
A Appendix493

A.1 Additional Discussion on Imbalanced Datasets494

We consider imbalanced datasets that mixes the trajectories logged by high- and low- performing495

behavior policies, where trajectories from low-performing behavior policies predominate the dataset.496

When dealing with such imbalanced datasets, the regularized offline RL objective (Equation 2) tends497

to constrain the learned policy ⇡ to stay close to the overall mediocre behavior policy rather than the498

high-performing one, which is an unnecessary form of conservativeness. We illustrate this issue from499

intuitive and analytical aspects in the following.500

Intuitively, for example, when considering a dataset D that mix the trajectories from two behavior501

policies ⇡H

D and ⇡L

D where ⇡H

D significantly outperforms ⇡L

D (i.e., J(⇡H

D) � J(⇡L

D)), if the dataset is502

imbalanced such that state-action pairs (st, at) logged by ⇡L

D predominate, the regularized offline RL503

objective will penalize deviation from ⇡L

D more than deviation from ⇡H

D . This is because uniform504

sampling on the imbalanced dataset oversamples state-action pairs (st, at) from ⇡L

D, leading to an505

over-weighting of the regularization term on those state-action pairs (st, at).506

Analytically, the issue of unnecessary conservativeness (Section 3) can be explained by how the507

performance of offline RL J(⇡) is dependent on the performance of the behavior policy J(⇡D), as508

suggested in [13]. In the case of an imbalanced dataset where the behavior policy can be regarded509

a mixture of ⇡H

D and ⇡L

D, the performance of the behavior policy J(⇡D) can be estimated by the510

expected return of the distribution of trajectory in the dataset D, as shown below:511

J(⇡D) ⇡ E⌧i⇠D [G(⌧i)] =
NX

i=1

D(⌧i)G(⌧i), (16)

where D(⌧i) denotes the probability mass of trajectory ⌧i in D, G(⌧i) :=
P

Ti�1
t=0 r(si

t
, ai

t
) is the512

return (i.e., sum of rewards) of trajectory ⌧i, and Ti is its length. Since the trajectories from ⇡L

D513

dominate the dataset, the average return is mostly determined by low-return trajectories, leading to514

low J(⇡D). This prevents pessimistic and conservative algorithms [22, 8, 19, 21, 26] from achieving515

high J(⇡) with low J(⇡D). Both types of algorithms aim to learn a policy ⇡ that outperforms ⇡D (i.e.,516

J(⇡) � J(⇡D)), while constraining the policy ⇡ to stay close to ⇡D [4]. Recent theoretical analysis517

by Singh et al. [39] on conservative Q-learning (CQL) [22] (an offline RL algorithm) shows that the518

performance improvements of the learned policy ⇡ over the behavior policy is upper-bounded by the519

deviation of ⇡ from ⇡D as shown in: J(⇡)� J(⇡D)  CE(s,a)⇠D [C(s, a)], where C is a constant520

and C denotes the regularization penalty (see Section 2). This implies that regularized objective521

would constrain the policy ⇡ from deviating from ⇡D, thus corroborating the findings in [13] despite522

the absence general theoretical guarantees for all offline RL algorithms.523

Why our method improves performance on imbalanced datasets? Our importance reweighting524

method can be seen as a modification of the performance of the behavior policy, which represents the525

lower bound in conservative and pessimistic offline RL algorithms. By adjusting the weights of state-526

action pairs sampled from the dataset, we simulate the sampling of data from an alternative dataset Dw527

that would be generated by an alternative behavior policy ⇡Dw . By maximizing the expected return528

J(⇡Dw) of this alternative behavior policy ⇡Dw , we can obtain a ⇡Dw that outperforms the original529

behavior policy ⇡D, i.e., J(⇡Dw) � J(⇡D). As mentioned earlier, most offline RL algorithms aim to530

achieve a policy that performs at least as well as the behavior policy that collected the dataset. By531

training an offline RL algorithm using a dataset Dw induced by reweighting with w, we obtain a532

higher lower bound on the policy’s performance, as J(⇡Dw) � J(⇡D).533

A.2 Implementation details534

A.2.1 Offline RL algorithms535

We implement our method and other baselines on top of two offline RL algorithms: Conservative536

Q-Learning (CQL) [22] and Implicit Q-Learning (IQL) [19]. Our baselines, advantage-filtering (AW)537

and percentage-filtering (PF), are weighted-sampling methods (see Section 5.1). Therefore, they do538

not require changing the implementation of offline RL algorithms. In the following sections, we539

explain the details of our importance weighting method for each algorithm.540

13

CQL. We reweight both the actor (policy) and the critic (Q-function) in CQL as follows:541

max
⇡

Es⇠D,a⇠⇡(.|s) [w�(s) (Q(s, a)� log ⇡(a|s))] (Actor) (17)

min
Q

↵E(s,a)⇠D

"
w�, (s, a)

log

X

a02A
expQ(s, a0)�Q(s, a)

!#
+ (Critic) (18)

E(s,a,s0)⇠D,a0⇠⇡(.|s0)

h
w�, (s, a) (r(s, a) + �Q(s0, a0)�Q(s, a))

2
i

min
↵

Es⇠D,a⇠⇡(.|s)
⇥
w�(s)

�
� log ⇡(a|s)� H̄

�⇤
(Entropy coefficient [12]), (19)

where H̄ denotes the target entropy used in soft actor critic (SAC) [12] and w� and w�, denote542

the weights predicted by our method (see Section 4). We follow the notations in CQL paper [22].543

The implementation details of computing Equation 17 can be found in [22]. Our implementation is544

adpated from open-sourced implementation: JaxCQL3.545

IQL. We reweight state-value function (V), state-action value function (i.e,. Q-function, Q), and546

policy (⇡) in IQL as follows:547

min
V

E(s,a)⇠D [w�(s)L
⌧

2(Q(s, a)� V (s))] (20)

min
Q

E(s,a,s0)⇠D

h
w�, (s, a) (r(s, a) + �V (s0)� V (s))

