
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNMASKING TREES FOR TABULAR DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite much work on advanced deep learning and generative modeling techniques
for tabular data generation and imputation, traditional methods have continued
to win on imputation benchmarks. We herein present UnmaskingTrees, a sim-
ple method for tabular imputation (and generation) employing gradient-boosted
decision trees which are used to incrementally unmask individual features. This
approach offers state-of-the-art performance on imputation, and on generation
given training data with missingness; and it has competitive performance on vanilla
generation. To solve the conditional generation subproblem, we propose a tabular
probabilistic prediction method, BaltoBot, which fits a balanced tree of boosted
tree classifiers. Unlike older methods, it requires no parametric assumption on the
conditional distribution, accommodating features with multimodal distributions;
unlike newer diffusion methods, it offers fast sampling, closed-form density esti-
mation, and flexible handling of discrete variables. We finally consider our two
approaches as meta-algorithms, demonstrating in-context learning-based generative
modeling with TabPFN.

1 INTRODUCTION

Given a tabular dataset, it is frequently desirable to impute missing values within that dataset, and
to generate new synthetic examples. On data generation, recent work (Jolicoeur-Martineau et al.,
2024b) (ForestDiffusion) has shown state-of-the-art results on data generation using gradient-boosted
trees (Chen & Guestrin, 2016) trained on diffusion or flow-matching objectives, outperforming deep
learning-based approaches. However, this approach tended to struggle on tabular imputation tasks,
outperformed by MissForest (Stekhoven & Bühlmann, 2012), an older multiple imputation approach
based on random forests (Breiman, 2001).

We address this shortfall by training gradient-boosted trees to autoregressively unmask features in
random order, via permutation language modeling (Yang, 2019). This autoregressive approach, which
we dub UnmaskingTrees, naturally performs conditional generation (i.e. imputation): we simply fill
in and condition on observed values, autoregressively generating the remaining missing values. This
contrasts with tabular diffusion modeling, for which the RePaint inpainting algorithm (Lugmayr et al.,
2022) is employed to mediocre effect (Jolicoeur-Martineau et al., 2024b). Because the predictor for a
given feature must condition on varying subsets of the other features, the ability of gradient-boosted
trees to handle missing features makes them a natural choice for autoregressive modeling. Hence,
we maintain the tree-based approach of Jolicoeur-Martineau et al. (2024b), while replacing their
tree-based regressors with our novel tree-based probabilistic predictors, which we turn to next.

While mean-estimating regression models are satisfactory for diffusion, for autoregression we must
inject noise, and hence must estimate the entire conditional distribution of each feature. We therefore
revisit the long-studied problem of (tabular) probabilistic prediction (Le et al., 2005; Meinshausen &
Ridgeway, 2006). Because the conditional distribution is possibly multi-modal, parametric approaches
such as XGBoostLSS (März, 2019), NGBoost (Duan et al., 2020), and PGBM (Sprangers et al.,
2021) are poor choices for our setting. Meanwhile, quantization of a continuous variable can model
its multi-modality, but at the cost of destroying either low-resolution or high-resolution information.
A diffusion-based method, Treeffuser Beltran-Velez et al. (2024), was recently proposed to address
these problems. However, as a diffusion method, it suffers from slow sampling and is unable to
provide closed-form density estimates; furthermore, Treeffuser does not naturally model discrete
outcomes. To address these problems, we propose BaltoBot, a balanced tree of boosted trees. For
each individual variable, we recursively divide its output space with the kernel density integral (KDI)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

quantizer (McCarter, 2023) into a “meta-tree” of binary classifiers, which for us are gradient-boosted
trees. This allows us to efficiently generate samples and estimate densities, because each sample
follows only one path from root to leaf of the meta-tree. Performing regression with hierarchical
classification proved successful in computer vision object bounding box prediction (Li et al., 2020),
but has been surprisingly underexplored in tabular ML and in generative modeling.

Our two methods are in fact meta-algorithms that, in combination, can create a generative model out
of any probabilistic binary classifier. To demonstrate this flexibility, we swap out XGBoost (Chen &
Guestrin, 2016) for TabPFN (Hollmann et al., 2022). TabPFN is a deep learning model pretrained
to perform in-context learning for tabular classification. While it has state-of-the-art classification
benchmark performance (McElfresh et al., 2024), it currently does not perform regression tasks, nor
does it inherently perform generative modeling (Ma et al., 2024). Constructing a generative model
out of TabPFN (Hollmann et al., 2022) was first proposed in TabPFGen (Ma et al., 2024), which
approximates the posterior from TabPFN-provided likelihoods by iteratively applying stochastic
gradient Langevin dynamics (Welling & Teh, 2011). But unlike the previous work, ours requires only
a few TabPFN forward-passes for each sample rather than many iterative data updates.

We showcase UnmaskingTrees on two tabular case studies, and on the benchmark of 27 tabular
datasets presented by Jolicoeur-Martineau et al. (2024b). Most notably on this benchmark, our
approach offers state-of-the-art performance on imputation and on generation given training data
with missingness; and it has competitive performance on vanilla generation. We also demonstrate
that BaltoBot is on its own a promising method for probabilistic prediction, showing its advantages
on synthetic case studies and on a heavy-tailed sales forecasting benchmark.

Finally, we provide code with an easy-to-use sklearn-style API at https://github.com/
another-anonymous-account/unmasking-trees. In addition to being useful for practi-
tioners, we hope our work sparks study within the tabular ML community about whether diffusion or
autoregression is better for tabular data. Previous autoregressive tabular modeling methods, TabMT
(Gulati & Roysdon, 2024) and DP-TBART (Castellon et al., 2023), use Transformer (Vaswani, 2017)
models, making them less applicable for the GPU-poor. Our simple, efficient implementations of
UnmaskingTrees and BaltoBot contribute to investigating this question.

2 METHOD

2.1 UNMASKINGTREES FOR TABULAR JOINT DISTRIBUTION MODELING

UnmaskingTrees combines the gradient-boosted trees of ForestDiffusion (Jolicoeur-Martineau et al.,
2024b) with the training objective of generalized autoregressive language modeling (Yang, 2019),
inheriting the benefits of both. Consider a dataset with N examples and D features. We learn the
joint distribution over D-dimensional example x by maximizing the expected log-likelihood with
respect to all possible permutations of the factorization order,

log p(x) = logEσ∈U(GD)

[D∏
t=1

p
(
xσ(t)|xσ(<t)

)]
,

where σ is a permutation drawn uniformly from U(GD), the permutation group on D features; xσ(<t)

denotes all features that precede the t-th feature in the permuted sequence of features. If we were
to have marginalized over permutations, we would have obtained a masked language modeling
procedure with a randomly-sampled masking rate r ∼ U(0, 1) (Kitouni et al., 2023; 2024); such a
procedure was previously shown to have benefits in combination with tabular Transformer models
(Gulati & Roysdon, 2024) (TabMT).

For each example, we generate new training samples by randomly sampling an order over the features,
then incrementally masking the features in that random order. Given duplication factor K, we repeat
this process K times with K different random permutations, leading to a training dataset with KND
samples. Given this, we train XGBoost (Chen & Guestrin, 2016) models to predict each unmasked
sample given the more-masked example derived from it, one per feature. We model categorical
features via softmax-based classification with cross-entropy loss; our approach for continuous features
is described in Section 2.2.

2

https://github.com/another-anonymous-account/unmasking-trees
https://github.com/another-anonymous-account/unmasking-trees

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

For both generation and imputation, we generate features of each sample in random order. For
imputation rather than generation tasks, we begin by filling in each sample with the observed values,
and run inference on the remaining unobserved features. Implementing this is very simple: it requires
about 70 lines of Python code for training, and about 20 lines for inference.

2.2 BALTOBOT FOR TABULAR PROBABILISTIC PREDICTION

A key problem when autoregressively generating continuous data is that a regression model will
attempt to predict the mean of a conditional distribution, whereas we would like it to sample from
the possibly-multimodal conditional distribution. The simplest solution is to quantize continuous
features into bins, because classification over histograms is inherently multimodal; TabMT (Gulati
& Roysdon, 2024) did this with 1d k-Means clustering (Lloyd, 1982). Yet this not only destroys
information within bins due to rounding, it also destroys information about the proximity among the
ordered bins. Thus, it forces us to choose between a small number of quantization bins, yielding low
resolution; or to choose a large number of bins, risking catastrophic errors due to overfitting and/or
clumping of generated samples due to poor calibration. This not only limits performance, but also
necessitates hyperparameter tuning (Gulati & Roysdon, 2024).

