neural networks do not offer any control during synthesis and are usually small, compared to modern
generative Al systems in domains such as natural language, image or video generation. There, we
have witnessed major breakthroughs thanks to scalable neural network architectures, large training
datasets, and fine semantic control (Esser et al., 2024; Brooks et al., 2024; OpenAl, 2024). This begs
the question: can we similarly scale and control protein structure diffusion and flow models, taking
lessons from the recent successes of generative models in computer vision and natural language?

Here, we set out to scale protein structure generation and develop a new flow matching-based protein
backbone generative model called Proteina. In vision and language modeling, generative models
are typically prompted through semantic text or class inputs, offering enhanced controllability. Anal-
ogously, we enrich our training data with hierarchical fold class labels following the CATH Protein

*Core contributor.
"Work done during internship at NVIDIA.


https://research.nvidia.com/labs/genair/proteina/

Published as a conference paper at ICLR 2025

Figure 1: Proteina. We
use flow-matching and learn

4 [~}
008 g° o?o a flow to transform a Gaus-
o, £ oon® ° sian distribution over ini-
o5 g2 °@te 8o ¢ tial protein backbone coordi-
° °°$: %ﬁb ‘};Q’t nates (residues’ C, atoms)
ve0® 8 % cage® o ;f‘, into realistic /protem. struc-
00, ©° tures. Proteina relies on

° ft:O t= a scalable transformer-based
architecture and can be con-
ditioned on hierarchical fold

Flow vector .

0 class labels for improved con-
field v/ 1

trollability and complex pro-

tein structure design tasks.

| Noisy intermediate X¢ |

[ (Optional) fold class label |

Structure Classification scheme (Dawson et al., 2016). Our novel hierarchical fold class conditioning
offers both high-level control, for instance over secondary structure content, as well as low-level guid-
ance with respect to specific fold classes. This can be leveraged, for instance, to dramatically increase
the number of 3-sheets in generated proteins. We also explore scaling the training data and train on
up to 21 million protein structures, a 35 increase of training data compared to previous work.

Next, we develop a scalable transformer architecture. We opt for a non-equivariant design inspired
by recent diffusion transformers in vision (Peebles & Xie, 2023; Ma et al., 2024). For boosted per-
formance, we optionally include triangle layers, a powerful albeit computationally expensive network
component common in the protein literature (Jumper et al., 2021). Crucially, though, our models also
achieves top performance without any triangle layer-based pair representation updates. This allows us
to train on very large proteins and generate backbones of up to 800 residues, while maintaining des-
ignability and diversity, significantly outperforming all previous works. Further, while non-equivariant
diffusion models have recently been used as part of AlphaFold3 (Abramson et al., 2024), equivariant
methods have been dominant in the unconditional protein structure generation literature. We show that
large-scale non-equivariant flow models also succeed on unconditional protein structure generation.
We train versions of Proteina with more than 400M parameters, more than 5x larger than RFDiffu-
sion (Watson et al., 2023), to the best of our knowledge the largest existing protein backbone generator.

Protein structure generators are typically evaluated based on their generated proteins’ diversity, novelty
and designability (see Sec. 3.5). However, none of these metrics rigorously scores models at the
distribution level, although the task of generative modeling is to learn a model of a data distribution.
Hence, we introduce new metrics that directly score the learnt distribution instead of individual
samples. Similar to the Fréchet Inception Distance in image generation (Heusel et al., 2017), we
compare sets of generated samples against reference distributions in a non-linear feature space. Since
our feature extractor is based on a fold class predictor, we further quantify models’ diversity over fold
classes as well as the similarity of the generated class distribution compared to reference data’s classes.

Further, we adjust the flow matching objective to protein structure generation and explore stage-wise
training strategies. For instance, using low-rank adaptation (LoRA, Hu et al. (2022)) we fine-tune
Proteina models on natural, designable proteins. We also develop novel guidance schemes for
hierarchical fold class conditioning and successfully showcase autoguidance (Karras et al., 2024) to
enhance protein designability. Experimentally, Proteina achieves state-of-the-art protein backbone
generation performance, vastly outperforming all baselines especially in long chain synthesis, and we
demonstrate superior control compared to previous models through our novel fold class conditioning.

Main contributions: (i) We present Proteina, a novel flow-based generative protein structure
foundation model using a new scalable non-equivariant transformer architecture, which we scale to
more than 400M parameters. (ii) We incorporate hierarchical fold class conditioning into Proteina
and develop tailored training algorithms and guidance schemes, leading to unprecedented semantic
controllability over protein structure generation. In particular, we showcase fold-specific synthesis as
well as a controlled enhancement of S-sheets in generated structures. (iii) We introduce several new
protein structure generation metrics to complement existing metrics and to better analyze and compare
existing models. (iv) We scale training data to almost 21M high-quality synthetic protein structures,
and show successful training of models with very high designability on such large data. (v) We achieve
state-of-the-art designable and diverse protein backbone generation performance for unconditional
and fold class-conditional generation as well as motif-scaffolding. Thanks to our efficient transformer
architecture, we scale to an unprecedented length of 800 residues, still producing diverse and
designable proteins, vastly outperforming previous works. (vi) For the first time, we demonstrate
LoRA-based fine-tuning and autoguidance for flow-based protein structure generative models.
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Figure 2: Proteina Samples. Designable backbones generated unconditionally by Mps model (<250 residues).

2 BACKGROUND AND RELATED WORK

Proteina relies on flow-matching (Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden,
2023), which models a probability density path p;(x;) that gradually transforms an analytically
tractable noise distribution (p;—o) into a data distribution (p;—1), following a time variable ¢ € [0, 1].
Formally, the path p;(x;) corresponds to a flow v, that pushes samples from pg to p; via p; = [¥)]; *po,
where * denotes the push-forward. In practice, the flow is modelled via an ordinary differential
equation (ODE) dx; = v?(x;, t)dt, defined through a learnable vector field v¥ (x;, t) with parameters
6. Initialized from noise x¢ ~ po(Xp), this ODE simulates the flow and transforms noise into approxi-
mate data distribution samples. The probability density path p;(x:) and the (intractable) ground-truth
vector field uy(x;) are related via the continuity equation dp;(x¢)/0t = —Vx, - (pr(x:)us(xs)).

To learn v¥(x,t) one can employ conditional flow matching (CFM). In CFM, conditioned on
data samples x; ~ p1(x1), we construct conditional probability paths p;(x:|x1) for which the
corresponding ground-truth conditional vector field u;(x;|x;) is analytically tractable for simple
distributions po(xo), like Gaussian noise. The CFM objective then corresponds to regressing the
neural network-defined approximate vector field v¥(x;, ) against u;(x¢|x; ), where the intermediate
samples x; are drawn from the tractable conditional probability path p;(x;|x1) and we marginalize
over data x; via Monte Carlo sampling. Since in expectation the CFM objective results in the same
gradients as directly regressing against the intractable marginal ground-truth vector field u:(x;),
v?(xy,t) learns an approximation of the ground-truth u, (x;).

In practice, the conditional probability paths are defined through an interpolant that connects noise xg
and data samples x; and constructs intermediate x; via interpolation. We rely on the rectified flow (Liu
et al., 2023) (also known as conditional optimal transport (Lipman et al., 2023)) formulation, using
a linear interpolant x; = tx; + (1 — t)x( and the regression target di; (xo|x1)/dt = x; — Xg. See
Sec. 3.2 for our exact instantiation of the CFM objective. Flow-matching is related to diffusion mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021), see App. J; for Gaussian flows the
frameworks become equivalent up to reparametrizations (Kingma & Gao, 2023; Albergo et al., 2023).

Related Work. Two seminal works on protein backbone generation with diffusion models are
Chroma (Ingraham et al., 2023) and RFDiffusion (Watson et al., 2023), the latter fine-tuning
RoseTTAFold (Baek et al., 2021). FrameDiff (Yim et al., 2023b) performs frame-based (Jumper
et al., 2021) Riemannian manifold diffusion (Huang et al., 2022; Bortoli et al., 2022) to model residue
rotations. These works were followed by FoldFlow (Bose et al., 2024) and FrameFlow (Yim et al.,
2023a), leveraging Riemanning flow matching (Chen & Lipman, 2024). Meanwhile, Genie (Lin &
Alquraishi, 2023) and others (Trippe et al., 2023) generate protein backbones diffusing only residues’
C, coordinates. Proteus (Wang et al., 2024) builds on top of FrameDiff, introducing efficient triangle
layers. Recently, FoldFlow2 (Huguet et al., 2024) and Genie2 (Lin et al., 2024) extended training
data to the AFDB, although with significantly less data than Proteina. MultiFlow (Campbell et al.,
2024), building on FrameFlow, jointly generates sequence and structure. Related, Protpardelle (Chu
et al., 2024) and the concurrent Pallatom (Qu et al., 2024) generate fully atomistic proteins. The latter
uses a similar non-equivariant transformer architecture like AlphaFold3 (Abramson et al., 2024), also
related to Proteina’s architecture. Meanwhile, masked language models have been trained on structure
tokens, with ESM3 (Hayes et al., 2024) being the most recent and prominent model. Chroma showed
classifier-based guidance with respect to fold classes. In contrast, we, for the first time, leverage
classifier-free guidance using large fold class annotations, and perform thorough quantitative analyses.

3 PROTEINA

3.1 SCALING PROTEIN STRUCTURE TRAINING DATA WITH FOLD CLASSES

Most protein structure generators have been trained on natural proteins, using filtered subsets of the
PDB (Berman et al., 2000), resulting in training set sizes in the order of 20k. Recently, some works
(Lin et al., 2024; Huguet et al., 2024; Qu et al., 2024) relied on the AFDB (Varadi et al., 2021) and in-
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cluded synthetic AlphaFold2 structures (Jumper et al., 2021). Genie2 (Lin et al., 2024) used the largest
dataset, i.e. ~0.6M synthetic structures. Inspired by the data scaling success of generative models in
areas such as image and video generation and natural language synthesis (Brooks et al., 2024; Esser
et al., 2024; OpenAl, 2024), we explore scaling protein structure training data even further. The entire
AFDB extends to ~214M structures, orders of magnitude larger than its small subsets used in previous
works. However, not all of these structures are useful for training protein structure generators, as they
contain low-quality predictions and other unsuitable data. Our main Proteina models are trained on
two datasets, denoted as Dgs and D, 1, the latter newly created (data processing details in App. M):

1. Foldseek AFDB clusters Dgs: This dataset corresponds to the data that was also used by Genie2,
based on sequential filtering and clustering of the AFDB with the sequence-based MMseqs?2 and the
structure-based Foldseek (van Kempen et al., 2024; Barrio-Hernandez et al., 2023). This data uses
cluster representatives only, i.e. only one structure per cluster. Like Genie2, we use protein lengths
between 32 and 256 residues in our main models, leading to 588,318 structures in total.

2. High-quality filtered AFDB subset D,\: We filtered all ~214M AFDB structures for proteins
with max. residue length 256, min. average pLDDT of 85, max. pLDDT standard deviation of 15, max.
coil percentage of 50%, and max. radius of gyration of 3nm. This led to 20,874,485 structures. We
further clustered the data with MMseqs2 (Steinegger & Soding, 2017) using a 50% sequence similarity
threshold. During training, we sample clusters uniformly, and draw random structures within.

We use Dgs, as, to the best of our knowledge, it represents the largest training dataset used in any
previous flow- or diffusion-based structure generators. With D,y we are pushing the frontier of
training data scale for protein structure generation. In fact, D,y is 35 % larger than Dgg (see Fig. 3).

Hierarchical fold class annotations. Large-scale generative models in the visual domain typically
rely on semantic class- or text-conditioning to offer control or to effectively break down the generative
modeling task into a set of simpler conditional tasks (Bao et al., 2022). However, existing protein
structure diffusion or flow models are either trained unconditionally, or condition only on partially
given local structures, for instance in motif scaffolding tasks (Yim et al., 2024; Lin et al., 2024).

We propose, for the first time, to instead leverage fold class annotations that globally describe protein
structures, akin to semantic class or text labels of images. We use The Encyclopedia of Domains (TED)
data, which consists of structural domain assignments to proteins in the AFDB (Lau et al., 2024b;a).
TED uses the CATH structural hierarchy (Dawson et al., 2016) to assign labels, where C (“class™)
describes the overall secondary-structure content of a domain, A (“architecture”) groups domains with
high structural similarity, 7' (“topology/fold”) further refines the structure groupings, and H (‘“homol-

Figure 4: Long Proteina Samples. Chain lengths in (a)-(g): [300, 400, 500, 600, 700, 800, 800]. (a) “Mixed
a/B7-guided. (b) “Mainly 5”-guided. (e) “Mixed c/3”-guided. Others unconditional. All samples designable.
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ogous superfamily”) labels are only shared between domains with evolutionary relationships. Since
we are strictly interested in structural modeling, we discard the H level and leverage only C, A, and T
level labels. We assign labels to the proteins in all datasets, but since TED annotated not all of AFDB,
some structures lack CAT labels. Moreover, some labels are less common than others (see Fig. 3); we

9% <

only consider the main “mainly «”, “mainly 8", and “mixed a/3” C classes. See App. M for details.

3.2 TRAINING OBJECTIVE

We model protein backbones’ residue locations through their C', atom coordinates, similar to Lin &
Alquraishi (2023); Lin et al. (2024). Note that many works instead leverage so-called frames (Jumper
et al., 2021), additionally capturing residue rotations. However, this requires modeling a generative
process over Riemannian rotation manifolds as well as ad hoc modifications to the rotation generation
schedule during inference, which are not well understood (Yim et al., 2023a; Bose et al., 2024; Huguet
et al., 2024). We purposedly avoid such representations to not make the framework unnecessarily
complicated, and prioritize simplicity and scalability, relying purely on C, backbone coordinates.

Consider the vector of a protein backbone’s 3D C,, coordinates x € R3L, where L is the number of
residues. Denote the protein’s fold class labels as {Cyx, Ax, Tx }car, and the binned pairwise distance
between residues ¢ and j as Dy ;;(x). Using x; = tx + (1 — t)e, Proteina’s objective then is

. 1 .
Hbln ]EXNPD(X),ENN(O,I),th(t) |:L ||V759 (Xtv t; X(Xt)a {CX7 Ax; Tx}CAT) - (X - 6)”%

Main conditional flow-matching loss, see Sec. 2.

ey

64
1(¢ > 0.3 N
—% E g Dy i5(x) logpgij(xtvtax(xt)v{CX7AXaTx}CAT) .
g b=1

Optional auxiliary binned distogram loss.

Similar to Abramson et al. (2024); Qu et al. (2024), we optionally include a cross entropy-based
distogram loss, which discretizes pairwise residue distances into 64 bins. The distogram is predicted
via a prediction head attached to our architecture’s pair representation and only used if this pair
representation is updated (see Sec. 3.3). This loss is generally used only for £ > 0.3. We also train
for self-conditioning, conditioning the model on its own clean data prediction X(x;) = x; + (1 —
t)v9(x¢,t,0,{Cx, Ax, Tx }car) with probability 0.5. Furthermore, we design a novel ¢-sampling
distribution, p(¢) = 0.02U(0, 1) + 0.98 B3(1.9, 1.0), tailored to flow matching for protein backbone
generation (motivation and discussion in App. K, visualization in Fig. 20, ablation studies in App. L).

Fold-class conditioning. Our fold class labels describe protein structures at different levels of detail,
and we seek the ability to both condition on varying levels of the hierarchy, and to also run the model
unconditionally. To this end, we propose to hierarchically drop out different label combinations during
training. Specifically, with p = 0.5 we drop all labels ({(, @, @}car), with p = 0.1 we only show the
C label ({Cyx, 0, 0} car), with p = 0.15 we drop only the T label ({Cx, Ax, 0 }car) and with p = 0.25
we give the model all labels ({Cx, Ax, Tx }car). The drop probabilities are chosen such that, on the
one hand, we learn a strong unconditional model without any labels. On the other hand, the number of
categories increases along the hierarchy, such that we focus training more on the increasingly fine A
and T classes, as opposed to conditioning only on the coarser C labels (Fig. 3). Moreover, our approach
enables classifier-free guidance (Ho & Salimans, 2021) for all possible levels during inference,
combining the unconditional model prediction with any of the label-conditioned predictions (guidance
weight w, see App. I). Note that, while most training proteins have only a single label, if a protein has
multiple domains and corresponding hierarchical labels, we randomly feed one of them to the model.

3.3 A SCALABLE PROTEIN STRUCTURE TRANSFORMER ARCHITECTURE

While previous protein structure generators typically use small equivariant neural networks, we take
inspiration from language and image generation (Peebles & Xie, 2023; Ma et al., 2024; Esser et al.,
2024) and design a new streamlined non-equivariant transformer, see Fig. 5. It constructs residue chain
and pair representations from the (noisy) protein coordinates, the residue indices, the sequence sepa-
ration between residues and the (optional) self-conditioning input. The residue chain representation is
processed by a stack of conditioned and biased multi-head self-attention layers (Vaswani et al., 2017),
using a pair bias via the pair representation, which can be optionally updated, too. At the end, the up-
dated sequence representation is decoded into the vector field prediction v¥ to model Proteina’s flow.



Published as a conference paper at ICLR 2025

(a) Create R ion (b) Create Sequence Conditioning  (c) Create Pair Representation (d) Neural Network Processing Stack
G Celfe] e G Gelfe] (] 2w oo
| Repr. " Cond. " Pair Repr. |
| Linear ” Linear ” Sin. Enc. | | Sin. Enc.l | Linear | |Pair Dists,”l’air Disls."Seq. Dis&s” Sin. Enc.l [ |
- T
it |
| Concat | | Concat | Concat L z
oncat. oncat. “oncat. - . a
Adaptive Biased : Q
1 d Multi-Head Attention T‘;:;gll_;: szty:r g
Linear | [ wee ] Adaptive LN |- Linear + LN + (optional) g
T Adaptive Transition P B
=
| Sequence Repr. | Registers | | Sequence Cond. ” Zero Pad,l Pair Repr. ” Zero Pad. | ! 1 &
| Sequence Repr. | Pair Repr. | g
Concat. Concat. Concat. l i
| Linear | | Linear |
Sequence Repr. Sequence Cond. T T
u = | Vector field v, | | Pairwise distances (optlonal)l
(e) Adaptive Biased Multi-Head Attention and Adaptive Transition
Sequence Repr.
[ B |
Concat. Adaptlve Ada \phvc Linear + Adaptive Sequence
+ Linear Scale SwiGLU Scale Repr.
T
g [ &
=S
i

Figure 5: Proteina’s transformer architecture. (a)-(c) We first create a sequence representation, sequence
conditioning features, and a pair representation. (d) They are processed by conditioned and biased (through the
pair representation) multi-head attention layers, described in (e). We use a variant of QK normalization, applying
LayerNorm (LN) to the Q and K inputs to the attention operation, before the multi-head split. Optionally, the
pair representation can be updated. See App. N for the Pair Update, Adaptive LN, and Adaptive Scale modules.