2
i

(21)

max
⇡

E(s,a)⇠D [w�, (s, a) exp (� (Q(s, a)� V (s))) log ⇡(a|s)] , (22)

where L⌧2 denotes the upper expectile loss [19] and � denotes the temperature parameter for IQL.548

Our implementation is adapted from the official implementation4 for implicit Q-learning (IQL) [19].549

We attach our implementation in the supplementary material, where CQL and IQL implementations550

are in JaxCQL and implicit_q_learning, respectively.551

A.2.2 Density-weighting function552

The following is the training objective of the importance weighting function w�, and w� in our553

method, as described in Equation 10 (Section 4.2):554

max
�,

E(s,a,s0)⇠D

2

64w�, (s, a)r(s, a)| {z }
Return

��F (w�(s
0)� w�, (s, a))

2

| {z }
Bellman flow conservation penalty

3

75� �K DKL(Dw||D)| {z }
KL regularization

.

The KL regularization term can be expressed as follows:555

DKL(Dw||D) =
X

s,a

Dw(s, a) log
Dw(s, a)

D(s, a)
(23)

=
X

s,a

D(s, a)
Dw(s, a)

D(s, a)
log

Dw(s, a)

D(s, a)

= E(s,a)⇠D


Dw(s, a)

D(s, a)
log

Dw(s, a)

D(s, a)

�

= E(s,a)⇠D [w(s, a) logw(s, a)] .

Thus, we can rewrite the training objective (Equation 10) to the follows:556

max
�,

E(s,a,s0)⇠D

2

64w�, (s, a)r(s, a)| {z }
Return

��F (w�(s
0)� w�, (s, a))

2

| {z }
Bellman flow conservation penalty

��Kw�, (s, a) logw�, (s, a)| {z }
KL regularization

3

75 .

(24)

3https://github.com/young-geng/JaxCQL
4https://github.com/ikostrikov/implicit_q_learning

14

The objective in Equation 24 can be optimized by minimizing the loss function L(�,) using557

stochastic gradient descent shown below:558

L(�,) := LR(�,) + �FLF (�,) + �KLK(�,) (25)

LR(�,) := �

BX

i=1

w̄�, (si, ai)r(si, ai) (26)

LF (�,) :=
1

B

BX

i=1

(w�, (s
0
i
)� w�, (si, ai))

2
. (27)

LK(�,) :=
BX

i=1

w̄�, (s, a) log w̄�, (s, a), (28)

where B denote batch size and (si, ai) denotes the ith state-action pair in the batch. w̄�, (si, ai)559

denotes the batch normalized weights predictions [32] that is defined as follows:560

w̄�, (si, ai) :=
w�, (si, ai)P

B

j=1 w�, (sj , aj)
, (29)

where w�, (si, ai) denotes the importance weights predictions from the network � and (see561

Section 4.2). As [32] suggests, applying batch-level normalization on the importance weights562

predictions can make the normalization requirement of importance weights, i.e., E [w] = 1, more563

likely being satisfied during optimization than other approaches (e.g., adding normalization penalty564

term) (see [32] for details).565

A.3 Evaluation detail566

A.3.1 Training details567

For both the baselines and our method, we train CQL and IQL for a total of one million gradient568

steps. The hyperparameters used for CQL and IQL are set to the optimal values recommended in569

their publicly available implementations. As for the training of our density weighting functions �, ,570

we employ the same network architecture as the Q-value function architectures in CQL and IQL,571

which consists of a two-layer Multilayer Perceptron (MLP) with 256 neurons and ReLU activation572

in each layer. To minimize the objective defined in Equation 25, we train � and using the Adam573

optimizer [17] with a learning rate of 0.0001 and a batch size of 256. In each gradient step of CQL574

and IQL, we train � and for one gradient step as well.575

We conducted hyperparameter search in the datasets with diverse trajectories. For AW with CQL we576

searched temperatue ⌘: 0.01 (L), 0.1 (M, the best from the original paper), 1.0 (H), 5.0 (XH). For AW577

with IQL, we searched temperature ⌘: 0.01 (L), 0.2 (M) (the best from the original paper), 1.0 (H),578

5.0 (XH). For PF in CQL and IQL, we searched K over 0.1, 0.2, and 0.5. The hyperparameter search579

results are all already presented in Figures 2a. For DW-AW, we use the temperature ⌘ used in AW-M580

for CQL and IQL, except for small datasets. In small datasets (Figure 2b), we use the temperature581

used in AW-XH for DW-AW. For DW-AW and DW-Uniform, we searched �K 2 {0.2, 1.0} and582

�F 2 {0.1, 1.0, 5.0}. We use the best found hyperparameter by the time we started the large scale583

experiments: (�K ,�F) = (0.2, 0.1) for CQL and (�K ,�F) = (1.0, 1.0) for IQL. We present the584

hyperparameter search results of DW-Uniform in Figure 2.585

A.3.2 Evaluation details586

We follow the evaluation protocol used in most offline RL research [22, 8, 19]. Each offline RL587

algorithm and sampling method (including our DW approach) combination is trained for one million588

gradient steps with three random seeds in each dataset. We evaluate the policy learned by each589

method in the environment corresponding to the dataset for 20 episodes every 1000 gradient step.590

The main performance metric reported is the interquartile mean (IQM) [1] of the normalized mean591

return over the last 10 rounds of evaluation across multiple datasets, along with its 95% confidence592

interval calculated using the bootstrapping method. As suggested in [1], IQM is a robust measure593

of central tendency by discarding the top and bottom 25% of samples, making it less sensitive to594

outliers.595

15

Compute. We ran all the experiments using workstations with two RTX 3090 GPUs, AMD Ryzen596

Threadripper PRO 3995WX 64-Cores CPU, and 256GB RAM.597

A.3.3 Dataset curation.598

Following the protocol in prior offline RL benchmarking [7, 13], we develop representative datasets599

for Scenarios (i) and (ii) using the locomotion tasks from the D4RL Gym suite.600