Inspired by this, we propose a general-purpose solution to the tabular probabilistic prediction problem.
For each individual regression output variable, we build a height-H balanced tree of binary classifiers.
Consider a node with height h on this “meta-tree”, which is fit with (Xtrain ∈ Rn×d,ytrain ∈ Rn).
Using kernel density integral quantization (KDI) (McCarter, 2023), which adaptively interpolates
between uniform quantization and quantile quantization, we obtain binarized ỹtrain ∈ [0, 1]n. Thus,
the input space to every node is partitioned into two with the splitting point determined by KDI.
We train an XGBoost classifier on (Xtrain, ỹtrain). If h > 0, we then recursively pass {(X(i), y(i)) ∈
(Xtrain,ytrain)|ỹ(i) = 0} to its left child, and analogously for ỹ(i) = 1 to its right child. At a leaf node,
h = 0, if given a single unique training set output value in a bin, we record this value. At inference
time, given a query input X, we descend the tree by obtaining predicted probabilities from each
node’s XGBoost classifier, then sampling from these. Once we reach a leaf node, we either sample
uniformly from its appropriate bin, or we return the lone output value if a singleton bin.

At training and inference time, each XGBoost model within the meta-tree only sees examples that
fall into its corresponding region of the output space. Thus, for a meta-tree with height H (and
thus 2H models), each example is only passed as input to H different models. While lower-level
classifiers receive less data and are poorer quality, the magnitude of such errors are smaller due to our
hierarchical partitioning approach. Furthermore, our singleton-bin technique allows us to adaptively
generate discrete and even mixed-type variables, if these discrete outcomes are high-frequency relative
to the total size of the data and to the height of the meta-tree. (Up to 2H discrete outcomes can be
produced by BaltoBot.) Finally, eschewing diffusion modeling enables us to perform closed-form
conditional density estimation.

Algorithms for UnmaskingTrees and BaltoBot are given in Appendix Section A.

2.3 COMPUTATIONAL COMPLEXITY

ForestDiffusion, with T diffusion steps and duplication factor K, constructs a training dataset of size
TKN ×D. Given the same duplication factor K, UnmaskingTrees will construct a training dataset
of size KND×D. Meanwhile, ForestDiffusion must train DT different XGBoost regression models.
We, on the other hand, train D different BaltoBot models, one per feature; with BaltoBot meta-tree
height of H , we then train a total of D2H XGBoost binary classifiers. However, classifiers lower in
the BaltoBot meta-tree become progressively faster to train. Indeed, each constructed training sample
will be seen by DT different XGBoost regressors with ForestDiffusion, but only DH classifiers with
our approach. Given that T ∼ 50 and H ∼ 4, this yields a large speedup for our approach.

The KDI quantizer (McCarter, 2023) has negligible contribution to runtime, because it uses the
polynomial-exponential kernel density estimator (KDE) (Hofmeyr, 2019), which has linear complex-
ity in sample size for 1d data, unlike the quadratic complexity of the Gaussian KDE.

At inference time, each ForestDiffusion generated sample passes through T steps of the diffusion
reverse-process, for a total of DT XGBoost predictions. For UnmaskingTrees with BaltoBot, each
generated sample instead requires only DH XGBoost predictions, because each sample follows only

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

one path from root to leaf of the meta-tree. The resulting speedup is especially impactful for the
multiple imputation scenario, where inference time dominates.

2.4 IN-CONTEXT LEARNING-BASED GENERATION WITH BALTOBOTABPFN AND
UNMASKINGTABPFN

Within our flexible frameworks for joint and conditional modeling, TabPFN (Hollmann et al., 2022)
can be used as a base learner for probabilistic prediction and generative modeling. For Unmask-
ingTabPFN joint modeling, a difficulty arises from TabPFN’s inability to handle inputs Xtrain with
missing values (NaNs). To address this, we developed NanTabPFN, a wrapper for TabPFN that
supports missingness in both training and test features. Based on each test query xtest, we select
row indices R and column indices C so that [Xtrain]R,C has no NaNs, using the following key idea.
Consider a particular train example xtrain and test query xtest, with visible (non-missing) features
denoted by sets V(xtrain) and V(xtest). We can maximize the number of utilized features, while also
ensuring that TabPFN receives no NaNs, by restricting the set of columns to those observed for the
test query, C := V(xtest), then choosing training examples R := {i|C ⊆ V(x(i)

train)}. In practice, our
procedure is more complicated, because the above choices may result in either empty C or empty R.
If R is empty, we incrementally set random features of xtest to missing until we are able to obtain a
non-empty training set. If C is empty, we introduce a new all-1s feature to both Xtrain and xtest.

3 RESULTS

Figure 1: Results on Two Moons case study. Original data is shown in green; generated data is shown
in red; imputed data is shown in blue.

We evaluate UnmaskingTrees on two case studies (Section 3.1) and on a tabular benchmark of 27
datasets (Section 3.2). We then evaluate BaltoBot and BaltoBoTabPFN on tabular probabilistic
prediction case studies (Section 3.3) and on a sales forecasting dataset (Section 3.4). Results were
obtained always using the default hyperparameters: output tree height of 4, and duplication factor
K = 50. These hyperparameter values were tuned on the Two Moons and Iris case studies, then
applied without further tuning to the remaining experiments, because hyperparameter tuning is no
fun at all. XGBoost hyperparameters were set to their defaults. Experiments were performed on a
iMac (21.5-inch, Late 2015) with 2.8GHz Intel Core i5 processor and 16GB memory.

Overall, UnmaskingTrees (using BaltoBot) has state-of-the-art performance on imputation and on
generation after training on incomplete data; and it has competitive performance on vanilla tabular
generation scenarios. We further demonstrate the benefits of BaltoBot and BaltoBoTabPFN when
evaluated in their own right for probabilistic prediction.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Results on Iris dataset, with species, petal width, and petal length depicted. Original data
and synthetically-generated datasets are shown on the left columns. The imputed dataset is shown
on the right columns, with × symbols highlighting the samples with any missingness that required
imputation.

3.1 CASE STUDIES ON TWO MOONS AND IRIS DATASETS

Two Moons dataset We first compare our approach to previous leading methods on the synthetic
Two Moons dataset with 200 training samples and noise level N (0, 0.1). We compare Unmask-
ingTrees to MissForest (Stekhoven & Bühlmann, 2012), MICE-Forest (Van Buuren et al., 1999;
Wilson et al., 2022) (another popular traditional multiple imputation method), and ForestDiffusion,
with default hyperparameters for all methods. For ForestDiffusion, we evaluate both the variance-
preserving SDE diffusion (Forest-VP) and flow-matching (Forest-Flow) versions on generation; on
imputation, we evaluate Forest-VP with and without RePaint, again using default RePaint hyperpa-
rameters; Forest-Flow does not support imputation.

We show results in Figure 1. On generation, Forest-VP appears to do best according to visual
inspection, while UnmaskingTrees and Forest-Flow perform similarly decently. UnmaskingTabPFN
performs poorly, but does capture the overall shape of the distribution. Next, we turn to imputation,
wherein we request a single imputation for a copy of the original training data with the second
dimension (y-axis) values masked out. ForestDiffusion struggles with and without RePaint, with
substantial out-of-distribution imputations, and MissForest and MICE-Forest share this problem to
lesser degrees. Meanwhile, UnmaskingTrees generates impeccable imputations.

Iris dataset In Figure 2, we show results for the Iris dataset (Fisher, 1936), plotting petal length,
petal width, and species. We compare both methods on generation, and to compare on imputation,
we create another version of the Iris dataset, with missingness completely at random: we randomly
select samples with 50% chance to have any missingness, and on these samples, we mask the non-
species feature values with 50% chance. Visually, ForestDiffusion and UnmaskingTrees perform
about equally well on generation. Meanwhile, on imputation, UnmaskingTrees does a better job

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

conditioning on species information than ForestDiffusion. UnmaskingTrees also produces more
diverse imputations than MissForest.

3.2 BENCHMARKING UNMASKINGTREES ON 27 TABULAR DATASETS

Imputation Here, we add UnmaskingTrees to the benchmark of 8 imputation methods on 27
public datasets, evaluated according to 9 metrics, developed by Jolicoeur-Martineau et al. (2024b) for
evaluating tabular imputation and generation methods. This benchmark primarily contains smaller-
sized (with 103 ≤ N ≤ 20,640 and 4 ≤ D ≤ 90) datasets, which our approach is especially geared
towards. Namely, we compare our approach against Forest-VP Jolicoeur-Martineau et al. (2024b), as
well as k-NN imputation (Troyanskaya et al., 2001), ICE (Buck, 1960), MICE-Forest (Van Buuren
et al., 1999; Wilson et al., 2022), MissForest (Stekhoven & Bühlmann, 2012), Softimpute (Hastie
et al., 2015), minibatch Sinkhorn optimal transport (Muzellec et al., 2020), and generative adversarial
nets (GAIN) (Yoon et al., 2018). 1 We follow Jolicoeur-Martineau et al. (2024b) in computing
the per-dataset rank of each method relative to other methods, then reporting the average over 27
datasets. For all methods other than our own, we compute ranks by reusing the raw scores provided
in Jolicoeur-Martineau et al. (2024b)’s code repository.