A related architecture has recently been introduced by AlphaFold3 (Abramson et al., 2024), and is used
concurrently in Pallatom (Qu et al., 2024). Our design features some additional components: (i) As
discussed, we condition on hierarchical fold class labels. They are fed to the model through concate-
nated learnable embeddings, injected into the attention stack via adaptive layer norms, together with
the ¢ embedding. (ii) Following best practices from language and vision, we extend our sequence rep-
resentation with auxiliary tokens, known as registers (Darcet et al., 2024), which can capture global in-
formation or act as attention sinks (Xiao et al., 2024) and streamline the sequence processing. (iii) We
use a variant of QK normalization (Dehghani et al., 2023) to avoid uncontrolled attention logit growth.
While our models are smaller than the large models in vision and language, we train with relatively
small batch sizes and high learning rates, where similar instabilities can occur (Wortsman et al., 2024).
(iv) All our attention layers feature residual connections—without, we were not able to train stably
(AlphaFold3 is ambiguous regarding their use of such residuals). (v) We use triangle multiplicative lay-
ers (Jumper et al., 2021) as optional add-on only to update the pair representation. While triangle lay-
ers have been shown to boost performance (Jumper et al., 2021; Lin et al., 2024; Huguet et al., 2024),
they are highly compute and memory intensive, limiting scalability. Hence, in Proteina we avoid their
usage as the driving model component and carry out most processing with the main transformer stack.

AlphaFold3 showed that non-equivariant diffusion models can succeed in protein folding, but they rely
on expressive amino acid sequence and MSA embeddings. We instead learn the distribution of protein
structures without sequence inputs. For this task, to the best of our knowledge, almost all related
works used equivariant architectures, aside from the concurrent Pallatom (Qu et al., 2024) and Prot-
pardelle (Chu et al., 2024). To nonetheless learn equivariance, we center training proteins and augment
with random rotations; in App. E we show that our model learns an approximately SO(3)-equivariant
vector field. We train models with up to ~400M parameters in the transformer and ~17M in the
triangle layers, which, we believe, represents the largest protein structure flow or diffusion model.

3.4 SAMPLING

New protein backbones can be generated with Proteina by simulating the learnt flow’s ODE, see
Sec. 2. Since our flow is Gaussian, there exists a connection between the learnt vector field and the
corresponding score s(x;) := Vy, log p:(x:) (Albergo et al., 2023; Ma et al., 2024),

tvf (Xt7 6) — Xt

R )

where we use ¢ as abbreviation for all conditioning inputs (see Sec. 3.2). This allows us to construct a
stochastic differential equation (SDE) that can be used as a stochastic alternative to sample Proteina,

dx; = vy O(x¢,¢)dt 4 g(t )St x¢, C)dt + 1/ 2g(t)y AWy, 3)

S? (Xt, 6) =



Published as a conference paper at ICLR 2025

Beta Barrel Rossmann Fold Immunoglobulin Domain  Rare class in PDB, common in AFDB Mainly Beta
C.AT:3.20.20 C.A: 240 C.A.T:3.40.50 C.A.T: 2.60.40 C.A.T:3.90.870 C:2

Figure 6: Fold class-conditional Generation with M2 model (Sec. 4.3). All samples are designable and
correctly re-classified (App. D). The used C.A.T fold class conditioning codes are given below fold names.

where W; is a Wiener process and g(t) scales the additional score and noise terms, which corresponds
to Langevin dynamics (Karras et al., 2022). Crucially, we have introduced a noise scaling parameter
v. For =1, the SDE has the same marginals and hence samples from the same distribution as
the ODE (Karras et al., 2022; Ma et al., 2024). However, it is common in the protein structure
generation literature to reduce the noise scale in stochastic sampling (Ingraham et al., 2023; Wang
et al., 2024; Lin et al., 2024). This is not a principled way to reduce the temperature of the sampled
distribution (Du et al., 2023), but can be beneficial empirically, often improving designability at the
cost of diversity. Fold label conditioning is done via classifier-free guidance (CFG) (Ho & Salimans,
2021), and we also explore autoguidance (Karras et al., 2024), where a model is guided using a “bad”
version of itself. In a unifying formulation, we can write the guided vector field as

6,guided (

v, X¢t, C) = wvf(xt, &)+ (1-w)|(1- a)vf(xt, 0) + avf’bad(xt,é)} 4

where w > 0 defines the overall guidance weight and « € [0, 1] interpolates between CFG and
autoguidance. An analogous equation holds for the scores s{ (x;, ¢). To the best of our knowledge, no

previous works explore CFG or autoguidance for protein structure generation. More details in App. L.

3.5 PROBABILISTIC METRICS FOR PROTEIN STRUCTURE GENERATIVE MODELS

Protein structure generators are scored based on their samples’ designability, diversity and novelty
(see App. F). However, designability relies on auxiliary models, ProteinMPNN (Dauparas et al., 2022)
and ESMFold (Lin et al., 2023), with their own biases. Moreover, we cannot necessarily expect to
maximize designability by learning a better generative model, because not even all training proteins
are designable (Lin et al., 2024). Next, diversity and novelty are usually only computed among
designable samples, which makes them dependent on the complex designability metric, and diversity
and novelty do otherwise not depend on quality. Therefore, we propose new probabilistic metrics
that offer complementary insights. We suggest to more directly quantify how well a model matches a
relevant reference distribution. Specifically, we first train a fold class predictor py(-|x) with features
¢(x) for all CAT hierarchy levels (Sec. 3.1). Leveraging this classifier, we propose three new metrics:

Fréchet Protein Structure Distance (FPSD). Inspired by the FID score (Heusel et al., 2017), we
embed generated and reference structures into the feature space of the fold class predictor and measure
the Wasserstein distance between the feature distributions, modeling them as Gaussians. Defining the
generated and the reference set of protein structures as {x} gen and {X }1ef» respectively, we have

2 1
FPSD({x}een, {X}rer) 1= [|600)}pon = B0 b [0 (Ew(x)}gm F 060 b~ 2060 baen D500 ) 2) :

An accurate fold class predictor must learn an expressive feature representation of protein structures.
Hence, we argue that these feature embeddings must be well-suited for fine-grained reasoning about
protein structure distributions, making a fold class predictor an ideal choice as embedding model.

Fold Jensen Shannon Divergence (fJSD). We also directly compare the marginal predicted categori-
cal fold class distributions of generated and reference structures via the Jensen Shannon Divergence,

fISD({x }gen, {x}ref) := 10 X ISD(Ex {x},10n P (%) [ B {5¢},0eP (+%))-

Note that we can evaluate this fJSD metric at all levels of the predicted CAT fold class hierarchy,
allowing us to measure distributional fold class similarity at different levels of granularity. In practice,
in this work we report the average over all levels in the interest of conciseness.

Fold Score (fS). Inspired by the Inception Score (Salimans et al., 2016), we propose a Fold Score

S({x}en) = €D (B ) [ Dt (0 (1%) [ B )2 (1)) | )
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Table 1: Proteina’s unconditional backbone generation performance compared to baselines. All models and
baselines tuned for designability via noise scaling or inference rotation annealing, not sampling full distribution.
For metric evaluation details see App. F and App. G. Best scores bold, second best underlined.

Model Design- Diversity Novelty vs. FPSD vs. S fISD vs. Sec. Struct. %
ability (%)7 | Clusterf TM-Sc.| PDB| AFDB| | PDB, AFDB| (C/A/T)T PDB| AFDB| (@/8)

Unconditional generation. M d the Proteina model variant, and vy is the noise scale for Proteina.

FrameDiff 65.4 0.39 (126) 0.40 0.73 0.75 1942 2581 | 2.46/578/2335 | 1.04 1.42 649/11.2
FoldFlow (base) 96.6 0.20 (98) 0.45 0.75 0.79 601.5  566.2 1.06/1.79/9.72 | 3.18 3.10 87.5/0.4
FoldFlow (stoc.) 97.0 0.25 (121) 0.44 0.74 0.78 543.6 520.4 1.21/2.09/11.59 | 3.69 2.71 86.1/1.2
FoldFlow (OT) 972 0.37 (178) 0.41 0.71 0.75 4314 4141 | 1.35/3.10/13.62 | 2.90 2.32 82.7/2.0
FrameFlow 88.6 0.53 (236) 0.36 0.69 0.73 1299 1599 | 2.52/5.88/27.00 | 0.68 0.91 5571184
ESM3 22,0 0.58 (64) 0.42 0.85 0.87 9339 8554 | 3.19/6.71/17.73 | 1.53 0.98 64.5/8.5
Chroma 74.8 0.51 (190) 0.38 0.69 0.74 189.0  184.1 | 2.34/4.95/18.15 | 1.00 1.08 69.0/12.5
RFDiffusion 94.4 0.46 (217) 0.42 0.71 0.77 2537 2524 | 2.25/5.06/19.83 | 121 1.13 643/172
Proteus 94.2 0.22 (103) 0.45 0.74 0.76 225.7 226.2 | 226/5.46/16.22 | 1.41 1.37 73.1/9.1
Genie2 952 0.59 (281) 0.38 0.63 0.69 350.0 3138 | 1.55/3.66/11.65 | 221 1.70 7271748
Mps, y=0.35 98.2 0.49 (239) 0.37 0.71 0.77 4112 3921 | 1.93/5.16/16.79 | 1.96 1.53 71.6/5.8
Mgs, v=0.45 96.4 0.63 (305) 0.36 0.69 0.75 388.0 3682 | 2.06/532/19.05 | 1.65 1.23 68.1/6.9
Mps, y=0.5 91.4 0.71 (323) 0.35 0.69 0.75 380.1  359.8 | 2.10/5.18/19.07 | 1.55 1.13 67.0/7.2
Mg, 4=0.45 938 | 0.62(292) 036 069 076 | 3222 3062 | 1.80/4.72/18.59 | 1.84 136 | 713/55
Mom. v=0.3 99.0 0.30 (150) 0.39 0.81 0.84 280.7 3199 | 2.05/590/19.65 | 1.66 1.81 622/9.9
Maim, 7=0.6 84.6 0.59 (294) 0.35 0.72 0.77 280.7 301.8 | 2.31/5.76/30.11 | 0.89 0.95 58.7/12.0
Miora, 7=0.5 96.6 | 0.43 (208) 0.38 0.75 0.78 | 274.1 3360 | 240/6.26/2693 | 0.79 093 | 543/13.0

A higher score is desired. The fS is maximized when individual sample’s class predictions py (+|x)
are sharp, while the marginal distribution Ex . (x},.,P¢ (+|x) has high entropy and covers many classes.
Hence, this score encourages diverse generation, while individual samples should be of high quality
to enable confident predictions under the classifier. The fS can also be evaluated for all CAT levels.

Our new metrics are probabilistic and directly score generated proteins at the distribution level, offer-
ing additional insights. They can help model development, but are not meant as optimization targets
to rank models. A protein designer in practice still cares primarily about designable, diverse and novel
proteins. Therefore, we did not indicate bold/underlined scores for these metrics in the evaluation ta-
bles in Sec. 4. The new metrics are evaluated with 5,000 samples in practice. In App. G, we provide de-
tails and extensively validate the new metrics on benchmarks, to establish their validity and sensitivity.

4 EXPERIMENTS

We trained three main Proteina models (M), all with the possibility for conditional and unconditional
generation (Sec. 3.2): (i) Model Mg is trained on Dgg with a 200M parameter transformer and 15M
parameters in triangle layers. (ii) The more efficient M2 is trained on Dgs with a 200M parameter
transformer without any triangle layers nor pair representation updates. (iii) Moy is trained on
D,1m with a 400M parameter transformer and 15M parameters in triangle layers. Details in App. O.

4.1 PROTEIN BACKBONE GENERATION BENCHMARK

In Tab. 1, we compare our models’ performance with baselines for protein backbone generation
(see Sec. 2). We select all appropriate baselines for which code was available, as we require to
generate samples to fairly evaluate metrics and follow a consistent evaluation protocol (described
in detail in Apps. F and G). We did not evaluate Genie, as it is outdated since Genie2, and we were
not able to compare to the recent FoldFlow2, as no code is available. We also evaluated ESM3
as a state-of-the-art masked language model that can also produce structures. Baseline evaluation
and experiment details in Apps. O and P. All models and baselines in Tab. 1 are adjusted for high
designability via rotation annealing or reduction of the noise scale during inference. Tab. 1 findings:

Unconditional generation. (i) Mg can be tuned during inference for different designability,
diversity and novelty trade-offs (varying «). It outperforms all baselines in designability and diversity,
while performing competitively on novelty, only behind Genie2 and FrameFlow for AFDB novelty
(model samples in Fig. 2). (i) M3 still reaches 93.8% designability and outperforms all baselines
on diversity, despite not using any expensive triangle layers and no pair track updates—in contrast

Table 2: Proteina’s and Chroma’s fold class-conditional backbone generation performance.

Model Design- Diversity Novelty vs. FPSD vs. fS fISD vs. Sec. Struct. %
ability (%)1 | Clusterf TM-Sc.| PDB| AFDB/| | PDB| AFDB| (C/A/T)T PDB| AFDB| (! B)

Fold class-conditional generation with Proteina model M;f’s”d and CFG with guidance weight w and noise scale v = 0.4.

Chroma 57.0 0.65 (186) 0.37 0.68 0.73 157.8 131.0 | 2.36/5.11/19.82 | 0.84 0.77 70.2/11.1
MY, w=1.0 91.4 0.57 (262) 0.34 0.77 0.81 121.1 127.6 | 2.50/6.93/31.31 | 0.58 0.52 57.1/13.7
M, w=1.5 89.2 0.57 (252) 0.33 0.77 0.81 106.1 113.5 | 2.58/7.36/32.72 | 0.49 0.47 56.0/14.6
M, w=2.0 83.8 0.54 (225) 0.33 0.78 0.82 103.0 108.3 | 2.62/7.55/33.74 | 0.45 0.43 54.5/15.7
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Table 3: Proteina’s and GENIE2’s backbone generation performance when evaluated to sample full distribution,
i.e. no noise or temperature reduction. Metric details in Apps. F and G. Best scores bold, second best underlined.

Model Design- Diversity Novelty vs. FPSD vs. fS fISD vs. Sec. Struct. %
ability (%)t | Clustert TM-Sc., PDB] AFDB| | PDB| AFDB/ (C/AITY} PDB, AFDB| (@lB)

Unconditional generation. M denotes Proteina model variant. Sampling for Proteina performed using generative ODE (App. 1), for GENIE with their approach.

Genie2 19.0 0.81 (77) 0.33 0.66 0.72 1047 2994 | 224/449/22.83 | 0.75 0.16 65.0/7.5
Mes 19.6 0.93 (91) 0.32 0.66 0.74 8539 2141 | 251/5.65/27.35 | 0.59 0.09 482/13.2
Mam 354 0.65 (115) 0.34 0.74 0.79 50.14 4498 | 2.51/6.46/39.65 | 0.32 0.23 55.7/11.8
Muora 4.2 0.58 (129) 0.35 0.73 0.75 68.56 1386 | 2.61/7.19/38.64 | 0.31 0.82 47217134

Fold class-conditional generation with Proteina model /\/l;g’“/ and CFG with guidance weight w. Sampling is performed using generative ODE (App. I).

M, =10 242 | 074900 029 073 079 | 7146 1945 | 2.64/675/26.64 | 040  0.12 4871147

to all existing models. (iii) Mj1y achieves state-of-the-art 99.0% designability, while generating
less diverse structures. This is expected, as it is trained on the very large, yet strongly filtered D; .
Models trained on Dgg exhibit higher diversity, because no radius of gyration or secondary structure
filtering was used during data curation. With D, we were able to prove that one can create high-
quality datasets, much larger than Dgg, from fully synthetic structures that can be used for training
generative models producing almost entirely designable structures. Furthermore, our discussed
findings represent an important proof that non-equivariant architectures can achieve state-of-the-art
performance on protein backbone generation. All baselines use fully equivariant networks.

PDB-LoRA M ra. We used LoRA (Hu et al., 2022) to fine-tune Mg on a small dataset of only des-
ignable proteins from the PDB (App. M.1). As expected, designability improves, diversity decreases,
FPSD and fJSD with respect to PDB decrease, and FPSD and fJSD with respect to AFDB increase.
This experiment showcases how a model that is trained only on synthetic data can be successfully fine-
tuned on natural proteins, and the metrics validate that the generated samples indeed are closer to the
PDB in distribution. Moreover, the amount of 3-sheets doubles, an important aspect, due to the under-
representation of S-sheets in many protein design models. To the best of our knowledge, this is the first
time that such LoRA fine-tuning has been demonstrated for protein structure flow or diffusion models.

Fold-Class conditional generation and new metrics. Next, we evaluate our fold class-conditional
model M3 as well as Chroma, the only baseline that also supports class-conditional sampling (see
Tab. 2). We feed the labels from the empirical label distribution of Dgg to the models. This enforces
diversity across different fold structures, which is reflected in the metrics. Compared to unconditional
generation, our conditional model achieves state-of-the-art TM-Score diversity, while also reaching
the best FPSD, fS and fJSD scores, thereby demonstrating fold structure diversity (fS) and a better
match in distribution to the references (FPSD, fJSD). Moreover, this is achieved while maintaining
very high designability. Further, the effect is enhanced by classifier-free guidance (w > 1.0). Fold
class-conditioning also significantly improves the 3-sheet content of the generated backbones. Note
that, however, the model does not improve novelty. Novelty can be at odds with learning a better model
of the training distribution—the goal of any generative model—as it rewards samples completely
outside the training distribution. That motivates our new metrics, which are complementary, as clearly
shown in the class-conditioning case. Chroma has very poor designability and is outperformed in
TM-score diversity and the number of designable cluster. Moreover, we show in App. D.1 that, in
contrast to Proteina, Chroma fails to perform accurate fold class-specific generation by analyzing
whether generated proteins correspond to the correct conditioning fold classes.

Full distribution modeling. Most models use temperature 70
and noise scale reduction or rotation schedule annealing during o
inference to increase designability at the cost of diversity. In
Tab. 3, we analyze performance when sampling the entire
distribution instead, comparing to Genie2 also sampled at full

oS
2

Designability % T

temperature. Genie2 produces the least designable samples. 40 Uncondional seneration
Mg performs overall on-par with or better than Genie2, but ¥ T T TRy Ty
M 1m has much higher designability and LoRA fine-tuning also Autoguidance Weight

gives a big boost. Moreover, almost all new distribution metrics ~Figure 7: Designability of Maiu
(FPSD, fS, fJSD) are significantly improved over Tab. 1, as we ODE samples with autoguidance.
now sample the entire distribution. This is only fully captured by our new metrics.

