
Supplementary Material: Can Adversarial Training Be
Manipulated By Non-Robust Features?

A Additional Related Work

In this part, we discuss several independent (or concurrent) works that are closely related to this work.

Zhu et al. [88] study the effect of conventional adversarial training on differentiating noisy labels, while Zhang
et al. [85] show that deliberately injected noisy labels may serve as a regularization that alleviates robust
overfitting. Our results focus on the clean-label setting and provide evidence that conventional adversarial
training can be hindered without modifying the labels.

Yu et al. [80] suggest explaining the success of availability attacks from the perspective of shortcuts. They further
adopt pre-trained models to extract useful features for mitigating model reliance on the shortcuts. This direction
is orthogonal to ours.

Liu et al. [38] improve the effectiveness of unlearnable examples [28] by generating grayscale perturbations
and using data augmentations. They also conclude that conventional adversarial training will prevent a drop
in accuracy measured both on clean images and adversarial images. Contrary to them, we show that, both
theoretically and empirically, conventional adversarial training can be hindered by hypocritical perturbations,
and we further analyze the necessity of enlarging the defense budget to resist stability attacks.

Gao et al. [20] revisit the trade-off between adversarial robustness and backdoor robustness [72]. They conclude
that backdoor attacks are ineffective when the defense budget of adversarial training surpasses the trigger
magnitude. In contrast, our results indicate that stability attacks are still harmful to adversarial training when the
defense budget is not large enough. In a simple statistical setting, a defense budget ϵ+ η is necessary (where η
is a positive number). In the general case, a defense budget of 2ϵ is sufficient. In our experiments, a defense
budget of about 1.5ϵ ∼ 1.75ϵ provides the best empirical ϵ-robustness.

Wang et al. [71] argue that it is necessary to use robust features for compromising adversarial training. To this
end, they adopt a relatively large attack budget ϵa = 32/255 for crafting their poisons (they use one type of
adversarial perturbations), and show that their poisons can decrease the performance of the models trained using
smaller defense budgets (such as ϵd = 8/255 and ϵd = 16/255). In contrast, we focus on a more realistic
setting that does not require a larger attack budget. We demonstrate that it is possible to hinder adversarial
training when ϵa = ϵd. Furthermore, we provide both theoretical and empirical results showing how to adapt the
defense to maintain robustness.

Fu et al. [19] explore how to protect data privacy against adversarial training. The main purpose of their poisons
is to compromise adversarial training by requiring the perturbation budget of their poisons to be larger than that
of adversarial training. In this way, they show that the natural accuracy of the adversarially trained models can
be largely decreased, let alone robust accuracy. From this perspective, our work is complementary to theirs. We
pursue to not increase the attack budget of stability attacks, keeping it as small as possible. We successfully
demonstrate that stability attacks are still harmful to conventional adversarial training without enlarging the
attack budget. This makes the threat of stability attacks more insidious than that of Fu et al. [19].

On the other hand, we find that our implementation of stability attacks using hypocritical perturbations has some
similarities to the robust unlearnable examples in Fu et al. [19]. Specifically, although the robust unlearnable
examples are generated via a complicated min-min-max optimization process [19], we notice that their noise
generator can be viewed as an adversarially trained model. This implies that the robust error-minimizing (REM)
noise [19] might be useful in demonstrating the feasibility of stability attacks. To verify this, we run the source
code from the authors with default hyperparameters, and compare our crafted hypocritical perturbation with
their generated noise under the setting of stability attacks. For a fair comparison, here we apply a very simple
trick called EOT [2] in our method, since the trick is also used by REM [19]. The additional time cost of the
EOT trick is very small and negligible.

Our experimental results, shown in Table 8, demonstrate that the robust error-minimizing noise is also effective
as stability attacks, though it was originally proposed as a delusive attack. It is noteworthy that the robust
accuracy is not evaluated in [19]. In this sense, the effectiveness of REM as an stability attack can be regarded as
one of our novel findings. Importantly, our method outperforms REM in terms of the robust accuracy against
AutoAttack. Since AutoAttack is the most reliable evaluation metric of model robustness among the test-time
attacks [11], this indicates that our method is reliably more effective than REM in degrading model robustness.
It is also noteworthy that our method is significantly more efficient than REM, as shown in Table 9. We note that
the efficiency of our method is largely due to the fact that our crafting model is fast to train. Specifically, the
time cost of training our crafting model is only 0.3 hours, while it takes 20.8 hours for REM. That is, our crafting
model is nearly 70 times faster to train than that of REM. In short, our method is not only more effective, but
also more efficient, than REM as a stability attack.
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Table 8: Comparison with REM [19]: Test robustness (%) of PGD-AT using a defense budget
ϵd = 8/255 on CIFAR-10. We report mean and standard deviation over 3 random runs.

