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Abstract: We focus on developing efficient and reliable policy optimization1

strategies for robot learning with real-world data. In recent years, policy gradi-2

ent methods have emerged as a promising paradigm for training control policies3

in simulation. However, these approaches often remain too data inefficient or4

numerically unreliable to train on real robotic hardware. In this paper, we in-5

troduce a novel policy gradient estimator and corresponding optimization frame-6

work, which systematically exploits a (possibly highly simplified) differentiable7

dynamics model derived from physical first-principles. The key innovation of our8

approach is its use of a low-level feedback controller—designed based upon only9

the simplified model—within the class of learned policies. Theoretical analysis10

provides insight into how the presence of this feedback controller addresses core11

algorithmic challenges for policy gradient methods, while our hardware experi-12

ments with a small car and quadruped demonstrate that our approach can learn13

precise control strategies reliably and with only minutes of real-world data.14

Figure 1: (Left) Schematic of the proposed policy structure, the crucial element of which is a low-level stabiliz-
ing controller which mitigates ill-conditioning in policy learning. (Middle) Still frames from a video (available
in the supplemental material) depicting the approximate paths taken by a car and quadruped during test-time.
(Overlaid) Top-down view of the car executing two laps of around a figure-8 before and after training.

1 Introduction15

Reliable, high-performance robot decision making revolves around the robot’s ability to learn a16

control policy which effectively leverages complex real-world dynamics over long time-horizons.17

This presents a challenge, as constructing a highly accurate physics-based model for the system18

using first-principles is often impractical. In recent years, reinforcement learning methods built19

around policy gradient estimators have emerged as a promising general paradigm for learning an20

effective policy using data collected from the system. However, in current practice these approaches21
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are often too data-inefficient or unreliable to train with real hardware data, leading many approaches22

to train on high-fidelity simulation environments [1, 2, 3]. However, there inevitably exists a gap23

between simulated and physical reality, leaving room to improve policy performance in the real24

world. In this paper, we demonstrate how to systematically leverage a physics-based model to yield25

highly efficient and reliable policy optimization techniques capable of learning with real-world data.26

Modern techniques for policy learning generally fall into two categories: model-free [4, 5, 6, 7]27

and model-based [8, 9, 10, 11, 12]. Model-free approaches learn a mapping from states to inputs28

directly from data. These approaches are fully general and can synthesize high-performing policies,29

but are extremely data-inefficient. Model-based approaches use the collected data to fit a predictive30

model to estimate how the system will behave at points not contained in the training set. While31

these approaches are more data-efficient, they inevitably introduce bias into policy optimization32

algorithms, which limits the precision and performance of the resulting control policy.33

However, due to the unstable nature of many robotic systems, both of these paradigms suffer from34

a more fundamental challenge: minute changes to the control policy can greatly impact perfor-35

mance over long time-horizons. This “exploding gradients” phenomenon leads the variance of36

policy gradient algorithms to grow exponentially and renders the underlying policy learning prob-37

lem ill-conditioned, making gradient-based methods slow to converge. Model-bias also compounds38

rapidly over time, limiting the effectiveness of otherwise-efficient model-based approaches.39

We demonstrate how to systematically exploit an approximate physics-based model to overcome40

these challenges, despite its inevitable inaccuracies. Concretely, the contributions of this paper are:41

• We introduce a novel framework which uses the approximate model to simultaneously42

design 1) a policy gradient estimator and 2) low-level tracking controllers which we then43

embed into the learned policy class. Using the model to construct the gradient estimator44

removes the need to learn about the real-world dynamics from scratch, while the low-level45

feedback controller prevents gradient estimation error from “exploding”.46

• Theoretical analysis and illustrative examples demonstrate how we overcome exponential47

dependencies in the variance, conditioning, and model-bias of policy gradient estimators.48

• We validate our theoretical findings with a variety of simulated and physical experiments,49

ultimately demonstrating our method’s data efficiency, run-time performance, and most50

importantly, ability to overcome substantial model mismatch.51

2 Related Work52

While a wide range of both model-based [4, 5, 6, 7] and model-free [8, 9, 10, 11, 12], reinforcement53

learning methods exist, the body of work most closely related to our own are works that seek to54

reduce model-bias for policy optimization algorithms. As prior works have noted [13, 14, 15], there55

are two sources of potential error when using a model. The first source of error can arise if the56

model is used to simulate or ‘hallucinate’ trajectories for the system which are then added to the57

data set [16, 17, 18, 19]. While this approach yields a larger training set, it also introduces bias58

as the trajectories generated by the model can rapidly diverge from the corresponding real world59

trajectory. To overcome this source of error, a number of works [13, 14, 15] have proposed policy60

gradient estimators which 1) collect real-world trajectories and 2) use the derivatives of a (possibly61

learned) model to propagate approximate gradient along these trajectories. Evaluating the gradient62

along real trajectories removes the first source of error. However, inaccuracies in the derivatives63

of the model lead to a second source of error and, as we demonstrate in Section 5, these errors64

can grow exponentially over long time horizons. We demonstrate how low-level feedback control65

can overcome this second source of error, while reducing variance and improving conditioning.66

Altogether, this enables us to use even highly inaccurate physics-based models to accelerate learning.67

