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1 DATASET

Watch-and-help dataset (Puig et al., 2021). This dataset consists of a training set with 1011
tasks and 2 testing sets. For each task, we first provide Bob a video that shows Alice successfully
performing the activity (Watch stage), and then place both agents in a new environment where Bob
has to help Alice achieve the same goal with the minimum number of time steps (Help stage). The
helping environment in each task is different from the environment in the pairing demonstration by
sampling a different apartment and then randomizing the initial state, while the goals in the test set
are unseen during training. During training, we randomly sample one of the 1011 training tasks for
setting up a training episode. For evaluating an AI agent on the testing set, we run each testing task
for five times using different random seeds and report the average performance. We also split it into
four levels, depending on the episode length.

HandMeThat dataset (Wan et al., 2022). It contains 14 locations and typically more than 200
movable objects, which induces a large set of possible actions. Each scene contains more than 200
entities with diverse attributes, which resembles a typical real household environment. We also split
it into four hardness levels, and the gaps between levels correspond to different challenges.

we split HandMeThat into four hardness levels, and the gaps between levels correspond to different
challenges. Recall that A(G) denotes the set of all useful grounded subgoals for goal G. A(m) and
A(u) are the sets of all possible grounded subgoals for the lifted subgoal m and the utterance u.
Finally, we consider the subgoal derived from pragmatic reasoning. The four hardness levels are:

Level 1: A(m) = A(u). The utterance has no ambiguity. In this case, the instruction understanding
task is a pure grounding task: the agent only needs to select the object that satisfies the specification.

Level 2: A(m) = A(u)
⋂
A(G). The second level requires social reasoning: the robot can success-

fully accomplish the task if it can both ground u and infer the human goal G from observations.

Level 3: A(m) = A(r). The third level requires all reasoning capabilities combined: the agent need
to infer the human goal G. Next, it should make pragmatic reasoning based on G and u to derive r.

Level 4: A(m) ⊂ A(r). In this case, the human utterance u is inherently ambiguous and can not be
resolved even with all reasoning capabilities. In this case, further information gathering is needed.

2 DIFFERENCE BETWEEN LOGIC REASONING AND KNOWLEDGE GRAPH

We clarify the differences in the definitions of entity and the relation between logic reasoning and
knowledge graph reasoning as follows:

Definition of Entity. In logical reasoning, an entity refers to an individual object or thing that
exists in a domain of interest. Entities are typically represented by constants or variables in logical
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formulas or expressions. In this context, entities are often abstract and do not necessarily have any
explicit semantic meaning. They serve as placeholders or representations for objects or concepts
under consideration. In knowledge graph reasoning, an entity represents a specific object, concept,
or instance in the real world. In a knowledge graph, entities are typically represented as nodes,
and they can have attributes or properties associated with them. These entities are often grounded
in real-world entities, such as persons, locations, or organizations. The main difference between
entities in logic reasoning and those in knowledge graph reasoning lies in their representation and
use within a system. In logical reasoning, entities are abstract and do not necessarily have a distinct
correspondence to real-world objects, while entities in knowledge graphs are explicitly linked to
real-world objects or concepts and are part of a larger interconnected structure.

Definition of Relation. In logical reasoning, a relation represents a connection or association be-
tween entities. Relations are often represented by predicates or logical operators that indicate the
relationship between the entities. These relations can be unary (relating an entity to itself), binary
(relating two entities), or higher-order (relating multiple entities). Relations are often abstract and
do not have explicit semantics. In knowledge graph reasoning, Relations are typically represented
as edges connecting nodes in the graph. They have specific meanings associated with them, such
as “is-a,” “part-of,” or “located-in.” Knowledge graph reasoning involves leveraging these semantic
relationships to make inferences, perform queries, or discover new knowledge. The main difference
is that relations in logical reasoning can have any number of entities, while relations in knowledge
graph reasoning can only tolerate two entities because the unit of knowledge graph is the “Entity-
Relation-Entity” triplets.