Attack Natural FGSM PGD-20 PGD-100 CW∞ AutoAttack

None (clean) 82.17 ± 0.71 56.63 ± 0.54 50.63 ± 0.56 50.35 ± 0.59 49.37 ± 0.57 46.99 ± 0.62
DeepConfuse [16] 81.25 ± 1.52 54.14 ± 0.63 48.25 ± 0.40 48.02 ± 0.40 47.34 ± 0.05 44.79 ± 0.36
Unlearnable Examples [28] 83.67 ± 0.86 57.51 ± 0.31 50.74 ± 0.37 50.31 ± 0.38 49.81 ± 0.24 47.25 ± 0.32
NTGA [81] 82.99 ± 0.40 55.71 ± 0.36 49.17 ± 0.27 48.82 ± 0.30 47.96 ± 0.16 45.36 ± 0.32
Adversarial Poisoning [18] 77.35 ± 0.43 53.93 ± 0.02 49.95 ± 0.11 49.76 ± 0.08 48.35 ± 0.04 46.13 ± 0.18
REM [19] 85.63 ± 1.05 42.86 ± 1.09 35.40 ± 0.04 35.11 ± 0.09 35.24 ± 0.33 33.09 ± 0.24
Hypocritical Perturbation (ours) 87.60 ± 0.45 45.00 ± 0.77 34.89 ± 0.36 34.27 ± 0.36 36.28 ± 0.38 32.79 ± 0.37

Table 9: Comparison with REM [19]: Time cost (min) of poisoning CIFAR-10.

Method Training the crafting model Perturbation generation Total

REM [19] 1252.4 98.1 1350.5
Hypocritical Perturbation (ours) 18.5 17.3 35.8

B Omitted Tables

Table 10: Full table of Table 2: Test robustness (%) of PGD-AT using a defense budget ϵd = 8/255
on CIFAR-10. We report mean and standard deviation over 3 random runs.

Attack Natural FGSM PGD-20 PGD-100 CW∞ AutoAttack

None (clean) 82.17 ± 0.71 56.63 ± 0.54 50.63 ± 0.56 50.35 ± 0.59 49.37 ± 0.57 46.99 ± 0.62
DeepConfuse [16] 81.25 ± 1.52 54.14 ± 0.63 48.25 ± 0.40 48.02 ± 0.40 47.34 ± 0.05 44.79 ± 0.36
Unlearnable Examples [28] 83.67 ± 0.86 57.51 ± 0.31 50.74 ± 0.37 50.31 ± 0.38 49.81 ± 0.24 47.25 ± 0.32
NTGA [81] 82.99 ± 0.40 55.71 ± 0.36 49.17 ± 0.27 48.82 ± 0.30 47.96 ± 0.16 45.36 ± 0.32
Adversarial Poisoning [18] 77.35 ± 0.43 53.93 ± 0.02 49.95 ± 0.11 49.76 ± 0.08 48.35 ± 0.04 46.13 ± 0.18
Hypocritical Perturbation (ours) 88.07 ± 1.10 47.93 ± 1.88 37.61 ± 0.77 36.96 ± 0.61 38.58 ± 1.15 35.44 ± 0.77

Table 11: Full table of Table 3: Test robustness (%) of PGD-AT using a defense budget ϵd = 8/255
across different datasets. We report mean and standard deviation over 3 random runs.

Dataset Attack Natural FGSM PGD-20 PGD-100 CW∞ AutoAttack

SVHN
None 93.95 ± 0.21 71.83 ± 1.10 57.15 ± 0.31 56.02 ± 0.33 54.93 ± 0.19 50.50 ± 0.44
Adv. 87.50 ± 0.30 56.12 ± 0.33 46.71 ± 0.25 46.32 ± 0.26 45.70 ± 0.27 42.48 ± 0.21
Hyp. 96.06 ± 0.01 59.41 ± 0.07 38.17 ± 0.19 37.29 ± 0.21 40.54 ± 0.27 35.43 ± 0.29

CIFAR-100
None 56.15 ± 0.17 31.50 ± 0.16 28.38 ± 0.39 28.28 ± 0.40 26.53 ± 0.27 24.30 ± 0.31
Adv. 52.14 ± 0.34 28.59 ± 0.12 26.19 ± 0.11 26.09 ± 0.12 24.36 ± 0.09 22.71 ± 0.11
Hyp. 62.22 ± 0.11 26.38 ± 0.11 21.51 ± 0.06 21.13 ± 0.02 21.13 ± 0.23 18.74 ± 0.10

Tiny-ImageNet
None 49.34 ± 2.61 25.67 ± 0.92 22.99 ± 0.37 22.86 ± 0.36 20.67 ± 0.69 18.54 ± 0.61
Adv. 49.52 ± 0.19 22.93 ± 0.38 20.01 ± 0.24 19.91 ± 0.24 18.75 ± 0.19 16.83 ± 0.25
Hyp. 55.92 ± 1.95 20.21 ± 0.84 15.61 ± 0.31 15.26 ± 0.26 14.99 ± 0.73 12.53 ± 0.57

Table 12: Full table of Table 5: Test robustness (%) of various adaptive defenses on the hypocritically
perturbed CIFAR-10. We report mean and standard deviation over 3 random runs.

Defense Natural FGSM PGD-20 PGD-100 CW∞ AutoAttack

PGD-AT (ϵd = 8/255) 88.07 ± 1.10 47.93 ± 1.88 37.61 ± 0.77 36.96 ± 0.61 38.58 ± 1.15 35.44 ± 0.77
+ Random Noise 87.62 ± 0.07 47.46 ± 0.08 38.35 ± 0.08 37.90 ± 0.07 39.07 ± 0.20 36.25 ± 0.14
+ Gaussian Smoothing 83.95 ± 0.27 50.96 ± 0.24 42.80 ± 0.40 42.34 ± 0.38 42.41 ± 0.19 40.07 ± 0.29
+ Cutout 88.26 ± 0.15 49.23 ± 0.42 39.77 ± 0.26 39.25 ± 0.25 40.38 ± 0.25 37.61 ± 0.35
+ AutoAugment 86.24 ± 1.14 48.87 ± 1.01 40.19 ± 0.67 39.65 ± 0.72 37.66 ± 0.88 35.07 ± 0.88
PGD-AT (ϵd = 14/255) 80.00 ± 1.91 56.86 ± 1.42 52.92 ± 0.86 52.83 ± 0.86 50.36 ± 1.11 48.63 ± 0.93
TRADES (ϵd = 12/255) 79.63 ± 0.06 55.73 ± 0.04 51.77 ± 0.15 51.63 ± 0.15 48.68 ± 0.06 47.83 ± 0.02
MART (ϵd = 14/255) 77.29 ± 0.87 57.10 ± 0.57 53.82 ± 0.36 53.71 ± 0.34 49.03 ± 0.47 47.67 ± 0.51
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C Proofs

In this section, we provide the proofs of our theoretical results in Section 3 and Section 4.