Results for imputation are shown in Table 1. UnmaskingTrees wins first place on 3/9 metrics, includ-
ing both metrics based on downstream prediction tasks; and it generally outperforms ForestDiffusion,
winning on 8/9 metrics. While MissForest wins first place on 4/9 metrics, UnmaskingTrees wins 5-4
head-to-head vs MissForest; UnmaskingTrees has average averaged rank of 3.2 compared to 3.5 for
MissForest. UnmaskingTrees is also the only method with better than 5th place rank on all metrics.

We report further ablation experiments in Table 2, wherein we run UnmaskingTrees without BaltoBot,
and instead with vanilla quantization using k-Means clustering (Lloyd, 1982) and KDI quantization
(McCarter, 2023). Results showing progressive improvements for the UnmaskingTrees framework,
for KDI quantization versus k-Means, and for the BaltoBot method used in our full proposed solution.

Table 1: Tabular data imputation (27 datasets, 3 experiments per dataset, 10 imputations per experi-
ment) with 20% missing. Shown are averaged rank over all datasets and experiments (standard-error).
Overall best is highlighted; better of Forest-VP versus ours is boldface blue. Metrics are Minimum
and Average mean-absolute error (MinMAE and AvgMAE) to ground-truth, Wasserstein distance to
train and test dataset distributions (Wtrain and Wtest), Mean Absolute Deviation (MAD) around the
median/mode (for diversity), R2 and F1 for downstream regression / classification problems, and
percent bias Pbias and confidence interval coverage rate Covrate for statistical inferences.

MinMAE ↓ AvgMAE ↓ Wtrain ↓ Wtest ↓ MAD ↓ R2 ↓ F1 ↓ Pbias ↓ Covrate ↓

KNN 5.5 (0.5) 6.3 (0.4) 4.9 (0.4) 5.0 (0.4) 8.4 (0) 6.5 (1) 5.7 (1.1) 6.2 (1) 5.4 (0.6)
ICE 6.8 (0.4) 4.7 (0.4) 7.0 (0.5) 7.2 (0.4) 1.6 (0.2) 6.2 (1) 7.0 (0.6) 5.7 (0.9) 5.3 (0.6)

MICE-Forest 3.9 (0.4) 2.5 (0.4) 2.9 (0.2) 3.0 (0.2) 3.6 (0.2) 3.7 (1.4) 3.2 (1) 5.5 (1.2) 4.3 (0.6)
MissForest 2.7 (0.5) 4.0 (0.4) 1.8 (0.3) 2.0 (0.3) 5.5 (0.2) 3.8 (1.4) 2.5 (0.5) 5.5 (1.5) 3.3 (0.5)
Softimpute 6.7 (0.4) 7.6 (0.4) 7.1 (0.5) 7.3 (0.5) 8.4 (0) 6.0 (0.9) 7.8 (0.4) 6.3 (0.9) 6.7 (0.4)

OT 5.9 (0.4) 6.1 (0.3) 6.0 (0.5) 6.0 (0.5) 3.7 (0.3) 6.2 (0.5) 6.8 (0.6) 5.5 (0.8) 4.8 (0.5)
GAIN 4.7 (0.4) 6.5 (0.3) 6.0 (0.3) 6.0 (0.2) 6.9 (0.1) 5.7 (0.8) 5.4 (0.8) 4.7 (1) 5.0 (0.6)

Forest-VP 5.3 (0.4) 4.0 (0.5) 5.8 (0.3) 5.1 (0.4) 3.2 (0.4) 4.5 (0.9) 4.6 (0.8) 3.3 (0.6) 5.5 (0.7)
UTrees 3.5 (0.5) 3.2 (0.5) 3.5 (0.4) 3.5 (0.5) 3.8 (0.2) 2.5 (0.6) 2.2 (0.6) 2.3 (0.9) 4.7 (0.6)

Generation with and without missingness We next repeat the experimental setup of Jolicoeur-
Martineau et al. (2024b) for evaluating tabular generation methods. For tabular generation, using
the same 27 datasets, Jolicoeur-Martineau et al. (2024b) benchmark their methods (Forest-VP and
Forest-Flow) against 6 other methods, namely, Gaussian Copula (Joe, 2014), tabular variational
autoencoding (TVAE) (Xu et al., 2019), two conditional generative adversarial net methods (CTGAN
(Xu et al., 2019) and CTAB-GAN+ (Zhao et al., 2021)), and two other tabular diffusion methods
(STaSy (Kim et al., 2022) and TabDDPM (Kotelnikov et al., 2023)). These are evaluated with 9
metrics, in the vanilla fully-observed setting and in the synthetically-induced 20% missing completely
at random (MCAR) setting.

Results for partially-missing data are shown in Table 3. UnmaskingTrees is first place on 5/9 metrics;
head-to-head, UnmaskingTrees beats TabDDPM 5-4, and beats Forest-Flow 6-3. Results for fully-

1We do not add TabMT (Gulati & Roysdon, 2024) and TabPFGen (Ma et al., 2024) to the benchmark because
no code was provided. We do not add UnmaskingTabPFN because of out-of-memory errors on our machine.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Averaged ranks from ablation study of tabular data imputation (27 datasets, 3 experiments
per dataset, 10 imputations per experiment) with 20% missing. Shown are averaged rank over all
datasets and experiments (standard-error). Overall best is highlighted; better of Forest-VP versus
ours is boldface blue. See Table 1 for column meanings.

MinMAE ↓ AvgMAE ↓ Wtrain ↓ Wtest ↓ MAD ↓ R2 ↓ F1 ↓ Pbias ↓ Covrate ↓

KNN 6.8 (0.6) 7.8 (0.6) 6.0 (0.4) 6.1 (0.5) 10.4 (0) 8.2 (1.3) 7.0 (1.5) 7.5 (1.5) 6.5 (0.8)
ICE 8.3 (0.5) 5.8 (0.5) 8.5 (0.6) 8.8 (0.5) 1.9 (0.4) 8.0 (1.1) 9.0 (0.6) 7.2 (1.1) 6.4 (0.8)

MICE-Forest 4.8 (0.6) 3.3 (0.6) 3.5 (0.3) 3.4 (0.3) 4.6 (0.4) 4.3 (1.8) 4.3 (1.3) 6.8 (1.6) 4.8 (0.7)
MissForest 3.3 (0.7) 5.0 (0.6) 2.2 (0.4) 2.3 (0.4) 7.2 (0.3) 4.7 (1.8) 3.3 (0.9) 6.8 (1.9) 3.8 (0.6)
Softimpute 8.3 (0.5) 9.3 (0.5) 8.8 (0.6) 8.9 (0.6) 10.4 (0) 7.5 (1.2) 9.8 (0.4) 8.3 (0.9) 7.9 (0.6)

OT 7.2 (0.5) 7.6 (0.4) 7.4 (0.6) 7.4 (0.6) 4.8 (0.4) 8.2 (0.5) 8.8 (0.6) 7.3 (0.7) 5.8 (0.7)
GAIN 5.8 (0.5) 8.3 (0.4) 7.2 (0.5) 7.5 (0.4) 8.9 (0.1) 7.5 (0.8) 7.4 (0.8) 6.7 (1) 6.1 (0.8)

Forest-VP 6.4 (0.5) 4.8 (0.6) 7.0 (0.4) 6.1 (0.5) 3.8 (0.5) 6.5 (0.9) 6.6 (0.8) 4.5 (0.8) 6.5 (0.8)
UTrees-kMeans 6.0 (0.6) 5.8 (0.5) 6.3 (0.6) 6.1 (0.6) 4.1 (0.3) 4.0 (0.7) 2.9 (0.6) 3.8 (1) 6.0 (0.7)

UTrees-KDI 5.1 (0.5) 5.1 (0.5) 5.4 (0.6) 5.6 (0.5) 4.8 (0.3) 4.5 (0.9) 4.0 (0.5) 3.5 (1.2) 6.4 (0.7)
UTrees 3.8 (0.5) 3.2 (0.5) 3.8 (0.4) 3.8 (0.5) 5.0 (0.3) 2.7 (0.6) 2.9 (0.8) 3.5 (0.8) 5.8 (0.7)

observed data are shown in Table 4. UnmaskingTrees loses head-to-head to Forest-Flow, Forest-VP,
and TabDDPM, but wins against the other methods.