Autoguidance. In Fig. 7, we show a case-study of autoguidance (Karras et al. (2024), see App. I) for
protein backbone generation with our Mj1y model in full distribution mode (ODE), using an early
training checkpoint as “bad” guidance checkpoint. We can significantly boost designability, up to
70% in conditional generation, far surpassing the results in Tab. 3. To the best of our knowledge, this
is the first proof of principle of autoguidance in the context of protein structure generation.
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4.2 LONG CHAIN GENERATION

While our main models are trained on proteins of up to 256 residues, we fine-tune the Mg
model on proteins of up to 768 residues (App. O for details). In Fig. 8, we show our model’s
performance on long protein backbone generation of up to 800 residues (samples in Fig. 4.).
While Genie2 exhibits superior diversity at 300 residues, beyond that Proteina significantly out-
performs all baselines by a large margin, achieving state-of-the-art results. At very long lengths,
all baselines collapse and cannot produce diverse designable proteins anymore. In contrast, for
our model most generated backbones are designable even at length 800 and we still generate many
diverse proteins as measured by the number of designable clusters. To the best of our knowl-
edge no previous protein backbone generators successfully trained on proteins up to that length.

It is possible for us because Z 804
MBS does not use any expen- 270 —— Proteina
sive trlangle layers and no pair O 60 i/i/\\—_‘ Proteus
track updates, relying only on Tgﬂjg \ : }S’:l“d';lzow or
our novel efficient transformer, g 20 \ \ —  RFDiffusion
whose scalability this experi- €5 R\ —— FrameFlow
ment validates. We envision ? 10 5 Chroma
that such long protein back- g 0 B E’:&‘?iff
bone generation unlocks new 300 400 500 600 700 800 300 400 500 600 700 800

Number of Residues Number of Residues

large-scale protein design tasks. .
Note that long length genera- Figure 8: Proteina long backbone generation performance (also App. O.5).

tion can be combined with our novel fold class conditioning, too, offering additional control (Fig. 4).

4.3 FoLD CLASS-SPECIFIC GUIDANCE AND INCREASED [3-SHEETS

A problem that has plagued protein structure generators for a long time is that they typically produce
much more a-helices than S-sheets (Tabs. 1 and 3). Our fold class conditioning offers a new tool to
address this without the need for fine-tuning (Huguet et al., 2024). In Tab. 4, we guide the MCO"d
model with respect to the main high-level C level classes that determine secondary structure content
(details App. O). When guiding into the “mixed a/3” and especially “mainly 3 classes, 3-sheets
increase dramatically in contrast to unconditional or “mainly o generation and also compared to all
baselines in Tab. 1. Importantly, the samples remain designable. As we restrict generation to specific
classes, diversity slightly decreases as expected, but we still generate diverse samples.

Aside from C-level guidance to achieve Table 4: Guiding Proteina into the C-level classes.
controlled secondary structure diversity,  Class Design- Diversity Novelty vs. Sec. Struct. %
1 lde lth respect to inter— ability % 1 | Foldseekt TM-Sc.| | PDB] AFDB| «a B8 coil
We.can also gu w P Unconditional 964 | 0.63(305) 036 | 069 075 |68.1 69 250
esting or relevant A- and T-level classes.  “Mainly o 96.6 0.37(179) 042 077 082 |85 06 169
. . “Mainly 3" 900 | 048(215) 037 | 075 082 | 149 333 518
In Fig. 6, we show examples of guidance  “Mixed ap” 978 | 042(207) 037 | 073 078 |44l 205 354

into different fold classes from the CAT

hierarchy, demonstrating that Proteina offers unprecedented control over protein backbone generation.
We would also like to point to App. D, where we extensively validate that our novel fold class condi-
tioning correctly works by re-classifying generated conditional samples with our fold class predictor.

Further Proteina samples in App. A. Proteina also achieves state-of-the-art performance in motif-
scaffolding (App. B). Speed and efficiency analysis in App. C.2. More experiments in Apps. E and L.

5 CONCLUSIONS

We have presented Proteina, a foundation model for protein backbone generation. It features novel fold
class conditioning, offering unprecedented control over the synthesized protein structures. In compre-
hensive unconditional, class-conditional and motif scaffolding benchmarks, Proteina achieves state-of-
the-art performance. Our driving neural network component is a scalable non-equivariant transformer,
which allows us to scale Protefna to synthesize designable and diverse backbones up to 800 residues.
We also curate a 21M-sized high-quality dataset from the AFDB and, scaling Proteina to over 400M pa-
rameters, show that highly designable protein generation is achievable even when training on synthetic
data at such unprecedented scale. For the first time, we demonstrate not only classifier-free but also au-
toguidance as well as LoRA-based fine-tuning in protein structure flow models. Finally, we introduce
new distributional metrics that offer novel insights into the behaviors of protein structure generators.
‘We hope that Proteina unlocks new large-scale protein design tasks while offering increased control.

10
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REPRODUCIBILITY STATEMENT

We ensure that our data processing, network architecture design, inference-time sampling, sample
evaluations, and baseline comparisons are reproducible. Our Appendix offers all necessary details
and provides comprehensive explanations with respect to all aspects of this work.

In addition to Sec. 3.1, in App. M we describe in detail how our Dgg and D,y datasets are created,
processed, filtered and clustered, which includes the hierarchical CAT fold class labels that we
use. Dataset statistics are given in Fig. 3, which can serve as reference. Additional tools that we
use during data processing and evaluation, such as MMseqs?2 (Steinegger & Soding, 2017) and
Foldseek (van Kempen et al., 2024; Barrio-Hernandez et al., 2023), are publicly available and
we cite them accordingly. Hence, our data processing pipeline is fully reproducible. Next, our
new transformer architecture is explained in detail in Sec. 3.3 and App. N, with detailed module
visualizations in Figs. 5 and 24 and network hyperparameters in App. O. Inference time sampling
is described in Sec. 3.4 with additional algorithmic details in App. I. The corresponding sampling
hyperparameters are provided in App. O. Furthermore, how we evaluate the traditional protein
structure generation metrics is explained in detail in App. F and App. F.1, while our newly proposed
metrics (Sec. 3.5) are validated and explained in-depth in App. G. Moreover, to ensure our extensive
baseline comparisons are also reproducible, the corresponding details are described in App. P.

For model and code release, please see Proteina’s GitHub repository https://github.com/
NVIDIA-Digital-Bio/proteina/ as well as our project page https://research.
nvidia.com/labs/genair/proteina/.

ETHICS STATEMENT

Protein design has been a grand challenge of molecular biology with many promising applications
benefiting humanity. For instance, novel protein-based therapeutics, vaccines and antibodies created
by generative models hold the potential to unlock new therapies against disease. Moreover, carefully
engineered enzymes may find broad industrial applications and serve, for example, as biocatalysts
for green chemistry and in manufacturing. Novel protein structures may also yield new biomaterials
with applications in materials science. Beyond that, deep generative models encoding a general
understanding of protein structures may improve our understanding of protein biology itself. However,
it is important to be also aware of potentially harmful applications of generative models for de novo
protein design, for instance related to biosecurity. Therefore, protein generative models generally
need to be applied with an abundance of caution.

ACKNOWLEDGMENTS

We would like to thank Pavlo Molchanov, Bowen Jing and Hannes Stérk for helpful discussions. We
also thank NVIDIA’s compute infrastructure team for maintaining the GPU resources we utilized. Last,
not least, thanks to all computational colleagues who make their tools available, to all experimental
colleagues who help advancing science by making their data publicly available, and to all those who
maintain the crucial databases we build our tools on, like the RCSB PDB, the AFDB, and UniProt.

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Bodenstein,
David A. Evans, Chia-Chun Hung, Michael O’Neill, David Reiman, Kathryn Tunyasuvunakool,
Zachary Wu, Akvilé Zemgulyte, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex Bridgland,
Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers, Andrew Cowie, Michael Fig-
urnov, Fabian B. Fuchs, Hannah Gladman, Rishub Jain, Yousuf A. Khan, Caroline M. R. Low,
Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian Stecula, Ashok Thillaisun-
daram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski, Augustin Zidek, Victor
Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M. Jumper. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 630:493-500, 2024. 2,3, 5,6

11


https://github.com/NVIDIA-Digital-Bio/proteina/
https://github.com/NVIDIA-Digital-Bio/proteina/
https://research.nvidia.com/labs/genair/proteina/
https://research.nvidia.com/labs/genair/proteina/

Published as a conference paper at ICLR 2025

Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex X. Lu, Nicolo Fusi, Ava P. Amini, and
Kevin K. Yang. Protein generation with evolutionary diffusion: sequence is all you need. bioRxiv,
2023. 1

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023. 3, 6, 35, 39, 40

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations (ICLR), 2023.
3,35, 39,40

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster machine learning
through dynamic python bytecode transformation and graph compilation. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, pp. 929-947, 2024. 24

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
Lee, Jue Wang, Qian Cong, Lisa N. Kinch, R. Dustin Schaeffer, Claudia Millan, Hahnbeom Park,
Carson Adams, Caleb R. Glassman, Andy DeGiovanni, Jose H. Pereira, Andria V. Rodrigues,
Alberdina A. van Dijk, Ana C. Ebrecht, Diederik J. Opperman, Theo Sagmeister, Christoph
Buhlheller, Tea Pavkov-Keller, Manoj K. Rathinaswamy, Udit Dalwadi, Calvin K. Yip, John E.
Burke, K. Christopher Garcia, Nick V. Grishin, Paul D. Adams, Randy J. Read, and David Baker.
Accurate prediction of protein structures and interactions using a three-track neural network.
Science, 373(6557):871-876, 2021. 3

Fan Bao, Chongxuan Li, Jiacheng Sun, and Jun Zhu. Why are conditional generative models better
than unconditional ones? arXiv preprint arXiv:2212.00362, 2022. 4

Inigo Barrio-Hernandez, Jingi Yeo, Jiirgen Janes, Milot Mirdita, Cameron L. M. Gilchrist, Tanita
Wein, Mihaly Varadi, Sameer Velankar, Pedro Beltrao, and Martin Steinegger. Clustering predicted
structures at the scale of the known protein universe. Nature, 622:637-645, 2023. 4, 11, 43, 44

Helen M. Berman, John D. Westbrook, Zukang Feng, Gary L Gilliland, Talapady N. Bhat, Helge
Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The protein data bank. Nucleic Acids Research,
28(1):235-42, 2000. 3

Valentin De Bortoli, Emile Mathieu, Michael John Hutchinson, James Thornton, Yee Whye Teh, and
Arnaud Doucet. Riemannian score-based generative modelling. In Advances in Neural Information
Processing Systems (NeurlPS), 2022. 3

Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian Fatras, Jarrid Rector-Brooks, Cheng-
Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M. Bronstein, and Alexander Tong.
SE(3)-stochastic flow matching for protein backbone generation. In The Twelfth International
Conference on Learning Representations (ICLR), 2024. 1, 3,5, 27, 28, 48

Tim Brooks, Bill Peebles, Connor Homes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor,
Troy Luhman, Eric Luhman, Clarence Wing Yin Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models—as-world-simulators. 1,4

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
In Proceedings of the 41st International Conference on Machine Learning (ICML), 2024. 3

Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth
International Conference on Learning Representations (ICLR), 2024. 3

Alexander E. Chu, Jinho Kim, Lucy Cheng, Gina El Nesr, Minkai Xu, Richard W. Shuai, and Po-Ssu
Huang. An all-atom protein generative model. Proceedings of the National Academy of Sciences,
121(27):€2311500121, 2024. 3,6

12


https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

Published as a conference paper at ICLR 2025

Jose M Dana, Aleksandras Gutmanas, Nidhi Tyagi, Guoying Qi, Claire O’Donovan, Maria Martin,
and Sameer Velankar. Sifts: updated structure integration with function, taxonomy and sequences
resource allows 40-fold increase in coverage of structure-based annotations for proteins. Nucleic
acids research, 47(D1):D482-D489, 2019. 44

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. In International Conference on Learning Representations (ICLR), 2024. 6

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning—based
protein sequence design using proteinmpnn. Science, 378(6615):49-56, 2022. 7, 28

Natalie L. Dawson, Tony E. Lewis, Sayoni Das, Jonathan G. Lees, David A. Lee, Paul Ashford,
Christine A. Orengo, and Ian P. W. Sillitoe. Cath: an expanded resource to predict protein function
through structure and sequence. Nucleic Acids Research, 45:D289 — D295, 2016. 2, 4, 31, 44

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenat-
ton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme Ruiz, Matthias
Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd Van Steenkiste, Gamaleldin Fathy
Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark
Collier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Nader Vasconcelos, Yi Tay, Thomas
Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin Tran, Thomas Kipf, Mario Lucic, Xiaohua
Zhai, Daniel Keysers, Jeremiah J. Harmsen, and Neil Houlsby. Scaling vision transformers to 22
billion parameters. In International Conference on Machine Learning (ICML), 2023. 6

Yilun Du, Conor Durkan, Robin Strudel, Joshua B. Tenenbaum, Sander Dieleman, Rob Fergus,
Jascha Sohl-Dickstein, Arnaud Doucet, and Will Grathwohl. Reduce, reuse, recycle: compositional
generation with energy-based diffusion models and memc. In International Conference on Machine
Learning (ICML), 2023. 7

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones, Tom
Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and Burkhard
Rost. Prottrans: Toward understanding the language of life through self-supervised learning. /EEE
Transactions on Pattern Analysis and Machine Intelligence, 44(10):7112-7127, 2022. 1

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow transform-
ers for high-resolution image synthesis. In International Conference on Machine Learning (ICML),
2024. 1, 4,5, 23, 40, 41

Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for multi-class classification: an
overview. arXiv preprint arXiv:2008.05756, 2020. 32

Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J. Sofroniew, Deniz Oktay, Zeming Lin, Robert
Verkuil, Vincent Q. Tran, Jonathan Deaton, Marius Wiggert, Rohil Badkundri, Irhum Shafkat, Jun
Gong, Alexander Derry, Raul S. Molina, Neil Thomas, Yousuf Khan, Chetan Mishra, Carolyn Kim,
Liam J. Bartie, Matthew Nemeth, Patrick D. Hsu, Tom Sercu, Salvatore Candido, and Alexander
Rives. Simulating 500 million years of evolution with a language model. bioRxiv, 2024. 3

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, 2017. 2,7, 29

Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021. 5, 7, 36, 37, 40

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems (NeurIPS), 2020. 1, 3, 39

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference
on Learning Representations (ICLR), 2022. 2,9, 47

13



Published as a conference paper at ICLR 2025

Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron Courville. Rieman-
nian diffusion models. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
3

Po-Ssu Huang, Scott E. Boyken, and David Baker. The coming of age of de novo protein design.
Nature, 537:320-327, 2016. 1

Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat
Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein, Alexander
Tong, and Avishek Joey Bose. Sequence-augmented se(3)-flow matching for conditional protein
backbone generation. arXiv preprint arXiv:2405.20313, 2024. 3, 5, 6, 10

John Ingraham, Max Baranov, Zak Costello, Vincent Frappier, Ahmed Ismail, Shan Tie, Wujie Wang,
Vincent Xue, Fritz Obermeyer, Andrew Beam, and Gevorg Grigoryan. Illuminating protein space
with a programmable generative model. Nature, 623:1070-1078, 2023. 1, 3,7, 26

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
Nature, 596:583-589, 2021. 1,2, 3,4, 5, 6,45

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
7,40

Tero Karras, Miika Aittala, Tuomas Kynk&édnniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
Guiding a diffusion model with a bad version of itself. arXiv preprint arXiv:2406.02507, 2024. 2,
7,9, 36, 37,40, 48

Hyunbin Kim, Milot Mirdita, and Martin Steinegger. Foldcomp: a library and format for compressing
and indexing large protein structure sets. Bioinformatics, 39(4):btad153, 03 2023. 43

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 46

Diederik P Kingma and Ruiqi Gao. Understanding diffusion objectives as the ELBO with simple data
augmentation. In Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS),
2023. 3,40

Brian Kuhlman and Philip Bradley. Advances in protein structure prediction and design. Nat. Rev.
Mol. Cell Biol., 20:681-697, 2019. 1

Patrick Kunzmann and Kay Hamacher. Biotite: a unifying open source computational biology
framework in python. BMC bioinformatics, 19:1-8, 2018. 28

Gilles Labesse, N Colloc’h, Joél Pothier, and J-P Mornon. P-sea: a new efficient assignment of
secondary structure from ca trace of proteins. Bioinformatics, 13(3):291-295, 1997. 28

A. M. Lau, N. Bordin, S. M. Kandathil, I. Sillitoe, V. P. Waman, J. Wells, C. A. Orengo, and D. T.
Jones. The encyclopedia of domains (ted) structural domains assignments for alphafold database
v4 [data set]. Zenodo, 2024a. 4

A. M. Lau, N. Bordin, S. M. Kandathil, I. Sillitoe, V. P. Waman, J. Wells, C. A. Orengo, and D. T.
Jones. Exploring structural diversity across the protein universe with the encyclopedia of domains.
bioRxiv, 2024b. 4, 45

Yeqing Lin and Mohammed Alquraishi. Generating novel, designable, and diverse protein structures
by equivariantly diffusing oriented residue clouds. In Proceedings of the 40th International
Conference on Machine Learning (ICML), 2023. 1, 3,5, 27

14



Published as a conference paper at ICLR 2025

Yeqing Lin, Minji Lee, Zhao Zhang, and Mohammed AlQuraishi. Out of many, one: Designing
and scaffolding proteins at the scale of the structural universe with genie 2. arXiv preprint
arXiv:2405.15489, 2024. 1, 3,4,5,6,7, 19, 23, 24, 27, 28, 34, 44

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom
Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123-1130, 2023. 1, 7, 28

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations (ICLR), 2023. 1, 3, 35, 39

Xingchao Liu, Chengyue Gong, and giang liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations
(ICLR), 2023. 3, 35, 39

Loredana Lo Conte, Bart Ailey, Tim JP Hubbard, Steven E Brenner, Alexey G Murzin, and Cyrus
Chothia. Scop: a structural classification of proteins database. Nucleic acids research, 28(1):
257-259, 2000. 44

Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024. 2, 5, 6, 7, 36, 40

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774,2024. 1, 4

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019. 39

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), 2023. 2, 5

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman,
and Ricky T. Q. Chen. Multisample flow matching: Straightening flows with minibatch couplings.
In Proceedings of the 40th International Conference on Machine Learning (ICML), 2023. 40

Wei Qu, Jiawei Guan, Rui Ma, Ke Zhai, Weikun Wu, and Haobo Wang. P(all-atom) is unlocking new
path for protein design. bioRxiv, 2024. 3,5, 6

Janes S. Richardson and David C. Richardson. The de novo design of protein structures. Trends in
Biochemical Sciences, 14(7):304-309, 1989. 1

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems
(NeurlIPS), 2016. 7, 29

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020. 45

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
Learning using Nonequilibrium Thermodynamics. In International Conference on Machine
Learning (ICML), 2015. 3, 39

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
International Conference on Learning Representations (ICLR), 2021. 3, 39, 40

Martin Steinegger and Johannes Soding. Mmseqs2 enables sensitive protein sequence searching for
the analysis of massive data sets. Nat Biotechnol., 35:1026-1028, 2017. 4, 11, 43, 44

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. 42

15



Published as a conference paper at ICLR 2025

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. Transactions on Machine Learning Research (TMLR), 2024. 40

Brian L. Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
Tommi S. Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem. In The Eleventh International Conference on Learning Representations
(ICLR), 2023. 3