C.1 Proof of Proposition 1

Proposition 1 (restated). Let ϵ = 2η and denote by Aadv(f) the adversarial accuracy, i.e., the probability of a
classifier correctly predicting y on the data (7) under ℓ∞ perturbations. Then, we have

Aadv(fnat) ≤ Pr

{
N (0, 1) <

1− dη2

σ
√

1 + dη2

}
, Aadv(frob) = Pr

{
N (0, 1) <

1− 2η

σ

}
.

Proof. Recalling that in Equation (8), we have the natural classifier:

fnat(x) := sign(w⊤
natx), where wnat := [1, η, . . . , η], (12)

and in Equation (9), the robust classifier is defined as:

frob(x) := sign(w⊤
robx), where wrob := [1, 0, . . . , 0]. (13)

Then, the adversarial accuracy of the natural classifier on the data D (7) is

Aadv(fnat) = 1− Pr
(x,y)∼D

{∃∥δ∥∞ ≤ ϵ, fnat(x+ δ) ̸= y}

= 1− Pr
(x,y)∼D

{
min

∥δ∥∞≤ϵ
[y · fnat(x+ δ)] < 0

}
= 1− Pr

{
min

∥δ∥∞≤ϵ

[
y ·

(
1 ·
(
N (y, σ2) + δ1

)
+

d+1∑
i=2

η ·
(
N (yη, σ2) + δi

))]
< 0

}

≤ 1− Pr

{
y ·

(
1 ·
(
N (y, σ2)

)
+

d+1∑
i=2

η ·
(
N (yη, σ2)− ϵ

))
< 0

}

= 1− Pr

{
N (1, σ2) + η

d+1∑
i=2

N (η − ϵ, σ2) < 0

}

= Pr

{
N (1, σ2) + η

d+1∑
i=2

N (η − ϵ, σ2) > 0

}

= Pr

{
N (0, 1) <

1− dη2

σ
√

1 + dη2

}
.

(14)

Similarly, the adversarial accuracy of the robust classifier on the data D (7) is

Aadv(frob) = 1− Pr
(x,y)∼D

{∃∥δ∥∞ ≤ ϵ, frob(x+ δ) ̸= y}

= 1− Pr
(x,y)∼D

{
min

∥δ∥∞≤ϵ
[y · frob(x+ δ)] < 0

}
= 1− Pr

{
min

∥δ∥∞≤ϵ

[
y ·
(
1 ·
(
N (y, σ2) + δ1

))]
< 0

}
= 1− Pr

{
min

∥δ∥∞≤ϵ

[
N (1, σ2) + δ1

]
< 0

}
= 1− Pr

{
N (1, σ2)− ϵ < 0

}
= Pr

{
N (1− ϵ, σ2) > 0

}
= Pr

{
N (0, 1) <

1− 2η

σ

}
.

(15)

C.2 Proof of Theorem 1

The following theorems rely on the analytical solution of optimal linear ℓ∞-robust classifier on mixture Gaussian
distributions. Concretely, the optimization problem is to minimize the adversarial risk on a distribution D̂ with a
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defense budget ϵ̂:

min
f

Rϵ̂
adv(f, D̂), where Rϵ̂

adv(f, D̂) := E
(x,y)∼D̂

[
max

∥ξ∥∞≤ϵ̂
1
(
sign(w⊤(x+ ξ) + b) ̸= y

)]
, (16)

where f(x) = sign(w⊤x+ b), and 1(·) denotes the indicator function.

We note that optimal linear robust classifiers have been obtained for certain data distributions in previous
work [67, 29, 14, 30, 78, 64]. Here, our goal is to establish similar optimal linear robust classifiers for the
classification tasks in our setting. We only employ linear classifiers, since it is highly nontrivial to consider
non-linearity for adversarial training on mixture Gaussian distributions [14].

Lemma 1. Assume that the adversarial perturbation in data Tadv (10) is moderate such that η/2 ≤ ϵ < 1/2.
Then, minimizing the adversarial risk (16) on the data Tadv with a defense budget ϵ can result in a classifier that
assigns 0 weight to the features xi for i ≥ 2.

Proof. We prove the lemma by contradiction.