Scenario (i): Datasets with trajectories starting from similar initial states. This type of datasets601

was proposed in [13], mixing trajectories gathered by high- and low-performing policies, as described602

in Section 3. Each trajectory is collected by rolling out a policy starting from similar initial states until603

reaching timelimit or terminal states. As suggested in [13], these datasets are generated by combining604

1� �% of trajectories from the random-v2 dataset (low-performing) and �% of trajectories from605

the medium-v2 or expert-v2 dataset (high-performing) for each locomotion environment in the606

D4RL benchmark. For instance, a dataset that combines 1 � �% of random and �% of medium607

trajectories is denoted as random-medium-�%. We evaluate our method and the baselines on these608

imbalanced datasets across four � 2 {1, 5, 10, 50}, four environments. We construct 32 of this type of609

datasets in all the combinations of {ant, halfcheetah, hopper, walker2d} ⇥ {random-medium,610

random-expert} ⇥ {� 2 {1, 5, 10, 50}}. Also, we consider a variant of smaller versions of these611

datasets that have small number of trajectories, where each dataset contains 50, 000 state-action pairs,612

which is 20 times smaller. These smaller datasets can test if a method overfits to small amounts of613

data from high-performing policies. As every method fails to suprpass random policy when � = 1614

and � = 5, we only evaluate all the methods in � = 10. Note that the results in � = 50 is not different615

from the results in larger version of mixed dataset with � = 50 since the amount of high-performing616

trajectories is still sufficient when � = 50.617

Scenario (ii): Datasets with trajectories starting from diverse initial states. Trajectories in this618

type of dataset start from a wider range of initial states and have varying lengths. This characteristic619

is designed to simulate scenarios where trajectories from different parts of a task are available in620

the dataset. One real-world example of this type of dataset is a collection of driving behaviors621

obtained from a fleet of self-driving cars. The dataset might encompass partial trajectories capturing622

diverse driving behaviors, such as merging onto a highway, changing lanes, navigating through623

intersections, and parking, although not every trajectory accomplishes the desired driving task of624

going from one specific location to the other. As not all kinds of driving behaviors occur with625

equal frequency, such a dataset is likely to be imbalanced, with certain driving behaviors being626

underrepresented. We curate this type of datasets by adapting the datasets from Scenario (i). These627

datasets are created by combining 1 � �% of trajectory segments from the random-v2 dataset628

(representing low-performing policies) and �% of trajectory segments from either the medium-v2629

or expert-v2 dataset (representing high-performing policies) for each locomotion environment in630

the D4RL benchmark. Each trajectory segment is a subsequence of a trajectory in the dataset of631

Scenario (i). Specifically, for each trajectory ⌧i, a trajectory segment is selected, ranging in length632

from 10 to 50 timesteps within ⌧i. We chose the minimum and maximum lengths to be 10 and 50633

timesteps, respectively, based on our observation that most locomotion behaviors exhibit intervals634

lasting between 10 and 50 timesteps. Since locomotion behaviors are periodic in nature, these635

datasets can simulate locomotion recordings from various initial conditions, such as different poses636

and velocities.637

The datasets in Scenario (ii) capture a different form of imbalance that is overlooked in the datasets638

of Scenario (i). The imbalanced datasets in Scenario (i) combine full trajectories from low- and639

high-performing policies, starting from similar initial states. These datasets capture the imbalance640

resulting from the policies themselves, while overlooking the imbalance caused by different initial641

conditions. Even when using the same behavior policy, the initial conditions, i.e., the initial states of642

trajectories, can lead to an imbalance in the dataset, as certain initial conditions tend to yield higher643

returns compared to others. For example, an agent starting near the goal and another starting far away644

from the goal may achieve significantly different returns, even when following the same policy. This645

type of imbalance can exist in real-world datasets if certain initial conditions are oversampled during646

the dataset collection process.647

Figure 4 presents the distribution of normalized returns for both types of datasets in both scenarios.648

The trajectory returns are normalized to a range of 0 to 1 using max-min normalization, specifically649

16

(G(⌧i)�Gmin)/(Gmax �Gmin), where Gmin and Gmax denote the minimum and maximum trajectory650

returns in the dataset, respectively. From Figure 4, we observe that the two types of datasets exhibit651

different return distributions. The return distribution in Scenario (i) (i.e., mixed) is closer to a bimodal652

distribution, where a trajectory is either from a high- or low-performing policy. On the other hand,653

the return distribution in Scenario (ii) (i.e., mixed (diverse)) follows a heavy-tailed distribution, where654

high-return trajectories are located in the long tails. This indicates that in addition to the imbalance655

resulting from the combination of trajectories from low- and high-performing policies, the presence656

of diverse initial states introduces another type of imbalance in the dataset, where initial states that657

easily lead to high returns are much less prevalent than others.658

Figure 4: Return distributions of mixed datasets with similar initial states (blue, Scenario (i)) and
diverse initial states (orange, Scenario (ii)). Both types of datasets lead to different kinds of imbalance
and return distributions. See Section A.3.3 for details.

17

A.4 Additional results659

We present the full results in total of 113 datasets in Tables 4 and 5, including original D4RL660

datasets [7], mixed datasets (Figure 2a, denoted as Mixed), mixed datasets with diverse initial states661

(Figure 3, denoted as Mixed (diverse)), and small datasets (Figure 2b, denoted as Mixed (small)).662

As [13] suggested, the original D4RL datasets are not imbalanced and thus weighted sampling and663

importance weighting methods perform on par with uniform sampling.664

A.4.1 Comparison with OptDICE665

OptDiCE [27] and AlgaeDiCE [34], as well as our method, all involve learning importance weights666

for policy optimization. However, the usage and learning of importance weights vary across these667

methods. We compare our method with OptDiCE as it is the state-of-the-art method on policy668

optimization using DiCE. In the following, we illustrate the difference between our method and669