Table 3: Tabular data generation with incomplete data (27 datasets, 3 experiments per dataset, 20%
missing values), MissForest is used to impute missing data except in Forest-VP, Forest-Flow, and
UnmaskingTrees; averaged rank over all datasets and experiments (standard-error). Overall best is
highlighted; better of Forest-VP versus Forest-Flow versus ours is boldface blue.

Wtrain ↓ Wtest ↓ covtrain ↓ covtest ↓ R2
fake ↓ F1fake ↓ F1disc ↓ Pbias ↓ covrate ↓

GaussianCopula 7.0 (0.3) 7.1 (0.2) 7.2 (0.3) 7.1 (0.3) 6.3 (0.4) 6.6 (0.3) 6.7 (0.4) 5.5 (1.0) 7.7 (0.6)
TVAE 5.2 (0.3) 4.9 (0.3) 5.7 (0.3) 5.8 (0.2) 6.0 (1.0) 5.8 (0.5) 5.8 (0.4) 8.0 (0.4) 6.2 (1.0)

CTGAN 8.3 (0.2) 8.4 (0.2) 8.4 (0.2) 8.3 (0.2) 8.3 (0.3) 8.4 (0.2) 6.5 (0.2) 4.8 (1.2) 7.1 (0.7)
CTABGAN 6.7 (0.4) 6.5 (0.4) 7.1 (0.3) 6.8 (0.3) 7.3 (0.6) 7.1 (0.4) 6.6 (0.3) 7.5 (1.0) 6.1 (0.6)

Stasy 5.9 (0.2) 6.1 (0.3) 5.3 (0.2) 5.1 (0.3) 5.8 (0.9) 4.4 (0.4) 5.3 (0.4) 3.7 (0.4) 4.6 (1.1)
TabDDPM 3.0 (0.7) 3.4 (0.7) 2.3 (0.5) 2.9 (0.6) 1.7 (0.3) 3.3 (0.6) 3.9 (0.6) 3.8 (1.2) 2.0 (0.5)
Forest-VP 3.7 (0.2) 3.2 (0.3) 3.9 (0.2) 3.8 (0.3) 3.2 (0.3) 2.3 (0.3) 4.2 (0.4) 4.2 (0.8) 4.5 (1.1)

Forest-Flow 3.0 (0.3) 2.6 (0.3) 2.6 (0.3) 2.7 (0.2) 3.0 (0.7) 3.7 (0.3) 5.0 (0.5) 3.8 (0.9) 3.2 (0.8)
UTrees 2.1 (0.2) 2.8 (0.3) 2.5 (0.2) 2.5 (0.2) 3.3 (0.8) 3.5 (0.5) 1.0 (0.0) 3.7 (0.9) 3.7 (1.0)

Table 4: Tabular data generation with complete data (27 datasets, 3 experiments per dataset); averaged
rank over all datasets and experiments (standard-error). Overall best is highlighted; better of Forest-
VP versus Forest-Flow versus ours is boldface blue.

Wtrain ↓ Wtest ↓ covtrain ↓ covtest ↓ R2
fake ↓ F1fake ↓ F1disc ↓ Pbias ↓ Covrate ↓

GaussianCopula 7.1 (0.3) 7.2 (0.3) 7.3 (0.3) 7.4 (0.3) 6.2 (0.2) 6.4 (0.3) 7.0 (0.4) 6.5 (1.1) 7.5 (0.7)
TVAE 5.3 (0.2) 5.1 (0.2) 5.7 (0.2) 5.7 (0.2) 6.5 (0.7) 6.0 (0.5) 5.5 (0.3) 7.3 (0.6) 6.7 (0.6)

CTGAN 8.4 (0.1) 8.4 (0.2) 8.3 (0.2) 8.1 (0.2) 8.5 (0.2) 8.3 (0.2) 6.7 (0.3) 5.3 (1.1) 7.2 (0.5)
CTAB-GAN+ 6.8 (0.3) 6.7 (0.3) 7.2 (0.3) 7.1 (0.3) 6.8 (0.4) 6.9 (0.4) 6.9 (0.3) 7.7 (0.8) 6.7 (0.8)

STaSy 6.1 (0.2) 6.3 (0.2) 5.3 (0.2) 5.4 (0.2) 6.0 (1.2) 5.1 (0.3) 6.1 (0.3) 4.5 (0.8) 4.2 (1.1)
TabDDPM 3.0 (0.7) 3.9 (0.6) 2.8 (0.5) 3.4 (0.5) 1.2 (0.2) 3.8 (0.6) 3.2 (0.4) 3.0 (0.9) 1.4 (0.2)
Forest-VP 3.2 (0.2) 2.8 (0.2) 3.6 (0.3) 3.3 (0.3) 2.8 (0.3) 2.2 (0.3) 4.3 (0.4) 3.2 (0.9) 3.5 (0.8)

Forest-Flow 1.9 (0.2) 1.5 (0.2) 1.7 (0.2) 1.8 (0.2) 2.3 (0.4) 2.4 (0.3) 4.3 (0.4) 2.8 (0.5) 2.7 (0.4)
UTrees 3.1 (0.1) 3.1 (0.2) 3.1 (0.2) 2.8 (0.2) 4.7 (0.3) 3.9 (0.3) 1.0 (0.0) 4.7 (0.7) 5.2 (0.9)

Raw scores, per-dataset results, and runtimes are provided in the Appendix.

3.3 EVALUATING BALTOBOT ON SYNTHETIC PROBABILISTIC PREDICTION CASE STUDIES

Wave dataset We compare our approach with Treeffuser (Beltran-Velez et al., 2024) on the “wave”
synthetic dataset from Treeffuser (Beltran-Velez et al., 2024), which as shown in Figure 3 is nonlinear,
multimodal, and heteroskedastic. On the raw probabilistic predictions in Figure 3(A), we see that
BaltoBot and BaltoBoTabPFN are (by visual inspection) able to model the conditional distribution
as well as Treeffuser. Yet this case study illustrates the two advantages of BaltoBot. First, in Figure
3(B) we show the runtime of the different methods: training, sampling, and total. To train on 5000
samples, Treeffuser took 1.1s and BaltoBot took 2.6s. But to generate 5000 samples, Treeffuser took
5.0s while BaltoBot took 0.72s, for ∼ 7× speedup. Second, BaltoBot offers the ability to estimate a
closed-form probability density function (pdf) of the predictive distribution as shown in Figure 3(C);
in contrast, Treeffuser can only sample from the predictive distribution.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Comparison of Treeffuser and our approach on wave synthetic data with 5000 samples.
(A) Probabilistic predictions for Treeffuser (top), BaltoBot (center), and BaltoBoTabPFN (bottom).
(B) Runtime comparison for the different methods. (C) Estimated pdf from our methods at X = 2,
depicted as the vertical dotted line in (A).

Poisson-distributed count data We generate 500 samples of Xi ∼ Unif[0, 3], Yi ∼ Poisson(λ =√
Xi), and show probabilistic predictions for Y in Figure 4. Whereas Treeffuser generates a spurious

negative-valued outlier and many non-integer Y samples, our approach automatically models the
count-type distribution of the data.

Figure 4: Comparison of Treeffuser, BaltoBot, and BaltoBoTabPFN on Poisson-distributed data. The
input variable is on the x-axis, while probabilistic predictions are shown on the y-axis.

3.4 SALES FORECASTING WITH UNCERTAINTY

We employ the M5 sales forecasting Kaggle dataset (Makridakis & Howard, 2020) to compare
BaltoBot with other probabilistic prediction methods. The dataset has five years of sales data from
ten Walmart stores, and the task requires predicting the (heavy-tailed) number of units sold given a
product’s attributes and previous sales. We use the exact same data preparation used for Treeffuser
(Beltran-Velez et al., 2024) experiments, which yields 1k products, 120k training samples, and 10k
test samples. As in the Treeffuser evaluation (Beltran-Velez et al., 2024), we evaluate probabilistic
predictions with the continuous ranked probability score (CRPS), and evaluate the conditional mean
predictions with the mean absolute error (MAE) and root mean-squared error (RMSE).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Sales forecasting evaluation on M5 dataset. We highlight the best 2 methods for each metric.
The best of Treeffuser versus ours (with tuning) is boldface blue; the best of Treeffuser versus ours
(without tuning) is boldface brown.