68

3 Problem Formulation69

Our primary goal is to derive data-efficient, reliable learning algorithms capable of controlling real-70

world robotic systems, such as the scale car are quadrupedal robot depicted in Fig. 1.71
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First-Principles Dynamics Models: We assume access to a simplified, physics-based model of the72

environment dynamics of the form:73

xt+1 = F̂ (xt, ut), (1)
where xt ∈ X ⊂ Rn is the state, ut ∈ U ⊂ Rm is the input and the (potentially nonlinear)74

map F̂ : X × U → X determines how state evolves over discrete time steps t ∈ N. To make the75

modelling process and down-stream controller synthesis tractable, such models are necessarily built76

on simplifying assumptions. For example, the model we use to control the RC in Figure 1 neglects77

physical quantities such as the current velocity of the wheels. Nonetheless, such models capture the78

basic structure of the system, and are highly useful for designing effective control architectures.79

Reinforcement Learning on the Real-World System: Although many reinforcement learning80

frameworks model the environment as a stochastic process, to aid in our analysis, we will assume81

that the real-world dynamics evolve deterministically, according to (potentially nonlinear) relation:82

xt+1 = F (xt, ut). (2)

To control the real-world system we will optimize over a controller architecture of the form ut =83

πθ
t (xt) where πθ = {πθ

t }T−1
t=0 represent the overall policy, T < ∞ is the finite horizon for the task84

we wish to solve, θ ∈ Θ ⊆ Rp is the policy parameter, and each map πθ
t : X → U is assumed to be85

differentiable in both x and θ. Thus equipped, we pose the following policy optimization problem:86

max
θ∈Θ

J (θ) := Ex0∼D[JT (θ;x0)] where JT (θ;x0) :=

T∑
t=0

R(xt), (3)

where D is the probability density of the initial state x0 and R is the (differentiable) reward.87

4 Approximating the Policy Gradient with an Imprecise Dynamics Model88

In this section we demonstrate how to calculate the policy gradient by differentiating the real-world89

dynamics map F along trajectories generated by the current policy. We then introduce the estimator90

used in this paper, which replaces the derivatives of F with the derivatives of the first-principles91

model F̂ . We will initially focus on the gradient ∇JT (θ;x0) of the reward experienced when un-92

rolling the policy from a single initial conditon x0 ∈ X , and then discuss how to approximate the93

total policy gradient ∇J (θ) using a batch estimator. To ease notation, for each x0 ∈ X and θ ∈ θ94

we capture the resulting real-world trajectory generated by πθ via the sequence of maps defined by:95

ϕθ
t+1(x0) = F

(
ϕθ
t (x0), π

θ
t (ϕ

θ
t (x0))

)
, ϕθ

0(x0) = x0.

Structure of the True Policy Gradient: We first fix the initial condition x0 ∈ D and policy pa-96

rameter θ ∈ Θ, and investigate the structure of the true policy gradient ∇JT (θ;x0). We let {xt}Tt=097

and {ut}T−1
t=0 (with xt = ϕθ

t (x0) and ut = πθ
t (xt)) denote the corresponding sequences of states98

and inputs generated by the policy πθ. The policy gradient captures how changes to the controller99

parameters will affect the resulting trajectory and the accumulation of future rewards. We use the100

following shorthand to capture the closed-loop sensitivity of the state and input to changes in the101

policy parameters:102

∂xt

∂θ
:=

∂

∂θ
ϕθ
t (x0),

∂ut

∂θ
:=

∂

∂θ
πθ
t (ϕ

θ
t (x0)).

These terms depend on the derivatives of the dynamics, which we denote with:103

At =
∂

∂x
F (xt, ut), Bt =

∂

∂u
F (xt, ut), Kt =

∂

∂x
πθ
t (xt;x0). (4)

Proposition 1. The policy gradient is given by the following expression:104

∇JT (θ;x0) =

T∑
t=0

∇R(xt) ·
∂xt

∂θ
, where (5)

105 ∂xt

∂θ
=

t−1∑
t′=0

Φt,t′Bt′
∂πθ

t

∂θ
, Φt,t′ :=

t−1∏
s=t′+1

Acl
t , and Acl

t = At +BtKt.
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Algorithm 1 “Policy Learning with Approximate Physical Models?”
1: Initialize Time horizon T ∈ N, number of samples per update N ∈ N, number of iterations

K ∈ N, step sizes {αk}N−1
k=0 and initial policy parameters θ1 ∈ Θ

2: for iterations k = 1, 2, . . . ,K do
3: Sample N tasks {(xi

0)
N
i=1} ∼ DN

4: for For task i = 1, 2, . . . , N do
5: Unroll xi = {ϕθk

t (xi
0)}Tt=0 on (2) with πθk

t

6: Estimate ĝNT (θk) using (8) and trajectories {xi}Ni=1

7: Update θk+1 = θk + αkĝ
N
T (θ)

For proof of the result see the supplementary material. The first expression in 5 calculates the106

gradient in terms of the sensitivities ∂xt

∂θ , while the latter expressions demonstrate how to compute107

this term using the derivatives of the model and policy. In (5) the term Φt,t′Bt′ captures how a108

perturbation to the policy at time t′ and state xt′ propagates through the closed-loop dynamics to109

affect the future state at time t > t′. As we investigate below, when the robotic system is unstable110

these terms can grow exponentially large over long time horizons, leading to the exploding gradients111

phenomenon and the core algorithmic challenges we seek to overcome.112

Approximating the Policy Gradient Using the Model: We approximate the policy gradient113

∇θJT (θ;x0) using the approximate physics-based model F̂ in (1). Holding x0 ∈ X , θ ∈ Θ,114

and the resulting real-world trajectory {xt}Tt=0, {ut}T−1
t=0 fixed as above, we denote the derivatives115

of the model along this trajectory as:116

Ât =
∂

∂x
F̂ (xt, ut), B̂t =

∂

∂u
F (xt, ut). (6)

We can then construct an estimate for ∇JT (θ;x0) of the form:117

̂∇θJT (θ;x0) =

T∑
t=0

∇Rt(xt) ·
∂̂xt

∂θ
, where (7)

118 ∂̂xt

∂θ
=

t−1∑
t′=0

Φ̂t,t′B̂t′
∂πθ

t

∂θ
, Φ̂t,t′ :=

t−1∏
s=t′+1

Âcl
s , and Âcl

t = Ât + B̂tKt.

