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Abstract
Nowadays, the abuse of AI-generated content (AIGC), especially
the facial images known as deepfake, on social networks has raised
severe security concerns, which might involve the manipulations of
both visual and audio signals. For multimodal deepfake detection,
previous methods usually exploit forgery-relevant knowledge to
fully finetune Vision transformers (ViTs) and perform cross-modal
interaction to expose the audio-visual inconsistencies. However,
these approaches may undermine the prior knowledge of pretrained
ViTs and ignore the domain gap between different modalities, re-
sulting in unsatisfactory performance. To tackle these challenges, in
this paper, we propose a new framework, i.e., Forgery-awareAudio-
distilled Multimodal Learning (FRADE), for deepfake detection. In
FRADE, the parameters of pretrained ViT are frozen to preserve
its prior knowledge, while two well-devised learnable components,
i.e., the Adaptive Forgery-aware Injection (AFI) and Audio-distilled
Cross-modal Interaction (ACI), are leveraged to adapt forgery rele-
vant knowledge. Specifically, AFI captures high-frequency discrim-
inative features on both audio and visual signals and injects them
into ViT via the self-attention layer. Meanwhile, ACI employs a set
of latent tokens to distill audio information, which could bridge the
domain gap between audio and visual modalities. The ACI is then
used to well learn the inherent audio-visual relationships by cross-
modal interaction. Extensive experiments demonstrate that the
proposed framework could outperform other state-of-the-art multi-
modal deepfake detection methods under various circumstances.
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1 Introduction
The rapid advancement of deep generative models has made the
audio-visual effect of AIGC techniques [16, 38, 50, 54] increasingly
realistic. However, malicious attackers exploit a specific form of
these techniques known as Deepfake to generate and deliver spu-
rious information, thereby posing severe threats to cyber security
and personal reputation. With the purpose of eliminating the abuse
of deepfakes, it is urgent to develop effective deepfake detection
methods.

Previous arts [1, 7, 10, 12, 55] havemademuch effort on unimodal
deepfake detection, e.g., frame- and video-based detection methods,
attempting to explore forgery artifacts from a specific modality.
However, multimedia content highly depends on audio and visual
media forms to convert vivid information, indicating malicious
attackers could subtly align multiple forged media to deliver in-
tended information. Ignoring the complementarity of audio-visual
inconsistencies within multimedia content, such unimodal detec-
tors suffer from significant performance degradation when applied
to multimodal deepfake detection.

Accordingly, some recent studies attempt to exploit audio-visual
inconsistencies as cross-modal artifacts to detect multi-modal deep-
fakes. To effectively mine cross-modal artifacts, [2, 32, 37, 47, 48, 56]
extract audio and visual intra-modal features by individual feature
backbones and combine them in high-level feature space as global
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multimodal features. Nevertheless, intra-modal forgery artifacts
mostly cluster in various locations, which is termed the locality of
artifacts [1, 7, 10, 11]. Such locality suggests that local audio-visual
interaction should be involved to delve into more essential local
cross-modal artifacts. Moreover, [17, 47, 52] leverage the pretrained
Vision Transformer (ViT) [6, 26] to explore more discriminative
audio-visual inconsistencies locally. Despite their superior represen-
tation capability, these ViT-based detectors still have the following
drawbacks: (1) These detectors are initialized with ViT parameters
pretrained on large-scale datasets, e.g., ImageNet [3] and JFT[44],
before being fully finetuned on deepfake datasets to explore forgery
artifacts. However, finetuned with limited deepfake samples, the
ViT-based detectors would forget their pretrained prior knowledge
and overfit specific forgery artifacts, which hinders ViTs’ general-
ization capacity to mine unknown forgery artifacts effectively. (2)
Although cross-modal interaction between audio-visual modalities
is important in capturing cross-modal artifacts, existing methods
ignore the domain gap between audio-visual modalities. Therefore,
direct and simple audio-visual interaction could impose undesirable
modality-specific information into cross-modal forgery features,
leading to a suboptimal detection performance.