Method CRPS ×10−1(↓) RMSE ×100(↓) MAE ×100(↓)

Deep Ensembles 7.05 2.03 0.97
IBUG 8.90 2.12 1.00
NGBoost Poisson 6.86 2.33 0.99
Quantile Regression Forests 7.11 2.88 1.01
Treeffuser 6.44 2.09 0.99
BaltoBot 6.44 2.07 0.98
Treeffuser (no tuning) 6.62 2.09 0.99
BaltoBot (no tuning) 6.69 2.19 0.98
BaltoBoTabPFN (no tuning) 6.66 2.06 0.97

For full comparability, we follow the Treeffuser evaluation setup (Beltran-Velez et al., 2024) and
evaluate CRPS by generating 100 samples from our estimators’ p(y|X) for each X in the testset; and
for MAE and RMSE, we estimate the conditional means E[y|X] using 50 samples. For comparability,
for this (and only this) dataset, we also evaluate BaltoBot with hyperparameter tuning, using the same
setup used for all other methods (10 folds, each with 80%-20% train-validation split, and 25 Bayesian
optimization iterations). 2 We also compare Treeffuser, BaltoBot, and BaltoBoTabPFN when run
without hyperparameter tuning.

We report results in Table 5. In addition to ours’ and Treeffuser, we report results for Deep Ensembles
(Lakshminarayanan et al., 2017), IBUG (Brophy & Lowd, 2022), NGBoost Poisson (Duan et al.,
2020), and Quantile Regression Forests (Meinshausen & Ridgeway, 2006). For methods other
than our own, we report the metrics provided in Table 2 of (Beltran-Velez et al., 2024). Overall,
our proposed methods outperform previous methods at combining excellent performance on both
conditional distribution prediction and conditional mean prediction. Treeffuser and BaltoBot (both
with tuning) tie for first-place according to CRPS, yet BaltoBot outperforms Treeffuser on RMSE
and MAE. The winners on conditional mean metrics (RMSE and MAE) are Deep Ensembles and
BaltoBoTabPFN, yet BaltoBoTabPFN (no tuning) strongly outperforms Deep Ensembles on CRPS.

4 LIMITATIONS

While UnmaskingTrees is overall state-of-the-art on the tabular imputation benchmark, MissForest
still outperformed on the metrics based on Wasserstein distance to train and test dataset distributions.
And Forest-Flow still won on vanilla generation benchmark (without any missingness). It remains
to be seen whether a single method can be developed which wins on all scenarios and metrics.
While BaltoBoTabPFN performed well on probabilistic prediction tasks, when used as a subroutine
in UnmaskingTabPFN, it is very slow and experienced out-of-memory errors on the (Jolicoeur-
Martineau et al., 2024b) benchmark on our machine. Further improvements either to it, or to how it is
employed, are needed to make it practical for all but the smallest datasets.

5 DISCUSSION AND RELATED WORK

Diffusion modeling has recently gained popularity in tabular ML (Zheng & Charoenphakdee, 2022;
Jolicoeur-Martineau et al., 2024b; Beltran-Velez et al., 2024; Kotelnikov et al., 2023). Our proposed
approach is an instance of the autoregressive discrete diffusion framework (Hoogeboom et al., 2021),
instances of which have shown success in a variety of tasks (Yang, 2019; Austin et al., 2021; Kitouni
et al., 2024; Jolicoeur-Martineau et al., 2024a). Yet our results call into question whether diffusion is
beneficial for tabular conditional generation, or whether autoregression is sufficient for our setting.

2We optimize over the following XGBoost hyperparameter spaces: learning_rate
∈ log-uniform(0.05, 0.5), max_leaves ∈ {0, 25, 50}, and subsample ∈ log-uniform(0.3, 1).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

It has been observed that diffusion is autoregression in frequency space, progressing from low
frequencies to high frequencies, which makes it a good match for image data with its power law
spectra (Rissanen et al., 2022; Dieleman, 2024; Stewart, 2024). In tabular datasets without this
phenomena, we would expect diffusion modeling to be less advantageous.

Why is ForestDiffusion better at vanilla generative modeling, while UnmaskingTrees is better on
missing data problems? We offer two speculative explanations. First, imputation is a conditional
modeling scenario, except that you do not know the partition of the features into input features
and output features a priori. One could address imputation by learning all possible 2D conditional
distributions, but this is impractical for large D, so one would prefer to learn a single joint distribution.
Both autoregression and diffusion are ways of learning a joint distribution; because autoregression
does so by learning conditional distributions, it is more suited to the conditional modeling imputation
setting. Second, for missing data, diffusion has a train-inference gap: during training, observed
features begin the reverse process from N (0, 1); during inference for imputation, observed features
begin the reverse process at their actual values. On the other hand, the advantages of diffusion
modeling give it superiority when these problems can be avoided.

Despite their strong outperformance on other modalities, deep learning approaches have laboured
against gradient-boosted decision trees on tabular data (Shwartz-Ziv & Armon, 2022; Jolicoeur-
Martineau et al., 2024b). Previous work (Breejen et al., 2024) suggests that tabular data requires
an inductive prior that favors sharpness rather than smoothness, showing that TabPFN (Hollmann
et al., 2022) (the leading deep learning tabular classification method) can be further improved with
synthetic data generated from random forests. We anticipate that our XGBoost classifiers may be
swapped out for a future variant of TabPFN that learns sharper boundaries and handles missingness.

We also note that MissForest (Stekhoven & Bühlmann, 2012), hailing from statistical literature on
multiple imputation, has yet to be completely dethroned. Future progress in tabular conditional
generation may require going back to the well of this traditional literature. As one example, we
observe that MissForest exploits feature missingness fraction information, but we are not aware of any
“machine learning” approaches which do so. The statistical literature has also previously explored the
value of conditional modeling for joint modeling (Gelman & Raghunathan, 2001; Liu et al., 2014;
Kropko et al., 2014). Indeed, our UnmaskingTrees approach, and all autoregressive modeling, is
presaged by the full-mechanism bootstrap (Efron, 1994).

Finally, we observe where randomness enters into our generation process compared to previous work.
Flow-matching (Liu et al., 2022; Albergo & Vanden-Eijnden, 2022; Lipman et al., 2022) (used in
Forest-Flow) injects randomness solely at the beginning of the reverse process via Gaussian sampling,
whereas diffusion modeling (Sohl-Dickstein et al., 2015; Song & Ermon, 2019) (used in Forest-VP)
injects randomness both at the beginning and during the reverse process. In contrast, because our
method starts with a fully-masked sample, it injects randomness gradually during the generation
process. First, we randomly generate the order over features for unmasking. Second, we do not
“greedily decode” to the most likely leaf in the meta-tree, but instead sample according to predicted
probabilities. Third, for continuous features, having sampled a particular meta-tree leaf bin, we
sample from within the bin, treating it as a uniform distribution.

6 CONCLUSIONS

We proposed tree-based autoregressive modeling of tabular data, especially for data with missingness.
For the subproblem of conditional probabilistic prediction of individual variables, we presented a
hierarchical partitioning method with benefits over vanilla quantization and diffusion-based proba-
bilistic prediction. We then considered each of these as meta-algorithms that enable pure in-context
learning-based modeling using TabPFN as base classifier. We showed SotA results for imputation
and for generation given data with missingness, and on probabilistic prediction for sales forecasting.

7 REPRODUCIBILITY STATEMENT

All our code is in an anonymized public Github repo. We evaluate on public real datasets, using
experimental setups released by previous works; or on synthetic data, using scripts in our repo.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
arXiv preprint arXiv:2209.15571, 2022.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Nicolas Beltran-Velez, Alessandro Antonio Grande, Achille Nazaret, Alp Kucukelbir, and David Blei.
Treeffuser: Probabilistic predictions via conditional diffusions with gradient-boosted trees. arXiv
preprint arXiv:2406.07658, 2024.

Felix den Breejen, Sangmin Bae, Stephen Cha, and Se-Young Yun. Why in-context learning
transformers are tabular data classifiers. arXiv preprint arXiv:2405.13396, 2024.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Jonathan Brophy and Daniel Lowd. Instance-based uncertainty estimation for gradient-boosted
regression trees. Advances in Neural Information Processing Systems, 35:11145–11159, 2022.

Samuel F Buck. A method of estimation of missing values in multivariate data suitable for use with
an electronic computer. Journal of the Royal Statistical Society: Series B (Methodological), 22(2):
302–306, 1960.

Rodrigo Castellon, Achintya Gopal, Brian Bloniarz, and David Rosenberg. Dp-tbart: A transformer-
based autoregressive model for differentially private tabular data generation. arXiv preprint
arXiv:2307.10430, 2023.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Sander Dieleman. Diffusion is spectral autoregression, 2024. URL https://sander.ai/2024/
09/02/spectral-autoregression.html.

Tony Duan, Avati Anand, Daisy Yi Ding, Khanh K Thai, Sanjay Basu, Andrew Ng, and Alejan-
dro Schuler. Ngboost: Natural gradient boosting for probabilistic prediction. In International
conference on machine learning, pp. 2690–2700. PMLR, 2020.