OptDiCE.670

Learning importance weights. OptDiCE learns the importance weights through solving the op-671

timization problem same as Equation 10 in an approach different from ours. OptDiCE learns the672

importance weights through optimizing the following primal-dual objective:673

min
⌫

max
w�0

E(s,a)⇠D
⇥
e⌫(s, a)w(s, a)� ↵f

�
w(s, a)

�⇤
+ (1� �)Es0⇠p0 [⌫(s0)] ⇡ (30)

min
⌫

E(s,a,s0)⇠D
⇥
ê⌫(s, a, s

0)(f 0)�1
�
1
↵
ê⌫(s, a, s

0)
�
+
� ↵f

�
(f 0)�1(1

↵
ê⌫(s, a, s

0))+
�⇤
+ (31)

(1� �)Es0⇠p0 [⌫(s0)],

where f can be any convex function (e.g., f(x) := x log x), ê⌫(s, a, s0) := r(s, a) + �⌫(s0)� ⌫(s),674

and x+ := max(0, x). The coefficient ↵ denotes the strength of regularization: the higher the ↵ is,675

the uniform the importance weights are. The learned importance weights w(s, a) are expressed in676

terms of ⌫ as follows:677

w(s, a) = max

✓
0, (f)�1

✓
ê⌫(s, a, s0)

↵

◆◆
. (32)

On the other hand, our method learns the importance weights without solving the min-max optimiza-678

tion.679

Applying importance weights. OptDiCE extracts the policy from the learned importance weights680

using information projection (I-projection) [27]. The implementation of I-projection is non-trivial,681

while its idea is close to weighted behavior cloning objective shown as follows:682

max
⇡

E(s,a)⇠Dw
[log ⇡(a|s)] = max

⇡

E(s,a)⇠D [w(s, a) log ⇡(a|s)] . (33)

Differing from OptDiCE, we apply the importance weights to actor-critic offline RL algoritmhs like683

CQL [22] and IQL [19].684

We present the performance of our methods in CQL and IQL, and OptDiCE in imbalanced datasets685

used in Scenario (i) in Figure 5, showing that OptDiCE underpeform all the other methods on686

imbalanced datasets and even underperforms uniform sampling approach. This result indicates that687

even though OptDiCE learns the importance weights by solving a similar objective with our method,688

OptDiCE is not effective on imbalanced datasets.689

A.4.2 Comparison with weights learned by OptDiCE690

While the policy learned using OptDiCE may not be effective on imbalanced datasets, it remains691

uncertain whether the importance weights learned with OptDiCE can enhance the performance of692

offline RL algorithms. To investigate this hypothesis, we reweight the training objective of CQL693

(Equation 17) using the importance weights learned with OptDiCE (Equation 32). We present a694

comparison with our method in Table 1, where OptDiCEW refers to CQL trained with OptDiCE695

weights, and ↵ represents the regularization strength (Equation 30). We examine different values696

of ↵ ranging from 0.1 to 5.0, but none of them consistently outperforms our method. It is worth697

noting that each configuration results in a significant performance loss in certain datasets. While698

this observation suggests that the importance weights learned using OptDiCE are not effective in699

improving the performance of offline RL algorithms, it is important to note that our work does not700

18

Figure 5: Results on imbalanced datasets of trajectories with similar initial states (Scenario (i) in
Section 5.1). OptDiCE [27] fails to achieve high return on imbalanced datasets and even performs
worse than CQL and IQL with uniform sampling. Note that OptDiCE is a density-ratio importance
correction estimation (DiCE) based offline RL algorithm rather than a sampling or importance
weighting method. While both bars of OptDiCE in this figure denote the same result, we plot the
performance of OptDiCE alongside CQL and IQL with different sampling (or weighting) methods
for comparison.

OptDiCEW (↵ = 0.1) OptDiCEW (↵ = 1.0) OptDiCEW (↵ = 5.0)

hopper-random-expert-diverse-5%-v2 3.3 (-17.5) 39.1 (+18.3) 4.0 (-16.8)
hopper-random-expert-diverse-10%-v2 1.5 (-56.4) 29.7 (-28.2) 11.9 (-46.0)
hopper-random-medium-diverse-5%-v2 -* 6.4 (-58.5) 57.3 (-7.6)
hopper-random-medium-diverse-10%-v2 2.2 (-52.9) 30.1 (-25.0) 41.0 (-14.1)
(*: training gets terminated due to NaN values)

Table 1: Comparison of the weights learned by our method and that learned by OptDiCE approach.
Each cell in the table denotes the mean return obtained by CQL trained with OptDiCE weights
and the number in the parenthesis indicates the improvements (i.e., scoreOptDiCE � scoreOurs) over
the performance of DW-Uniform reported in Figure 3. It shows that OptDiCE underperforms our
method in most datasets (i.e,. negative improvements), and is sensitive to the regularization strength
parameter ↵ (see Section A.4.2).

aim to propose a new off-policy evaluation method based on DiCE. Therefore, a comprehensive701

comparison between different methods for learning importance weights is left for future research702

endeavors.703

A.4.3 Hyperparameter studies704

In this section, we investigate the hyperparameters of KL regularization strength (�K) and Bellman705

flow conservation strength (�F). We present the average returns obtained in four specific imbalanced706

datasets in Table 2. These datasets are chosen because they exhibit significant performance differences707

between uniform sampling and other methods. Our observations indicate that higher penalties for708

flow conservation and lower strengths of KL regularization tend to improve performance in both CQL709

and IQL.710

A.4.4 Comparison of re-weighting both objectives and only regularization objective711

In theory, the regularization term E(s,a)⇠D [C(s, a)] (Equation 2) is the only component that can712

potentially harm performance on imbalanced datasets, as it encourages the policy to imitate the713

suboptimal actions that dominate the dataset. However, our findings suggest that reweighting all714

the training objectives in offline RL algorithms leads to improved performance. In this section, we715

compare the performance of CQL trained with reweighted regularization only (referred to as "Reg.716

only") and reweighting all objectives (referred to as "All"). For the "All" approach, we train CQL717

using Equation 17. On the other hand, for the "Reg. only" approach, we remove the term w�, (s, a)718

from the ↵ training and the term w�(s) from the ⇡ training in Equation 17. Table 3 presents the mean719

return of both approaches, indicating that "All" exhibits slightly better performance compared to720