The goal is to minimize the adversarial risk on the distribution Tadv, which can be written as follows:

Rϵ
adv(f, Tadv) = Pr

(x,y)∼Tadv
{∃∥δ∥∞ ≤ ϵ, f(x+ δ) ̸= y}

= Pr
(x,y)∼Tadv

{
min

∥δ∥∞≤ϵ
[y · f(x+ δ)] < 0

}
= Pr

(x,y)∼Tadv

{
max

∥δ∥∞≤ϵ
[f(x+ δ)] > 0 | y = −1

}
· Pr
(x,y)∼Tadv

{y = −1}

+ Pr
(x,y)∼Tadv

{
min

∥δ∥∞≤ϵ
[f(x+ δ)] < 0 | y = +1

}
· Pr
(x,y)∼Tadv

{y = +1}

=Pr

{
max

∥δ∥∞≤ϵ

[
w1(N (ϵ− 1, σ2) + δ1) +

d+1∑
i=2

wi(N (ϵ− η, σ2) + δi) + b

]
> 0

}
︸ ︷︷ ︸

Rϵ
adv(f,T

(−1)
adv )

·1
2

+ Pr

{
min

∥δ∥∞≤ϵ

[
w1(N (1− ϵ, σ2) + δ1) +

d+1∑
i=2

wi(N (η − ϵ, σ2) + δi) + b

]
< 0

}
︸ ︷︷ ︸

Rϵ
adv(f,T

(+1)
adv )

·1
2

(17)

Consider an optimal solution w in which wi > 0 for some i ≥ 2. Then, we have

Rϵ
adv(f, T

(−1)
adv ) = Pr


∑
j ̸=i

max
∥δj∥≤ϵ

[
wj(N (ϵ− [wnat]j , σ

2) + δj) + b
]

︸ ︷︷ ︸
A

+ max
∥δi∥≤ϵ

[
wi(N (ϵ− η, σ2) + δi)

]
︸ ︷︷ ︸

B

> 0

 ,

(18)
where wnat := [1, η, . . . , η] as in Equation (8). Since wi > 0, B is maximized when δi = ϵ. Thus, the
contribution of terms depending on wi to B is a normally-distributed random variable with mean 2ϵ− η. Since
2ϵ− η ≥ 0, setting wi to zero can only decrease the risk. This contradicts the optimality of w. Formally,

Rϵ
adv(f, T

(−1)
adv ) = Pr

{
A+ wiN (2ϵ− η, σ2) > 0

}
> Pr {A > 0} . (19)

We can also assume wi < 0 and similar contradiction holds. Therefore, minimizing the adversarial risk on Tadv
leads to wi = 0 for i ≥ 2.

Lemma 2. Assume that the adversarial perturbation in data Tadv (10) is moderate such that η/2 ≤ ϵ < 1/2.
Then, minimizing the adversarial risk (16) on the data Tadv with a defense budget ϵ results in a classifier that
assigns a positive weight to the feature x1.

Proof. We prove the lemma by contradiction.

The goal is to minimize the adversarial risk on the distribution Tadv, which has been written in Equation (17).
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Consider an optimal solution w in which w1 ≤ 0. Then, we have

Rϵ
adv(f, T

(−1)
adv ) = Pr


d+1∑
j=2

max
∥δj∥≤ϵ

[
wj(N (ϵ− η, σ2) + δj) + b

]
︸ ︷︷ ︸

C

+ max
∥δ1∥≤ϵ

[
w1(N (ϵ− 1, σ2) + δ1)

]
︸ ︷︷ ︸

D

> 0

 .

(20)

Since w1 ≤ 0, D is maximized when δ1 = −ϵ. Thus, the contribution of the term depending on w1 to D is a
normally-distributed random variable with mean −1. Since the mean is negative, setting w1 to be positive can
decrease the risk. This contradicts the optimality of w. Formally,

Rϵ
adv(f, T

(−1)
adv ) = Pr

{
C+ w1N (−η, σ2) > 0

}
> Pr

{
C+ pN (−η, σ2) > 0

}
, (21)

where p > 0 is any positive number. Therefore, minimizing the adversarial risk on Tadv leads to w1 > 0.

Theorem 1 (restated). Assume that the adversarial perturbation in the training data Tadv (10) is moderate such
that η/2 ≤ ϵ < 1/2. Then, the optimal linear ℓ∞-robust classifier obtained by minimizing the adversarial risk
on Tadv with a defense budget ϵ is equivalent to the robust classifier (9).

Proof. By Lemma 1 and Lemma 2, we have w1 > 0 and wi = 0 (i ≥ 2) for an optimal linear ℓ∞-robust
classifier. Then, the adversarial risk on the distribution Tadv can be simplified by solving the inner maximization
problem first. Formally,

Rϵ
adv(f, Tadv) = Pr

(x,y)∼Tadv
{∃∥δ∥∞ ≤ ϵ, f(x+ δ) ̸= y}

= Pr
(x,y)∼Tadv

{
min

∥δ∥∞≤ϵ
[y · f(x+ δ)] < 0

}
= Pr

(x,y)∼Tadv

{
max

∥δ∥∞≤ϵ
[f(x+ δ)] > 0 | y = −1

}
· Pr
(x,y)∼Tadv

{y = −1}

+ Pr
(x,y)∼Tadv

{
min

∥δ∥∞≤ϵ
[f(x+ δ)] < 0 | y = +1

}
· Pr
(x,y)∼Tadv

{y = +1}

=Pr

{
max

∥δ∥∞≤ϵ

[
w1(N (ϵ− 1, σ2) + δ1) + b

]
> 0

}
· 1
2

+ Pr

{
min

∥δ∥∞≤ϵ

[
w1(N (1− ϵ, σ2) + δ1) + b

]
< 0

}
· 1
2

=Pr
{
w1N (2ϵ− 1, σ2) + b > 0

}
· 1
2

+ Pr
{
w1N (1− 2ϵ, σ2) + b < 0

}
· 1
2
,

(22)

which is equivalent to the natural risk on a mixture Gaussian distribution Dtmp : x ∼ N (y · µtmp, σ
2I), where

µtmp = (1 − 2ϵ, 0, . . . , 0). We note that the Bayes optimal classifier for Dtmp is ftmp(x) = sign(µ⊤
tmpx).