Michel van Kempen, Stephanie S. Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee, Cameron
L. M. Gilchrist, Johannes S6ding, and Martin Steinegger. Fast and accurate protein structure search
with foldseek. Nat Biotechnol., 42:243-246, 2024. 4, 11, 28, 44

Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, Augustin Zl’dek, Tim Green,
Kathryn Tunyasuvunakool, Stig Petersen, John Jumper, Ellen Clancy, Richard Green, Ankur Vora,
Mira Lutfi, and Sameer Velankar. Alphafold protein structure database: Massively expanding the
structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research,
50:D439-D444, 2021. 3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), 2017. 5

Sameer Velankar, José M Dana, Julius Jacobsen, Glen Van Ginkel, Paul J Gane, Jie Luo, Thomas J
Oldfield, Claire O’Donovan, Maria-Jesus Martin, and Gerard J Kleywegt. Sifts: structure integra-
tion with function, taxonomy and sequences resource. Nucleic acids research, 41(D1):D483-D489,
2012. 44

Chentong Wang, Yannan Qu, Zhangzhi Peng, Yukai Wang, Hongli Zhu, Dachuan Chen, and Longxing
Cao. Proteus: Exploring protein structure generation for enhanced designability and efficiency.
bioRxiv, 2024. 3,7

Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
Venkatesh, Isaac Sappington, Susana Vazquez Torres, Anna Lauko, Valentin De Bortoli, Emile
Mathieu, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung Baek, and David Baker.
De novo design of protein structure and function with rfdiffusion. Nature, 620:1089-1100, 2023.
1,2,3,19

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie E Everett, Alexander A Alemi, Ben Adlam,
John D Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha
Sohl-Dickstein, Kelvin Xu, Jaechoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies
for large-scale transformer training instabilities. In The Twelfth International Conference on
Learning Representations (ICLR), 2024. 6

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In International Conference on Learning Representations
(ICLR), 2024. 6

Jason Yim, Andrew Campbell, Andrew Y. K. Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Regina Barzilay, Tommi Jaakkola, and Frank
Noé. Fast protein backbone generation with se(3) flow matching. arXiv preprint arXiv:2310.05297,
2023a. 3, 5,27

Jason Yim, Brian L. Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. SE(3) diffusion model with application to protein backbone generation. In
Proceedings of the 40th International Conference on Machine Learning (ICML), 2023b. 1, 3, 27,
28

16



Published as a conference paper at ICLR 2025

Jason Yim, Andrew Campbell, Emile Mathieu, Andrew Y. K. Foong, Michael Gastegger, Jose
Jimenez-Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Frank Noe, Regina
Barzilay, and Tommi Jaakkola. Improved motif-scaffolding with SE(3) flow matching. Transactions
on Machine Learning Research, 2024. 4

Zuobai Zhang, Minghao Xu, Arian Rokkum Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel
Das, and Jian Tang. Protein representation learning by geometric structure pretraining. In The
Eleventh International Conference on Learning Representations, 2023. 31

17



Published as a conference paper at ICLR 2025

Appendix

Additional Proteina Sample Visualizations

Motif-Scaffolding with Proteina

B.1 Motif-Scaffolding Implementation . . . . . ... ... ... ......
B.2 Motif-Scaffolding Results . . . . . ... ... ... .. .........

Scaling and Efficiency Analysis

C.1 Scaling Flow Matching Training . . . . . . ... ... ... ......

C.2  Model Parameters, Sampling Speed and Memory Consumption

Validating Fold Class Conditioning via Re-Classification

D.1 Re-Classification Analysis of Fold Class-Conditional Chroma Sampling

Equivariance Analysis

Established Metrics: Designability, Diversity, Novelty & Secondary Structure
F.1 Foldseek Commands for Cluster Diversity and Novelty Calculations

New Metrics: FPSD, fS and fJSD

G.1 Motivation . . . . . . . . o e e e e e e e e
G.2 Metric Definition . . . . ... ... L
G.3 Fold Classifier Training . . . . . . . . . . .o v i i
G.4 Metric Validation . . . . .. ... L L

Analysis and Validation of Metrics Calculations

H.1 Fine-grained Diversity Evaluations . . . . .. ... ... ........
H.2 Evaluation of Metrics for Reference Datasets . . . . ... ... ... ..
H.3 Statistical Variation of Metrics . . . . . . . . ... .. ... ......

Sampling, Autoguidance and Hierarchical Fold Class Guidance

.1 ODEand SDE Sampling . . .. ... ... ... ... ........
[.2  Classifier-free Guidance and Autoguidance . . . . . . . . ... ... ..
[.3  Guidance with Hierarchical Fold Class Labels . . . ... ... .....
I.4  Step Size and Stochasticity Schedules . . . . . ... ... ... ...

On the Relation between Flow Matching and Diffusion Models
New Time ¢ Sampling Distribution

Ablation Studies

L.1 Sampling Distributions for¢ . . . . . ... ... ... L.
L.2 Stochasticity Schedules g(¢) . . . . . . . . .. L o
L.3 QK Layer Norm, Registers and RoPE Embeddings . . . . . ... .. ..

Data Processing

M.1 PDB Processing, Filtering and Clustering . . . . . .. ... ... ....
M.2 AlphaFold Database Processing, Filtering and Clustering . . . . . . . ..

18

19

19
19
19

23
23
24

26

27

27
29

29
29
29
31
32

34
34
34
35

35
35
36
38
39

39

40



Published as a conference paper at ICLR 2025

M.3 CATH Label Annotations for PDBand AFDB . . . . ... ... ... ... .. 44
N Additional Neural Network Architecture Details 45
O Experiment Details and Hyperparameters 46
0.1 Trained ProteinaModels . . . . . . . . . ... . 46
0.2 Unconditional Generation Experiments . . . . . . . ... ... ... ...... 46
0.3 LoRAFine-tuningonPDB . . . . ... ... ... ... L. 47
0.4 Conditional Generation Experiments . . . . . . . . ... ... ... ...... 47
0.5 Long Length Generation Experiments . . . . . . . ... ... ... ....... 48
0.6 Autoguidance Experiments . . . . . . . . ... ... 48
P Baselines 48

A ADDITIONAL PROTEINA SAMPLE VISUALIZATIONS

In Fig. 9, we show additional protein backbones generated by Proteina, covering the entire chain
length spectrum of our model. These samples are generated without any conditioning. Furthermore,
in Fig. 10 we show additional fold class-conditioned samples and in Fig. 12 are visualizations of
successful motif-scaffolding.

Note that in all figures all shown samples are designable, according to our definition of designability
(see App. F).

B MOTIF-SCAFFOLDING WITH PROTEINA

To validate the performance of Proteina in conditional tasks beside fold conditioning, we implement
motif-scaffolding capabilities for Proteina and test its performance on the RFDiffusion benchmark
(Watson et al., 2023).

B.1 MOTIF-SCAFFOLDING IMPLEMENTATION

To enable Proteina to perform motif-scaffolding, we add two additional features to our model via
embedding layers: the motif structure (with coordinates set to the origin for residues that are not part
of the motif) and a motif mask (1 for positions that are part of the motif, O for positions that are not).
In addition, we center the data (x7) and the noise (x() not based on the overall centre of mass, but
only on the center of mass calculated over the motif coordinates.

At inference time, sampling is initialized as before but again centered based on the center of mass
calculated over the motif coordinates. We train a model with 60M parameters in the transformer
layers and 12M parameters in multiplicative triangle layers, using the same dataset and motif training
augmentation as Lin et al. (2024). We use a batch size of 5 and add an additional motif structure
auxiliary loss with a weight of 5 in addition to the losses discussed in 3.2. Compared to Lin et al.
(2024), in addition to specifying the structural constraints of the motif in the model pair representation,
we encode the masked motif coordinates in the sequence representation. Thus, given conditional
motif coordinates, the model is tasked with inpainting a designable scaffold. At inference time we
sample with a reduced noise scale, as done in the unconditional case, using v = 0.5.

B.2 MOTIF-SCAFFOLDING RESULTS

Motif-scaffolding performance is judged by common criteria outlined in previous work (Lin et al.,
2024; Watson et al., 2023):

* For each problem in the benchmark set by Watson et al. (2023), 1000 backbones are
generated.

* For each backbone, 8 ProteinMPNN sequences are generated with fixed sequences in the
motif region following the convention of Lin et al. (2024)
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Figure 9: Unconditional Proteina Samples. The numbers below the proteins denote the generated proteins’
number of residues. All shown proteins are designable.

» All 8 sequences per backbone are fed to ESMFold. The predicted structures are used
to compute the scRMSD, which is the C,-RMSD between the designed and predicted
backbone, as well as the motifRMSD, which is the full backbone RMSD between the
predicted and the ground truth motif.
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Figure 10: Fold Class-Conditional Proteina Samples. The numbers below the proteins denote the generated
proteins’ number of residues. Moreover, we show the fold class and the corresponding C.A.T fold class code for
conditioning. All shown proteins are designable and correctly re-classified into the conditioning fold class.
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Table 5: Number of unique successes on the RFDiffusion benchmark for 4 different methods, each generating
1000 backbones.

Task Name Proteina Genie2 RFDiffusion FrameFlow
6E6R _long 713 415 381 110
6EXZ long 290 326 167 403
6E6R_medium 417 272 151 99
1YCR 249 134 7 149
5TRV_long 179 97 23 77
6EXZ_med 43 54 25 110
TMRX_128 51 27 66 35
6E6R _short 56 26 23 25
5TRV_med 22 23 10 21
TMRX_85 31 23 13 22
3IXT 8 14 3 8
5TPN 4 8 5 6
TMRX_60 2 5 1 1
1QIG 3 5 1 18
5TRV _short 1 3 1 1
5YUI 5 3 1 1
47YP 11 3 6 4
6EXZ_short 3 2 1 3
1PRW 1 1 1 1
51US 1 1 1 0
1BCF 1 1 1 1
S5WN9 2 1 0 3
2KL8 1 1 1 1
4JHW 1] 0 0 0

* A backbone is classified as a success when one of the sequences generated for it has an
scRMSD < 2A, a motifRMSD < 1A, pLDDT > 70, and pAE < 5.

 All successes are clustered via hierarchical clustering with single linkage and a TM-score
threshold of 0.6 to reach the final number of unique successes.

Looking at the performance over the entire benchmark (Tab. 6 and Fig. 11), we see that Proteina has
the highest number of unique successes overall in the benchmark (2094 compared to 1445 for the
second-best method Genie2) and is the sole best method in 8 tasks (compared with the second-best
method Genie2 that wins in 5 tasks).

Investigating the performance for each task individually (Tab. 5 and Fig. 13), we see that Proteina
outperforms mostly on easy and medium tasks, whereas the hardest tasks with 1 or 0 successes still
seem challenging. Successful designs are shown in Fig. 12.

Table 6: Number of unique successes summed over the whole RFDiffusion benchmark and number of times a
method was the sole best method for 4 different methods, each generating 1000 backbones. See Fig. 11 for a bar
chart of these results.

Task Name Proteina Genie2 FrameFlow RFDiffusion
#Successes total 2094 1445 1099 889
#Tasks as best method 8 5 4 1

# Total unique successes T # Tasks as best method T

04
Proteina Genie2  FrameFlow RFDiffusion Proteina Genie2  FrameFlow RFDiffusion

Figure 11: Motif-scaffolding results. Number of unique successes summed over the whole RFDif-
fusion benchmark and number of times a method was the sole best method for 4 different methods,
each generating 1000 backbones. These are the same numbers as in Tab. 6.

22



Published as a conference paper at ICLR 2025

SWN9 S5YUI 6EXZ-med TMRX-128

Figure 12: Examples of successful designs in the motif-scaffolding benchmark. All shown samples
satisfy the criteria for task success. The task specification is given below the proteins. Motif residues
are shown in yellow.
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Figure 13: Motif-scaffolding results. Numbers of unique successes on the RFDiffusion benchmark,
following the success definition and clustering methodology from Genie2 (Lin et al., 2024).

C SCALING AND EFFICIENCY ANALYSIS

C.1 SCALING FLOW MATCHING TRAINING

In Fig. 14, we study the optimization of Proteina’s flow matching objective as function of the
number of parameters, using Proteina models without triangular multiplicate layers, scaling the novel
non-equivariant transformer architecture. We trained models of various sizes between ~60M and
~400M parameters, and we find that we can consistently improve the loss as we scale the model size,
thereby validating the scalability of our architecture. This observation is in line with recent work on
state-of-the-art image generation (Esser et al., 2024), leveraging a similar flow matching approach.
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Figure 14: Left: Flow matching loss over the course of training for differently sized Proteina models
(number of model parameters given at the top right). Batch size 5 for all. Right: The same training
curves, but we emphasize that when scaling the model the flow matching loss reaches similarly low
values (gray dashed line) significantly faster.

Table 7: Unconditional backbone generation performance of the additional, smaller M5! Proteina model,
side-by-side with the other, larger models that we trained. Results partly copied from Tab. 1.

Model Design- Diversity Novelty vs. FPSD vs. S fISD vs. Sec. Struct. %
ability (%)7 | Clusterf TM-Sc.| | PDB] AFDB| PDB| AFDB/| (C/AITT PDB| AFDB| (ol B)

Unconditional generation. M denotes the Proteina model variant, and vy is the noise scale for Proteina.

Megs, v=0.45 96.4 0.63 (305) 0.36 0.69 0.75 388.0 3682 |206/532/19.05 | 1.65 1.23 68.1/6.9

Mg, v=0.45 93.8 0.62 (292) 0.36 0.69 0.76 3222 3062 | 1.80/4.72/18.59 | 1.84 1.36 71.3/55

Mimall ~y=0.45 94.8 0.55(273) 0.35 0.72 0.78 3223 3233 | 221/591/2283 | 1.53 1.24 64.7/8.0

C.2 MODEL PARAMETERS, SAMPLING SPEED AND MEMORY CONSUMPTION

To compare the parameter counts of different models as well as the practical implications of these
parameter counts such as memory consumption and sampling speed, we conduct three analyses:

1. Models are sampled with batch size 1 and the sampling time is measured. This is run on an
A6000-48GB GPU for comparison with previous works (Lin et al., 2024). See Tab. 8 and Fig. 15.

2. For all tested models, we determine the largest supported batch size that fits into GPU memory
and does not result in out-of-memory errors. This is executed on an A100-80GB GPU. See Tab. 9.

3. Models are sampled with their maximum batch size and the sampling time is measured, normal-
ized with respect to the batch size. This is executed on an A100-80GB GPU. See Tab. 10.

Each of the linked tables shows all models’ number of parameters.

As part of these experiments, we use an additional model M2 which only contains around 60M
parameters (similar to RFDiffusion), but still performs very competitively, outperforming most
baselines like RFDiffusion (Tab. 7). As one would expect due to the smaller model size, it does
perform slightly worse than our larger state-of-the-art models, though, showing slightly worse
diversity and novelty. The training and sampling of this model follows the setting from g‘g'm, with
the main difference being the number of parameters. For all our models, we leverage the fact that
our transformer-based architecture is amenable to hardware optimisations and leverage the torch
compilation framework (Ansel et al., 2024) to speed up training and inference. The inference numbers
depicted here for Proteina account for inference time of the compiled model.

Looking at sampling time for single protein generation (batch size 1) on an A6000-48GB (Tab. 8), we
see that the runtime of Proteina depends on whether we use triangle layers or not: Proteina models
with triangle layers are still faster than state-of-the-art tools like RFDiffusion and Genie2, but are
slower than FrameFlow at all lengths and slower than Chroma at longer lengths. However, Proteina
models without triangle layers are a lot faster and perform competitively even with much smaller
models like FrameFlow (with M2 running faster than FrameFlow for all lengths). Note that we
compare with RFDiffusion, Genie2, FrameFlow and Chroma, as these represent the most competitive
baselines.

In practice, one performs inference batch-wise. To compare the performance of Proteina in this
setting, we determined the maximum batch size for each method on an A100-80GB GPU (Tab. 9)
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Table 8: Sampling time [seconds] for different methods at batch size 1 for samples of varying length (the
numbers in the top row indicate protein backbone chain length) on an A6000-48GB GPU.

Method # Model parameters Inference steps | 100 200 300 400 500 600 700 800
Genie2 15.7M 1000 48 75 135 233 356 536 740 961
RFDiffusion 59.8M 50 21 41 80 137 214 296 397 531
FrameFlow 17.4M 100 4 6 9 13 18 22 28 35
Chroma 18.5M 500 2 29 36 42 49 55 63 69
Myl 59M 400 3 3 6 8 12 18 25 32
Mipgi 191M 400 3 5 9 15 23 32 42 54
Mes 208M 400 8 26 63 119 188 273 370 529
Maim 397M 400 8 24 54 102 159 230 310 408
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Figure 15: Single sample runtimes. The runtimes for different models for batch size 1 on a A6000-48GB
GPU. Different scales are used for y-axis (left - linear, right - logarithmic). The same data is shown in Tab. 8.

Table 9: Maximum batch size during inference for different methods for samples of varying length (the numbers
in the top row indicate protein backbone chain length) on an A100-80GB GPU.
Method  # Model parameters Inference steps | 100 200 300 400 500 600 700 800

Genie2 15.7M 1000 204 51 2 12 8 5 4 3
Chroma 18.5M 500 862 435 285 211 162 136 116 101
Migan 50M 400 1599 416 200 194 72 46 36 25
Mugti 191M 400 700 187 85 48 31 21 16 12
Mes 208M 400 199 55 26 14 9 6 4 3
May 397M 400 157 4 20 11 7 5 3 2

Table 10: Sampling time [seconds] for different methods at max batch size for varying lengths (the numbers in
the top row) on an A100-80GB GPU. The time is obtained by dividing the total runtime by the batch size.
Method # Model parameters Inference steps \ 100 200 300 400 500 600 700 800

Genie2 15.7M 1000 27.74 6547 11759 183.67 257.63 37340 526.00 690.67
Chroma 18.5M 500 481 956 1209 1758 2199 2631 3084  35.17
/Vlf_-"s‘“lf 59M 400 029 094 2.01 3.38 5.26 7.33 9.97 14.44
My 191M 400 0.59 1.88 3.87 6.54 9.96 14.04  18.87 2433
MEs 208M 400 374 13.05 2831 50.14 80.89 12533 17325 229.00
Maim 397TM 400 329 1120 2435 4264 7557 105.80 14433 192.00

and then determined the normalized sampling times per sequence in this batch setting by dividing the
overall batch runtime by the batch size (Tab. 10). No numbers were reported for RFDiffusion and
FrameFlow since these methods do not support batched inference, limiting the batch size to 1.

Even with Proteina having more parameters than the baselines, we see that Proteina models with
triangle layers can fit similar batch sizes to Genie2. On the other hand, Proteina models without
triangle layers can fit very large batches, up to 1.6k proteins of length 100 for Mz,

Looking at the per-sequence sampling time in the max batch size setting (Tab. 10), we see that
Proteina benefits strongly from batched inference, especially for models without triangle layers and
shorter sequence lengths. This enables fast batched sample generation, with less than 1 second per
chain for short chain lengths.