"Reg. only".721

19

(�K ,�F) (0.2, 0.1) (0.2, 1.0) (0.2, 5.0) (1.0, 0.1) (1.0, 1.0) (1.0, 5.0)

hopper-random-expert-diverse-5%-v2 20.4 13.8 22.1 9.6 7.5 7.9
hopper-random-expert-diverse-10%-v2 51.7 27.8 42.1 10.9 9.8 5.3
hopper-random-medium-diverse-5%-v2 64.7 66.1 60.3 16.2 5.5 25.4
hopper-random-medium-diverse-10%-v2 55.4 58.9 65.3 3.6 7.2 7.3

(a) CQL

(�K ,�F) (0.2, 0.1) (0.2, 1.0) (0.2, 5.0) (1.0, 0.1) (1.0, 1.0) (1.0, 5.0)

hopper-random-expert-diverse-5%-v2 14.7 56.4 54.2 16.8 68.4 75.1
hopper-random-expert-diverse-10%-v2 16.2 67.8 51.0 78.5 63.0 67.5
hopper-random-medium-diverse-5%-v2 53.8 50.8 51.5 50.9 49.5 52.6
hopper-random-medium-diverse-10%-v2 43.4 48.8 53.0 42.5 53.2 50.8

(b) IQL

Table 2: Hyperparameter studies of our DW method in (a) CQL and (b) IQL. �K and �F denote the
strength of KL-regularization and Bellman flow conservation penatly, respectively (see Section A.2).
Lower KL-regularization strength �F and higher flow conservation penalty strength �F lead to better
performance.

Reg. only All

hopper-random-expert-diverse-10%-v2 57.1 64.9
walker2d-random-expert-diverse-10%-v2 1.4 8.2

Table 3: Reweighting all terms in Equation 17 shows better performance than reweighting only the
regularization term. See Section A.4.4.

20

Uniform AW PF DW+AW (ours) DW+Uniform (ours)

D4RL MuJoCo

hopper-random-v2 9.0 7.7 7.5 5.8 9.5
hopper-medium-expert-v2 97.2 103.7 105.7 104.7 86.9
hopper-medium-replay-v2 85.5 95.8 90.4 97.2 86.0
hopper-full-replay-v2 100.4 101.2 101.5 101.4 99.7
hopper-medium-v2 61.8 67.5 65.0 65.2 66.1
hopper-expert-v2 107.0 108.2 107.0 106.7 105.4
halfcheetah-random-v2 21.0 15.6 2.7 10.9 12.0
halfcheetah-medium-expert-v2 71.2 87.4 72.1 88.8 86.1
halfcheetah-medium-replay-v2 45.3 44.7 42.1 44.3 45.0
halfcheetah-full-replay-v2 75.1 76.7 75.1 78.3 77.0
halfcheetah-medium-v2 46.5 46.5 45.4 46.6 46.5
halfcheetah-expert-v2 81.0 87.6 60.9 20.7 44.7
ant-random-v2 7.5 7.7 6.8 29.4 32.4
ant-medium-expert-v2 127.4 128.7 127.5 129.8 118.1
ant-medium-replay-v2 96.0 88.6 80.7 84.9 95.0
ant-full-replay-v2 128.4 124.5 125.3 127.5 128.6
ant-medium-v2 100.0 92.3 92.1 91.9 97.9
ant-expert-v2 124.5 131.4 127.0 127.2 127.6
walker2d-random-v2 6.0 4.5 11.1 7.6 8.6
walker2d-medium-expert-v2 109.6 109.3 108.5 109.4 109.7
walker2d-medium-replay-v2 74.3 78.1 69.9 77.8 74.4
walker2d-full-replay-v2 90.9 88.5 88.1 92.4 90.8
walker2d-medium-v2 82.1 81.3 77.8 81.7 82.1
walker2d-expert-v2 108.8 108.5 108.8 108.8 108.1

D4RL Antmaze

antmaze-umaze-v0 73.7 77.3 56.3 76.7 71.0
antmaze-umaze-diverse-v0 48.0 36.0 23.4 33.7 34.0
antmaze-medium-diverse-v0 0.0 6.0 0.0 5.3 3.1
antmaze-medium-play-v0 2.2 10.7 0.0 8.7 1.3
antmaze-large-diverse-v0 0.0 2.0 2.7 1.3 1.7
antmaze-large-play-v0 0.4 0.7 0.0 0.3 0.0

D4RL Kitchen
kitchen-complete-v0 24.2 30.2 6.4 9.5 16.5
kitchen-partial-v0 38.4 36.0 39.9 54.0 30.0
kitchen-mixed-v0 30.4 50.5 48.1 47.5 43.8

D4RL Adroit

pen-human-v1 1.6 -3.6 -0.2 -7.4 28.5
pen-cloned-v1 -1.3 -2.5 8.6 -4.2 9.1
hammer-human-v1 -7.0 -7.0 -6.9 -7.0 -7.0
hammer-cloned-v1 -7.0 -7.0 -7.0 -6.9 -6.9
door-human-v1 -9.4 -9.4 -5.1 -9.4 -9.4
door-cloned-v1 -9.4 -9.4 21.6 -9.4 -9.4
relocate-human-v1 1.1 -2.1 -0.8 -2.1 -2.1
relocate-cloned-v1 -2.3 -2.4 0.2 -2.1 -2.1