Motivated by the above analysis, we propose a Forgery-aware
Audio-distilled Multimodal Learning (FRADE) framework for de-
tecting audio-visual deepfakes. Specifically, as illustrated in Figure
1, to preserve prior knowledge of pretrained ViTs on large-scale
datasets, we maintain the pretrained parameters as frozen at the
training phase. For introducing forgery-relevant knowledge into
ViTs, we design targeted modules: (1) Adaptive Forgery-aware
Injection. We explore the high-frequency prior of audio and vi-
sual artifacts, and based on the prior, incorporate a few learnable
parameters to facilitate intra-modal forgery representation, which
is further injected into pretrained ViTs via adaptive transformation
into the offsets of corresponding query, key, and value embeddings.
These forgery-aware offsets further incorporate pretrained em-
beddings in the self-attention layer and achieve forgery-relevant
knowledge injection. (2) Audio-Distilled Cross-modal Interac-
tion. Since the domain gap between audio-visual modalities caused
by modality-specific information prevents cross-modal interaction
from modeling inherent audio-visual relationships, we propose
an audio-distilled interaction to filter modality-specific informa-
tion before performing cross-modal interaction. Specifically, a set
of learnable latent tokens serves as audio-to-visual intermediate
tokens to first distill modality-agnostic information from audio
features and generate intermediate audio-distilled features, which
contain less modality-specific information and are more desirable to
be further utilized in cross-modal interaction with visual features.
These two modules are equipped with every transformer block
in ViT and facilitate the model in learning more discriminative
audio-visual representation for deepfake detection.

Overall, our contributions are summarized as follows:

• A novel audio-visual deepfake detection framework, i.e.,
FRADE, is proposed, which preserves the prior knowledge of
ViTs and exploits learnable parameters to effectively capture
discriminative intra-modal and cross-modal forgery artifacts
and achieve general deepfake detection.

• The Adaptive Forgery-aware Injection (AFI) is devised to
inject forgery-relevant knowledge by learning intra-modal
forgery features for both audio and visual modalities, while
theAudio-Distilled Cross-modal Interaction (ACI) is designed
to bridge the domain gap of audio-visual modalities and thus
capture crucial audio-visual inconsistencies via cross-modal
interaction.

• Experimental results demonstrate the effectiveness and scal-
ability of the proposed modules and the superior detection
performance under various evaluation settings.

2 Related Work
2.1 Unimodal Deepfake Detection
Most existing unimodal methods exploit visual artifacts caused
by imperfect forgery techniques to perform effective forensics.
For example, [41] leverages some off-the-shelf CNN models to
learn forgery clues. Moreover, researchers explore more substantial
forgery clues, such as fine-grained local artifacts [1, 7, 10], high-
frequency abnormalities [18], and facial blending inconsistencies
[27, 42], to achieve better generalization and robustness perfor-
mance. With the aid of temporal inconsistencies rooted by deep-
fake generation in a common frame-by-frame manner, [10, 11] are
proposed to mine spatiotemporal clues. For detecting audio deep-
fake, most methods [4, 21] utilize CNN architectures to explore
audio spectrum abnormalities. [20, 22] analyze raw audio signals
with temporal modeling networks and capture temporal artifacts.
Overall, the methods above still treat audio and visual deepfake
detection as independent research fields and ignore their correla-
tion. It is crucial to capture the traces of audio-visual discrepancies
for detecting advanced audio-visual aligned forgery multimedia, in
which both audio and visual deepfakes might appear.