Specifically, the natural risk

R0
adv(f,Dtmp) = Pr

(x,y)∼Dtmp
{f(x) ̸= y}

= Pr
(x,y)∼Dtmp

{y · f(x) < 0}

=Pr
{
w1N (2ϵ− 1, σ2) + b > 0

}
· 1
2

+ Pr
{
w1N (1− 2ϵ, σ2) + b < 0

}
· 1
2
,

(23)

which is minimized when w1 = 1− 2ϵ > 0 and b = 0. That is, minimizing the adversarial risk Rϵ
adv(f, Tadv)

can lead to an optimal linear ℓ∞-robust classifier ftmp(x). Meanwhile, ftmp(x) is equivalent to the robust
classifier (9). This concludes the proof of the theorem.

C.3 Proof of Theorem 2

Lemma 3. Minimizing the adversarial risk (16) on the data Thyp (11) with a defense budget ϵ results in a
classifier that assigns positive weights to the features xi for i ≥ 1.
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Proof. We prove the lemma by contradiction.

The goal is to minimize the adversarial risk on the distribution Thyp, which can be written as follows:

Rϵ
adv(f, Thyp) = Pr

(x,y)∼Thyp

{∃∥δ∥∞ ≤ ϵ, f(x+ δ) ̸= y}

= Pr
(x,y)∼Thyp

{
min

∥δ∥∞≤ϵ
[y · f(x+ δ)] < 0

}
= Pr

(x,y)∼Thyp

{
max

∥δ∥∞≤ϵ
[f(x+ δ)] > 0 | y = −1

}
· Pr
(x,y)∼Thyp

{y = −1}

+ Pr
(x,y)∼Thyp

{
min

∥δ∥∞≤ϵ
[f(x+ δ)] < 0 | y = +1

}
· Pr
(x,y)∼Thyp

{y = +1}

=Pr

{
max

∥δ∥∞≤ϵ

[
w1(N (−1− ϵ, σ2) + δ1) +

d+1∑
i=2

wi(N (−η − ϵ, σ2) + δi) + b

]
> 0

}
︸ ︷︷ ︸

Rϵ
adv(f,T

(−1)
hyp )

·1
2

+ Pr

{
min

∥δ∥∞≤ϵ

[
w1(N (1 + ϵ, σ2) + δ1) +

d+1∑
i=2

wi(N (η + ϵ, σ2) + δi) + b

]
< 0

}
︸ ︷︷ ︸

Rϵ
adv(f,T

(+1)
hyp )

·1
2

(24)

Consider an optimal solution w in which wi ≤ 0 for some i ≥ 1. Then, we have

Rϵ
adv(f, T

(−1)
hyp ) = Pr


∑
j ̸=i

max
∥δj∥≤ϵ

[
wj(N (−[wnat]j − ϵ, σ2) + δj) + b

]
︸ ︷︷ ︸

G

+ max
∥δi∥≤ϵ

[
wi(N (−[wnat]i − ϵ, σ2) + δi)

]
︸ ︷︷ ︸

H

> 0

 ,

(25)
where wnat := [1, η, . . . , η] as in Equation (8). Since wi ≤ 0, H is maximized when δi = −ϵ. Thus, the
contribution of terms depending on wi to H is a normally-distributed random variable with mean −[wnat]i − 2ϵ.
Since the mean is negative, setting wi to be positive can decrease the risk. This contradicts the optimality of w.
Formally,

Rϵ
adv(f, T

(−1)
adv ) = Pr

{
G+ wiN (−[wnat]i − 2ϵ, σ2) > 0

}
> Pr

{
G+ pN (−[wnat]i − 2ϵ, σ2) > 0

}
,
(26)

where p > 0 is any positive number. Therefore, minimizing the adversarial risk on Thyp leads to wi > 0 for
i ≥ 1.

Theorem 2 (restated). The optimal linear ℓ∞-robust classifier obtained by minimizing the adversarial risk on
the perturbed data Thyp (11) with a defense budget ϵ is equivalent to the natural classifier (8).
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Proof. By Lemma 3, we have wi > 0 for i ≥ 1 for an optimal linear ℓ∞-robust classifier. Then, we have

Rϵ
adv(f, Thyp) = Pr

(x,y)∼Thyp
{∃∥δ∥∞ ≤ ϵ, f(x+ δ) ̸= y}

= Pr
(x,y)∼Thyp

{
min

∥δ∥∞≤ϵ
[y · f(x+ δ)] < 0

}
= Pr

(x,y)∼Thyp

{
max

∥δ∥∞≤ϵ
[f(x+ δ)] > 0 | y = −1

}
· Pr
(x,y)∼Thyp

{y = −1}

+ Pr
(x,y)∼Thyp

{
min

∥δ∥∞≤ϵ
[f(x+ δ)] < 0 | y = +1

}
· Pr
(x,y)∼Thyp

{y = +1}

=Pr

{
max

∥δ1∥∞≤ϵ

[
w1(N (−1− ϵ, σ2) + δ1)

]
+

d+1∑
i=2

max
∥δi∥∞≤ϵ

[wi(N (−η − ϵ) + δi)] + b > 0

}
· 1
2

+ Pr

{
min

∥δ1∥∞≤ϵ

[
w1(N (1 + ϵ, σ2) + δ1)