Remark 1. Note that this estimator can be evaluated by 1) recording the real-world trajectory which119

arises when policy πθ is applied starting from initial state x0, and then 2) using the derivatives of the120

model F̂ to approximate the derivatives of the real-world system along that trajectory. Effectively,121

the only approximation here is of the form Φt,t′Bt′ ≈ Φ̂t,t′B̂t′ when calculating the estimate of the122

system sensitivity ∂xt

∂θ ≈ ∂̂xt

∂θ . In Sections 5 and 6, we study what causes this approximation to break123

down over long time horizons, and how properly-structured feedback controllers can help.124

Remark 2. While the policy gradient approximation given by Eq. (7) will prove convenient for125

analysis, this formula requires numerous ‘forwards passes’ to propagate derivatives forwards in126

time along the trajectory. As we demonstrate in the supplementary material, in practice this approx-127

imation can be computed more efficiently using a single ‘backwards pass’ along the trajectory.128

Batch Estimation: To approximate the gradient of the overall objective ∇J (θ), we draw N initial129

conditions {xi
0}Ni=1 independently from the initial state distribution D, compute each approximate130

gradient ̂∇JT (θ;xi
0) as in (7), and finally compute:131

∇J (θ) ≈ ĝNT (θ; {xi
0}Tt=0) :=

1

N

N∑
i=1

̂∇JT (θ;xi
0). (8)

We use this estimator in our overall policy gradient algorithm, which is outlined in Algorithm 1.132

5 Exploding Gradients: Key Challenges for Unstable Robotic Systems133

We now dig deeper into the structure of the policy gradient and our model-based approximation. We134

repeatedly appeal to the following scalar linear system to illustrate how key challenges arise:135
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Running Example: Consider the case with true and modeled dynamics given respectively by:136

xt+1 = F (xt, ut) = axt + but and xt+1 = F̂ (xt, ut) = âxt + b̂ut, (9)

where a, â, b, b̂ > 0 and xt, ut ∈ R. Suppose we optimize over policies of the form ut = πθ
t (xt) =137

ūt where θ = (ū0, ū1, . . . , ūT−1) = RT are the policy parameters. In this case, the policy param-138

eters {ūt}T−1
t=0 specify a sequence of open-loop control inputs applied to the system. Retaining the139

conventions developed above, along every choice of {ūt}T−1
t=0 and the resulting trajectory {xt}Tt=0140

we have At = a, Bt = b, Ât = â, B̂t = b̂ and Kt = 0, and thus we have Φt,t′ = at−t′−1 and141

Φ̂t,t′ = ât−t′−1. When a, â > 1, the system (and model) are passively unstable [20, Chapter 5], and142

small changes to the policy compound over time, as captured by and ∥Φt,t′∥ and ∥Φ̂t,t′∥ growing143

exponentially with the difference t− t′, along with the formula for the gradients (5).144

5.1 Exploding Model-Bias145

Recall that the aforementioned estimator for ∇JT (θ;x0) only introduces error in the term ∂xt

∂θ ≈ ∂̂xt

∂θ146

and in particular Φt,t′Bt′ ≈ Φ̂t,t′B̂t′ along the resulting trajectory. We will seek to understand how147

the point-wise errors in the derivatives of the model ∆Acl
t := Âcl

t − Acl
t and ∆Bt := B̂t − Bt148

propagate over time. Towards this end we manipulate the following difference:149

Φ̂t,t′B̂t′ − Φt,t′Bt′ = Φt,t′B̂t′ +∆Φt,t′B̂t′ − Φt,t′Bt′ = Φt,t′∆Bt′ +∆Φt,t′B̂t′ (10)

= Φt,t′∆Bt′ +
( t−1∑
s=t′+1

Φt,s∆Acl
s Φ̂s−1,t′

)
B̂t′ ,

The last equality in (10) provides a clear picture of how inaccuracies in the derivatives of the model150

are propagated over time. For example, when approximating Φ̂t,t′B̂t,t′ ≈ Φt,t′Bt′ the error ∆Bt′ is151

magnified by Φt,t′ , while the error ∆Acl
t′+1 is magnified by Φt,t′+1.152

Running Example: Continuing with the scalar example, in this case we have ∆Bt = b̂ − b and153

∆Acl
t = â−a. Moreover, using the preceding calculations, we have Φ̂t,t′B̂t′ −Φt,t′Bt′ = at−t′(b̂−154

b) +
∑t−1

s=t′+1 a
t−t′−1b(â − a). Thus, when a, â > 1 and the system is unstable, the errors in155

derivatives of the model are magnified exponentially over long time horizons when computing the156

sensitivity estimate ∂xt

∂θ ≈ ∂̂xt

∂θ and ultimately the gradient estimate ∇JT (θ;x0) ≈ ̂∇JT (θ;x0).157

5.2 Exploding Variance158

We next illustrate how unstable dynamics can lead our batch estimator ĝNT to explode over long time159

horizons T unless a large number of samples N are used.160

Running Example: Consider the case where r(xt) = − 1
2∥xt∥22 and the initial state distribution is161

D uniform over the interval [−1, 1]. Consider the case where we apply θ = (ū1, . . . , ūT−1) =162