Our overall conclusion from these experiments is that even though we investigated model size scaling
in this work, this scaling does not come at a cost in terms of inference efficiency, thanks to our
efficient and scalable architecture. Our models support batches as large as or larger than the baselines
and can be sampled as fast as or faster than the baselines, meanwhile leading to state-of-the-art
protein backbone generation performance (see main paper).
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Table 11: Fold class-conditioned generation: We report the generated proteins’ re-classification probabilities of
the correct fold class label that was used during conditioning.

Setup C A T

@ 153 a/p Common Regular Rare Common Regular Rare

Classifier-free guidance (o = 0.0), guidance weight w (Proteina model M55, = 0.3).

Proteina, w=0.0 0.585 0.017 0.450 0.128 0.014  0.000 0.032 0.002  0.000
Proteina, w=0.5 0914 0479 0.784 0.437 0204  0.119 0.336 0.114  0.006
Proteina, w=1.0 0.986 0.887 0.961 0.701 0.334  0.226 0.570 0.209  0.010
Proteina, w=1.5 0993 0962 0977 0.772 0363  0.242 0.611 0.225  0.012
Proteina, w=2.0 0992 0975 0.976 0.788 0383  0.233 0.638 0.230  0.012
Proteina, w=2.5 0.993 0979 0.997 0.842 0.366  0.298 0.636 0.224  0.012
Chroma 0.888 0.486 0.644 0.240 0.007  0.000 0.133 0.002  0.000

D VALIDATING FOLD CLASS CONDITIONING VIA RE-CLASSIFICATION

To analyze whether our fold class conditioning correctly works, we re-classify generated conditional
samples with our fold class predictor and validate whether the generated samples correctly correspond
to their conditioning classes; see Tab. 11. We use classifier-free guidance on the model M54 with
a noise scale of v = 0.3, which yields the best re-classification probabilities. We guide the model
to generate 100 samples for each C-level class, 30 samples for each A-level class, and 2 samples
for each T-level class. The generated samples are then evaluated using our fold classifier (trained in
App. G.3.2) to predict the probability that they belong to the correct class.

We group the classes by their frequency in the training set and calculate the average re-classification
probability for each group. Specifically, there are three C-level classes: “Mainly Alpha”, “Mainly
Beta”, and “Mixed Alpha/Beta”. For A-level classes, we divide them into three categories: 9 classes
with over 500K samples (common), 13 classes with 10K-500K samples (regular), and 17 classes
with fewer than 10K samples (rare). For T-level classes, we have 31 classes with over 100K samples
(common), 237 classes with SK—100K samples (regular), and 958 with fewer than 5K samples (rare).

As shown in Tab. 11, Proteina can accurately produce the main C classes. At A- and T-level, where
we have an increasingly fine spectrum of classes (Fig. 3), the task becomes more challenging, and
on average common folds are generated better than rare ones. Considering the imbalanced label
distribution with many rare classes, this result is expected. Moreover, re-classification accuracy
generally increases with guidance weight w, validating our tailored CFG scheme (Sec. 3.2). We
conclude that while rare classes can be challenging, as expected, the conditioning generally works
well for the three C and the common A and T classes.

D.1 RE-CLASSIFICATION ANALYSIS OF FOLD CLASS-CONDITIONAL CHROMA SAMPLING

As discussed in the main text, we also evaluated Chroma (Ingraham et al., 2023) on fold class-
conditional generation (also see App. P). Chroma uses its own CATH fold class label classifier to
guide its generation when conditioning on fold classes. We repeated the re-classification analysis
for Chroma and report its correct re-classification probabilities in the last row in Tab. 11. We find
that Chroma generally performs poorly compared to Proteina. While Proteina can guide into the
three main C classes with almost 100% success rate, Chroma struggles to reliably guide into these
high-level classes. Furthermore, when guiding with respect to the more fine-grained A and T classes,
Chroma’s success plummets. This means that Chroma cannot reliably perform fold class conditioning,
in contrast to Proteina.

We would also like to comment on Chroma’s results in Tab. 2, where it performs competitively with
Proteina. This is because the designability, diversity and novelty metrics do not actually test whether
correct protein structures given the labels were generated, but these metrics only score the overall set
of generated backbones, irrespective of their labels. Only the re-classification analysis conducted
here specifically tests the fold class conditioning capabilities in a fine-grained manner.
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E EQUIVARIANCE ANALYSIS

In this section we study whether our transformer architecture learns a rotationally equivariant vector
field. Since the optimal vector field is known to be rotationally equivariant,® studying this may yield
insights into our method’s performance and behavior. We study this empirically for our Mgg model
in the unconditional sampling setting by comparing clean-sample predictions on rotated versions of a
noisy/diffused backbone x;. More specifically, we compute three metrics. The first one is given by

&)= E [RMSD (fc(xt),Rfc(RTxt))}, )
x¢~p(xe | %)
R~Unif(SO(3))

where %(x;) = x; + (1 — t) v/ (x,0) is the clean sample prediction (since we use the velocity
parameterization). This metric compares the outputs of our model with respects to two inputs (noisy
backbones) that are the same up to a rotation R. A perfectly equivariant model is guaranteed to
achieve £7(t) = 0, as the two outputs would also be equal up to the same rotation R. For a non
equivariant model, however, we would have £ (t) > 0, with greater values corresponding to “less
equivariant” models.

The second metric we consider is given by
gu(t) =E [RMSD (%(x¢), UX(R 1)) } , ©)

where U in Eq. (6) is the rotation that optimally aligns %(x;) and %X(R'x;), that is, U =
argmin seso(s) [|[X(x¢) — AX(R"x;)||%. This metric has two interesting properties. First, a perfectly
equivariant model satisfies U = R and £%(t) = 0. And second, £%(t) < E7(t), with the two metrics
being close when the optimal rotation U ~ R. Approximately equivariant models should achieve low
values for this metric. Additionally, for approximately equivariant models the gap in £“(¢) < £"(t)
should be small.

Finally, the third metric is given by
Et)=E [RMSD (%(x;), %(R " x,)) } . @

In contrast to the first two metrics, £(¢) is minimized by rotationally invariant models (in fact,
E(t) = 0 only for such models). In contrast, equivariant or approximately equivariant models should
produce larger values for this metric. Intuitively, approximately equivariant models should satisfy
ET(t) < ().

Results for all three metrics as a function of ¢ are shown in Fig. 16. It can be observed that, while
greater than zero, our model achieves £%(t) ~ £7(t) < 0.5A for all ¢. This confirms that while our
model does not learn a perfectly equivariant vector field, it is approxiamtely equivariant, thanks to the
random rotation augmentations applied to clean samples during training. Additionally, as expected
for approximately equivariant models, £(t) is considerably higher than the other two metrics.

It may also be informative to consider the notion of designability (see App. F), which (broadly) deems
a backbone designable if there exists a sequence that folds into a structure withing 2A (RMSD) of
the original backbone. The metric £” shows that rotating our model predictions accordingly (on
rotated inputs) yields RMSDs values below 0.5A, significantly below the “similarity” threshold used
to measure designability.

F ESTABLISHED METRICS: DESIGNABILITY, DIVERSITY, NOVELTY &
SECONDARY STRUCTURE

We evaluate models using a set of metrics previously established in the literature, including des-
ignability, diversity, novelty, and secondary structure content. These metrics are computed across 500
samples, which include 100 proteins at each of the following lengths: 50, 100, 150, 200, and 250.

3A fact leveraged by many existing methods, which rely on rotationally equivariant architectures (Yim et al.,
2023b;a; Lin & Alquraishi, 2023; Lin et al., 2024; Bose et al., 2024).
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Figure 16: Equivariance analysis. £,£" and £* from the captions measure different types of errors,
and are formally defined in Egs. (5), (6) and (7). For a perfectly equivariant model, the green (£")
and orange (£*) lines would be exactly zero for all t. Approximately equivariant models achieve
low values for £ and &%, and large values for £. Our model, despite not being equivariant by
construction, follows such a trend.

Designability. A protein backbone is considered designable if there exists an amino acid sequence
which folds into that structure. Our evaluation of designability follows the methodology outlined
by Yim et al. (2023b). For each backbone generated by a model, we produce eight sequences using
ProteinMPNN (Dauparas et al., 2022) with a sampling temperature of 0.1. We then predict a structure
for each sequence using ESMFold (Lin et al., 2023) and calculate the root mean square deviation
(RMSD) between each predicted structure and the model’s original structure. A sample is classified as
designable if its lowest RMSD—referred to as the self-consistency RMSD (scRMSD)—is under 2A.
The overall designability of a model is computed as the fraction of samples that meet this criterion.

Diversity (TM-score). We evaluate diversity in two different ways. The first measure of diversity
we report follows the methodology from Bose et al. (2024). For each protein length specified above,
we compute the average pairwise TM-score among designable samples, and then aggregate these
averages across lengths. Since TM-scores range from zero to one, where higher scores indicate
greater similarity, lower scores are preferable for this metric.

Diversity (Cluster). The second measure of diversity follows the methodology from Yim et al.
(2023b). The designable backbones are clustered based on a TM-score threshold of 0.5. Diversity is
then computed by dividing the total number of clusters by the number of designable samples, that
is, (number of designable clusters) / (number of designable samples). We perform clustering using
Foldseek (van Kempen et al., 2024). Detailed commands for this process are provided in App. F.1.
Since more diverse samples imply more clusters, higher scores are preferable for this metric.

Novelty. This metric assesses a model’s ability to generate structures that are distinct from those in
a predefined reference set. For every designable structure we compute its TM-score against each
structure in the reference set, tracking the maximum score obtained. We then report the average
of these maximum TM-scores (lower is better). In this work we consider two reference sets: the
PDB, and Dgs (Sec. 3.1), the AlphaFold DB subset used by Lin et al. (2024) to train Genie?2 (this
set was also used to train our Mgg models). These metrics measure how well a model can produce
samples that lack close analogs within the reference sets. We use Foldseek (van Kempen et al., 2024)
to evaluate the TM-score of a backbone against these two databases. Detailed commands for this
process are provided in App. F.1.

Secondary structure content. We use Biotite’s (Kunzmann & Hamacher, 2018) implementation of
the P-SEA algorithm (Labesse et al., 1997) to analyze the secondary structure content of designable
backbones. Specifically, we calculate the proportions of alpha helices («), beta sheets (/3), and coils
(¢) in each sample. The results are reported as normalized values: «/(a + 3 + ¢) for alpha helices,
B/(a+ B + c) for beta sheets, and ¢/(« + 8 + ¢) for coils. In the main paper, we sometimes only
report the o and 3 percentages in the interest of brevity.
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F.1 FOLDSEEK COMMANDS FOR CLUSTER DIVERSITY AND NOVELTY CALCULATIONS

Diversity (Cluster). As mentioned above we use Foldseek to cluster sets of designable backbones.
The command used is

foldseek easy-cluster <path_samples> <path_tmp>/res <path_tmp>
——alignment-type 1 --cov-mode 0 —--min-seg-id O
—-—tmscore-threshold 0.5

where <path_samples> is a directory with all designable samples stored in PDB format and
<path_tmp> is a directory for temporary files during computation.

Novelty. We use Foldseek to evaluate the TM-score of a protein backbone against a reference set. We
store the reference sets as Foldseek databases. For the PDB we use Foldseek’s precomputed database,
and create our own for Dgg. We use the following Foldseek command to compute max TM-scores

foldseek easy-search <path_sample> <database_path> <out_file>
<tmp_path> --alignment-type 1 --exhaustive-search
——tmscore-threshold 0.0 —--max-seqgs 10000000000
—-—format-output query,target,alntmscore, lddt

where <path_sample> is the path of the generated structure as a PDB file, <database_path>
is the path to the Foldseek database, and <out_file> and <tmp_path> specify the output file
and directory for temporary files.

G NEWw METRICS: FPSD, FS AND FJSD
G.1 MOTIVATION

Protein structure generators are typically evaluated based on designability, diversity and novelty.
Designability measures whether the generated structures can be realistically designed, though with
biases inherent in folding and inverse-folding models. While generating diverse and novel proteins
is important, these metrics may overlook the quality of the samples—specifically, how closely they
resemble realistic proteins. Besides, none of these metrics directly evaluates models at the distribution
level, failing to measure how well a model aligns with a reference or target distribution.

To address these limitations, we propose three new metrics that score the learnt distribution rather
than individual samples. First, we introduce the Fréchet Protein Structure Distance (FPSD), which
compares sets of generated samples to a reference distribution in a non-linear feature space, drawing
inspiration from the Fréchet Inception Distance (FID) used in image generation (Heusel et al., 2017).
Second, we define the Fold Score (fS), similar to the Inception Score (Salimans et al., 2016), which
evaluates both the quality and diversity of generated samples using a trained fold classifier. Finally, we
present the Fold Jensen-Shannon Divergence (fJSD) to quantify the similarity of generated samples to
reference distributions across predicted fold classes. All new metrics are defined in detail in App. G.2.
They all rely on a fold classifier for protein backbones, py (- | x), described in App. G.3.

G.2 METRIC DEFINITION

Fréchet Protein Structure Distance (FPSD). The Fréchet Protein Structure Distance (FPSD)
measures the distance between two distributions over protein backbones, the one defined by a
generative model and a target reference distribution, leveraging a non-linear feature extractor ¢(x)
(in practice, we use the last layer of a fold classifier py(-|x), see App. G.3).

Let {X}gen and {x}cr denote two distributions over protein backbones, defined by a generative model
and a reference distribution, respectively. We compute the FPSD between these distributions by mea-
suring the Fréchet Distance between the two Gaussian densities defined as NV (£¢(x)}yens Z{6(x) }een)

and N/ ({6 (x) }eets Z{o(x) }wr)- In practice this metric is computed following a two-step process:

1. Compute the mean and covariance over features ¢(x) for the generative and reference distributions
Pl = Bxm e 9] Z600)0n = Exet0)a [(900) = 16060 110)(9%) = Bi900)) ']
1600 et = Bxe () [9CO]s B600) s = B (%) = 14601, (0(X) = H000}) ']
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2. Measure the Fréchet Distance between the two resulting Gaussian distributions
1
FPSD({x}aen, {X}ret) 1= [[00(00)byon ~ {0000 24T (2{¢(x>}gm F 0060t~ 2(E 0060 been {600 Yer) 2) :

Here, || 4{¢(x)}een — I {6(x)}n |2 TEPresents the distance between the mean feature vectors, and the
trace term captures the differences in covariance matrices. The FPSD reflects how closely the
generated structures resemble the reference distribution, as measured by distributional similarity in
continuous feature space, with lower values indicating greater similarity.

Protein Fold Score (fS). The Protein Fold Score (fS) measures the quality and diversity of generated
structures by evaluating how well they align with known fold classes.

Let {x}gen represent the distribution of generated structures, and let pg(-|x) denote the predicted
probability distribution over fold classes for a structure x. The fS is computed in two steps:

1. Compute the marginal distribution over fold classes py () = Epo(x} e [P (+%)]s
2. Calculate the Protein Fold Score

£S({x}gen) = exP (Exr fsc}yen [Dk(Po (%) D5 ())])

where Dyy represents the Kullback-Leibler divergence. This score captures the average diver-
gence between the label distribution of each generated sample and the marginal distribution
over labels, reflecting both quality and diversity.

A higher fS indicates that the generated protein structures are not only of high quality individually,
but also exhibit a diverse range of fold classes, capturing the richness of the generated distribution.
Note that fS is calculated separately at the different levels of the label hierarchy, i.e., separately for
the C-, A- and T-level classes.

Protein Fold Jensen-Shannon Divergence (fJSD). The Protein Fold Jensen-Shannon Divergence
(fJSD) quantifies the similarity between the predicted label distribution of generated protein structures
and that of a reference set, both derived from the same fold classifier.

Let {x}en and {x}r represent the distributions of generated and reference structures, respectively,
and let py (+|x) denote the predicted probability distribution over fold classes for a structure x. The
fJSD metric is computed in two steps:

1. Compute the marginal predicted distribution over fold classes for the generative and reference
distributions

pgen(') = ]E:70~{x}gen [qu("x)] and pref(') = Ea:~{x},ef [p¢(-|x)],
2. Calculate the Protein Fold Jensen-Shannon Divergence

fISD({x}gen, {x}rer) = 10 X Dys (Pgen(-)l|Pret (), ®

where Djg denotes the Jensen-Shannon divergence, defined as
1 1
Dys(P||Q) = §DKL(P||M) + §DKL(QHM)7 )

with M = (P + Q). In our case, P represents the distribution pyey (+) and @ represents the
distribution for the reference set p¢(-). Since the Jensen-Shannon divergence is upper bounded
by 1, we multiply it by a factor of 10 for easier reporting of the results.

Lower values of fJSD indicate that the predicted label distribution of generated proteins closely aligns
with that from the reference set, reflecting higher fidelity to the expected fold classes. In contrast to
FPSD, which measures the similarity between the generated and reference distributions in continuous
feature space, fISD measures the similarity in the categorical label space from the fold classifier. As
we empirically find that fJSD values calculated for the C-, A-, and T-level label distributions yield
the same ranking across different methods, we decide to report the final metric values as the average
of the fJISD scores at the C-, A-, and T-levels. We note, however, that this metric can be reported
separately for each of the C, A, and T-levels.
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Reference Datasets. To evaluate FPSD and fJSD, we construct two reference datasets, one for the
PDB and another one for the AFDB. For the PDB reference set, we curate a high-quality single-chain
dataset by applying several filters to the PDB: a minimum residue length of 50, a maximum residue
length of 256, a resolution threshold of 5.0 A, a maximum coil proportion of 0.5, and a maximum
radius of gyration of 3.0 nm. We then cluster the dataset based on a sequence identity of 50% and
select the cluster representatives, resulting in 15,357 samples. For the AFDB reference set, we
directly use the Foldseek AFDB clusters, denoted by Dgg in the main text.

These metrics are evaluated independently of existing metrics based on a different set of generated
samples. We randomly sample 125 proteins at each length from 60 to 255 residues, with a step size
of 5. We use all the 5,000 produced samples, without any designability filter, for evaluation.

G.3 FoLD CLASSIFIER TRAINING

A crucial aspect of defining the new metrics is developing an accurate fold classifier p,(-|x) which
embeds alpha-carbon-only structures into the feature space ¢(x). In this subsection we give details
behind the classifier we use, including the dataset it is trained on and its architecture.

G.3.1 DATASET PROCESSING

For training the classifier, CATH structural labels are utilized for protein domain annotation (Dawson
et al., 2016) which includes C (class), A (architecture), and T (topology/fold) labels. We exclude H
(homologous superfamily) labels to ensure that our classification is based solely on structures.