]
+

d+1∑
i=2

min
∥δi∥∞≤ϵ

[wi(N (η + ϵ) + δi)] + b < 0

}
· 1
2

=Pr

{
w1N (−1, σ2) +

d+1∑
i=2

wiN (−η, σ2) + b > 0

}
· 1
2

+ Pr

{
w1N (1, σ2) +

d+1∑
i=2

wiN (η, σ2) + b < 0

}
· 1
2
,

(27)
which is equivalent to the natural risk on the mixture Gaussian distribution D : x ∼ N (y ·wnat, σ

2I), where
wnat = (1, η, . . . , η). We note that the Bayes optimal classifier for D is fnat(x) = sign(w⊤

natx). Specifically,
the natural risk

R0
adv(f,D) = Pr

(x,y)∼D
{f(x) ̸= y}

= Pr
(x,y)∼D

{y · f(x) < 0}

=Pr

{
w1N (−1, σ2) +

d+1∑
i=2

wiN (−η, σ2) + b > 0

}
· 1
2

+ Pr

{
w1N (1, σ2) +

d+1∑
i=2

wiN (η, σ2) + b < 0

}
· 1
2
,

(28)

which is minimized when w1 = 1, wi = η for i ≥ 2, and b = 0. That is, minimizing the adversarial risk
Rϵ

adv(f, Thyp) can lead to an optimal linear ℓ∞-robust classifier fnat(x), which is equivalent to the natural
classifier (8). This concludes the proof of the theorem.

C.4 Proof of Theorem 3

Lemma 4. Minimizing the adversarial risk (16) on the data Thyp (11) with a defense budget ϵ+ η can result in
a classifier that assigns 0 weight to the features xi for i ≥ 2.

Proof. The goal is to minimize the adversarial risk on the distribution Thyp, which can be written as follows:
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Rϵ+η
adv (f, Thyp) = Pr

(x,y)∼Thyp
{∃∥δ∥∞ ≤ ϵ+ η, f(x+ δ) ̸= y}

= Pr
(x,y)∼Thyp

{
min

∥δ∥∞≤ϵ+η
[y · f(x+ δ)] < 0

}
= Pr

(x,y)∼Thyp

{
max

∥δ∥∞≤ϵ+η
[f(x+ δ)] > 0 | y = −1

}
· Pr
(x,y)∼Thyp

{y = −1}

+ Pr
(x,y)∼Thyp

{
min

∥δ∥∞≤ϵ+η
[f(x+ δ)] < 0 | y = +1

}
· Pr
(x,y)∼Thyp

{y = +1}

=Pr

{
max

∥δ∥∞≤ϵ+η

[
w1(N (−1− ϵ, σ2) + δ1) +

d+1∑
i=2

wi(N (−η − ϵ, σ2) + δi) + b

]
> 0

}
︸ ︷︷ ︸

Rϵ+η
adv (f,T (−1)

hyp )

·1
2

+ Pr

{
min

∥δ∥∞≤ϵ+η

[
w1(N (1 + ϵ, σ2) + δ1) +

d+1∑
i=2

wi(N (η + ϵ, σ2) + δi) + b

]
< 0

}
︸ ︷︷ ︸

Rϵ+η
adv (f,T (+1)

hyp )

·1
2

(29)

Consider an optimal solution w in which wi > 0 for some i ≥ 2. Then, we have

Rϵ+η
adv (f, T (−1)

hyp ) = Pr


∑
j ̸=i

max
∥δj∥≤ϵ+η

[
wj(N (−[wnat]j − ϵ, σ2) + δj) + b

]
︸ ︷︷ ︸

I

+ max
∥δi∥≤ϵ+η

[
wi(N (−η − ϵ, σ2) + δi)

]
︸ ︷︷ ︸

J

> 0

 ,

(30)
where wnat := [1, η, . . . , η]. Since wi > 0, J is maximized when δi = ϵ+ η. Thus, the contribution of terms
depending on wi to J is a normally-distributed random variable with mean 0. Thus, setting wi to zero will not
increase the risk. Formally, we have

Rϵ+η
adv (f, T (−1)

hyp ) = Pr
{
I+ wiN (0, σ2) > 0

}
≥ Pr {I > 0} . (31)

We can also assume wi < 0 and a similar argument holds. Similar arguments also hold for Rϵ+η
adv (f, T (+1)

hyp ).
Therefore, minimizing the adversarial risk on Thyp can lead to wi = 0 for i ≥ 2.

Theorem 3 (restated). The optimal linear ℓ∞-robust classifier obtained by minimizing the adversarial risk on
the perturbed data Thyp (11) with a defense budget ϵ+ η is equivalent to the robust classifier (9). Moreover, any
defense budget lower than ϵ+ η will yield classifiers that still rely on all the non-robust features.