(0, . . . , 0) so that no control effort is applied. In this case, for every initial condition x0, the163

resulting state trajectory is given by xt = atx0, and thus our estimate for the gradient is164

∇JT (θ;x0) =
∑T−1

t=0 (atx0) ·
∑t−1

t′=0 a
t−tb. Moreover, by inspection we see that the average165

of the estimator is E[ĝNT (θ; {x0}Ni=1)] = E
[∑N

i=1 ĴT (θ;x0)] = 0 and thus the variance of166

the estimator is 1
NE[∥ĝNT (θ; {x0}Ni=1) − E

[∑N
i=1 ĴT (θ;x0)]∥2] = 1

NE[∥ĝNT (θ; {x0}Ni=1)∥2] =167

1
N ∥

∑T−1
t=0 (atx0) ·

∑t−1
t′=0 a

t−t′b∥2, a quantity which grows exponentially with the horizon T > 0.168

5.3 Ill-Conditioned Policy Optimization Problems:169

For general non-convex optimization landscapes, such as the ones encountered in the general non-170

linear policy optimization problems we consider here, convergence results for stoachastic gradient171

descent approximate stationary point, namely, a point θ ∈ Θ where ∥∇J (θ)∥ ≤ ϵ for some desired172

tolerance ϵ > 0 [21]. Ill-conditioning depends on the Hessian of the objective ∇2JT (θ). In partic-173

ular, when the maximum eigenvalue of the Hessian is large we must take small step-sizes {αk}Kk=0174
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in Algorithm 1 to maintain algorithmic stability [21], slowing the convergence of the method. Here,175

we seek to understand how unstable dynamics lead to this pathology in our setting.176

Running Example: Consider the case where the simple reward r(xt) = − 1
2∥xt∥22 is ap-177

plied to our simple scalar system. Using the formula for the Hessian above, for every initial178

condition x0 and choice of policy parameters θ = (ū1, . . . , ūT−1) we have ∇2JT (θ;x0) =179

diag(∆1,∆2, . . . ,∆T−1), where diag(·) denotes a diagonal matrix with the given entries along180

the diagonal, and ∆t =
∑T

s=t+1 a
s−tb. Thus, we observe that in this case the largest eigenvalue of181

the Hessian grows exponentially with the time horizon in this case.182

6 Embedding Low-Level Feedback into the Policy Class183

We now demonstrate how we can overcome the these pathologies by using the model to design184

stabilizing low-level feedback controllers which are then embedded into the policy class.185

Running Example: Let us again consider the simple scalar system and model we have studied186

thusfar, but now suppose we use the model to design a proportional tracking controller of the form187

ut = k(x̄t − xt), where {x̄t}Tt=0 represents a desired trajectory we wish to track and k > 0 is the188

feedback gain. We then embed this controller into the overall policy class by choosing the parameters189

to be θ = (x̄0, x̄1, . . . , x̄t) so that ut = πθ
t (xt) = k(x̄t − xt). Namely, here the parameters of the190

controller specify the desired trajectory the low-level controller is tasked with tracking. In this case,191

along each trajectory of the system we will now have Acl
t = a − bk, Âcl

t = â − b̂k, Bt = b192

and B̂t = b. If the gain k > 0 is chosen such that |a − bk| < 1 and |â − b̂k| < 1, then the193

transition matrices Φ̂t,t′ = (Âcl
t )

t−t′−1 and Φt,t′ = (Acl
t )

t−t′−1 will both decay exponentially with194

the difference t− t′. Thus, by optimizing through a low-level tracking controller designed with the195

model we have reduced the sensitivity of trajectories to changes in the controller parameters.196

Remark 3. In practice, we may select a control architecture as in Fig. 1 where our parameters are197

those of a neural network which corrects a desired trajectory and low-level controller. The natural198

generalization of the damping behavior displayed by the proportional controller above is that the199

low-level controller is incrementally stabilizing, which means that for every initial condition x0200

and θ ∈ Θ we will have ∥Φt,t′∥ ≤ Mαt−t′ . There are many systematic techniques for synthesizing201

incrementally stabilizing controllers using a model from the model-based control literature [20, 22].202

We are now ready to state our main result, which demonstrates the benefits using the model to design203

the policy gradient estimator and embedded feedback controller:204

Theorem 1. Assume that 1) the first and second partial derivatives of Rt, πθ
t , F and F̂ are bounded,205

2) there exists a constant ∆ > 0 such that for each x0 ∈ X and u ∈ U the error in the model206

derivatives are bounded by max{∥ ∂
∂xF (x, u) − ∂

∂x F̂ (x, u)∥, ∥ ∂
∂uF (x, u) − ∂

∂u F̂ (x, u)∥} < ∆207

and 3) the policy class {πθ
t }θ∈Θ has been designed such that exists constants M,α > 0 such208

that for each x0 ∈ X , θ ∈ Θ, and t > t′ we have: max{∥Φt,t′∥, ∥Φ̂t,t′∥} < Mαt−t. Letting209

ḡT (θ) = E[ĝNT (θ; {xi
0}Ni=1)] denote the mean of our gradient estimator, there exists C,W,K > 0210

such that we may bound the bias and variance of our policy gradient estimator as follows:211

∥∇JT (θ)− ḡT (θ)∥ ≤

CT 2αT∆ if α > 1

CT 2∆ if α = 1

CT∆ if α < 1,

E
[
∥ĝNT (θ)− ḡT (θ)∥2

]
≤


WT4α2T

N
if α > 1

WT4

N
if α = 1

WT2

N
if α < 1.