3 OPTIMIZATION

Our rule encoder is deployed as Transformer-based framework, and the distribution of rules can be
represented as Ψ(g|N,Trans(v, τt)), where Ψ(·) is multinomial distributions, N is the number of
selected rules, and Trans(v, τt) defines a distribution over compositional rules with spatial-temporal
states. The generative process of the rule set is quite intuitive, where we simply generate N rules
to form z. The input of our framework is the historical trajectory of entities, and the output is the
generated logic rules. The historical trajectory would be first encoded into a scene graph and pass
through three-layer MLPs before being fed into the transformer, and a ReLU non-linearity following
each of the first two layers. In the rule encoder, the dimensions of keys, values, and queries are all set
to 256, and the hidden dimension of feed-forward layers is 512. The number of heads for multi-head
attention is 8.

For feedback module, suppose there is a rule set Fg , where the event g is the head predicate (sub-
goal). All the rules will play together to reason about the occurrence of g. Given the rule set Fg , we
model the probability of the event g as a log-linear function:

p(g | v, τt) ∝ exp

(∑
f∈Fg

αf · ϕf (g | v, τt)
)
. (1)

Assume that the rule content is represented as latent embeddings z, and the feedback can be calcu-
lated as:

pα(g|v, z, τt) =
exp

(∑
f∈zg

αf · ϕf (g|v, τt)
)

∑
g′ exp

(∑
f∈zg′

αf · ϕf (g′|v, τt)
) . (2)

In the second stage, the AI agent is asked to work together with the person to achieve the same
goal in a new environment as fast as possible. The new scene is also encoded as graphs, which
will pass through GRU to generate AI agent’s actions at every step based on its latest observation
and logic rules. Finally, the feedback module is updated to be consistent with the high-quality rules
identified. This module is also transformer-based architecture, where the dimensions of keys, values,
and queries are all set to 256, the hidden dimension of feed-forward layers is 512, and the number
of heads for multi-head attention is 8.

Each training iteration starts with an update to the rule encoder pθ, after which we change the feed-
back module pα based on certain rules produced by the encoder. Particularly, a Transformer-based
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Table 1: Predicate sets used for defining the goal of agents in five types of activities.

Put groceries
IN(cupcake, fridge), IN(pancake, fridge), IN(poundcake, fridge),

IN(pudding, fridge), IN(apple, fridge),

IN(juice, fridge), IN(wine, fridge)

Prepare a meal

ON(coffeepot, dinnertable), ON(cupcake, dinnertable),

ON(pancake, dinnertable), ON(poundcake, dinnertable),

ON(pudding, dinnertable), ON(apple, dinnertable),

ON(juice, dinnertable), ON(wine, dinnertable)

Set up a dinner table
ON(plate, dinnertable), ON(fork, dinnertable),

ON(waterglass, dinnertable), ON(wineglass, dinnertable)

Read a book
HOLD(Alice, book), SIT(Alice, sofa), ON(cupcake, coffeetable),

ON(pudding, coffeetable), ON(apple, coffeetable),

ON(juice, coffeetable), ON(wine, coffeetable)

Wash dishes
IN(plate, dishwasher), IN(fork, dishwasher),

IN(waterglass, dishwasher), IN(wineglass, dishwasher)

encoder transform the observed action trajectories to the latent rule space, yielding the posterior
probabilities of the latent rule z. Following Cao et al. (2023), each candidate rule is created sequen-
tially in the latent rule space, and the posterior probability of each rule sequence can be assessed.

In order to predict g, we draw many rules ẑ for each query when optimizing the feedback module.
Our goal is to select some high-quality rules zI (zI ⊂ ẑ, |zI | = K) from all created rules for each
query. This is achieved by considering the posterior probabilities of each subset of logic rules zI ,
with likelihood from the feedback module pα and prior from the rule encoder pθ. log pθ,α(zI |v, τt)
is an approximation for the log-probability, which can be approximated as log pθ,α(zI |v, τt).