Proof. By Lemma 4, we have wi = 0 (i ≥ 2) for an optimal linear ℓ∞-robust classifier. Also, the robust
classifier will assign a positive weight to the first feature. This is similar to the case in Lemma 2 and we omit the
proof here. Then, we have

Rϵ+η
adv (f, Thyp) = Pr

(x,y)∼Thyp
{∃∥δ∥∞ ≤ ϵ+ η, f(x+ δ) ̸= y}

= Pr
(x,y)∼Thyp

{
min

∥δ∥∞≤ϵ+η
[y · f(x+ δ)] < 0

}
= Pr

(x,y)∼Thyp

{
max

∥δ∥∞≤ϵ+η
[f(x+ δ)] > 0 | y = −1

}
· Pr
(x,y)∼Thyp

{y = −1}

+ Pr
(x,y)∼Thyp

{
min

∥δ∥∞≤ϵ+η
[f(x+ δ)] < 0 | y = +1

}
· Pr
(x,y)∼Thyp

{y = +1}

=Pr

{
max

∥δ∥∞≤ϵ+η

[
w1(N (−1− ϵ, σ2) + δ1) + b

]
> 0

}
· 1
2

+ Pr

{
min

∥δ∥∞≤ϵ+η

[
w1(N (1 + ϵ, σ2) + δ1) + b

]
< 0

}
· 1
2

=Pr
{
w1N (−1− η, σ2) + b > 0

}
· 1
2

+ Pr
{
w1N (1− η, σ2) + b < 0

}
· 1
2
,

(32)
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which is equivalent to the natural risk on a mixture Gaussian distribution Dtmp : x ∼ N (y · µtmp, σ
2I),

where µtmp = (1− η, 0, . . . , 0). We note that the Bayes optimal classifier for Dtmp is ftmp(x) = sign(µ⊤
tmpx).

Specifically, the natural risk

R0
adv(f,Dtmp) = Pr

(x,y)∼Dtmp
{f(x) ̸= y}

= Pr
(x,y)∼Dtmp

{y · f(x) < 0}

=Pr
{
w1N (−1− η, σ2) + b > 0

}
· 1
2

+ Pr
{
w1N (1− η, σ2) + b < 0

}
· 1
2
,

(33)

which is minimized when w1 = 1− η > 0 and b = 0. That is, minimizing the adversarial risk Rϵ+η
adv (f, Thyp)

can lead to an optimal linear ℓ∞-robust classifier ftmp(x), which is equivalent to the robust classifier (9).

Moreover, when the defense budget ϵd is less than ϵ+ η, the condition in Lemma 4 no longer holds. Instead, in
this case, the robust classifier will assign positive weights to the features (i.e., wi > 0 for i ≥ 1). This is similar
to the case in Lemma 3, and thus we omit the proof here. Consequently, this yields classifiers that still rely on all
the non-robust features.

C.5 Proof of Theorem 4

Theorem 4 (restated). For any data distribution and any adversary with an attack budget ϵ, training models to
minimize the adversarial risk with a defense budget 2ϵ on the perturbed data is sufficient to ensure ϵ-robustness.

Proof. For clarity, we rewrite the adversarial risk in (2) with a defense budget ϵ as follows:

Rϵ
adv(f, T ) :=

∑
(x,y)∈T

[
max
∥δ∥≤ϵ

L(f(x+ δ), y)

]
, (34)

where T = {(xi, yi)}ni=1 denotes the empirical training data.

Consider any adversary with an attack budget ϵ, who can perturb x to x + p such that ∥p∥ ≤ ϵ. Then, the
learner will receive a perturbed version of training data T ′ = {(xi + pi, yi)}ni=1.

For any perturbed data point (xi + pi, yi), we have

max
∥δ∥≤2ϵ

L(f(xi + pi + δ), yi) = max
∥δ∥≤ϵ,∥ξ∥≤ϵ

L(f(xi + pi + δ + ξ), yi)

≥ max
∥δ∥≤ϵ

L(f(xi + pi + δ − pi), yi)

= max
∥δ∥≤ϵ

L(f(xi + δ), yi).

(35)

By summarizing the training points, we have

R2ϵ
adv(f, T ′) ≥ Rϵ

adv(f, T ). (36)

That is, the adversarial risk with a defense budget 2ϵ on the perturbed data is an upper bound of the adversarial
risk with a defense budget ϵ on the original data. Therefore, a defense budget 2ϵ is sufficient to ensure the
learning of ϵ-robustness.
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D Experimental Settings

Adversary capability. We focus on the clean-label setting, where an adversary can only provide correctly
labeled but misleading training data. In this setting, the main constraint is to craft perturbations as small as
possible [16]. Thus, we consider an ℓ∞ adversary with an attack budget ϵa = 8/255 by following Huang et al.
[28], Yuan and Wu [81], Tao et al. [64], Fowl et al. [18]. We note that this constraint is consistent with common
research on test-time adversarial examples [1].

Crafting details. We conduct stability attacks by applying the hypocritical perturbation into the training
set. Unless otherwise specified, we craft the perturbations by solving the error-minimizing objective (4) with
100 steps of PGD, where a step size of 0.8/255 is used by following Fowl et al. [18]. Our crafting model is
adversarially trained with a crafting budget ϵc = 0.25ϵa for 10 epochs before generating perturbations. That is,
setting ϵc = 2/255 performs best, as shown in Figure 2(a).

Training details. We evaluate the effectiveness of the hypocritical perturbation on benchmark datasets
including CIFAR-10/100 [33], SVHN [43], and Tiny-ImageNet [34]. Unless otherwise specified, we use ResNet-
18 [26] as the default architecture for both the crafting model and the learning model. For adversarial training,
we mainly follow the settings in previous studies [83, 70, 50]. By convention, the defense budget is equal to
the attack budget, i.e., ϵd = 8/255. The networks are trained for 100 epochs using SGD with momentum 0.9,
weight decay 5 × 10−4, and an initial learning rate of 0.1 that is divided by 10 at the 75-th and 90-th epoch.
Early stopping is done with holding out 1000 examples from the training set. Simple data augmentations such
as random crop and horizontal flip are applied. The inner maximization problem during adversarial training is
solved by 10-steps PGD (PGD-10) with step size 2/255.