We extract chains from the PDB dataset, with structures filtered to include a minimum length of 50
residues, a maximum length of 1000 residues, and a maximum oligomeric state of 10. We also discard
proteins with a resolution worse than SA and those lacking CATH labels. This results in a total of
214,564 structures, categorized into 5 C classes, 43 A classes, and 1,336 T classes. The dataset
is randomly divided into training, validation, and test sets at a ratio of 8:1:1, ensuring that at least
one protein from each class is included in the test set whenever possible. While the paper primarily
focuses on the three main C-level classes (“mainly alpha”, “mainly beta”, “mixed alpha/beta”), as
they are the most interesting and relevant to our study, we still train the classifier on all C-level classes.
This ensures the metrics are universally applicable and can be used for future analyses involving any
of the C-level classes.

Given that the CATH database annotates protein domains, some proteins may have multiple domains,
thus multiple CATH labels. For these proteins, we randomly sample one domain label as the ground
truth during training and encourage the model to predict equal probabilities for the labels of all
domains. During testing, predicting any of the correct labels is considered a good prediction.

G.3.2 GEARNET-BASED FOLD CLASSIFIER

To build the fold classifier py(-|x), we utilize an SE(3)-invariant network, GearNet (Zhang et al.,
2023), as our feature extractor ¢(x). GearNet is a geometric relational graph convolutional network
specifically designed for protein structure modeling, making it ideal for tasks such as protein classi-
fication and fold prediction. While the original GearNet architecture processes both structural and
sequential data, we modify it to focus solely on predicting fold classes based on structure. The model
components are detailed as follows:

1. Input and Embedding Layer: Each C,, atom is treated as a node, and the node features are
constructed by concatenating a 256-dimensional atom type embedding (generally corresponding
to the C,, atom embedding) with a 256-dimensional sinusoidal positional embedding based on
sequence indices.

2. Graph Construction: A multi-relation graph is built using both sequential and spatial information.
Sequential relations are established by connecting neighboring atoms within a relative sequence
distance between -2 an 2, with each relative distance treated as a distinct relation type. Spatial
relations connect atoms within a Euclidean distance of 10A. In total, the graph uses five sequential
relation types and one spatial relation type, allowing the model to capture diverse interaction
patterns between residues based on both sequence proximity and spatial context.
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Table 12: Summary of metric validation experiments.

Setting Distribution | Expected Results | Results

Protein Fold Score (fS)

Balanced dataset Diverse and balanced label distribution High fS Fig. 17 (blue)
Homogeneous dataset Homogeneous label distribution Low fS Fig. 17 (red)
Imbalanced dataset Diverse but imbalanced label distribution | Medium fS Fig. 17 (green)
Imbalanced noisy dataset Noisy and imbalanced distribution Decreasing fS Fig. 17 (green)
Unseen noisy dataset Noisy distribution with unseen samples Decreasing fS Fig. 17 (orange)
Fréchet Protein Structure Distance (FPSD) and Protein Fold Jensen-Shannon Divergence (fJSD)

Disjoint split datasets Different structure distributions High FPSD and fJSD Fig. 18 (blue)
Random split datasets Similar structure distributions Low FPSD and fJSD Fig. 18 (green)
Random split noisy datasets Noisy distributions with seen samples Increasing FPSD and fJSD | Fig. 18 (green)
Unseen random split noisy datasets  Noisy distributions with unseen samples | Increasing FPSD and fJSD | Fig. 18 (orange)
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Figure 17: Fold Scores (C/A/T) metrics on balanced, homogeneous, imbalanced and unseen subsets
of the PDB dataset, with varying levels of Gaussian noise (0.0 to 0.4A) applied on the latter two.

3. Edge and Message Passing: Edge features are generated using a radial basis function (RBF) to
capture spatial distance-based relationships, along with relative sequential positional encoding
between atoms. Both features are 128-dimensional. Additionally, we incorporate clockwise
angular features to break reflection symmetries.

4. Relational Graph Convolution Layers: The model includes 8 layers of Geometric Relational
Graph Convolution, each aggregating information from neighboring atoms using the node and
edge features. These layers employ MLPs to process inputs and update node representations,
ensuring that the model captures different types of relational patterns between atoms.

5. Output and Prediction: After the convolutional layers, the atom features are aggregated using
sum pooling to create a global protein representation. This global feature is further refined through
an MLP layer. For classification, the model includes separate output heads for predicting three
levels of CATH labels: T, A, and C, with output sizes of 1336, 43, and 5 classes, respectively.

Throughout the model, a dropout rate of 0.2 is applied to prevent overfitting, and leaky ReL.U
activation functions with a slope of 0.1 are used. The model is trained using the Adam optimizer with
a learning rate of 0.0001, distributed across 8 GPUs with a batch size of 8 and a gradient accumulation
step of 2. Training is run over 70,000 parameter update steps. On the test set, the model achieves
a Micro Accuracy (Grandini et al., 2020) of 97.8% at the T-level, 98.1% at the A-level, and 99.2%
at the C-level. Given the highly imbalanced nature of the CATH classes, we also report Macro
Accuracy, achieving 94.0% at the T-level, 97.5% at the A-level, and 95.6% at the C-level. These
results demonstrate that the classifier is highly effective in accurately predicting the fold labels of
protein structures.

G.4 METRIC VALIDATION

To validate the effectiveness of our metrics, we create two sets of experiments to observe the behavior
of S and FPSD, fJSD under different settings. We summarize these experiments, together with their
expected results, in Tab. 12.

Protein Fold Score (fS) Validation. Using the PDB training dataset, we create three subsets to assess
the behavior of the Protein Fold Score. All experiments are repeated with 20 different random seeds.
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Figure 18: FPSD and fJISD metrics on (i) the fold-disjoint and (i) random splits of the PDB training
set, and (7ii) a random split of the unseen PDB set, with Gaussian noise (0.0 to 0.4A) applied to the
latter two.

1. Fold Class-Balanced Subset: We randomly sample 300 T-level classes and then randomly sample
approximately 16 proteins per class (with replacement) to create a total of 5,000 samples. This
subset tests whether S rewards a diverse, realistic, and class-balanced structure distribution.

2. Homogeneous Subset: We randomly sample 4 T-level classes and 1,250 proteins per class. This
subset is designed to test whether fS penalizes distributions lacking fold diversity.

3. Fold Class-Imbalanced Subset: We randomly sample 5,000 proteins from the PDB dataset. Given
PDB’s inherent class imbalance (Fig. 3), this random sampling leads to a diverse but imbalanced
distribution, so we expect this to lead to “intermediate” values for the metric.

Results for these three subsets are shown in Fig. 17. The results show exactly the expected behavior
for the fS metric, with the Fold Class-Balanced Subset obtaining the highest score, the Homogeneous
Subset the lowest, and the Fold Class-Imbalanced Subset standing in between these two extremes.

We additionally assess whether our metric is robust to noisy structures and structures unseen in the
classifier’s training dataset. For the former, we continue using the previously defined Fold Class-
Imbalanced Subset and gradually add Gaussian noise to all structures, with the noise scale increasing
from 0.0 to 0.4A. We expect the fS score to decrease as the scale of the noise increases. For unseen
structures, we randomly sample 5,000 structures from the full PDB dataset, without applying the
CATH label filter, and apply Gaussian noise in the same manner.

We evaluate the Fold Score C/A/T on these noisy datasets, with the results shown in Fig. 17 (green and
orange curves). As expected, as the noise scale increases, the quality of protein structures declines,
leading to reduced classifier confidence and a corresponding gradual decrease in the Fold Score.

Overall, we find the Protein Fold Score is able to effectively measure the realism, diversity, and
balance of distributions over protein structures. It remains robust to unseen samples and deteriorates
gracefully for noisy samples, effectively detecting the lower quality of the noisy samples.

Fréchet Protein Structure Distance (FPSD) and Protein Fold Jensen-Shannon Divergence (fJSD)
Validation. Similar to the fS validation, we curate two dataset splits based on the PDB training set,
and measure FPSD and fJSD for the two splits.

1. Fold Class-Disjoint Split: We randomly draw 5,000 samples for each split, ensuring no overlap at
A-level classes between the two splits. This setup tests whether FPSD and fJSD can distinguish
different distributions. We exclude T-level classes here, as they are too fine-grained to produce
sufficiently distinct distributions. We expect this split to yeild large values for both metrics.

2. Random Split: We randomly sample 5,000 proteins for each split from the PDB dataset. Since no
constraints are applied during the split, both datasets are expected to follow the same distribution,
and thus we expect low values for both metrics for this split.

We show results in Fig. 18, where we can observe that the metrics behave as expected for both

splits. Specifically, the Fold Class-Disjoint Split yields a FPSD of 452.44 and fJSD of 4.21, while the
Random Split yields significantly lower values for both metrics; ~ 10 for FPSD and = 0 for fJSD.
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Table 13: FrameFlow’s, RFDiffusion’s, Genie2’s and three variants of Proteina’s cluster diversity values with #
designable clusters in parentheses under different TM-score clustering thresholds. Best scores are bold.

Threshold 0.1 0.2 0.3 04 | 05 | 06 0.7 0.8 0.9

FrameFlow 0.051 (23) 0.054(24) 0.067 (30) 0.237 (105) | 0.523 (232) | 0.808 (358) 0.934 (414) 0.993 (440) 0.997 (442)
RFDiffusion 0.046 (22) 0.046 (22) 0.048(23) 0.127 (60) | 0.447 (211) | 0.720 (340) 0.834 (394) 0.887 (419) 0.936 (442)
Genie2 0.060 (29) 0.060 (29) 0.060 (29) 0.144 (69) | 0.596 (284) | 0.915 (436) 0.978 (466) 0.991 (472) 1.000 (476)

Mrs,y=045  0101(49) 0.101(49) 0.118(57) 0302 (146) | 0.639 (308) | 0.852 (411) 0.943 (455) 0.981 (473) 0.995 (480)
M9 4—0.45  0.083(39) 0.089 (42) 0.095(45) 0.257 (121) | 0.626 (294) | 0.820 (385) 0.916 (430) 0.980 (460) 0.993 (466)
Mo, 7=0.3  0.056(28) 0.060 (30) 0.064 (32) 0.147 (73) | 0.305(151) | 0.442 (219) 0.569 (282) 0.723 (358) 0.901 (446)
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, i

50 100 150 200 250
Number of Residues

Figure 19: Pairwise TM-Score distributions of FrameFlow, RFDiffusion, Genie2 and three variants
of Proteina across different residue lengths, with lower TM-Scores indicating better performance.
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Additionally, we apply the same process used in the fS validation to create noisy and unseen dataset
splits for testing the FPSD and fJSD metrics, computing them between the noisy and original datasets.
The results in Fig. 18 (green and orange) indicate that as the noise scale increases, protein structure
quality deteriorates, leading to increasignly higher FPSD and fISD values.

In summary, FPSD and fISD effectively recognize similarities and differences between structure
distributions, remain robust to unseen samples and detect increasingly noisy samples.

H ANALYSIS AND VALIDATION OF METRICS CALCULATIONS

H.1 FINE-GRAINED DIVERSITY EVALUATIONS

Cluster-based diversity with different thresholds. We evaluate the cluster-based diversity metric
under varying clustering thresholds for three of our best models and the most relevant and competitive
baselines—Genie2, RFDiffusion, and FrameFlow—as shown in Tab. 13. For looser thresholds, our
MEs (y=0.45) model outperforms the others. However, with very strict clustering thresholds, all
models and baselines produce highly diverse results, covering a wide range of distinct clusters.

Distribution of pairwise TM-scores. The other diversity metric that we use in this work are average
pairwise TM-scores. Here, we analyze the distributions of the pairwise TM-scores for samples
generated by our models and the three most relevant baselines mentioned above. We draw violin
plots across different lengths in Fig. 19. The results demonstrate that all models maintain reasonable
TM-score distributions, showing no signs of mode collapse.

H.2 EVALUATION OF METRICS FOR REFERENCE DATASETS

To provide reference values for our results in Tab. 1, we report metrics for two representative protein
structure databases: the PDB (natural proteins) and the AFDB (synthetic proteins predicted by
AlphaFold2). We use the representative subsets of the PDB and AFDB processed in App. G.2 as our
reference distributions. Following the protocols outlined in App. F and App. G, we sample from these
reference datasets and evaluate all metrics. The results, presented in Tab. 14, show novelty values
close to 1, and very low FPSD and fJSD values, as expected. The designability of the two reference
datasets aligns with previously reported results in Lin et al. (2024), with the AFDB exhibiting lower
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Table 14: Reference metrics by sampling two reference datasets (AFDB and PDB) introduced in App. G.2.

Dataset Design- Diversity Novelty vs. FPSD vs. fS fISD vs. Sec. Struct. %
ability (%)t | Clustert TM-Sc., | PDBL AFDB| | PDB, AFDB/ (C/AITT PDB| AFDBl | (a/f)

PDB ref. 67.2 0.62 (209) 0.31 0.99 0.87 3433 7120 | 2.94/9.48/90.45 | 0.05 0.51 35.0/16.8

AFDB ref. 33.6 0.91 (154) 0.29 0.76 1.00 | 73.02  3.011 |2.71/6.57/34.88 | 053 0.02 | 449/127

Table 15: Proteina’s unconditional generation results under different random sampling seeds.

Seed Design- Diversity Novelty vs. FPSD vs. fS fISD vs. Sec. Struct. %
ability (%)7 | Clusterf TM-Sc.| | PDB] AFDB| PDB| AFDB/| (C/A/TT PDB| AFDBJ (/B)

Unconditional generation with Proteina model M}%"™ and noise scale y = 0.45.

0 93.6 0.62 (294) 0.36 0.70 0.76 3222 306.1 1.80/4.72/18.59 | 1.85 1.36 70.5/6.1

1 92.8 0.61 (283) 0.36 0.70 0.75 3270 313.0 | 1.78/4.64/18.83 | 1.85 1.39 70.7/6.2
2 94.8 0.60 (283) 0.36 0.69 0.75 3184 3032 | 1.83/4.74/19.35 | 1.79 1.34 71.5/5.3

3 94.4 0.58 (272) 0.37 0.71 0.76 325.1 308.0 1.78/4.60/18.40 | 1.88 1.40 71.1/52

4 93.0 0.57 (263) 0.37 0.71 0.76 3166 3003 | 1.79/4.70/18.93 | 1.83 1.38 71.6/4.9
Mean 93.7 0.60 (279) 0.36 0.70 0.76 3219 306.1 | 1.80/4.68/18.82 | 1.84 1.37 71.1/5.5
Std. Dev. 0.9 0.02 (12) 0.01 0.01 0.01 4.4 4.8 0.02/0.06/0.36 | 0.03 0.03 0.5/0.6

designability due to the use of sequence clustering to avoid over-represented clusters. Additionally,
we observe that the reference datasets display higher diversity than all models and baselines. This
suggests that existing models still have room for improvement in optimizing diversity.

Note that our models and the baselines are able to achieve much higher designability among the gen-
erated proteins due to noise or temperature scaling during inference (or rotation schedule annealing),
effectively modifying the generated distribution towards more well-structured protein backbones.

H.3 STATISTICAL VARIATION OF METRICS

To assess the statistical stability of our results, we select the model M2 (y=0.45) for efficiency
and repeat the metrics evaluations five times using different random seeds. The results, presented in
Tab. 15, show minimal variance across all metrics, indicating robustness of our evaluation process.

I SAMPLING, AUTOGUIDANCE AND HIERARCHICAL FOLD CLASS GUIDANCE

Here, we provide more details about Proteina’s inference-time sampling as well as our new hierarchi-
cal fold class guidance and autoguidance.

1.1 ODE AND SDE SAMPLING

Generally, flow-matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023;
Albergo et al., 2023) models like Proteina rely on a vector field u;(x;) that describes the probability
flow between noise and data (see Sec. 2). The default way to generate samples is to solve the flow’s
ODE

dXt = ut(xt)dt (10)

from ¢t = 0 to ¢ = 1, initialized from random noise. In our case, the noise corresponds to a standard
Gaussian prior with unit variance over the 3D C|, coordinates of the protein backbone. As discussed
in Sec. 2, the flow’s intermediate states x; are in practice constructed through an interpolant between
data x; ~ p(x7) and the Gaussian random noise distribution € ~ A(0, I'), which takes the general
form

Xt = X1 + o€ (11)

for the time-dependent scaling and standard deviation coefficients a;; and o, respectively. In our work,
we rely on the rectified flow (Liu et al., 2023) (also known as conditional optimal transport (Lipman
et al., 2023)) formulation, corresponding to a linear interpolant

x; =tx1 + (1 —t)e (12)

between noise € and data samples x;. This leads to the corresponding marginal vector field at
intermediate x;

u(x¢) = % (E[tx1]x¢] + E[(1 — t)e|xt]) = E[x1]|x¢] — E[€|x¢]. (13)
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Further, we have that (see, e.g., proof in Ma et al. (2024))

1
st(x¢) 1= Vx, log pr(x¢) = ffE[dxt]. (14)

This allows one to derive a relation between u;(x;) and s;(x¢):

ur(x¢) = E[xq|x¢] — E[€]x¢]
_ X - (1 —t)Ele|x¢]

t ~ Elefx]
Cx 1 Efelx] (15)
=7 bl
1—1t
=3+ )
or
5y () = De(Xe) =Xt (16)

1-1¢

Furthermore, given the score of the probability path p; (x;), we can now obtain the Langevin dynamics
SDE
dXt = St(Xt)dt + \/ﬁth, (17)

with the Wiener process W;. This SDE, when simulated, in principle samples from p;(x;) at any
fixed t. We can combine this with the flow’s ODE (Eq. (10)) to obtain the SDE

dXt = Uf(Xf)dt + g St Xt dt + v/ 29 de (18)

which, for any g(¢t) > 0, now simulates the stochastic flow along the marginal probability path p;(x;)
from ¢t = 0 to ¢ = 1 with the stochastic paths due to the Langevin dynamics component.

In practice, we model u;(x;) by the learnt neural network v¥(x;, ¢) with parameters 6, which we can
use to obtain the corresponding learnt score s? (x;, ¢), using Eq. (16) above. As in the main paper, &
represents all conditioning information we may use in practice. Hence,

dx; = v (x,&)dt + g(t)s! (x¢, &)dt + /2g(t) AW (19)

Importantly, in practice the velocity and score are neural network-based approximations with respect
to their ground truths, and the SDE is numerically discretized. Therefore, different choices of g(t),
which scales the stochastic Langevin component, can lead to different results in practice. For g(t) = 0,
we recover the default flow ODE.

Moreover, we introduce a noise scale v, as is common in generative models of protein structures, and
in practice use the generative SDE

dx; = vl (x, &)dt + g(t)s? (x;, &)dt 4+ +/2g(t)y dW. (20

For v = 1, we simulate the “proper” marginal probability path, while lowering the noise scale often
reduces the diversity of the generated results, oversampling the model’s main modes. Although
not principled, this can be empirically beneficial in protein structure generation, as the tails of the
distribution can consist of undesired samples that, for instance, may not be designable. Since our
models operate directly in 3D space, reduced noise injection results in more globular and well-
structured backbones that tend to be more designable. In the main paper, we typically either use the
default ODE for generation (corresponding to g(t) = 0) or the SDE with a reduced noise scale v < 1
and some stochasticity schedule g(t) > 0. Moreover, in practice it can be sensible to only simulate
with g(t) > 0 up to some cutoff time ¢ < 1, due to the diverging denominator in Eq. (16), required to
calculate the score from the vector field when using g(¢) > 0.