The quality of candidate rules is calculated by subtracting a rule’s contribution to the correct event
type from its average contribution to the other candidate responses. If a rule receives a greater
score for the right kind of occurrence and a lower score for other possible predictions, it is more
meaningful. After obtaining many high-quality rules from training data, we use these rules to update
the rule encoder by maximizing the log-likelihood as

∑
z(i)∈zI

logTransθ(v, τt) + const. The rule
encoder will narrow the search space and yield more accurate empirical results as it gains proficiency
in producing high-quality rules.

4 GRAPH PROPAGATION

Following Liao et al. (2019), we regard the collaboration task as a seq2seq problem, where an
encoder encodes the input sketch and the decoder generates the AI agent’s action at a time. To do
that, we encode the scene as a graph G = (V,R) modeling the dependencies of the object instances.
The node v ∈ V indicates the object instance and each node has a label, including the object class
cv , its states lv , and properties propv . Note that V includes a node for the agent itself. The edge
r ∈ R encodes the spatial relations.

We adopt gated graph sequence neural network (Li et al., 2015) to obtain the hidden states of the
nodes and capture the object relations in the scene graph. The hidden states of each node v are
initialized by its label (cv, lv, propv):

h0
v = tanh(ginit([Wccv,Wllv,Wproppropv])), (3)

where Wc,Wl,Wprop are learnable weights, and ginit is a network composed of fully connected
layers that combine all the information. At propagation step k, each node’s incoming information
xk
v is determined by aggregating the hidden states of its neighbors v′ ∈ N (v) at the previous step

k − 1:
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Table 2: Experiment results of different backbones (rule encoder) on Watch-and-help dataset. Each
model is evaluated on 4 hardness levels with 3 metrics: the Average Number of Moves (AN, lower
is better) in successful episodes, the Success Rate (SR, higher is better), and Speedup (SU, relative
reduction in episode length when collaboration or not, higher is better).

Methods
Partially Observable

Level 1 Level 2 Level 3 Level 4

CNN
AN ↓ 11.59±0.17 16.74±0.09 27.05±0.12 31.95±0.16
SR ↑ 74.40±0.10 73.16±0.12 69.31±0.18 58.03±0.06
SU ↑ 0.46±0.003 0.39±0.020 0.34±0.019 0.30±0.018

GNN
AN ↓ 12.47±0.16 16.52±0.01 26.38±0.09 32.07±0.15
SR ↑ 81.01±0.01 69.99±0.18 69.30±0.11 58.77±0.03
SU ↑ 0.44±0.002 0.37±0.007 0.33±0.007 0.27±0.008

LSTM
AN ↓ 11.78±0.01 16.71±0.09 26.46±0.07 31.58±0.06
SR ↑ 79.64±0.04 74.59±0.02 69.54±0.10 58.31±0.01
SU ↑ 0.46±0.013 0.36±0.004 0.31±0.015 0.23±0.006

Ours
AN ↓ 11.40±0.04 16.21±0.15 26.16±0.02 31.10±0.05
SR ↑ 82.43±0.17 78.14±0.03 69.84±0.17 58.91±0.16
SU ↑ 0.48±0.015 0.44±0.009 0.36±0.013 0.33±0.017

xk
v =

∑
j∈L(R)

∑
v′∈Nj(v)

Wpj
hk−1
v′ + bpj

, (4)

where L(R) denotes the set of edge labels and the linear layer Wpj
and bias bpj

are shared across
all nodes. After aggregating the information, the hidden states of the nodes are updated through a
gating mechanism similar to Gated Recurrent Unit (GRU) as follows:

zkv = ϕ(Wzx
k
v + Uzh

k−1
v + bz),

rkv = ϕ(Wrx
k
v + Urh

k−1
v + br),

ĥk
v = tanh(Whx

k
v + Uh(r

k
v · hk−1

v ) + bh),

hk
v = (1− zkv ) · hk−1

v + zkv · ĥk
v ,

(5)

which results in a vector embedding for each object hk
v , with information about its state and rela-

tionship with the environment.

5 BACKBONE

We added the relevant ablation experiments on the different components of the approach. For the
rule encoder and the feedback module, we compare ours (transformer-based) with three widely used
backbones, including CNN, RNN and GNN (graph neural network), and evaluate them in the Watch-
and-help dataset. As shown in Table 2, our architecture can actually achieve superior results in all
metrics.