Moreover, the conditioning of the underlying policy optimization problem is characterized via:212

∥∇2JT (θ)∥2 ≤

KT 4α3T if α > 1

KT 4 if α = 1

KT if α < 1.

Proof of the result can be found in the supplementary material. The result formalizes the intuition213

built with our example: when the system is passively unstable (and we can have α > 1), the core al-214

gorithmic challenges introduced above can arise. However, embedding a (incrementally stabilizing)215

low-level tracking controller into the policy class can overcome these pathologies (α ≤ 1).216
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(a) Without model mismatch (b) With model mismatch

Figure 2: Training curves for the double pendulum experiment. Embedding low-level feedback results in better
performance both with and without model mismatch.

7 Experimental Validation217

We implement Algorithm 1 in Julia [23] and interface with hardware in C++ using the Robot Operat-218

ing System (ROS) [24] framework. Per Section 6, for each example we consider below we construct219

our policy (Fig. 1) around a low-level controller designed using the model track reference trajec-220

tories. The neural network outputs 1) the parameters of a spline to define the reference trajectory221

and 2) feedback gains used by the low-level controller. The neural network is a 64× 64 multilayer222

perceptron with tanh(·) activations that takes in task, time, and/or state feedback information, and223

is constructed to provide offsets to nominal spine parameters and feedback gains.224

The Benefit of Low-Level Feedback: We begin by comparing the policy class of Fig. 1 against a225

policy class in which a neural network directly determines open-loop control inputs (as in Section 5,226

omitting a low-level stabilizing controller). We use the double pendulum model from [25], and227

the task requires moving the end effector to a desired location, using a reward function based on228

Euclidean distance. First experiment: We provide the true dynamics to both approaches to observe229

the variance and conditioning, independent of model-mismatch. Each policy was trained using a230

batch size of 5, and training curves for the best learning rate for each approach are depicted in231

Fig. 2a, which supports the our main theoretical findings. Second Experiment: Next we feed the232

algorithm in Algorithm 1 an approximate model that contains pendulum masses that are 50% of233

the actual values. As shown in Fig. 2b, the unstable dynamics lead to significant model bias which234

limited the asymptotic performance of the naive controller without embedded feedback controller.235

NVIDIA JetRacer: Next, we test our approach on an NVIDIA JetRacer 1/10th scale high-speed car236

using the following simplified dynamics model:237 xt+1

yt+1

vt+1

ϕt+1

 =

xt + vt cos (ϕt)∆t
yt + vt sin (ϕt)∆t

vt + at∆t
ϕt + vtωt∆t

 , (11)

where ∆t > 0 is the discrete time-step, (xt, yt, ϕt) ∈ SE(2) are the Cartesian coordinates and238

heading angle of the car, vt > 0 is the forward velocity of the car in its local frame, and (at, ωt) ∈239

U = [0, 1] × [−1, 1] are the control inputs where at is the throttle input percentage and ωt is the240

steering position of the wheels. We note that this model makes several important simplifications:241

(i) drag is significant on the actual car, but is missing from (11); (ii) proper scaling of the control242

inputs (at, ωt) has been omitted; (iii) the actual car has noticeable steering bias, and does not follow243

a straight line when ωt = 0; and (iv) physical quantities such as the current speed of the tires or244

time-delays in the motor are ignored.245

The task consists of tracking a figure-8 made up of two circles, 3 meters in diameter, with a nominal246

lap time of 5.5 s. We implement a backstepping-based tracking controller [20, Ch. 6] for low-247

level control. As shown in Fig. 1 this controller alone does not ensure accurate tracking, due to248

inaccuracies in the model used to design it. We select a reward function that is a weighted sum of249

distance to the track and difference from nominal velocity. The policy was trained with 2.2min. In250
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Figure 3: (Left) Training curves for different algorithms applied to a high-fidelity simulation model of an RC
car. (Right) One lap of the quadruped around the figure-8 task with corrected way points from neural network.

Fig. 1, we see a clear improvement in tracking performance and in Appendix B we further investigate251

the outputs of the neural network.252

Next, we use a high fidelity simulation environment of the car to benchmark our approach against253

state-of-the-art reinforcement learning algorithms in Figure 3, in each case optimizing over the feed-254

back control architecture described above. In particular, we compare to the model-based approach255

MBPO [16] and the model-free approaches SAC [8] and PPO [9]. Each of these approaches learns256

about the dynamics of the system from scratch; thus, it is unsurprising that our approach converges257

more rapidly as it exploits known physics represented by the model. The use of feedback enables258

us to take this approach and obtain a high-performing controller, even though the model we use is259

highly inaccurate, overcoming model-bias.260

Go1 Quadrupedal Robot: We also replicate the figure-8 tracking experiment on a Unitree Go1 Edu261

quadrupedal robot to demonstrate the effectiveness of our approach when using a very highly sim-262

plified model. Feedback control is hierarchical in this case, with individual joint torques controlled263

at the lower level, and forward velocity and turn rate specified at the upper level. We provide these264

commands as outputs from a backstepping-based upon the following simplified dynamical model:265 xt+1

yt+1

ϕt+1

 =

xt + vt cos (ϕt)∆t
yt + vt sin (ϕt)∆t

ϕt + ωt∆t

 , (12)

with equivalent variable definitions as for the car in (11). Setting a nominal lap time of 37.7 s,266

we trained the policy using 5.9min of real-world data over 7 iterations, each 50.9 s long. Even267

though we used a highly simplified model for the dynamics, we again see a clear improvement in268

performance after training (cf. Fig. 3).269

8 Limitations270

Our approach successfully learns high-performance control policies using only limited data, ac-271