Bradley Efron. Missing data, imputation, and the bootstrap. Journal of the American Statistical
Association, 89(426):463–475, 1994.

Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7
(2):179–188, 1936.

Andrew Gelman and Trivellore E Raghunathan. Using conditional distributions for missing-data
imputation. Statistical Science, 15:268–69, 2001.

Manbir Gulati and Paul Roysdon. Tabmt: Generating tabular data with masked transformers.
Advances in Neural Information Processing Systems, 36, 2024.

Trevor Hastie, Rahul Mazumder, Jason D Lee, and Reza Zadeh. Matrix completion and low-rank svd
via fast alternating least squares. The Journal of Machine Learning Research, 16(1):3367–3402,
2015.

David P Hofmeyr. Fast exact evaluation of univariate kernel sums. IEEE transactions on pattern
analysis and machine intelligence, 43(2):447–458, 2019.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classification problems in a second. arXiv preprint arXiv:2207.01848,
2022.

Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. arXiv preprint arXiv:2110.02037, 2021.

11

https://sander.ai/2024/09/02/spectral-autoregression.html
https://sander.ai/2024/09/02/spectral-autoregression.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Harry Joe. Dependence modeling with copulas. CRC press, 2014.

Alexia Jolicoeur-Martineau, Aristide Baratin, Kisoo Kwon, Boris Knyazev, and Yan Zhang. Any-
property-conditional molecule generation with self-criticism using spanning trees. arXiv preprint
arXiv:2407.09357, 2024a.

Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular data
via diffusion and flow-based gradient-boosted trees. In International Conference on Artificial
Intelligence and Statistics, pp. 1288–1296. PMLR, 2024b. URL https://github.com/
SamsungSAILMontreal/ForestDiffusion.

Jayoung Kim, Chaejeong Lee, and Noseong Park. Stasy: Score-based tabular data synthesis. arXiv
preprint arXiv:2210.04018, 2022.

Ouail Kitouni, Niklas Nolte, James Hensman, and Bhaskar Mitra. Disk: A diffusion model for
structured knowledge. arXiv preprint arXiv:2312.05253, 2023.

Ouail Kitouni, Niklas Nolte, Diane Bouchacourt, Adina Williams, Mike Rabbat, and Mark Ibrahim.
The factorization curse: Which tokens you predict underlie the reversal curse and more. arXiv
preprint arXiv:2406.05183, 2024.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pp. 17564–
17579. PMLR, 2023.

Jonathan Kropko, Ben Goodrich, Andrew Gelman, and Jennifer Hill. Multiple imputation for
continuous and categorical data: comparing joint multivariate normal and conditional approaches.
Political Analysis, 22(4), 2014.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Quoc V Le, Tim Sears, and Alexander J Smola. Nonparametric quantile regression. Technical report,
Technical report, National ICT Australia, June 2005. Available at http://sml . . . , 2005.

Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, and Juho Kannala. Hierarchical scene coordinate
classification and regression for visual localization. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11983–11992, 2020.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Jingchen Liu, Andrew Gelman, Jennifer Hill, Yu-Sung Su, and Jonathan Kropko. On the stationary
distribution of iterative imputations. Biometrika, 101(1):155–173, 2014.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11461–11471,
June 2022.

Junwei Ma, Apoorv Dankar, George Stein, Guangwei Yu, and Anthony Caterini. Tabpfgen–tabular
data generation with tabpfn. arXiv preprint arXiv:2406.05216, 2024.

Spyros Makridakis and Addison Howard. M5 forecasting - accuracy, 2020. URL https://
kaggle.com/competitions/m5-forecasting-accuracy.

Alexander März. Xgboostlss–an extension of xgboost to probabilistic forecasting. arXiv preprint
arXiv:1907.03178, 2019.

12

https://github.com/SamsungSAILMontreal/ForestDiffusion
https://github.com/SamsungSAILMontreal/ForestDiffusion
https://kaggle.com/competitions/m5-forecasting-accuracy
https://kaggle.com/competitions/m5-forecasting-accuracy

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Calvin McCarter. The kernel density integral transformation. Transactions on Machine Learning
Research, 2023. ISSN 2835-8856.

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Ganesh Ramakrishnan,
Micah Goldblum, and Colin White. When do neural nets outperform boosted trees on tabular data?
Advances in Neural Information Processing Systems, 36, 2024.

Nicolai Meinshausen and Greg Ridgeway. Quantile regression forests. Journal of machine learning
research, 7(6), 2006.

Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing data imputation using optimal
transport. In International Conference on Machine Learning, pp. 7130–7140. PMLR, 2020.

Severi Rissanen, Markus Heinonen, and Arno Solin. Generative modelling with inverse heat dissipa-
tion. arXiv preprint arXiv:2206.13397, 2022.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Olivier Sprangers, Sebastian Schelter, and Maarten de Rijke. Probabilistic gradient boosting machines
for large-scale probabilistic regression. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining, pp. 1510–1520, 2021.

Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112–118, 2012.

Riley Stewart. trasformers are kiki, diffusion is bouba, and language is pointier than images, 2024.
URL https://x.com/riley_stews/status/1827089629369266492.

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani,
David Botstein, and Russ B Altman. Missing value estimation methods for dna microarrays.
Bioinformatics, 17(6):520–525, 2001.

Stef Van Buuren, Hendriek C Boshuizen, and Dick L Knook. Multiple imputation of missing blood
pressure covariates in survival analysis. Statistics in medicine, 18(6):681–694, 1999.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688.
Citeseer, 2011.

Samuel Von Wilson, Bogdan Cebere, James Myatt, and Samuel Wilson. AnotherSamWil-
son/miceforest: Release for Zenodo DOI, December 2022. URL https://doi.org/10.
5281/zenodo.7428632.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional gan. Advances in neural information processing systems, 32, 2019.

Z Yang. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative
adversarial nets. In International conference on machine learning, pp. 5689–5698. PMLR, 2018.

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. Ctab-gan: Effective table data
synthesizing. In Asian Conference on Machine Learning, pp. 97–112. PMLR, 2021.

Shuhan Zheng and Nontawat Charoenphakdee. Diffusion models for missing value imputation in
tabular data. arXiv preprint arXiv:2210.17128, 2022.

13

https://x.com/riley_stews/status/1827089629369266492
https://doi.org/10.5281/zenodo.7428632
https://doi.org/10.5281/zenodo.7428632

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ALGORITHMIC DESCRIPTIONS OF UNMASKINGTREES AND BALTOBOT

The training algorithm for UnmaskingTrees is given in 1. The training and inference algorithms for
BaltoBot are given in 2 and 3, respectively.

Algorithm 1 Unmasking Trees training
Require: dataset X ∈ RN×D; duplication factor K.

1: {# Build self-supervised training set}
2: Set Xtrain = ∅, Ytrain = ∅.
3: for k = 1, . . . ,K do
4: for n = 1, . . . , N do
5: Draw random permutation σ from U(GD)
6: Set x := Xn,: and y := Xn,:.
7: for d = 1, . . . , D do
8: Mask random element xσ(d) := [MASK].
9: Append Xtrain := Xtrain ∪ {x}, Ytrain := Ytrain ∪ {y}

10: end for
11: end for
12: end for
13: {# Train conditional generation models}
14: for d = 1, . . . , D do
15: if feature d in X is a continuous feature then
16: Run BaltoBot with ([Xtrain]:,j ̸=d, [Ytrain]:,d).
17: else
18: Train XGBClassifier on ([Xtrain]:,j ̸=d, [Ytrain]:,d).
19: end if
20: end for

Algorithm 2 BaltoBot training
Require: dataset (X ∈ RN×D,y ∈ RN); BaltoBot meta-tree height H;

1: if H = 0 or unique(y) = C for some constant C then
2: Save bounds := (min(y),max(y)).
3: else
4: Obtain split point p from KDI quantization on y.
5: Train XGBoost binary classifier on (X,1{y ≤ p}).
6: Train “left-child” BaltoBot on {(X(i),y(i)) ∈ (X,y)|y(i) ≤ p}, with height H − 1.
7: Train “right-child” BaltoBot on {(X(i),y(i)) ∈ (X,y)|y(i) > p}, with height H − 1.
8: end if

Algorithm 3 BaltoBot inference
Require: input query x ∈ RD; trained BaltoBot model.

1: if bounds is defined then
2: Sample uniformly from U(bounds).
3: Return.
4: else
5: Obtain prediction from XGBoost binary classifier.
6: if prediction = left-child then
7: Run inference on “left-child” BaltoBot with input query x.
8: else if prediction = right-child then
9: Run inference on “right-child” BaltoBot with input query x.