Mixed

ant-random-medium-1%-v2 33.8 73.6 5.9 70.4 61.2
ant-random-medium-5%-v2 53.1 86.1 72.0 86.1 87.0
ant-random-medium-10%-v2 81.3 88.1 92.2 86.8 86.5
ant-random-medium-50%-v2 97.4 93.3 92.0 94.0 96.1
ant-random-expert-1%-v2 10.0 73.1 4.2 59.7 37.9
ant-random-expert-5%-v2 35.2 113.8 62.9 112.2 90.7
ant-random-expert-10%-v2 48.3 119.6 102.7 123.1 109.1
ant-random-expert-50%-v2 117.3 130.4 122.4 131.3 113.7
hopper-random-medium-1%-v2 0.6 55.1 58.2 56.0 60.1
hopper-random-medium-5%-v2 1.5 61.4 42.6 60.3 59.4
hopper-random-medium-10%-v2 1.6 56.3 66.4 67.0 59.9
hopper-random-medium-50%-v2 22.6 37.2 65.5 41.3 54.3
hopper-random-expert-1%-v2 17.5 59.6 14.7 61.7 21.3
hopper-random-expert-5%-v2 13.7 99.7 31.8 104.2 52.0
hopper-random-expert-10%-v2 14.9 99.8 36.8 107.9 51.9
hopper-random-expert-50%-v2 100.6 108.9 105.4 104.4 83.3
halfcheetah-random-medium-1%-v2 37.1 39.8 18.1 38.4 36.6
halfcheetah-random-medium-5%-v2 41.1 45.4 42.3 45.3 43.9
halfcheetah-random-medium-10%-v2 44.6 45.8 44.9 45.7 41.9
halfcheetah-random-medium-50%-v2 46.6 46.5 44.9 46.5 46.2
halfcheetah-random-expert-1%-v2 21.3 21.7 4.7 13.5 14.5
halfcheetah-random-expert-5%-v2 24.8 62.2 7.4 67.5 17.6
halfcheetah-random-expert-10%-v2 30.9 71.0 70.3 74.0 27.1
halfcheetah-random-expert-50%-v2 58.7 80.7 55.1 83.4 37.8
walker2d-random-medium-1%-v2 2.9 40.9 2.3 47.1 0.6
walker2d-random-medium-5%-v2 0.0 74.2 44.6 74.2 9.9
walker2d-random-medium-10%-v2 0.6 74.6 73.5 78.7 58.8
walker2d-random-medium-50%-v2 76.9 81.7 81.2 80.8 78.0
walker2d-random-expert-1%-v2 4.0 64.6 3.0 83.4 -0.1
walker2d-random-expert-5%-v2 0.2 107.6 32.7 106.9 12.2
walker2d-random-expert-10%-v2 3.1 108.1 17.0 108.3 0.8
walker2d-random-expert-50%-v2 0.3 108.5 108.1 108.7 92.5

Mixed (diverse)

ant-random-medium-diverse-1%-v2 9.6 20.7 5.9 67.4 29.3
ant-random-medium-diverse-5%-v2 53.3 84.2 39.5 82.0 72.4
ant-random-medium-diverse-10%-v2 78.0 88.2 92.7 91.8 87.6
ant-random-medium-diverse-50%-v2 101.9 91.3 92.5 94.6 100.5
ant-random-expert-diverse-1%-v2 7.5 9.5 6.2 27.6 9.8
ant-random-expert-diverse-5%-v2 12.7 29.1 7.6 96.1 54.4
ant-random-expert-diverse-10%-v2 23.4 75.3 57.3 109.6 84.7
ant-random-expert-diverse-50%-v2 112.5 116.1 121.3 123.7 121.1
hopper-random-medium-diverse-1%-v2 3.1 13.8 50.7 55.7 9.5
hopper-random-medium-diverse-5%-v2 19.0 24.2 55.5 61.9 66.4
hopper-random-medium-diverse-10%-v2 5.8 4.3 35.9 61.1 54.2
hopper-random-medium-diverse-50%-v2 31.8 56.0 58.5 58.2 59.6
hopper-random-expert-diverse-1%-v2 10.2 13.7 3.0 16.3 2.3
hopper-random-expert-diverse-5%-v2 5.2 10.0 27.6 44.4 20.2
hopper-random-expert-diverse-10%-v2 5.4 58.4 24.5 54.5 64.9
hopper-random-expert-diverse-50%-v2 96.1 100.4 81.0 102.6 96.7
halfcheetah-random-medium-diverse-1%-v2 39.6 41.0 32.2 22.0 40.4
halfcheetah-random-medium-diverse-5%-v2 44.5 44.1 44.6 34.8 44.6
halfcheetah-random-medium-diverse-10%-v2 43.7 45.3 44.7 42.7 45.5
halfcheetah-random-medium-diverse-50%-v2 46.8 46.8 45.7 43.4 46.4
halfcheetah-random-expert-diverse-1%-v2 11.8 22.0 7.5 2.5 16.3
halfcheetah-random-expert-diverse-5%-v2 29.4 35.4 10.0 6.1 24.5
halfcheetah-random-expert-diverse-10%-v2 24.1 39.5 16.6 10.9 16.2
halfcheetah-random-expert-diverse-50%-v2 53.3 69.1 7.1 41.4 63.9
walker2d-random-medium-diverse-1%-v2 1.9 1.3 26.8 1.0 1.1
walker2d-random-medium-diverse-5%-v2 0.5 4.6 37.2 38.6 1.0
walker2d-random-medium-diverse-10%-v2 0.3 16.2 55.5 71.6 35.5
walker2d-random-medium-diverse-50%-v2 76.8 79.5 77.4 75.0 78.4
walker2d-random-expert-diverse-1%-v2 12.3 5.0 -0.1 5.3 3.5
walker2d-random-expert-diverse-5%-v2 0.6 2.0 61.8 0.1 0.7
walker2d-random-expert-diverse-10%-v2 1.7 1.6 49.9 0.3 8.2
walker2d-random-expert-diverse-50%-v2 7.2 0.9 67.4 89.4 106.2

Mixed (small)

ant-random-medium-10%-small-v2 5.9 29.9 6.4 17.6 25.1
ant-random-expert-10%-small-v2 5.9 34.9 5.3 10.4 12.1
hopper-random-medium-10%-small-v2 39.7 3.4 44.6 50.7 49.7
hopper-random-expert-10%-small-v2 20.4 6.9 17.9 47.8 43.2
halfcheetah-random-medium-10%-small-v2 10.2 24.6 28.3 24.4 19.7
halfcheetah-random-expert-10%-small-v2 2.1 3.5 2.2 4.3 3.5
walker2d-random-medium-10%-small-v2 1.6 0.2 0.4 34.6 31.2
walker2d-random-expert-10%-small-v2 13.6 -0.0 0.1 24.4 44.2

Table 4: Full results of average returns of CQL in total of 113 datasets.