quired on physical systems. This is enabled when we are able to design a stabilizing low-level272

feedback controller using the model. However, there are several key limitations. First, for situ-273

ations such as contact rich manipulation, it may not be clear how to design a controller with the274

needed properties (incremental stability). In the future, we hope to overcome this by optimizing275

over more complex hierarchical control stacks. Second, our approach can fail if the model discrep-276

ancy is too large such that the initial model-based controller does not reduce the sensitivity of the277

system. Future work may address this limitations by incorporating techniques for learning stabiliz-278

ing controllers (e.g., the Lyapunov methods of [26, 27]). Additionally, while our method is highly279

sample-efficient, it does not take advantage of many powerful techniques from the reinforcement280

learning literature, such as value function learning and off policy training, leaving many directions281

for algorithmic advances.282
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A Missing Proofs349

This appendix contains proofs of claims that were omitted in the main document and several sup-350

portive Lemmas. Section A.1 provides the derivation for Proposition 1, Section A.2 states and351

formally derives the reverse-time representation of the gradient, while Section A.3 builds on this352

calculation to derive the desired representation for the hessian. Finally, Section A.5 contains the353

auxiliary Lemmas.354

A.1 Proof of Proposition 1355

The expression for ∇JT (x0; θ) follows directly from the chain rule. To obtain the expression for356
∂xt

∂θ we differentiate the dynamics xt+1 = F (xt, ut) to yield:357

∂xt+1

∂θ
=

∂

∂x
F (xt, ut) ·

∂xt

∂θ
+

∂

∂u
F (xt, ut) ·

∂ut

∂θ

= Acl
t

∂xt

∂θ
+Bt

∂πθ
t

∂θ
,

where the second equality is obtained by noting that:358

∂ut

∂θ
=

∂πθ
t

∂θ
+

∂πθ
t

∂x
· ∂xt

∂θ
=

∂πθ
t

∂θ
+Kt ·

∂xt

∂θ
.

The desired expression is then obtained by unrolling the recursion and noting that ∂xt

∂θ = 0.359

A.2 Efficient Backwards Pass for Policy Gradient Computation360

While the form for the policy gradient (5) and our model-based approximation in (7) will prove361

convenient for analysis, computing the many approximate sensitivity terms ∂xt

∂θ —and in particular362

the Φt,t′ terms—is highly complex and requires many forwards passes along the trajectory. In363

practice, we can more efficiently compute the approximate gradient as follows:364

∇JT (θ;x0) =

T−1∑
t=0

(
pt+1Bt +∇Rt(xt)

)
· ∂π

θ
t

∂θ
, where (13)

365

pt = pt+1(Ât + B̂tKt) +∇Rt(xt) and pT = ∇RT (xt). (14)

Here, the recursion with the variables pt ∈ R1×n performs ‘back propagation through time’ along366

the real-world trajectory using the derivatives of the model.367

Proof. As before, let {xt}Tt=0 and {ut}T−1
t=0 denote the state trajectory that results from applying the368

policy πθ from x0.369

Permitting a slight abuse of notation, we can re-write the cost by moving the dynamics constraints370

into the cost and weighting them with Lagrange multipliers:371

J(θ;x0) =

T−1∑
i=0

Rt(xt) + pTt+1

(
xt+1 − F (xt, π

t
θ(xt))

)
(15)

Define the Hamiltonian372

Ht(xt, pt+1, θ) = pTt+1F (xt, π
t
θ(xt)) +Rt(xt), (16)

and note that we may then re-write the cost as:373

J(θ;x0) = RT (xT )⟨pT , xT ⟩+ ⟨p0, x0⟩+
T−1∑
t=0

pTt xt −Ht(xt, pt+1, θ) (17)

To reduce clutter below we will frequently omit the arguments from Ht, since it is clear that the374

map is evaluated at (xt, pt+1, θ). Let δθ ∈ Rp be a variation on the policy parameters and let375
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δxt =
∂ϕt

θ

∂θ δθ denote the corresponding first variation of the state. To first order, the change in the376

cost corresponding to these variations is:377

δJ |θ(δθ) = ⟨∇QT (xT ) + pT , δxT ⟩+
T−1∑
t=0

⟨pt −∇xHt, δxt⟩ − ⟨∇θHt, δθ⟩. (18)

To simplify the expression, let us make the following choices for the multipliers:378

pT = ∇RT (xT ) (19)
379

pTt = ∇xHt(xt, pt+1, θ) (20)

= pTt+1

∂

∂x
F (x, πt

θ(x)) +∇Rt(xt) (21)

= pTt+1

∂

∂x
At +∇Rt(xt) (22)

where we have applied the short-hand from developed in Section 3 for the particular task. Plugging380

this choice for the multipliers into (18) causes the δxt terms to vanish and yields:381

δJ |θ(δθ) =
t−1∑
t=0

⟨∇θHt, δθ⟩ (23)

= ⟨pTt+1

∂

∂u
F (x, πt

θ)
∂πt

θ

∂θ
+∇Rt(π

T
θ )

∂πt
θ

∂θ
, δθ⟩ (24)

=

t−1∑
t=0

⟨pTt+1Bt + rt,
∂πt

θ

∂θ
δθ⟩ (25)

Since this calculation holds for arbitrary δθ this demonstrates that the gradient of the objective is382

given by:383

∇θJ(θ, x0) =

t−1∑
t=0

⟨pTt+1Bt + rt,
∂πt

θ

∂θ
⟩. (26)