1.2 CLASSIFIER-FREE GUIDANCE AND AUTOGUIDANCE
As mentioned in the main text, we are leveraging both classifier-free guidance (CFG) (Ho & Salimans,

2021) and autoguidance (Karras et al., 2024) in selected experiments in this paper. To the best of
our knowledge, neither of the two methods have been explored in flow- or diffusion-based protein
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structure generation. In both approaches, different scores are combined to obtain a “higher quality”
score that leads to improved samples.

Let us assume we have access to the densities p;* (x;) and pZ(x;). Now let us define the “guided”
score (Karras et al., 2024)

S%mded(xt) = vxt logp;‘;)(xt) = vxt log <ptB (Xt) l:i%gzi;:l > ) 21

where w > 0 denotes the guidance weight. In practice, pf(xt) corresponds to the density we are

primarily interested in and for w = 1 we recover s£"*!(x;) = Vi, log p/(x,). But if we now choose

a density p? (x;) that is more spread out than p;!(x;), then, for w > 1, the term

Eall N

is typically > 1 for x; ~ pf (x:) and the overall score is essentially scaled according to the ratio

between pi* (x;) and pB (x;). This can be leveraged to construct a guided s&"'%!(x;, ) that emphasizes

the difference between p;*(x;) and pZ (x;), as we now explain (see Karras et al. (2024) for details).

In classifier-free guidance (Ho & Salimans, 2021), pi*(x;) corresponds to a conditional density and
pB(x;) to aunconditional one and w > 1 emphasizes the conditioning information, leading to samples
that are more characteristic for the given class, and often also improving quality. Autoguidance (Karras
et al., 2024) disentangles the effects of improved class adherence and improved quality and instead
uses for pP(x;) a “bad” version of p;*(x;) that is trained for fewer steps or uses a smaller, less
expressive network. Due to the maximum likelihood-like objectives of diffusion and flow models
their learnt densities generally tend to be mode covering and can be somewhat broader than the ideal
target density. Hence, even the “good” p{! (x;) will usually not be a “perfect”” model that models the
distribution of interest perfectly and the “bad” pP(x;) will make the same errors like p;*(x;), but
stronger and the density will be even broader. Guidance with w > 1 then emphasizes the quality
difference between p{! (x;) and p (x;) and can result in sharper outputs, essentially extrapolating in

distribution space beyond p;! (x;) towards the true desired distribution of interest.

CFG also often improves quality because a similar effect happens there, just entangled with the
conditioning: The unconditional density used in CFG also represents a broader density than the
conditional one, which means the guided score does not only emphasize the class conditioning, but
also pushes samples towards modes, which often correspond to less diverse, but high-quality samples.
Note that autoguidance is general and can be used both for conditional and unconditional generation,
whereas classifier-free guidance contrasts a conditional and an unconditional model and hence is only
applicable when such a conditional model is available.

Let us now derive the exact guidance equation used in our work. Decomposing the logarithm term in
Eq. (21) yields A
s1"(xe) = WV, log it (x0) + (1 = ) Vg, log pf’ (x¢), (23)

or short e

s$ (%) = ws(xy) + (1 — w)sB(xy). (24)
Inserting Eq. (16) that relates the score and the vector field, we find that the vector fields obey the
analogous equation A

uf (%) == wut(x) + (1 - w)ul (xy). (25)

In practice, we use learnt conditional models. And in that case, we can now introduce the interpolation
parameter « € [0, 1] that interpolates between classifier-free guidance and autoguidance in a unified
formulation (analogous to Karras et al. (2024) in their Appendix B.2). We get

vieided (2 = vl (x4, @) + (1 — w) [(1 — )9 (x4, 0) + avi™(x,, 6)} : (26)

where v?(x;, ¢) is the main model with conditioning ¢, v?(x;, (}) corresponds to the unconditional

version, and vf’bad(xt, ¢) denotes the “bad” model required for autoguidance. For oo = 0, we get
regular classifier-free guidance, while for v = 1, we get regular autoguidance. In that case, setting
¢ = (, i.e. autoguidance for unconditional modeling, is still applicable. In this paper, we do not use
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any intermediate «, but only explore either pure CFG or pure autoguidance, though. An analogous
formula can be written for the scores,

S (x, 0) = wsl (%, 6) + (1= w) (1= a)s (%0, 0) +asf™(x,0)], @7)

required in the generative SDE in Eq. (20).

Note that when we apply self-conditioning (Sec. 3.2) during sampling we generally feed the same
clean data prediction

%x(x;) = x¢ + (1 — t)v¥ (x4, &) (28)

as conditioning to all different models of the guidance equations (Egs. (26) and (27)). Self-
conditioning is optional, though, since we train with the self-conditioning input in only 50% of
the training iterations. Proteina can be used both with and without self-conditioning.

1.3 GUIDANCE WITH HIERARCHICAL FOLD CLASS LABELS

In order to be able to apply classifier-free guidance during inference, one typically learns a model
that can be used both as a conditional and an unconditional one, by randomly dropping out the condi-
tioning labels during training and feeding a corresponding ()-embedding that indicates unconditional
generation. As discussed in detail in Sec. 3.2, we drop out our hierarchical fold class labels in a
hierarchical manner, thereby enabling guidance with respect to all different levels of the hierarchy.

Here, we summarize the corresponding guidance equations. Note that we do not explicity indicate
the time step ¢ conditioning as well as the self-guidance conditioning, to keep the equations short and
readable.

T-level guidance. If we guide with respect to the finest fold class T, we use

Vf,guidEd(xh {Cx7 Axa TX}CAT) =w Vte (xt7 {Cx7 Ax; TX}CAT)

0 0,bad (29)
+ (1 _w) (1 —Ol)Vt (Xt7{®7@7®}CAT) +C¥Vt’ (Xt7{CxanvTx}CAT) )
and correspondingly for the score sf’guided(xt, {Cx, Ax, Tx }car). As mentioned above, w is the

guidance strength. For autoguidance, we have o = 1, and for CFG we have a = 0. Note that we also
feed the “coarser” C- and A-level labels that are the parents of the T-level label in the hierarchy.

A-level guidance. If we guide with respect to the fold class A, we use

Ve (g, {Cx Ase, D3ear) = w vl (x4, {Cx, A, D}car)

(7] 0,bad (30)
(1= w) [(1 = a)vf (0, 0,0, Bear) + avy ™ (0, {C, A, Bear) |
and correspondingly for the score s! €% (x,, {C, Ax, 0}car).
C-level guidance. If we guide with respect to the fold class C, we use
Vf’guided(xt, {Cx, 0, @}CAT) =w V? (xt, {Ox, 0, w}CAT) 31

+ (1 - w) [(1 - a)vte (xt7 {@, [Z), (Z)}CAT) +a Vi),bad(xtv {CX7 ®7 W}CAT):| y

and correspondingly for the score sf 7g“ided(xt, {Cx, 0, 0}car)-

No fold class guidance. If we do not guide with respect to a fold class, but we still want to apply
autoguidance in its unconditional setting, we have o = 1 and

vy s (e, 10,0, 0}car) = w v (xe, {0,0, 0}car) + (1 — w)vi ™ (x4, {0,0, 0}car),  (32)

and correspondingly for the score s"°®% (x, {00, 0}car).

In practice, for the “bad” models required for autoguidance, we use early training checkpoints of our
main models. We do not train separate, smaller dedicated models just for the purpose of autoguidance,
but this would be an interesting future endeavor.
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1.4 STEP SIZE AND STOCHASTICITY SCHEDULES

As discussed in the previous section, sampling Proteina involves simulating the SDE

dx; = v0(x, &)dt + g(t)s? (x¢, &)dt 4+ /2g(t)y AW, (33)

from ¢t = 0 to ¢ = 1, where the vector field and score can also be subject to guidance. This is exactly
Eqg. (3) in the main text, repeated here for convenience. In practice, we simulate the SDE using
the Euler-Maruyama method detailed in Algorithm 1. For all our experiments, we use N = 400
discretization steps and g(¢t) = 1/(¢ 4+ 0.01) for ¢ € [0,0.99] and g(¢t) = 0 for t € (0.99,1) (we
empirically observed that numerically simulating the SDE may lead to unstable simulation for ¢
close to 1. We avoid this by switching to the ODE, setting ¢(t) = 0, for the last few steps). We
explore multiple values for the noise scaling parameter -, which leads to different trade-offs between
metrics (see Tabs. 1 and 3). We discretize the unit interval using logarithmically spaced points. More
precisely, in PyTorch code (Paszke et al., 2019), we get [tg, t1, ..., x| by the following three steps

t = 1.0 - torch.logspace (-2, 0, nsteps + 1).flip(0)
t t - torch.min(t)
t =t / torch.max(t),

where the last two operations ensure that g = 0 and t; = 1.

Algorithm 1 Euler-Maruyama numerical simulation scheme

Input: Number of steps NV

Input: Discretization of the unitinterval 0 =ty <t} <ft2 < ... <ty =1
Input: Stochasticity schedule g(t)

Input: Noise scaling parameter -y

Input: Conditioning variables ¢

Xp ./\/(0, I)
forn=1to N —1do
€n ~N(0,1)
6n = tn - tnfl
=Xt VI (K 8) + gt S,
end for
Output: x;

X¢, i (thfl,é)} On + /20,9(tn)7 €n

J ON THE RELATION BETWEEN FLOW MATCHING AND DIFFUSION MODELS

A question that frequently comes up is the relation between flow matching (Lipman et al., 2023; Liu
et al., 2023; Albergo & Vanden-Eijnden, 2023) and diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021). For Proteina, we opted for a flow matching-based approach, but in
protein structure generation, both approaches have been leveraged in the past. Hence, here we discuss
the two frameworks.

Crucially, we would first like to point out that we are using flow matching to couple the training data
distribution (the protein backbones for training) with a Gaussian noise distribution, from which the
generation process is initialized when sampling new protein backbones after training. In this case, i.e.
when coupling with a Gaussian distribution, flow matching models and diffusion models can in fact
be shown to be equivalent up to reparametrizations. This is because diffusion models generally use a
Gaussian diffusion process, thereby also defining Gaussian conditional probability paths, similar to
the Gaussian conditional probability paths in flow matching with a Gaussian noise distribution.

For instance, when using a Gaussian noise distribution, one can rewrite the velocity prediction
objective used in flow matching as a noise prediction objective, which is frequently encountered in
diffusion models (Ho et al., 2020). Different noise schedules in diffusion models can be related to
different time variable reparametrizations in flow models (Albergo et al., 2023). Most importantly, for
Gaussian flow matching, we can derive a relationship between the score function V, log p:(x+) of
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the interpolated distributions and the flow’s velocity (see Eq. (2) as well as App. I.1). The score is the
key quantity in score-based diffusion models (Song et al., 2021). Using this relation, diffusion-like
stochastic samplers for flow models can be derived, as well as flow-like deterministic ODE samplers
for diffusion models (Ma et al., 2024). In conclusion, we could in theory look at our Proteina
flow models equally as score-based diffusion models. With that in mind, from a pure performance
perspective flow matching-based approaches and diffusion-based approaches should in principle
perform similarly well when coupling with a Gaussian noise distribution. In practice, performance
boils down to choosing the best training objective formulation, the best time sampling distribution
to give appropriate relative weight to the objective (see Sec. 3.2), etc.—these aspects dictate model
performance, independently of whether one approaches the problem from a diffusion model or a flow
matching perspective.

In fact, we directly leverage the connections between diffusion and flow models when developing
our stochastic samplers (see App. I.1) and guidance schemes. Both classifier-free guidance (Ho &
Salimans, 2021) and autoguidance (Karras et al., 2024) were proposed for diffusion models, but due
to the relations between score and velocity, we can also apply them to our flow models (to the best
of our knowledge, our work is the first to demonstrate classifier-free guidance and autoguidance for
flow matching of protein backbone generation). Please see App. 1.2 for all technical details regarding
guidance in Proteina.

Considering these relations, why did we overall opt for the flow matching formulation and per-
spective? (i) Flow matching can be somewhat simpler to implement and explain, as it is based on
simple interpolations between data and noise samples. No stochastic diffusion processes need to
be considered. (ii) Flow matching offers the flexibility to be directly extended to more complex
interpolations, beyond Gaussians and diffusion-like methods. For instance, we may consider optimal
transport couplings (Pooladian et al., 2023; Tong et al., 2024) to obtain straighter paths for faster
generation or we could explore other, more complex non-Gaussian noise distributions. We plan
to further improve Proteina in the future and flow matching offers more flexibility in that regard.
At the same time, when using Gaussian noise, all tricks from the diffusion literature still remain
applicable. (iii) The popular and state-of-the-art large-scale image generation system Stable Diffusion
3 is similarly based on flow matching (Esser et al., 2024). This work demonstrated that flow matching
can be scaled to large-scale generative modeling problems.

We would like to point out that the relations between flow-matching and diffusion models have been
discussed in various papers. One of the first works pointing out the relation is Albergo & Vanden-
Eijnden (2023) and the same authors describe a general framework in Stochastic Interpolants (Albergo
et al., 2023), unifying a broad class of flow, diffusion and other models. Some of the key relations
and equations can also be found more concisely in Ma et al. (2024). The relations between flow
matching and diffusion models have also been highlighted in the Appendix of Kingma & Gao (2023).
The first work scaling flow matching to large-scale text-to-image generation is the above mentioned
Esser et al. (2024), which also systematically studies objective parametrizations and time sampling
distributions, similarly leveraging the relation between flow and diffusion models.

K NEW TIME ¢t SAMPLING DISTRIBUTION

A crucial parameter in diffusion and flow matching models is the ¢ sampling distribution p(t), which
effectively weighs the objective (Eq. (1) for Proteina). Enhanced sampling of ¢ closer to t = 1
encourages the model to focus capacity on synthesizing accurate local details, which are generated at
the end of the generative process, while sampling more at smaller ¢ can improve larger-scale features.
In image generation it is common to increase sampling at intermediate ¢ (Karras et al., 2022; Esser
et al., 2024), but this is not necessarily a good choice for protein structures—even slightly perturbing
a structure could lead to unphysical residue arrangements and bond lengths. Hence, as discussed in
Sec. 3.2 we designed a new ¢ sampling function focusing more on large ¢,

p(t) = 0.02U4(0,1) + 0.98 B(1.9,1.0),

where B(-, -) is the Beta distribution, to encourage accurate local details. We mix in uniform sampling
to avoid zero sampling density when ¢ — 0. In Fig. 20, we show our novel distribution, a naive
uniform distribution, and the logit-normal distribution that recently achieved state-of-the-art image
synthesis in a similar rectified flow objective (Esser et al., 2024). Ablations can be found in App. L.
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Figure 20: t-sampling distributions. We show our novel ¢-sampling distribution from Sec. 3.2 that mixes a
Beta and a uniform distribution, a naive uniform distribution, and the logit-normal distribution that recently
achieved state-of-the-art image synthesis in a similar rectified flow objective (Esser et al., 2024).
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Figure 21: Designability-Diversity trade-offs achieved when training a “small” model using different
t-sampling distributions. The curves are obtained by sampling each trained model for multiple noise
scaling parameters «y between 0.25 and 0.55.

L. ABLATION STUDIES

This section presents multiple ablations we carried out while developing the model. We tested
multiple distributions to sample the time ¢ during training (App. L.1), different stochasticity schedules
g(t) (App. L.2), and explored various architectural choices (App. L.3). We note that these ablations
were done at different stages during model development, and are thus not always directly comparable
between each other, nor with the results presented in the main paper, as they were carried out with
different (often small) models or sampling schemes. However, these ablations informed our decisions
while developing our model and training regime.

L.1 SAMPLING DISTRIBUTIONS FOR ¢

We consider multiple choices for the ¢-sampling distribution p(t): the mode (1.29)
distribution from Esser et al. (2024), the Logit-normal (1, 0) distribution
from Esser et al. (2024), Beta (3, 1), Beta(l.6, 1), Beta(l.9, 1),
Mixture (0.02+xUniform+0.98%Beta (1.9, 1)), and Uniform (0, 1). For each
of these we trained a “small” model (30M parameters, no pair updates) on the Drg dataset for
150K steps, using 4 GPUs with a batch size of 25 per GPU. Noting that training losses are not
directly comparable for different ¢-sampling distributions, we compare the models by studying the
designability-diversity trade-off they achieve when sampled under different noise scaling parameters
~. Results are shown in Fig. 21, where we show diversity metrics (cluster diversity and TM-score
diversity, see App. F for details) as a function of designability. The curves are obtained by sweeping
the noise scaling parameter vy between 0.25 and 0.55. We can observe that the mixture distribution
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consistently achieves the best trade-offs for both diversity metrics. Note that the training run using the
uniform distribution displayed somewhat unstable behavior, producing nan values during training,
so we did not sample it.

We performed this ablation early during model development, using the stochasticity schedule g(t) =
(1—1t)/(t+0.01) and a uniform discretization of the unit interval (with 400 steps). We emphasize that
these results are not comparable with the ones in the main papar and other sections in the Appendix,
as they were obtained using a significantly smaller model, trained for less steps using less compute,
and sampled using a different numerical simulation scheme.

L.2 STOCHASTICITY SCHEDULES ¢(t)

In addition to the schedule g(t) = 1/(t + 0.01) presented in App. 1.4, used for all re-
sults we report in the main paper, we also tested the schedules g1_+(¢t) = (1 — ¢)/(¢t +
0.01) and gan(t) = Ztan((1—1¢)3).* A comparison of these three schedules is shown
in Fig. 22, where it can be observed that g¢i,, and g;_: inject significantly less noise
for times ¢t ~ 1. We sampled and evaluated our Mpgs model for these three sched-
ules. Results for deisgnability, diversity and novelty (w.rt. PDB) are shown in Fig. 23.
It can be observed that the stochasticity sched-

ule used has a strong effect in the model’s final 102} — g(t)
performance, with g(¢) leading to better results \\ Gan(D)
than gi.n(t) and g1—+(t). Note that, in princi- 104 01_(B)

ple, for v = 1 all stochasticity schedules yield oS

the same marginal distributions during the sam- 10% e
pling process. In practice, however, the SDE 10-11

is simulated numerically, and we use a noise

scaling parameter y < 1 (common in diffusion 10725

and flow-based generative methods for protein Lo

backbone design). These two factors have a non- ‘ > ; ; ; i
trivial interaction with the stochasticity sched- 00 0 04 t 06 08 1o
ule, explaining the differences in results for the

different g(t) considered. Figure 22: Different stochasticity schedules tested

as a function of ¢.

L.3 QK LAYER
NORM, REGISTERS AND ROPE EMBEDDINGS

We also ablated several choices for the architecture, with an interesting one being the addition or
removal of pair updates with triangular multiplicative layers (model Mpg against model Mpg™).
These two models were compared in the main text in Tab. 1. While the use of pair updates with
triangular multiplicative updates leads to better performance, it also has a negative impact on the
model’s scalability. In Tab. 1 we observed that our M}%™ model is still competitive while being
significantly more computationally efficient, which enabled us to scale to protein backbones of up to
800 residues, as discussed in the main text.