2.2 Audio-Visual Deepfake Detection
Initially, researchers capture audio and visual forgery artifacts sep-
arately and determine whether the audio-visual has been forged
based on the final logits. However, without adequate audio-visual
interaction, such methods [2, 56] hardly exhibit multimodal poten-
tials and fail to detect forged videos containing well-constructed
audio and corresponding visual contents. To alleviate this problem,
later works [31, 32, 47, 48] make a great effort to design multimodal
interaction and audio-visual joint learning to mine meaningful dis-
crepancies between the two modalities. Moreover, [8] pretrains the
audio-visual model on a real large-scale audio-visual dataset in a
self-supervised manner to better capture the cross-modal correla-
tion of real audio-visual samples and achieve promising generaliza-
tion performance. However, the gap between modalities inevitably
introduces interaction-irrelevant modality-specific information into
cross-modal interaction, damaging the effect of cross-modal forgery
clues. Here, we propose the ACI to eliminate the negative effect of
interaction-irrelevant audio features with less interfered modality-
specific information then are utilized to perform cross-modal inter-
action with the visual features.
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2.3 Audio-Visual Representation Learning
Recently, researchers have transformed the audio signal into a 2D
spectrogram (audio image) and proved that pretrained ViT architec-
tures [45, 47] could simultaneously process audio and visual images
to extract task-specific features. To fully exploit prior knowledge
of pretrained parameters, various adapter modules [15, 28, 39] are
designed. Inspired by the above, [34] introduces forgery-related
adapters to detect visual forgery artifacts and achieves promising
performance. However, such design is customized for unimodal
settings, and audio-visual forgery adapters are not fully explored.
Here, we propose two types of adapters to facilitate ViTs in mining
the audio-visual forgery artifacts, i.e., AFI and ACI. The former is
designed to introduce intra-modal forgery knowledge with learn-
able parameters, while the latter attempts to bridge the domain
gap between audio-visual modalities via a few learnable interme-
diate tokens and then captures more discriminative artifacts by
performing cross-modal interaction.

3 Method
This section presents our proposed Forgery-aware Audio-Distilled
Multimodal Learning (FRADE) framework that adapts frozen pre-
trained ViTs to audio-visual deepfake detection by introducing
forgery-relevant knowledge with a few additional trainable param-
eters. Concretely, as illustrated in Figure 1, two proposed adapter
modules, i.e., Adaptive Forgery-aware Injection (AFI) module and
Audio-Distilled Cross-modal Interaction (ACI) module, are em-
ployed in every transformer block of a frozen ViT. Note that the
frozen parameters of ViT are shared for both the audio and visual
inputs.

3.1 Audio-Visual Input Embeddings
Audio and Visual Inputs. We consider a video clip𝑉 ∈ R𝑇×𝐻𝑣×𝑊𝑣×3

as the visual input, containing 𝑇 RGB frames with spatial dimen-
sions 𝐻𝑣 ×𝑊𝑣 . For audio modality, we sample the corresponding
audio signal and transform it into 2D spectrogram 𝐴 ∈ R𝐻𝑎×𝑊𝑎 .

Audio and Visual Tokenization. We decompose each RGB frame
of the clip 𝑉 into𝑚 non-overlapping patches with the shape 𝑃 × 𝑃

and further transform patches into 𝐷-dim visual embedding se-
quence 𝑥𝑣 ∈ R𝑁𝑣×𝐷 , 𝑁𝑣 = 𝑚 · 𝑇 . Similarly, we first duplicate the
audio spectrogram and stack it as �̃� ∈ R𝐻𝑎×𝑊𝑎×3, which is fur-
ther decomposed and projected into the audio embedding sequence
𝑥𝑎 ∈ R𝑁𝑎×𝐷 .

3.2 Adaptive Forgery-aware Injection
Since ViTs pretrained on large-scale visual datasets learn the gen-
eralized representation, to preserve such representation capability
and adapt forgery-relevant representation learning in audio (or
visual) modality, we design the Adaptive Forgery-aware Injection
(AFI) module, in which the following factors are taken into account.

Injection Feasibility. We expect the proposed AFI to be capable
of mining both audio and visual artifacts within an identical design,
which facilitates subsequent audio-visual embedding fusion in ex-
ploring cross-modal artifacts of the audio-visual. Plenty of works
point out the effectiveness of high-frequency artifacts in the visual.
For the audio, we would visualize and analyze real and fake audio
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Figure 1: Overview of the proposed FRADE. Initially, the
audio-visual inputs are sliced and embedded into sequences.
They are fed into stacked transformer blocks with AFI and
ACI modules. Finally, the MLP classifier determines their
authenticity.
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Figure 2: Illustration of the audio spectrogram from the per-
spective of the image.

spectrograms from the perspective of the spatial image, which is
regarded as the texture image when fed into the ViT embedding
layer. As illustrated in Fig. 2, the texture difference between real and
fake spectrograms of the same visual content (see it in blue boxes)
is mainly clustered in high-frequency contents, i.e., highly textual
regions. Therefore, when designing the AFI module, we expect it
to focus on capturing high-frequency abnormalities and achieve
intra-modal forgery representation learning within the identical
structure.