10: end if
11: end if

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B ABLATION EXPERIMENT WITH IMPUTATION - RAW SCORES

Raw scores (shown in Table 6) demonstrate that UnmaskingTrees on its own improves upon Forest-
VP’s diffusion approach. We also see that KDI quantization (with 20 bins) contributes to improvement
beyond k-Means (also 20 bins), and that BaltoBot yields even further improvement.

Table 6: Raw scores from ablation study for tabular data imputation (27 datasets, 3 experiments per
dataset, 10 imputations per experiment) with 20% missing values. Shown are raw scores - mean
(standard-error). Overall best is highlighted; better of Forest-VP versus ours is boldface blue. See
Table 1 for column meanings.

MinMAE ↓ AvgMAE ↓ Wtrain ↓ Wtest ↓ MAD ↑ R2
imp ↑ F1imp ↑ Pbias ↓ Covrate ↑

KNN 0.16 (0.03) 0.16 (0.03) 0.42 (0.08) 1.89 (0.49) 0 (0) 0.59 (0.09) 0.75 (0.04) 1.27 (0.25) 0.4 (0.11)
ICE 0.1 (0.01) 0.21 (0.03) 0.52 (0.09) 1.99 (0.49) 0.69 (0.1) 0.59 (0.09) 0.74 (0.04) 1.05 (0.29) 0.39 (0.09)

MICE-Forest 0.08 (0.02) 0.13 (0.03) 0.34 (0.07) 1.86 (0.48) 0.29 (0.08) 0.61 (0.1) 0.76 (0.04) 0.61 (0.2) 0.75 (0.11)
MissForest 0.1 (0.03) 0.12 (0.03) 0.32 (0.07) 1.85 (0.48) 0.1 (0.03) 0.61 (0.1) 0.76 (0.04) 0.62 (0.22) 0.79 (0.08)
Softimpute 0.22 (0.03) 0.22 (0.03) 0.53 (0.07) 1.99 (0.48) 0 (0) 0.58 (0.09) 0.74 (0.04) 1.18 (0.34) 0.31 (0.09)

OT 0.14 (0.02) 0.19 (0.03) 0.56 (0.1) 1.98 (0.49) 0.28 (0.05) 0.59 (0.1) 0.75 (0.04) 1.09 (0.27) 0.39 (0.12)
GAIN 0.16 (0.03) 0.17 (0.03) 0.49 (0.11) 1.95 (0.51) 0.01 (0) 0.6 (0.1) 0.75 (0.04) 1.04 (0.25) 0.54 (0.12)

Forest-VP 0.14 (0.04) 0.17 (0.03) 0.55 (0.13) 1.96 (0.5) 0.25 (0.03) 0.61 (0.1) 0.74 (0.04) 0.81 (0.25) 0.57 (0.14)
UTrees-kMeans 0.1 (0.02) 0.15 (0.03) 0.43 (0.09) 1.9 (0.5) 0.28 (0.06) 0.61 (0.1) 0.76 (0.04) 0.63 (0.21) 0.72 (0.13)

Utrees-KDI 0.1 (0.02) 0.14 (0.03) 0.42 (0.09) 1.89 (0.49) 0.27 (0.06) 0.61 (0.1) 0.76 (0.04) 0.68 (0.24) 0.68 (0.14)
UTrees 0.08 (0.02) 0.14 (0.03) 0.37 (0.08) 1.87 (0.48) 0.27 (0.07) 0.61 (0.1) 0.76 (0.04) 0.55 (0.19) 0.71 (0.13)
Oracle 0 (0) 0 (0) 0 (0) 1.87 (0.49) 0 (0) 0.64 (0.09) 0.78 (0.04) 0 (0) 1 (0)

C FULL DATASET-LEVEL RESULTS

Full imputation results are in Table 7. Full generation results are in Table 8. Timing results are in
Table 9, and depicted in Figure 5. Our method is relatively efficient at both imputation and generation.
The datasets on which we are slowest for imputation are Libras (1976 seconds) and Bean (1929
seconds), on our ancient 2015 iMac with 16Gb RAM. On Libras, ForestVP imputation took 12439
seconds (without RePaint) and 14715 seconds (with RePaint); on Bean, ForestVP took 898 seconds
(without RePaint) and 1318 seconds (with RePaint), on their cluster of 10-20 CPUs with 64-256Gb
of RAM. The datasets on which we are slowest for generation are also Libras (2987 seconds) and
Bean (4346 seconds). On Libras, ForestFlow generation took 9481 seconds and ForestVP took 9042
seconds; on Bean, ForestFlow took 869 seconds and ForestVP took 947 seconds, once again on their
much more powerful computing cluster.

Table 7: Full imputation results for UnmaskingTrees on benchmark of 27 datasets.
Dataset MinMAE ↓ AvgMAE ↓ Pbias ↓ Covrate ↑ Wtrain ↓ Wtest ↓ Variance ↑ MAD (mean) ↑ MAD (median) ↑ R2 ↑ F1 ↑
iris 6.00e-02 8.91e-02 0.00e+00 0.00e+00 6.62e-02 2.40e-01 2.65e-03 1.48e-01 1.22e-01 0.00e+00 9.53e-01
wine 9.48e-02 1.31e-01 0.00e+00 0.00e+00 3.54e-01 1.44e+00 5.64e-03 2.37e-01 1.99e-01 0.00e+00 9.37e-01
parkinsons 4.69e-02 6.52e-02 0.00e+00 0.00e+00 2.94e-01 1.71e+00 2.73e-03 1.23e-01 1.03e-01 0.00e+00 8.30e-01
climate model crashes 2.38e-01 3.38e-01 0.00e+00 0.00e+00 1.22e+00 3.87e+00 4.38e-02 7.94e-01 6.88e-01 0.00e+00 7.08e-01
concrete compression 2.33e-02 5.19e-02 1.17e+02 2.44e-01 7.95e-02 5.05e-01 5.61e-03 1.59e-01 1.30e-01 7.55e-01 0.00e+00
yacht hydrodynamics 2.72e-02 6.53e-02 8.78e+01 9.62e-01 6.46e-02 5.11e-01 1.22e-02 1.90e-01 1.45e-01 8.96e-01 0.00e+00
airfoil self noise 2.42e-02 6.64e-02 3.37e+00 1.00e+00 4.60e-02 2.50e-01 1.25e-02 2.29e-01 1.84e-01 7.24e-01 0.00e+00
connectionist bench sonar 9.86e-02 1.18e-01 0.00e+00 0.00e+00 1.43e+00 8.51e+00 5.14e-03 2.22e-01 1.88e-01 0.00e+00 7.99e-01
ionosphere 8.52e-02 1.18e-01 0.00e+00 0.00e+00 7.82e-01 4.44e+00 1.47e-02 2.54e-01 2.02e-01 0.00e+00 9.10e-01
qsar biodegradation 1.53e-02 2.34e-02 0.00e+00 0.00e+00 1.92e-01 1.39e+00 1.25e-03 5.35e-02 4.36e-02 0.00e+00 8.49e-01
seeds 5.36e-02 8.45e-02 0.00e+00 0.00e+00 1.22e-01 4.78e-01 3.37e-03 1.74e-01 1.48e-01 0.00e+00 8.83e-01
glass 4.96e-02 7.59e-02 0.00e+00 0.00e+00 1.40e-01 6.42e-01 5.09e-03 1.44e-01 1.17e-01 0.00e+00 5.43e-01
ecoli 5.15e-02 8.00e-02 0.00e+00 0.00e+00 1.09e-01 4.04e-01 3.60e-03 1.54e-01 1.30e-01 0.00e+00 6.83e-01
yeast 4.38e-02 7.40e-02 0.00e+00 0.00e+00 1.07e-01 3.19e-01 3.58e-03 1.73e-01 1.50e-01 0.00e+00 4.44e-01
libras 3.06e-02 3.64e-02 0.00e+00 0.00e+00 6.57e-01 8.93e+00 8.11e-04 8.17e-02 7.06e-02 0.00e+00 5.69e-01
planning relax 8.41e-02 1.21e-01 0.00e+00 0.00e+00 3.06e-01 1.46e+00 5.57e-03 2.39e-01 2.03e-01 0.00e+00 4.52e-01
blood transfusion 3.44e-02 6.69e-02 0.00e+00 0.00e+00 3.21e-02 1.12e-01 4.80e-03 1.58e-01 1.32e-01 0.00e+00 5.87e-01
breast cancer diagnostic 3.96e-02 5.16e-02 0.00e+00 0.00e+00 3.10e-01 1.85e+00 1.21e-03 1.01e-01 8.73e-02 0.00e+00 9.59e-01
connectionist bench vowel 5.30e-02 9.39e-02 0.00e+00 0.00e+00 1.88e-01 7.25e-01 5.53e-03 2.48e-01 2.14e-01 0.00e+00 6.64e-01
concrete slump 1.25e-01 1.88e-01 4.76e+01 7.25e-01 2.64e-01 1.16e+00 1.48e-02 3.40e-01 2.75e-01 6.75e-01 0.00e+00
wine quality red 4.08e-02 7.16e-02 2.01e+01 1.00e+00 1.41e-01 5.17e-01 3.52e-03 1.83e-01 1.58e-01 3.06e-01 0.00e+00
wine quality white 3.41e-02 6.45e-02 7.74e+01 4.78e-01 1.40e-01 4.53e-01 3.36e-03 1.91e-01 1.68e-01 3.38e-01 0.00e+00
california 1.97e-02 4.97e-02 2.32e+01 5.93e-01 0.00e+00 0.00e+00 4.98e-03 1.58e-01 1.40e-01 6.55e-01 0.00e+00
bean 1.02e-02 2.06e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.05e-03 6.42e-02 5.80e-02 0.00e+00 7.82e-01
tictactoe 2.96e-01 5.11e-01 0.00e+00 0.00e+00 7.76e-01 1.93e+00 2.45e-02 1.47e+00 1.13e+00 0.00e+00 8.23e-01
congress 1.73e-01 2.77e-01 0.00e+00 0.00e+00 8.03e-01 2.38e+00 9.76e-03 5.86e-01 4.33e-01 0.00e+00 9.33e-01
car 4.04e-01 6.85e-01 0.00e+00 0.00e+00 4.84e-01 1.07e+00 2.95e-02 2.06e+00 1.65e+00 0.00e+00 8.01e-01