Other architectural choices we ablated involved the use of QK layer norm, registers, and rotary
positional embeddings (RoPE) (Su et al., 2024) for the attention in the network’s trunk. These
changes only affect the architecture, so training losses are directly comparable. Training small models
(see App. L.1) we observed that the use of registers and QK layer norm led to slightly improved
training losses, so we included them in our final architecture. The use of RoPE embeddings, on the
other hand, led to a slight increase in the training loss, so we did not include it in our final architecture.

*For numerical stability we compute gian(t) = %% where C(t) = cos ((1 — t)g) and S(t) =
sin (1—1¢)3)
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Figure 23: Results of sampling Mg under three different schedules, g(t), gtan(t) and g1—:(¢).
Curves are obtained by sweeping the noise scaling parameter v between 0.3 and 0.5.

M DATA PROCESSING

M.1 PDB PROCESSING, FILTERING AND CLUSTERING

For PDB datasets, we use metadata from the PDB directly to filter for single chains with lengths
50-256, resolution below 5A and structures that do not contain non-standard residues. We also include
chains from oligomeric proteins. We include structure-based filters, namely a max. coil proportion of
0.5 and a max. radius of gyration of 3.0nm. Together, this leads to 114,076 protein chains.

For LoRA-based fine-tuning, we prepare a subset of the dataset above with only designable structures.
For this, we feed all 114,076 chains from the first dataset through the designability pipeline (Protein-
MPNN, ESMFold), only keeping chains that have a scRMSD below 2A. With this, we reduce the
dataset size to 90,423 proteins, indicating that 79.26% of the samples from the original PDB dataset
described above were designable.

M.2 ALPHAFOLD DATABASE PROCESSING, FILTERING AND CLUSTERING

Processing the full AFDB-Uniprot dataset takes more than 20TB in disk space and includes around
214M individual file objects, both of which make it hard to work with this data. To remedy that, we
leverage FoldComp (Kim et al., 2023) as a tool to enable efficient storage and fast access. FoldComp
leverages NeRF (Natural Extension Reference Frame) to encode structure information in 13 bytes per
residue and allow a fast compression/decompression scheme with minimal reconstruction loss.

Combined with FoldComp we use the MMseqs?2 database format (Steinegger & Soding, 2017) to filter
the AFDB-UniProt database into custom databases based on our filters and allow fast random-access
and on-the-fly decompression at training time. These filters include sequence length, pLDDT values
(mean and variance over the sequence), secondary structure content and radius of gyration.

In addition, we want to avoid random sampling of these databases since, after filtering, these datasets
tend to be biased towards certain fold families. We therefore either utilise pre-computed clustering
of the AFDB such as the AFDB-Foldseek clusters (Barrio-Hernandez et al., 2023), or cluster the
databases according to sequence similarity via MMseqs2. We then use the mapping from cluster
representative to cluster members to define a PyTorch Sampler that iterates over all clusters during
one epoch, picking a random cluster member for each cluster.
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Via this data processing pipeline, we prepare the different datasets that are described in the main
section of the paper:

1. High-quality filtered AFDB subset, size ~21M, D,\: We filtered all ~214M AFDB structures
for a max. length of 256 residues, min. average pLDDT of 85, max. pLDDT standard deviation of
15, max. coil percentage of 50%, and max. radius of gyration of 3nm. After additional subsampling
this led to 20,874,485 structures. We further clustered the data with MMseqs2 (Steinegger & Soding,
2017) using a 50% sequence similarity threshold. During training, we sample clusters uniformly
and draw random structures within.

2. Foldseek AFDB clusters, only representatives, size ~0.6M, Dgg: This dataset corresponds to the
data that was also used by Genie2 (Lin et al., 2024), based on sequential filtering and clustering of the
AFDB with the sequence-based MMseqs2 and the structure-based Foldseek (van Kempen et al., 2024;
Barrio-Hernandez et al., 2023). This data uses cluster representatives only, i.e. only one structure
per cluster. Like Genie2, we use a length cutoff at 256 residues and a pLDDT filter of 80, as well as
a minimum length cutoff of 32 residues. We found that with this processing we obtained 588,318
instead of 588,571 AFDB structures compared to Genie2. We attribute this difference to two reasons:
first, some pLDDT values that are listed as 80 in the AFDB are rounded to 80 and do not equal 80
when computed as an average directly from the per-residue pLDDT data, leading to samples that are
in the dataset used by Genie2 but not in our dataset. Second, the AFDB clustering (Barrio-Hernandez
et al., 2023) was done on version 3 of the AFDB, whereas in version 4 some of the structures were
re-predicted with better confidence values. Several structures that were excluded in the data used by
Genie?2 due to having low pLDDT values at the time of version 3 had significantly improved pLDDT
values in version 4. This leads to samples that are in our version of the dataset but not in Genie2’s.

During long-length fine-tuning, we extend Dgg by progressively increasing the maximum length
considered, up to a maximum chain length of 768 residues.

M.3 CATH LABEL ANNOTATIONS FOR PDB AND AFDB

In order to make our model more controllable via methods like Classifier-Free Guidance (CFG),
we leverage hierarchical CATH fold class labels (Dawson et al., 2016) for both experimental and
predicted structures. These labels come in a hierarchy with multiple different levels (also see Fig. 3
in the main text):

Class (C): describes the overall secondary structure content of the protein domain, similar to SCOPe
class (Lo Conte et al., 2000).

Architecture (A): describes how secondary structure elements are arranged in space (for example
sandwiches, rolls and barrels).

Topology (T): describes how secondary structure elements are arranged and connected to each other.

Homologous superfamily (H): describes how likely these domains are evolutionarily related, often
supported by sequence information.

Since we are mostly interested in structural features for guidance, we focus on the CAT levels of the
hierarchy, discarding the H level. In addition, we focus mostly on the three major C classes (“mostly

alpha”, “mostly beta” and “mixed alpha/beta”) and ignore the smaller special classes (“few secondary

structure”, “special”’).

PDB CATH labels: To obtain CATH labels for the individual PDB chains that we use as data points,
we leverage the SIFTS resource (Structure Integration with Function, Taxonomy and Sequences
resource) (Velankar et al., 2012), which is regularly updated and provides residue-level mappings
between UniProt, PDB and other data resources such as CATH (Dana et al., 2019). For each of
our samples, we map from the PDB ID and chain ID to the corresponding UniProt ID via the
pdb_chain_uniprot.tsv.gz mapping, and from there to the corresponding CATH IDs and
CATH codes via the pdb_chain_cath_uniprot.tsv.gz mapping. Some chains have more
than one domain and then also more than one CATH code. For these, we use all CATH codes available
(we randomly sample the conditioning CATH code fed to the model during training in those cases).
We then truncate the labels to remove the H level and end up with CAT labels only.

44



Published as a conference paper at ICLR 2025

(a) Pair Update
[ 1 Linear I 1

Sequence Repr. LN | | Outer Sum

m [ [ Li ] 7

Linear
L— 1
Outgoing Incoming o ]ffN
Pair Repr. Multiplicative Multiplicative - Rl:fg
Triangle Layer Triangle Layer Py

(b) Adaptive LayerNorm (LN) (c) Adaptive Scale

—-| Output | | Input I 0! Output

] |

Figure 24: Additional modules of Proteina’s transformer architecture. (a) Pair Update. (b) Our adaptive
LayerNorm (c) Adaptive Scale.

AFDB CATH labels: To obtain CATH labels for the individual AFDB chains that we use as data
points, we leverage the TED resource (The Encyclopedia of Domains) (Lau et al., 2024b) to map
from the AFDB UniProt identifier to the corresponding CAT/CATH codes. Again we use all available
CATH codes and remove the H-level information if it is present.

N ADDITIONAL NEURAL NETWORK ARCHITECTURE DETAILS

Visualizations of the additional Pair Update, Adaptive LayerNorm (LN), and Adaptive Scale modules
are shown in Fig. 24.

When creating the pair representation (see Fig. 5 (c)), the pair and sequence distances created from
the inputs x;, X(x;) and the sequence indices are discretized and encoded into one-hot encodings.
Specifically, for the pair distances from x; we use 64 bins of equal size between 1A and 30A
with the first bin being <1A and the last one being >30A. For the pair distances from %(x;) we
use 128 bins of equal size between 1A and 30A with the first bin being <1A and the last one
being >30A. For the sequence separation distances we use 127 bins for sequence separations
[<—63,—63,—62,—61,...,61,62,63,>63]. As shown in Fig. 5 this pair representation can be
(optionally) updated throughout the network using pair update layers. These feed the sequence
representation through linear layers to update the pair representation, which is additionally updated
using triangular multiplicative updates (Jumper et al., 2021), as shown in Fig. 24. While powerful,
these triangular layers are computationally expensive; hence, we limit their use in our models. In
fact, as shown in Tab. 16, our M} model completely avoids the use of these layers (leading to
a much more scalable model), while Mgg and My use 5 and 4 triangular multiplicative update
layers, respectively. In this work we did not explore the use of triangular attention layers (Jumper
et al., 2021), as these are even more memory and computationally expensive, limiting the models’
scalability.

We generally use 10 register tokens in all models when constructing the sequence representation.
Sequence conditioning and pair representation are zero-padded accordingly.

The MLP used when creating the sequence conditioning (see Fig. 5 (b)) corresponds to a Linear—
SwiGLU-Linear—-SwiGLU-Linear architecture (Shazeer, 2020).

Specific architecture hyperparameters like the number of layers, attention heads and embedding sizes
used during training of different Protefna models can be found in App. O.
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O EXPERIMENT DETAILS AND HYPERPARAMETERS

This section provides details about our model architectures as well as training and sampling configu-
rations for our experiments.

0.1 TRAINED PROTE{NA MODELS

Tab. 16 presents the hyperparameters used to define the three architectures considered in this paper,
giving details about number of layers, dimensions of each feature, and number of trainable parameters,
among others. It also offers details on the training of our models, such as the number of GPUs
used, the number of training steps, and the batch size per GPU. All our models were trained using
Adam (Kingma, 2014) with 51 = 0.9 and 82 = 0.999. We use random rotations to augment training
samples.

Table 16: Hyperparameters for Proteina model training.

Hyperparameter Pre-training Fine-tuning
MFS Mgg-m MQIM ML()RA M]()ng

Proteina Architecture

initialization random random random | Mpgg /\/l}é‘g'"i

sequence repr dim 768 768 1024 768 768

# registers 10 10 10 10 10

sequence cond dim 512 512 512 512 512

t sinusoidal enc dim 256 256 256 256 256

idx. sinusoidal enc dim 128 128 128 128 128

fold emb dim 256 256 256 256 256

pair repr dim 512 512 512 512 512

seq separation dim 128 128 128 128 128

pair distances dim (x;) 64 64 64 64 64

pair distances dim (x(x;)) | 128 128 128 128 128

pair distances min (A) 1 1 1 1 1

pair distances max (A) 30 30 30 30 30

# attention heads 12 12 16 12 12

# tranformer layers 15 15 18 15 15

# triangle layers 5 — 4 5 —

# trainable parameters 200M 200M 400M ™ 200M

Proteina Training

# steps 200K 360K 180K 11K 220K/80K

batch size per GPU 4 10 4 6 2/1

# GPUs 128 96 128 32 128

# grad. acc. steps 1 1 1 2 172

0.2 UNCONDITIONAL GENERATION EXPERIMENTS

This section presents precise details for all results for unconditional generation shown in Tabs. 1
and 3 (not including LoRA fine-tuning, covered in App. O.3). All experiments follow the sampling
algorithm described in App. [.4.

Tab. 1 shows results obtained for our Mgg and M%"S'm models under multiple noise scales.” We
sampled the Mprg model without self-conditioning, since we observed that this yielded better trade-
offs between designability, diversity, and novelty in the unconditional setting. On the other hand, we
used self-conditioning with the M}%™ model, since we observed it often led to slightly improved
performance. The noise scales v € {0.35,0.45,0.5} shown for Mpg were chosen to show different
points in the Pareto front between different metrics, while still retaining high designability values.
On the other hand, M%"S'm was sampled for a single noise scale (v = 0.45) to show that even without
a pair track (i.e., no updates to the pair representation, yielding significantly improved scalability) our
model still performs competitively.

Tab. 1 also shows results for the My model for two different noise scales v € {0.3,0.6}. These
two runs have different purposes. The one with lower noise scale aims to show that we can achieve

>While the M}%5™ model was trained for 360k steps, we observed better designability-diversity trade-offs for
earlier training checkpoints. Therefore, for that model, we show results after 80k steps.
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Figure 25: scRMSD values for long protein generation, with zoomed-out view (left, y-axis: 0 A to 30
A) and zoomed-in view (right, y-axis: 0 A to 5 A).

extremely high designability values by training on a large dataset filtered for high quality structures
(to achieve this we use self-conditioning for this run), while the other one attempts to show better
trade-offs between different metrics (achieved without self-conditioning).

Finally, Tab. 3 shows results for ODE sampling for the Mgg and My models (both runs with
self-conditioning, which yields better designability values). These runs can be observed to produce
significantly better values for our new metrics, FPSD, fS and fJSD. This is expected since scaling the
noise term in the SDE is known to modify the distribution being sampled.

0.3 LoORA FINE-TUNING ON PDB

To enhance our model’s ability to generate both designable and realistic samples, we curate a high-
quality, designable PDB dataset as outlined in App. M.1. We then fine-tune our best unconditional
model, Mg, on this processed dataset. To prevent overfitting and enable efficient fine-tuning, we
apply LoRA (Hu et al., 2022) with a rank of 16 and a scaling factor of 32, introducing trainable
low-rank decomposition matrices into all embedding and linear layers of the model. This reduces
the number of trainable parameters to 7M, significantly lower than the original 200M parameters.
The complete training configuration is detailed in Tab. 16. For inference, we observe that enabling
self-conditioning consistently improves designability, so we adopt it for this model.

0.4 CONDITIONAL GENERATION EXPERIMENTS

For conditional generation, we follow the same schedule as unconditional sampling, with self-
conditioning enabled, as we find it improves designability and re-classification probabilities. In Tab. 2,
we explore the effect of classifier-free guidance (CFG) by sweeping the guidance weight among 1.0,
1.5, and 2.0 for the model M52 with a noise scale of v = 0.4.

During sampling, we account for the compatibility of the (protein chain length, CATH code) combi-
nations to avoid generating unrealistic lengths for certain classes. We divide the lengths into buckets
ranging from 50 to 1,000, with a bucket size of 25. An empirical label distribution is then constructed
for each length bucket based on the datasets Dgg and D, y. For each length in conditional sampling,
we randomly select a CATH code from the empirical distribution corresponding to that length.

Class-specific Guidance. To showcase the utility of guidance at different hierarchical levels, we
also perform class-specific guidance where we guide the model only via class labels (“mainly alpha”,
“mainly beta”, “mixed alpha/beta”) to control secondary structure content in samples while still
maintaining high designability and diversity. We sample the model conditionally with a guidance
weight of 1, and a noise scale of v = 0.4 for the conditional classes and v = 0.45 for the unconditional
case. With this configuration, we generate samples of length 50, 100, 150, 200, and 250 with 100
examples each, totaling 500 samples, which are used to report designability, diversity, novelty, and
secondary structure content in Tab. 4.
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0.5 LONG LENGTH GENERATION EXPERIMENTS

For the long length generation results in Fig. 8 we first take the model M2 after 360K steps and
fine-tune it for long-length generation; for this, we train it for 220K steps on the AFDB Cluster
representatives filtered to minimum average pLLDT 80, minimum length 256 and maximum length
512. We then train it for 80K more steps on the same dataset, but with the maximum length increased
to 768. We sample this final model My, With a noise scale of v = 0.35 and 400 steps to generate
samples of lengths 300, 400, 500, 600, 700 and 800 with 100 examples per length. These samples
are then subject to the previously described metric pipeline calculating designability and diversity.
Similarly, for Fig. 8, we sample these lengths from each baseline in accordance with App. P. Also see
Fig. 25 for scRMSD plots of Proteina and the baselines for the long protein generation experiment.

In addition, we combine these long length generation capabilities of our model with class-specific
guidance (i.e. conditional sampling of the model while providing labels at the C level of the CATH
hierarchy) to obtain large proteins with controlled secondary structure content.

0.6 AUTOGUIDANCE EXPERIMENTS

In Fig. 7, we show both conditional and unconditional sampling of our model, M1y, using the full
distribution mode (ODE). The checkpoint at 10K training steps serves as a “bad” guidance checkpoint,
corresponding to the “reduced training time” degradation discussed in the original paper (Karras
et al., 2024). For both conditional and unconditional sampling, we apply self-conditioning while
keeping all other inference configurations consistent with those described earlier.

P BASELINES

In this section, we briefly list the models that we sampled for benchmarking and the sampling
configurations we used.

Genie2: We used the code from the Genie2 public repository. We loaded the base checkpoint that
was trained for 40 epochs. The noise scale was set to 1 for full temperature sampling and 0.6 for low
temperature sampling. The sampling was run in the provided docker image.

RFDiffusion: We used the code from the RFDiffusion public repository. The sampling was run in
the provided docker image. Default configurations of the repository were used for sampling.

ESM3: We followed the instruction in the ESM3 public repository to install and load the publicly
available weights through the HugginFace API. When sampling structures, we set the temperature to
0.7, and number of steps to be L % where L is the length of the protein sequence. It is noteworthy
that ESM3 performs relatively poorly on metrics evaluating unconditional generation. This may be
expected as ESM3 is trained on many metagenomic sequences which are less designable.

FoldFlow: We used the code from the FoldFlow public repository. When sampling the FoldFlow-
base model, we set both the ot plan and stochastic_path inthe flow matcher configu-
ration to False. When sampling the FoldFlow-OT model, we set the ot _plan to True. Lastly,
when sampling the FoldFlow-SFM model, we set both the ot _plan and the stochastic_path
to True, with the noise_scale set to 0.1. For all three models, we set the configuration
flowmatcher.so3.inference_scaling to 5 as we empirically found that such setting
yields a performance closest to the results reported in the FoldFlow paper (Bose et al., 2024).

FrameFlow: We installed FrameFlow from its public repository. The model weights are downloaded
from Zenodo. Default settings are used for unconditional sampling.

Chroma: We used the code from the Chroma public repository. Model weights were downloaded
through the API following the instructions. Default settings were used for unconditional sampling. For
conditional sampling using CAT labels, we used the default ProClassConditioner provided in
the repository to guide the generation.

FrameDiff: We used the code from the FrameDiff public repository, using the public weights
from the paper located in . /weights/paper_weights.pth. The default configuration of the
repository was used for sampling. The sampling was run in the provided conda environment.
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Proteus: We used the code from the Proteus public repository, using the public weights from the
paper located in . /weights/paper_weights.pt. The default configuration of the repository
was used for sampling. The sampling was run in the provided conda environment.
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