384

A.3 Calculating the Hessian385

To calculate the Hessian of the objective be continue the Lagrange multiplier approach discussed386

above. Now let δ2xt denote the second order variation in the state with respect to the perturbation387

δθ. By collecting second order terms in (17) the the attendant second-order variation to the cost is388

given by:389

δ2J |θ(δθ) = ⟨δxT
t ∇2RT (xT ), δxt⟩+ ⟨∇RT (xT ) + pT , δ

2xT ⟩ (27)

+

T−1∑
t=0

(
⟨pt −∇xHt, δ

2xt⟩+ ⟨δxT
t ∇xxHt(xt), δxt⟩

+ 2⟨δxt∇xθHt, δθ⟩+ ⟨δθT∇θθHt, δθ⟩
)

(28)

By using the choice of costate introduced above, this time the second order state variations δ2xt390

vanish from this expression so that we arrive at:391

δ2J |θ(δθ) = ⟨δxT
t ∇2QT (xT ), δxt⟩ (29)

+

T−1∑
t=0

⟨δxT
t ∇xxHt(xt), δxt⟩+ 2⟨δxt∇xθHt, δθ⟩+ ⟨δθT∇θθHt, δθ⟩,

where we recall that we have392

δxt =
∂ϕt

θ

∂θ
:=

t−1∑
t′=0

ϕt,t′Bt′
∂πt′

θ

∂θ
. (30)
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A.4 Restatement of Main Result and Proof393

Theorem 2. Assume that the first and second partial derivatives of Rt, πθ
t , F and F̂ are bounded.394

Further assume that there exists a constant ∆ > 0 such that for each x0 ∈ X and u ∈ U the error395

in the model derivatives are bounded by max{∥ ∂
∂xF (x, u)∥, ∥ ∂

∂uF (x, u)∥} < ∆. Finally, assume396

that the policy class ϕθ
t has been designed such that exists constants M,α > 0 such that for each397

x0 ∈ X , θ ∈ Θ, and t > t′ we have: max{∥Φt,t′∥, ∥Φ̂t,t′∥} < Mαt−t. Then we may bound the398

bias and variance of our policy gradient estimator as follows:399

∥∇JT (θ)− ḡT (θ)∥ ≤

CT 2αT∆ if α > 1

CT 2∆ if α = 1

CT∆ if α < 1,

E
[
∥ĝNT (θ)− ḡT (θ)∥2

]
≤


WT4α2T

N
if α > 1

WT4

N
if α = 1

WT2

N
if α < 1.

Moreover, the conditioning of the underlying policy optimization problem is characterized via:400

∥∇2JT (θ)∥2 ≤

KT 4α3T if α > 1

KT 4 if α = 1

KT if α < 1.

We first bound the bias of the gradient:401

∥∇JT (θ)− ḡT (θ)∥ = ∥E[∇JT (θ;x0)− ĝT (θ;x0)]∥
≤ E[∥∇JT (θ;x0)− ĝT (θ;x0)∥]
≤ sup ∥∇JT (θ;x0)− ĝT (θ;x0)∥,

where the preceding expectations are over x0 ∼ D. The desired bound on the bias directly follows402

by applying the bound on gradient errors from Lemma 2 below.403

Next, to bound the variance estimate note that:404

E[∥ĝNT (θ)− ḡT (θ)∥2] = 1
N2

∑N
i=1 E[∥ĝT (θ;x0)− ḡT (θ)∥2]

≤ 1
N sup ∥ĝT (θ;x0)− ḡT (θ)∥2

≤ 4
N sup ∥ĝT (θ;x0)∥2,

where the first expectation is over (xi
0)

N
i=1 ∼ DN , the second is with respect (x0) ∼ D. The desired405

bound on the variance follows via a direct application of Lemma ?? in the Appendix which provides406

a uniform upper-bound on the gradient estimates.407

imilar to before we have:408

∥∇2JT (θ)∥ ≤ E(x0)∼D[∥∇2JT (θ;x0)∥]
≤ sup

(x0)∈D

∥∇2JT (θ;x0)∥.

The desired bound follows from Lemma 3 in the Appendix, which uniformly bounds the task-409

specific Hessians.410

A.5 Supportive Lemmas411

Lemma 1. Let the Assumptions of Theorem 2 hold. Then there exists β > 0 independent of the412

parameters T ∈ N, M and α ∈ R such that for each x0 ∈ D and θ ∈ Θ we have:413

∥∇θJT (θ;x0)∥ ≤

βT 2αT if α > 1

βT 2 if α = 1

βT if α < 1.

Proof. Let the constant L > 0 be large enough so that it upper-bounds the norm of the first and414

second partial derivatives of Rt,πθ
t , F and F̂ . Fix a specific task x0 and set of policy parameters θ415

and let At, Bt,Kt be defined along the corresponding trajectory as usual.416
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Recall from Section 3 that417

∇JT (θ;x0) =

T−1∑
t=0

(
pt+1Bt +∇R(xt)

)
· ∂π

θ
t

∂θ
,

where the co-state pt ∈ R1×n is given by:418

pt =

T−1∑
s=t+1

∇R(xt) · Φs,t,

by inspection. Thus, we may upper-bound the growth of the co-state as follows:419

∥pt∥ ≤ LMαT−t +

T−1∑
s=t+1

(L+ L2)Mαs−t (31)

By carrying out the summation, we observe that there exists C1 > 0 sufficiently large such that420