6 PREDICATE SETS FOR GOAL DEFINITIONS

Table 3 summarizes the five predicate sets used for defining goals. Note that VirtualHome supports
more predicates for potential future extensions on the goal definitions.

7 ADDITIONAL RESULTS ON OVERCOOKD GAME

We consider incorporating additional robust human-AI collaboration tasks, including overcooked
game, which is a benchmark environment for fully cooperative human-AI task performance. The
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Table 3: Experiment results of different backbones (feedback module) on Watch-and-help dataset.
Each model is evaluated on 4 hardness levels with 3 metrics: the Average Number of Moves (AN,
lower is better) in successful episodes, the Success Rate (SR, higher is better), and Speedup (SU,
relative reduction in episode length when collaboration or not, higher is better).

Methods
Partially Observable

Level 1 Level 2 Level 3 Level 4

CNN
AN ↓ 11.41±0.20 16.60±0.08 26.79±0.04 31.78±0.09
SR ↑ 72.79±0.17 72.27±0.16 69.33±0.13 58.16±0.06
SU ↑ 0.44±0.005 0.34±0.002 0.35±0.030 0.27±0.007

GNN
AN ↓ 11.73±0.02 16.74±0.18 26.23±0.14 31.60±0.13
SR ↑ 81.33±0.06 76.29±0.08 61.36±0.02 57.98±0.14
SU ↑ 0.37±0.010 0.33±0.007 0.33±0.013 0.25±0.016

LSTM
AN ↓ 12.34±0.11 17.08±0.16 26.41±0.17 31.92±0.15
SR ↑ 73.24±0.08 73.01±0.17 62.38±0.11 58.30±0.02
SU ↑ 0.42±0.003 0.31±0.017 0.32±0.020 0.29±0.007

Ours
AN ↓ 11.40±0.04 16.21±0.15 26.16±0.02 31.10±0.05
SR ↑ 82.43±0.17 78.14±0.03 69.84±0.17 58.91±0.16
SU ↑ 0.48±0.015 0.44±0.009 0.36±0.013 0.33±0.017

Table 4: Rewards over trajectories of 400 timesteps for our methods and Seq2Seq.

Layouts Seq2Seq Ours
Cramped Room 133.2+8.1 158.3+7.1

Asymmetric Advantage 169.2+3.0 185.7+5.4
Coordination Ring 115.4+7.9 142.1+7.1

Forced Coordination 71.2+4.9 85.6+5.7
ACounter Circuit 60.9+4.4 89.0+3.5
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goal of the game is to deliver soups as fast as possible. Each soup requires placing up to 3 ingredients
in a pot, waiting for the soup to cook, and then having an agent pick up the soup and delivering it.
The agents should split up tasks on the fly and coordinate effectively in order to achieve high reward.
The six possible actions are: up, down, left, right, noop, and ”interact”, which does something based
on the tile the player is facing, e.g. placing an onion on a counter. Each layout has one or more onion
dispensers and dish dispensers, which provide an unlimited supply of onions and dishes respectively.
This game includes five layouts:

(1) Cramped Room presents low-level coordination challenges: in this shared, confined space it is
very easy for the agents to collide.

(2) Asymmetric Advantages tests whether players can choose high-level strategies that play to their
strengths.

(3) Coordination Ring players must coordinate to travel between the bottom left and top right
corners of the layout.

(4) Forced Coordination instead removes collision coordination problems, and forces players to
develop a high-level joint strategy, since neither player can serve a dish by themselves.

(5) Counter Circuit involves a non-obvious coordination strategy, where onions are passed over the
counter to the pot, rather than being carried around.

As good coordination between teammates is essential to achieve high returns in this environment, we
use cumulative rewards over a horizon of 400 timesteps for our agents as a proxy for coordination
ability. For all DRL experiments, we report average rewards across 100 rollouts and standard errors
across 5 different seeds. We present quantitative results in these five layouts in the following table.
There is a large gap between our method and Seq2Seq in all layouts.
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