21

Uniform AW PF DW+AW (ours) DW+Uniform (ours)

D4RL MuJoCo

hopper-random-v2 7.6 6.8 8.0 6.4 8.5
hopper-medium-expert-v2 85.4 111.1 111.8 110.8 81.0
hopper-medium-replay-v2 86.7 98.1 96.0 99.9 79.7
hopper-full-replay-v2 108.1 102.1 88.2 107.5 99.8
hopper-medium-v2 65.7 58.3 64.5 61.7 62.5
hopper-expert-v2 109.7 111.0 110.3 105.7 108.2
halfcheetah-random-v2 12.7 7.3 4.2 10.7 10.8
halfcheetah-medium-expert-v2 90.6 94.7 94.2 93.9 93.7
halfcheetah-medium-replay-v2 44.0 44.0 29.4 44.1 44.6
halfcheetah-full-replay-v2 73.5 76.3 72.3 76.4 75.9
halfcheetah-medium-v2 47.5 47.8 45.4 47.9 47.7
halfcheetah-expert-v2 94.9 95.3 73.8 95.2 95.1
ant-random-v2 11.9 12.2 8.3 15.8 16.3
ant-medium-expert-v2 133.3 131.9 133.2 129.3 130.1
ant-medium-replay-v2 93.8 82.9 71.4 86.8 89.8
ant-full-replay-v2 130.1 129.9 128.9 131.4 130.2
ant-medium-v2 100.0 98.9 96.2 98.1 99.6
ant-expert-v2 126.2 131.4 119.6 128.6 127.3
walker2d-random-v2 6.7 2.7 10.4 3.7 7.0
walker2d-medium-expert-v2 110.1 109.7 109.8 109.8 109.7
walker2d-medium-replay-v2 61.3 47.0 42.2 62.6 65.1
walker2d-full-replay-v2 86.8 84.5 85.6 80.6 95.0
walker2d-medium-v2 77.9 70.0 65.3 75.8 80.8
walker2d-expert-v2 109.9 109.9 109.6 109.5 109.4

D4RL Antmaze

antmaze-umaze-v0 88.0 90.7 0.0 89.3 81.3
antmaze-umaze-diverse-v0 67.3 75.3 0.0 72.0 61.0
antmaze-medium-diverse-v0 76.0 61.3 0.0 70.0 78.7
antmaze-medium-play-v0 72.0 22.0 0.0 30.0 64.7
antmaze-large-diverse-v0 36.7 23.3 0.0 20.7 40.0
antmaze-large-play-v0 43.3 9.3 0.0 10.0 42.0

D4RL Kitchen
kitchen-complete-v0 62.8 26.3 10.0 19.8 60.0
kitchen-partial-v0 47.7 73.2 72.3 66.3 57.0
kitchen-mixed-v0 49.8 47.8 52.2 24.3 36.7

D4RL Adroit

pen-human-v1 80.4 83.2 36.3 88.3 74.9
pen-cloned-v1 82.9 89.2 53.8 84.4 91.5
hammer-human-v1 3.1 0.5 3.2 0.8 1.2
hammer-cloned-v1 1.1 1.4 1.0 2.3 1.4
door-human-v1 2.5 0.6 0.1 0.0 1.4
door-cloned-v1 0.0 0.6 2.4 -0.0 1.5
relocate-human-v1 0.5 0.0 -0.0 -0.0 0.1
relocate-cloned-v1 -0.0 0.1 0.0 0.0 -0.0

Mixed

ant-random-medium-1%-v2 17.5 56.0 5.1 58.5 55.3
ant-random-medium-5%-v2 68.1 83.3 15.4 87.6 89.3
ant-random-medium-10%-v2 82.0 88.8 40.2 91.3 88.6
ant-random-medium-50%-v2 93.7 101.4 96.8 94.3 98.9
ant-random-expert-1%-v2 13.7 28.5 5.5 31.5 43.5
ant-random-expert-5%-v2 36.3 100.9 5.5 95.2 105.4
ant-random-expert-10%-v2 73.7 126.0 14.0 125.4 115.0
ant-random-expert-50%-v2 122.5 128.2 127.7 130.3 125.4
hopper-random-medium-1%-v2 52.2 56.1 42.4 56.5 51.7
hopper-random-medium-5%-v2 59.0 57.1 63.4 46.2 59.8
hopper-random-medium-10%-v2 63.2 57.1 65.3 63.6 62.8
hopper-random-medium-50%-v2 50.6 56.2 57.2 61.2 61.9
hopper-random-expert-1%-v2 11.1 74.8 16.4 64.8 22.2
hopper-random-expert-5%-v2 22.7 111.3 24.9 110.0 22.4
hopper-random-expert-10%-v2 46.7 111.5 33.9 110.6 64.3
hopper-random-expert-50%-v2 88.0 111.7 92.2 109.4 105.1
halfcheetah-random-medium-1%-v2 31.0 13.9 3.0 22.0 7.2
halfcheetah-random-medium-5%-v2 39.1 41.7 25.9 42.2 11.6
halfcheetah-random-medium-10%-v2 40.3 43.1 45.3 45.0 45.1
halfcheetah-random-medium-50%-v2 45.3 47.3 43.4 47.1 46.6
halfcheetah-random-expert-1%-v2 4.2 3.8 2.3 2.8 3.6
halfcheetah-random-expert-5%-v2 9.1 74.0 4.4 48.7 55.4
halfcheetah-random-expert-10%-v2 17.0 91.3 81.5 87.1 70.6
halfcheetah-random-expert-50%-v2 83.7 94.8 32.0 94.4 93.8
walker2d-random-medium-1%-v2 54.6 45.4 39.4 49.4 61.8
walker2d-random-medium-5%-v2 66.2 62.8 47.3 67.8 67.9
walker2d-random-medium-10%-v2 63.4 65.8 62.6 62.8 74.3
walker2d-random-medium-50%-v2 70.7 70.0 69.6 75.6 74.1
walker2d-random-expert-1%-v2 20.0 9.6 11.4 9.8 35.9
walker2d-random-expert-5%-v2 25.3 108.6 93.5 104.3 65.0
walker2d-random-expert-10%-v2 64.4 109.3 107.2 109.1 58.1
walker2d-random-expert-50%-v2 109.2 109.4 109.6 109.3 109.4