∥pt∥ ≤


C1Tα

T if α > 1

C1T if α = 1

C1 if α < 1,

(32)

where we have used the fact that
∑T−1

s=t+1 Mαs−t < M 1
1−α for the third case. We can bound the421

overall gradient as follows:422

∥∇JT (θ;x0)∥ =

T−1∑
t=0

L
(
L∥pt+1∥+ L

)
, (33)

which when combined with the bound on the costate above demonstrates the desired result for some423

constant β > 0 sufficiently large to cover all choices of x0.424

Lemma 2. Let the Assumptions of Theorem 2 hold. Then there exists C > 0 independent of T ∈ N,425

M,∆A,∆B > 0 and α ∈ R such that for each x0 ∈ D and θ ∈ Θ we have:426

∥∇θJT (θ;x0)− ĝT (θ;x0)∥ ≤


CT 3αT∆ if α > 1

CT 3∆ if α = 1

CT 2∆ if α < 1,

where ∆ = min{∆A,∆B}.427

Proof. Let the constant L > 0 be large enough so that it upper-bounds the norm of the first and428

second partial derivatives of Rt, πθ
t , F and F̂ . Fix a specific task x0 and set of policy parameters θ429

and let At, Bt,Kt as usual.430

Using equations (7), (??) and (10) we obtain:431

∥∇JT (θ;x0)− ĝT (θ, x0)∥ = ∥
T∑

t=1

∇R(xt) ·
t∑

t′=0

(Φt,t′Bt′ − Φ̂t,t′B̂t′)∥

≤
T∑

t=1

∥∇R(xt)∥ ·
t∑

t′=0

∥Φt,t′∆Bt′ +
( t−1∑
s=t′+1

Φt,s∆Acl
s Φ̂s−1,t′

)
B̂t′∥

≤
T∑

t=1

L

t∑
t′=0

(
Mαt−t′∆+

( t−1∑
s=t′+1

Mαt−s∆Mαs−t′
)
L
)
.

Note that the preceding analysis holds for any choice of θ and x0. Thus, noting that

t−1∑
s=t′+1

Mαt−s∆Mαs−t′ < M2 1

1− α
∆
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in the case where α < 1, leveraging the preceding inequality we can easily conclude that there exists432

C > 0 sufficiently large such that for each θ and x0 we have:433

∥∇θJT (θ;x0)− ĝT (θ;x0)∥ ≤


CT 3αT∆ if α > 1

CT 3∆ if α = 1

CT 2∆ if α < 1,

which demonstrates the desired result.434

Lemma 3. Let the Assumptions of Theorem 2 hold. Then there exists K > 0 independent of T ∈ N,435

M and α ∈ R such that for each x0 ∈ D and θ ∈ Θ we have:436

∥∇2
θJT (θ;x0)∥ ≤


KT 4α3T if α > 1

KT 4 if α = 0

KT if α < 1.

Proof. Let the constant L > 0 be large enough so that it upper-bounds the norm of the first and437

second partial derivatives of Rt, πθ
t , F and F̂ . Fix a specific x0 and set of policy parameters θ.438

Recall from that the Hessian can be calculated as follows:439

∇2JT (θ;x0) =
(∂xT

∂θ

)T · ∇2RT (xT ) ·
∂xT

∂θ

+

T−1∑
t=0

(∂xt

∂θ

)T · ∂2

∂x2
Ht(xt, pt, θ) ·

∂xt

∂θ

+ 2

T−1∑
t=0

(∂xt

∂θ

)T · ∂2

∂x∂θ
Ht(xt, pt+1, θ)

+

T−1∑
t=0

∂2

∂θ2
Ht(xt, pt+1, θ).

Using the assumptions of the theorem, we observe that there exists a constant C1 > 0 sufficiently440

large such that441

max{ ∂2

∂x2
Ht(xt, pt, θ),

∂2

∂x∂θ
Ht(xt, pt+1, θ),

∂2

∂x∂θ
Ht(xt, pt+1, θ)} ≤ C1(∥pt+1∥+ 1) (34)

and442

∥∇2JT (θ;x0)∥ = L∥∂xT

∂θ
∥2 +

T−1∑
t=0

C1(∥pt+1∥+ 1)
[
∥∂xT

∂θ
∥2 + ∥∂xt

∂θ
∥+ 1

]
(35)

holds for all choices of x0 and θ.443

Using our preceding analysis, we can bound the derivative as the state trajectory as follows:444

∥∂xt

∂θ
∥ = ∥

t−1∑
t′=0

Φt,t′Bt′
∂πθ

t

∂θ
∥

≤
t−1∑
t′=0

L2Mαt−t′

This demonstrates that there exists C2 > 0 sufficiently large such that:445

∥∂xt

∂θ
∥ ≤


C2Tα

T if α > 1

C2T if α = 1

C2 if α < 1,

(36)

where in the case where α < 1 we have used the fact that
∑t−1

t′=0 Mαt−t′ < M 1
1−α . Combining the446

previous bounds (34), (32) and (35) then demonstrates the desired result.447
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Figure 4: One lap of the car around the figure-8 task before/after training and neural network outputs.

B NVIDIA JetRacer Additional Experiment Details448

We now examine the neural the neural network outputs during a single execution of the figure-eight449

task for the car experiment, depicted in Fig. 4. We see that the neural network issues corrections on450

the outside of the track, which is reasonable considering the untrained car was tracking the inside451

of the track. We note the following controller gains adjustments from the neural network: (i) an452

overall negative value selected for the feedforward steering gain ∆Kω counteracts the car’s inherent453

steering bias in the positive steering direction; (ii) lower values of forward velocity gain ∆Kv were454

selected when crossing the origin, allowing the car to more closely track at this critical point; and455

(iii) elevated values of ∆Kv are selected to speed up the car for the rest of the track, increasing456

reward.457
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