Injection Location. Every transformer block of ViTs has two core
components: Multi-Head Self-Attention (MHSA) and Feed-Forward
Network (FFN). Both components can be used to integrate extracted
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task-related knowledge into the prior [28, 39]. Moreover, compared
with FFN, MHSA provides a more complex non-linear latent space,
which has a better representation capability and enables the mod-
ule to extract more subtle but crucial forgery artifacts. Therefore,
based on the above analysis, we deploy the proposed AFI module
before the MHSA to fully exploit the capability of self-attention
and capture more discriminative forgery artifacts.

Guided by the above intuitions, we propose the AFI module,
depicted in Figure 3. To facilitate the injection of forgery-relevant
knowledge in terms of high-frequency prior, a few learnable param-
eters are introduced to serve as the offsets of query, key, and value
embeddings in MHSA. Specifically, with the pretrained weights of
MHSA kept frozen, AFI exploits a predefined high-pass filter to
suppress low-frequency components and extracts forgery artifacts,
which mainly concentrate on high-frequency components. Then,
the extracted features are transformed into the offsets of the query
(q), key (k), and value(v) embeddings, which are integrated with the
original embeddings of MHSA, achieving the knowledge injection
of intra-modal forgery artifacts.

Initially, the input audio (or visual) sequence 𝑥 ∈ R𝑁×𝐷 is re-
shaped into the spatial form 𝑥 ∈ R�̂�×�̂� ×𝐷 with (�̂�,�̂� ) = (𝐻

𝑃
, 𝑊
𝑃
).

Here, (𝐻,𝑊 ) = (𝐻𝑎,𝑊𝑎) for the audio input 𝑥𝑎 . Then, we employ
convolution with 3 × 3 kernels to learn the relationships among
neighboring patches and capture regional and local forgery artifacts.
Subsequently, for capturing forgery artifacts existing at the high-
frequency domain, we incorporate the Fast Fourier Transformation
(FFT) and the inverse (IFFT) with a predefined low-frequency fil-
tering mask 𝑀𝑓 to filter low-frequency semantic information and
guide the detector to focus on high-frequency abnormal contents,
which include more obvious artifacts [29, 36]. Lastly, we project the
filtered features into the forgery-aware offsets of 𝑞, 𝑘 , and 𝑣 embed-
dings, which are integrated with the corresponding embeddings
for MHSA. The process of the AFI module is formulated as follows:

𝑥 𝑓 = IFFT(𝑀𝑓 ∗ FFT(Conv3×3 (𝑥))), (1)
Δ𝑞,Δ𝑘,Δ𝑣 = Conv1×1 (𝑥 𝑓 ),Conv1×1 (𝑥 𝑓 ),Conv1×1 (𝑥 𝑓 ), (2)

𝑥𝑜𝑢𝑡 = Softmax( (𝑞 + Δ𝑞) · (𝑘 + Δ𝑘)⊤
√
𝐷

) (𝑣 + Δ𝑣), (3)

where Δ𝑞,Δ𝑘 , and Δ𝑣 represent the forgery-aware offsets. In partic-
ular, depending on the characteristics of the component distribution
in frequency domain, the shape of𝑀𝑓 is �̂� × �̂� and values are ini-
tialized as one, where the central area with radius 𝑑𝑓 is set as zero
to form the high-pass filter. Note that MHSA performs multi-head
projection on input sequences 𝑥 in the generation of query, key,
and value embeddings. Therefore, we also project the intermediate
features 𝑥 𝑓 into the corresponding offsets in the multi-head form.
By performing AFI on both audio and visual inputs, we obtain their
intra-modal embeddings.

3.3 Audio-Distilled Cross-modal Interaction
Furthermore, multimodal embedding fusion is performed on the
audio and visual sequences to learn the inherent correlations of
both modalities jointly. For audio-visual deepfake detection, previ-
ous arts commonly realize the negative effect of the domain gap

between audio-visual forgery representations and design more so-
phisticated fusion strategies, e.g., cross attention [47, 52], weighted
aggregation with contrastive learning [32, 48], to bridge this gap
and capture more substantial cross-modal artifacts. However, exist-
ing methods implicitly enclose domain gaps via complex optimiza-
tion objectives, which results in the detector overfitting in specific
audio-visual inconsistencies and being trapped in the local optimal.