E Feature-level Analysis on CIFAR-10

In Section 3.1, we theoretically showed that the hypocritical perturbation can cause the poisoned model to rely
more on non-robust features, thus the natural accuracy of the adversarially trained model is increased while
the robust accuracy is decreased. In this part, we aim to provide empirical evidence on the role of non-robust
features in the success of our poisoning method on a benchmark dataset. In particular, we will demonstrate that
our hypocritical perturbation successfully makes the poisoned model learn more non-robust features.

To show this, by following Section 3.2 of Ilyas et al. [29], we construct a training set where the only features
that are useful for classification are the non-robust features (that are extracted from the poisoned model). The
standard accuracy of the classifier trained on the constructed dataset can reflect how many non-robust features
are learned by the poisoned model (denoted as f ). To accomplish this, we modify each input-label pair (x, y)
as follows. We select a target class t uniformly at random among classes. Then, we add a small adversarial
perturbation to x as follows:

xadv = argmin
∥x′−x∥≤ϵ

ℓ(f(x′), t).

The resulting input-label pairs (xadv, t) make up the new training set. Since the resulting inputs xadv are nearly
indistinguishable from the originals x, the label t assigned to the modified input is simply incorrect to a human
observer. Therefore, only the non-robust features in the training set are predictive, while the non-robust features
are extracted from the poisoned model.

We compare the model poisoned by our hypocritical perturbation with the baseline model trained on clean data.
These two models correspond to the second row and last row in Table 2, respectively. Using these two models,
we construct two datasets in the above-mentioned manner, respectively. Then, two new predictors are trained on
the two constructed datasets, respectively, and both predictors are evaluated on clean data. Training parameters
follow exactly those adopted by Ilyas et al. [29]. Our numerical results are summarized in Table 13.

Table 13: The predictive ability of the non-robust features learned by the poisoned model.

Model for constructing the training set Standard accuracy on the original test set (%)

The baseline model 27.46
The poisoned model 56.77

As shown in Table 13, the non-robust features learned by the poisoned model are much more predictive than
the baseline. This indicates that the effect of our poisoning method on the non-robust features learned by the
poisoned model is validated empirically.
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F Broader Impact

The attack method in this work might be used by an agent in the real world to damage the robust availability
of a machine-learning-based system. We discourage this malicious behavior by presenting the threat model of
stability attacks to the community. We further propose an adaptive defense to mitigate this issue. The adaptive
defense would help to build a more secure and robust machine learning system in the real world. At the same
time, the adaptive defense introduces an additional time cost to search for an appropriate defense budget, which
might have a negative impact on carbon emission reduction. Furthermore, society should not be overly optimistic
about AI safety, since the current studies mostly focus on perturbations bounded by simple norms (e.g., ℓ∞ norm
in this paper). There might exist perturbations beyond the ℓp ball in the real world, and we are still far from
complete model robustness.

G On the Trade-off between Accuracy and Robustness

An interesting implication of this work is that the hypocritical perturbation exploits the trade-off between
standard generalization and adversarial robustness, a phenomenon that has been widely observed in existing
works on adversarial training [67, 83, 14, 40, 59, 79].

Prior work mainly observed that adversarial training improves robust accuracy at the cost of natural accuracy
when the training data is clean. An explanation for the phenomenon is that there are non-robust features in the
original dataset, which are predictive yet brittle [67, 29]. Unlike prior work, the trade-off in this work occurs
when the training data is hypocritically perturbed. Specifically, we make the following observations:

1. When trained on the hypocritically perturbed data, conventional adversarial training produces models
with lower robust accuracy but higher natural accuracy (e.g., see Table 2, Table 3, and Table 4).

2. When trained on the hypocritically perturbed data, adversarial training with adaptive budget can
improve robust accuracy while reducing natural accuracy (e.g., see Table 5).

These two observations align well with our theoretical analyses in Section 3 and Section 4, respectively.
Concretely, our analyses suggest that the hypocritical perturbation works by reinforcing the non-robust features
in the original data, so that the models adversarially trained on the manipulated data still rely on the non-robust
features. In this way, the natural accuracy of the models increases because the non-robust features are predictive,
while the robust accuracy decreases because the non-robust features are brittle. Furthermore, the effectiveness of
the adaptive defense lies in the fact that the reinforced non-robust features can be neutralized by enlarging the
defense budget of adversarial training. Thus, the adaptive defense improves robustness at the cost of accuracy.

Meanwhile, we note that it would be unsatisfactory that test robustness is improved at the cost of standard
generalization. Several improvements have been proposed to alleviate this issue in the case where the training
data is clean, such as RST [49], FAT [84], and SCORE [48]. Incorporating these advances would be helpful in
resisting stability attacks, and we leave this as future work.

Finally, we remark that the focus of stability attacks is to degrade test robustness. For this reason, we do not
impose additional restrictions on their impact on natural accuracy. Having that said, as a method of stability
attacks, the hypocritical perturbation is observed to improve natural accuracy while reducing robust accuracy.
We note that this makes stability attacks more insidious. For example, if a poisoned model exhibits higher
natural accuracy, practitioners would be more easily enticed to deploy it in a real-world system. However, as its
robust accuracy is actually undesirably low, the system is prone to losing its normal function when encountering
test-time perturbations. In short, the negative impacts of stability attacks are serious, even with higher natural
accuracy. Thus, it is imperative to design better defense methods to mitigate the threat of stability attacks.
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