Mixed (diverse)

ant-random-medium-diverse-1%-v2 12.6 29.4 11.7 40.8 24.1
ant-random-medium-diverse-5%-v2 29.1 83.7 24.8 88.1 73.3
ant-random-medium-diverse-10%-v2 61.0 91.8 54.6 89.3 89.3
ant-random-medium-diverse-50%-v2 91.2 98.0 89.0 97.0 96.8
ant-random-expert-diverse-1%-v2 12.4 20.0 10.1 30.4 20.7
ant-random-expert-diverse-5%-v2 17.1 77.4 10.9 86.2 71.5
ant-random-expert-diverse-10%-v2 27.9 101.1 22.9 100.5 93.8
ant-random-expert-diverse-50%-v2 101.9 123.3 122.8 127.7 126.9
hopper-random-medium-diverse-1%-v2 37.0 48.2 47.4 54.9 63.0
hopper-random-medium-diverse-5%-v2 46.7 44.7 49.3 48.6 49.0
hopper-random-medium-diverse-10%-v2 47.6 47.8 47.2 51.9 53.2
hopper-random-medium-diverse-50%-v2 51.2 48.7 53.6 54.6 52.1
hopper-random-expert-diverse-1%-v2 10.5 14.6 6.5 22.3 17.4
hopper-random-expert-diverse-5%-v2 17.1 59.0 31.4 78.7 41.0
hopper-random-expert-diverse-10%-v2 33.7 92.2 52.3 103.1 63.0
hopper-random-expert-diverse-50%-v2 90.1 106.8 22.7 98.9 109.4
halfcheetah-random-medium-diverse-1%-v2 14.4 2.7 8.0 2.2 14.4
halfcheetah-random-medium-diverse-5%-v2 34.9 20.1 17.1 2.3 15.2
halfcheetah-random-medium-diverse-10%-v2 39.7 39.7 24.0 30.9 24.3
halfcheetah-random-medium-diverse-50%-v2 44.4 22.5 46.6 8.8 35.1
halfcheetah-random-expert-diverse-1%-v2 5.6 4.5 5.7 3.2 4.6
halfcheetah-random-expert-diverse-5%-v2 4.8 8.5 3.6 9.9 10.3
halfcheetah-random-expert-diverse-10%-v2 9.6 16.4 4.3 13.2 28.0
halfcheetah-random-expert-diverse-50%-v2 66.4 70.7 -0.9 72.9 85.0
walker2d-random-medium-diverse-1%-v2 36.0 33.3 14.6 61.3 59.8
walker2d-random-medium-diverse-5%-v2 67.5 61.7 64.8 67.9 55.3
walker2d-random-medium-diverse-10%-v2 58.8 58.9 59.2 66.2 60.5
walker2d-random-medium-diverse-50%-v2 66.8 49.4 74.6 63.7 64.0
walker2d-random-expert-diverse-1%-v2 10.5 13.0 1.6 31.0 26.4
walker2d-random-expert-diverse-5%-v2 19.2 33.1 7.7 66.4 76.4
walker2d-random-expert-diverse-10%-v2 49.9 61.2 8.5 73.1 86.4
walker2d-random-expert-diverse-50%-v2 64.1 108.8 15.3 108.1 108.6

Mixed (small)

ant-random-medium-10%-small-v2 8.5 53.2 4.5 52.7 21.7
ant-random-expert-10%-small-v2 8.1 27.8 4.0 24.0 13.9
hopper-random-medium-10%-small-v2 11.0 51.7 9.5 49.5 39.0
hopper-random-expert-10%-small-v2 3.5 20.6 4.0 29.9 8.0
halfcheetah-random-medium-10%-small-v2 3.7 15.0 22.6 14.6 7.3
halfcheetah-random-expert-10%-small-v2 2.4 3.1 -1.9 3.2 2.2
walker2d-random-medium-10%-small-v2 1.6 24.1 0.3 37.6 8.4
walker2d-random-expert-10%-small-v2 0.5 2.8 0.2 4.8 1.7

Table 5: Full results of average returns of IQL in total of 113 datasets.

22

	Introduction
	Preliminaries
	Problem Statement: Unnecessary Conservativeness in Imbalanced Datasets
	Mitigating Unnecessary Conservativeness By Weighting Samples
	Optimizing the Weightings: Emulating Sampling from High-Performing Policies
	Practical Implementation

	Experimental Evaluation
	Evaluation Setup
	Scenario (i): Trajectories with Similar Initial States
	Scenario (ii): Trajectories with Diverse Initial States

	Related Work
	Conclusion, Future Directions, and Limitations
	Appendix
	Additional Discussion on Imbalanced Datasets
	Implementation details
	Offline RL algorithms
	Density-weighting function

	Evaluation detail
	Training details
	Evaluation details
	Dataset curation.

	Additional results
	Comparison with OptDICE
	Comparison with weights learned by OptDiCE
	Hyperparameter studies
	Comparison of re-weighting both objectives and only regularization objective