Here, we propose the ACI to explicitly enclose the domain gap
via learnable parameters rather than customized optimization objec-
tives and perform cross-modal interaction. Specifically, before inter-
acting with visual embeddings, audio embeddings are distilled with
a few intermediate tokens via cross-attention operations to extract
interaction-specific audio information while discarding modality-
specific information, which effectively encloses the domain gap
between modalities. Note that, benefitting from the hierarchical
design of general ViTs, the proposed FRADE could progressively
fuse visual and distilled audio features via a series of ACI modules
and thoroughly model audio-visual relationships, thus capturing
more intrinsic artifacts.

As illustrated in Figure 3, in the ACI module, we predefine a
few intermediate learnable tokens 𝑥𝑖𝑛𝑡𝑒𝑟 ∈ R𝑁𝑖𝑛𝑡𝑒𝑟 ×𝐷 . 𝑁𝑖𝑛𝑡𝑒𝑟 is
a hyperparameter that controls the number of learnable tokens.
Subsequently, given the audio-visual sequence 𝑥𝑎 and 𝑥𝑣 , 𝑥𝑖𝑛𝑡𝑒𝑟 dis-
tills interaction-specific information 𝑥𝑖𝑛𝑡𝑒𝑟 from the original audio
sequence via cross-attention interaction. Finally, we perform cross-
attention interaction on the distilled audio tokens 𝑥𝑖𝑛𝑡𝑒𝑟 and visual
sequence 𝑥𝑣 to further explore cross-modal artifacts. Note that we
set 𝑁𝑖𝑛𝑡𝑒𝑟 much smaller than 𝑁𝑎 , indicating 𝑥𝑑 tends to compress
audio features and extract interaction-specific audio information.
The progress of the ACI module can be formulated as:

𝑥𝑖𝑛𝑡𝑒𝑟 = 𝑥𝑖𝑛𝑡𝑒𝑟 + CrossAttn(𝑥𝑖𝑛𝑡𝑒𝑟 , 𝑥𝑎)
= 𝑥𝑖𝑛𝑡𝑒𝑟 + Softmax(𝑥𝑖𝑛𝑡𝑒𝑟 · 𝑥⊤𝑎 )𝑥𝑎, (4)

𝑥𝑣 = Conv(𝑥𝑣 + CrossAttn(𝑥𝑣, 𝑥𝑖𝑛𝑡𝑒𝑟 ))
= Conv(𝑥𝑣 + Softmax(𝑥𝑣 · 𝑥⊤𝑖𝑛𝑡𝑒𝑟 )𝑥𝑖𝑛𝑡𝑒𝑟 ), (5)

where Conv(·) stands for convolution-related operations, includ-
ing down-sampling convolution, non-linear projection, and up-
sampling convolution operations.

3.4 Optimization Objectives
In this section, the audio and visual sequences 𝑥𝑎, 𝑥𝑣 , processed by
intended ViTs, are utilized to predict whether audio-visual contents
are forged or not. Concretely, following the general settings of ViT,
we perform linear projection on the classification tokens 𝑐𝑙𝑠𝑎, 𝑐𝑙𝑠𝑣
of both sequences into the cross-modal global representation 𝑐𝑙𝑠𝑔 .
The global representation 𝑐𝑙𝑠𝑔 is then exploited to compute the
prediction probability 𝑦 for audio-visual deepfake detection.

Furthermore, in the real-world scenario, visual (or audio) or
both modalities can be manipulated, indicating there are three
forgery cases: RealVisual-FakeAudio (RVFA), FakeVisual-RealAudio
(FVRA), and FakeVisual-FakeAudio (FVFA). When detecting RVFA
and FVRA, the detector would be misled by the pristine features of
the unaltered modality and thus more fine-grained optimization is
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required to tackle this issue. Specifically, for optimizing the single-
side forgeries, i.e., RVFA and FVRA, the feature distance between
the two modalities is expected to be larger than the real audio-
visual pairs (RealVisual-RealAudio, RVRA). On the other hand, to
better identify the RVRA samples from the others, we expect RVRA
samples to be clustered while being kept a certain distance from
the fake samples. Therefore, we design the following loss functions
over 𝑁 training samples to achieve these goals.