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 8: Full generation results for UnmaskingTrees on benchmark of 27 datasets.
Dataset Wtrain Wtest covtrain covtest R2

fake F1fake F1disc Pbias Covrate

iris 2.34e-01 3.41e-01 8.78e-01 9.16e-01 0.00e+00 9.25e-01 4.23e-01 0.00e+00 0.00e+00
wine 1.09e+00 1.53e+00 9.09e-01 9.37e-01 0.00e+00 9.15e-01 3.46e-01 0.00e+00 0.00e+00
parkinsons 1.34e+00 1.77e+00 7.48e-01 9.08e-01 0.00e+00 7.33e-01 3.56e-01 0.00e+00 0.00e+00
climate model crashes 3.26e+00 3.89e+00 8.96e-01 9.50e-01 0.00e+00 5.39e-01 2.81e-01 0.00e+00 0.00e+00
concrete compression 4.63e-01 6.21e-01 5.11e-01 8.16e-01 6.73e-01 0.00e+00 4.15e-01 1.50e+02 2.00e-01
yacht hydrodynamics 4.20e-01 6.36e-01 6.13e-01 7.89e-01 8.46e-01 0.00e+00 5.14e-01 1.42e+02 4.48e-01
airfoil self noise 1.93e-01 2.93e-01 6.39e-01 8.96e-01 6.09e-01 0.00e+00 4.65e-01 1.97e+01 4.78e-01
connectionist bench sonar 7.21e+00 8.96e+00 6.87e-01 8.89e-01 0.00e+00 7.20e-01 3.69e-01 0.00e+00 0.00e+00
ionosphere 3.84e+00 4.66e+00 6.11e-01 7.94e-01 0.00e+00 8.57e-01 4.22e-01 0.00e+00 0.00e+00
qsar biodegradation 1.34e+00 1.62e+00 4.81e-01 8.19e-01 0.00e+00 8.02e-01 4.44e-01 0.00e+00 0.00e+00
seeds 3.51e-01 5.48e-01 8.98e-01 9.63e-01 0.00e+00 8.69e-01 3.09e-01 0.00e+00 0.00e+00
glass 4.52e-01 7.12e-01 8.27e-01 9.35e-01 0.00e+00 4.41e-01 3.65e-01 0.00e+00 0.00e+00
ecoli 2.86e-01 4.38e-01 8.99e-01 9.58e-01 0.00e+00 6.16e-01 3.78e-01 0.00e+00 0.00e+00
yeast 2.44e-01 3.49e-01 8.54e-01 9.44e-01 0.00e+00 3.62e-01 4.32e-01 0.00e+00 0.00e+00
libras 1.01e+01 1.16e+01 4.65e-01 8.43e-01 0.00e+00 3.54e-01 3.44e-01 0.00e+00 0.00e+00
planning relax 1.02e+00 1.47e+00 9.22e-01 9.98e-01 0.00e+00 4.56e-01 3.07e-01 0.00e+00 0.00e+00
blood transfusion 1.00e-01 1.52e-01 9.62e-01 9.56e-01 0.00e+00 5.95e-01 4.07e-01 0.00e+00 0.00e+00
breast cancer diagnostic 1.55e+00 1.90e+00 7.94e-01 9.12e-01 0.00e+00 9.40e-01 3.43e-01 0.00e+00 0.00e+00
connectionist bench vowel 7.04e-01 8.87e-01 3.04e-01 8.34e-01 0.00e+00 5.75e-01 3.43e-01 0.00e+00 0.00e+00
concrete slump 6.24e-01 1.20e+00 8.71e-01 8.57e-01 5.34e-01 0.00e+00 3.52e-01 4.57e+01 5.75e-01
wine quality red 4.30e-01 5.40e-01 8.63e-01 9.67e-01 2.46e-01 0.00e+00 4.51e-01 5.14e+01 7.94e-01
wine quality white 4.23e-01 4.97e-01 8.26e-01 9.55e-01 2.52e-01 0.00e+00 4.46e-01 1.84e+02 2.83e-01
california 0.00e+00 0.00e+00 6.22e-01 9.03e-01 3.05e-01 0.00e+00 4.30e-01 1.75e+02 1.70e-01
bean 0.00e+00 0.00e+00 3.35e-01 7.53e-01 0.00e+00 8.16e-01 3.97e-01 0.00e+00 0.00e+00
tictactoe 9.44e-01 1.95e+00 8.23e-01 6.28e-01 0.00e+00 8.31e-01 2.74e-01 0.00e+00 0.00e+00
congress 1.38e+00 2.46e+00 9.11e-01 9.16e-01 0.00e+00 9.47e-01 2.87e-01 0.00e+00 0.00e+00
car 4.61e-01 1.05e+00 5.82e-01 5.20e-01 0.00e+00 7.99e-01 3.02e-01 0.00e+00 0.00e+00

Table 9: Runtime results for UnmaskingTrees on benchmark of 27 datasets.
Dataset # Samples # Features Imputation time (s) Generation time (s)
iris 150 4 5.31 10.72
wine 178 13 26.76 49.06
parkinsons 195 22 58.98 105.27
climate model crashes 540 18 103.73 207.70
concrete compression 1030 8 47.19 123.10
yacht hydrodynamics 308 6 8.89 22.36
airfoil self noise 1503 5 29.91 92.74
connectionist bench sonar 208 60 440.60 685.94
ionosphere 351 33 201.81 362.05
qsar biodegradation 1055 41 560.58 909.87
seeds 210 7 14.94 27.65
glass 214 9 17.12 33.78
ecoli 336 7 14.69 32.56
yeast 1484 8 62.96 150.93
libras 360 90 1975.78 2986.78
planning relax 182 12 25.25 46.18
blood transfusion 748 4 13.16 37.24
breast cancer diagnostic 569 30 279.33 495.71
connectionist bench vowel 990 10 79.85 179.48
concrete slump 103 7 9.74 16.49
wine quality red 1599 10 106.23 263.92
wine quality white 4898 11 357.68 890.90
california 20640 8 968.14 2754.75
bean 13611 16 1929.16 4345.50
tictactoe 958 9 25.85 51.77
congress 435 16 30.41 52.56
car 1728 6 30.18 60.38

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(A) (B)

Figure 5: Runtime in seconds compared to number of features and number of samples, for imputation
(A) and generation (B) tasks.

17

	Introduction
	Method
	UnmaskingTrees for tabular joint distribution modeling
	BaltoBot for tabular probabilistic prediction
	Computational complexity
	In-context learning-based generation with BaltoBoTabPFN and UnmaskingTabPFN

	Results
	Case studies on Two Moons and Iris datasets
	Benchmarking UnmaskingTrees on 27 tabular datasets
	Evaluating BaltoBot on synthetic probabilistic prediction case studies
	Sales forecasting with uncertainty

	Limitations
	Discussion and Related Work
	Conclusions
	Reproducibility Statement
	Algorithmic descriptions of UnmaskingTrees and BaltoBot
	Ablation experiment with imputation - raw scores
	Full dataset-level results