Cross-modal Contrastive Loss (L𝑐𝑚𝑐 ) attempts to pull audio
and visual representations of RVRA samples closer while pushing
them from each other for the RVFA, FVRA, and FVFA. Formally,
this process can be denoted as:

L𝑐𝑚𝑐 =
1
𝑁

𝑁∑︁
𝑖=1

[(1 − 𝑦𝑖 ) · (1 − Sim(𝑐𝑙𝑠𝑖𝑎, 𝑐𝑙𝑠𝑖𝑣))+

𝑦𝑖 ·𝑚𝑎𝑥 (Sim(𝑐𝑙𝑠𝑖𝑎, 𝑐𝑙𝑠𝑖𝑣) − 𝛾1, 0)],
(6)

where𝑦𝑖 is the ground-truth label of the 𝑖-th audio-visual sample,
𝑦𝑖 is 0 for the RVRA sample, otherwise 𝑦𝑖 is 1. Moreover, Sim(·) de-
notes the cosine similarity function, and 𝛾1 controls the separation
degree of fake audio and visual features, set as 0.2.

Audio-Visual Center Cluster Loss (L𝑐𝑐 ) is designed for clus-
tering RVRA samples and facilitates the learning of discriminative
audio-visual features. Here, we define a learnable RVRA feature
center 𝑓𝑐 ∈ R𝐷 and perform cluster optimization on cross-modal
representation 𝑐𝑙𝑠𝑔 as follow:

L𝑐𝑐 =
1

2|Ω𝑟 |
∑︁
𝑖∈Ω𝑟

| |𝑐𝑙𝑠𝑖𝑔 − 𝑓𝑐 | |22 −𝑚𝑖𝑛( 1
2|Ω𝑓 |

∑︁
𝑖∈Ω𝑓

| |𝑐𝑙𝑠𝑖𝑔 − 𝑓𝑐 | |22, 𝛾2),

(7)
where Ω𝑟 and Ω𝑓 represent the index sets of real and fake samples,
respectively. 𝛾2 controls the minimal distance between the RVRA
center and fake samples and is set as 0.25.

Cross-Entropy Loss (L𝑐𝑒 ) corresponds to our detection goal
and ensures the learning of forgery-relevant features on bothmodal-
ities.

L𝑐𝑒 = − 1
𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log(𝑦𝑖 ) + (1 − 𝑦𝑖 )log(1 − 𝑦𝑖 )] . (8)

In summary, our FRADE framework is trained with the weighted
aggregation of Audio-Visual Cross-modal Contrastive Loss (L𝑐𝑚𝑐 ),
Audio-Visual Center Cluster loss (L𝑐𝑐 ), and Cross-Entropy Loss
(L𝑐𝑒 ) which can be expressed as :

L𝑎𝑙𝑙 = L𝑐𝑒 + 𝛼1L𝑐𝑚𝑐 + 𝛼2L𝑐𝑐 , (9)

where 𝛼1 and 𝛼2 are the hyperparameters to balance the effects of
individual loss functions.

4 Experiments
4.1 Datasets
Following recent audio-visual forensics arts [8, 32, 47, 48], we lever-
age several public datasets to comprehensively evaluate our method,
which compacts a diverse range of scenarios, manipulation tech-
niques, and real-world perturbations. (1) FakeAVCeleb [23] con-
tains 500 real videos and 19,500 deepfake videos, where real videos
are collected from different individuals of various ethnic groups.
FaceSwap [35] and FSGAN [38] are leveraged to generate face-
swapped videos, and fake audios are generated by SV2TTS [19] and
Wav2Lip [40]. (2)KoDF [25] includes 62,166 unique 90-second-long
real video clips collected on various conditions and 175,776 deep-
fake clips of at least 15 seconds, where fake videos are generated
by six synthesized methods: FaceSwap, FSGAN, DeepFaceLab [30],
FOMM [43], ATFHP [49], and Wav2Lip. The original audio track of
each video is unchanged. (3) DeAVMiT [47] is a recent multimodal
dataset that contains 540 pristine videos and 6480 deepfake videos,
in which multiple audio forgery techniques are involved to re-
duce explicit audio-visual forgery traces. (4) Deepfake Detection
Challenge (DFDC) [5] is a publicly available dataset with 19,154
real video clips sourced from 3426 actors and more than 100,000
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deepfake clips forged by various techniques. To better simulate
real-world scenarios, the forged videos are distorted with diverse
perturbations such as color saturation, blurring, compression, etc.

4.2 Implementation Details
We sample 16 frames (𝑇 = 16) with 4 intervals for each video as
an input clip and extract corresponding faces using MTCNN [51],
which are aligned to the size of 224× 224. Meanwhile, similar to [8],
we resample the audio signal to 16𝑘𝐻𝑧 and then transform it into
the log-mel spectrogram by short-time Fourier Transform with 80
mel filter banks, a hop length of 160, and a window size of 320. Note
that we employ the FRADE framework into the original ViT-base
backbone [6] to perform the following comparative evaluations.
Furthermore, we utilize the AdamW optimizer with the learning
rate 2e-6. For hyperparameter settings, the weight parameters𝛼1, 𝛼2
in Eq. (9) are set as 0.3 and 0.4, respectively, while we conduct
ablation experiments to determine the optimal 𝑑𝑓 and 𝑁inter values.

4.3 Evaluation Metrics
Following the previous arts [8, 32, 47, 48], we report the Accuracy
(ACC) and Area Under Curve (AUC) as evaluation metrics. More-
over, we sample sequentially all audio-visual pairs from each video
during evaluation and average them as recorded performance. Un-
less otherwise specified in the following comparisons, red indicates
the best performance on a specific dataset, while blue means the
second-best performance.

4.4 Comparative Experiments
In this section, we utilize four public datasets, including FakeAVCeleb,
DeAVMiT, KoDF, and DFDC, to conduct comparative experiments
with recent state-of-the-art methods.

4.4.1 Intra-dataset Evaluation. Here, we conduct the intra-dataset
evaluation within several datasets, i.e., all detectors are trained and
tested on the identical dataset. Table 1 demonstrates the compara-
tive results regarding performance metrics ACC and AUC, which
reveal the detectors’ capability of capturing audio-visual forgery
artifacts. Specifically, it is observed as follows: (1) Overall, com-
pared with visual detectors, audio-visual detectors consider more
comprehensive audio-visual forgery information and achieve better
performance. (2) Moreover, when evaluated on FakeAVCeleb, which
contains more diverse audio-visual forgery combinations, most ex-
isting detectors obtain relatively inferior performance. We attribute
the inferiority to two factors: they ignore the locality of artifacts and
leverage high-level features to mine coarse cross-modal artifacts
via audio-visual interaction. The domain gap between modalities
undermines the effectiveness of audio-visual interaction. In con-
trast, the proposed method utilizes the stacked ACI modules to
progressively bridge the domain gap and fuse audio-visual features
and incorporates the AFI module to further mine more instinctive
cross-modal artifacts. Therefore, it achieves superior performance
across various datasets.

4.4.2 Cross-dataset Evaluation. To further evaluate the generaliz-
ability of the proposed method, we conduct the cross-dataset evalu-
ation on the detection of unseen datasets following the settings in
[32, 47, 48]. Specifically, The comparative results are demonstrated

in Table 2 and Table 3. Note that we borrow the results of coun-
terparts from MCL[32] and compare with them in Table 3, where
compared methods are trained on DF-TIMIT [24], besides listed
datasets. It is observed that most methods show an obvious perfor-
mance improvement when trained on more audio-visual pairs, i.e.,
the evaluation setting of Table 3, and our method achieves superior
generalization performance under most of the evaluation settings,
about 2.5 % averaged improvement. Such improvement can be at-
tributed to two factors. (1) Frozen parameters of pretrained blocks
preserve the generalized feature representation capability, which
further constrains the learnable AFI and ACI modules to extract
more generalized artifacts. (2) The proposed method exploits audio-
visual high-frequency forgery artifacts, which are more feasible to
distinguish the forged samples, thereby improving the detector’s
generalizability.

4.4.3 Cross-forgery Evaluation. Similar to the previous art [8], we
conduct the experiment on the FakeAVCeleb dataset to evaluate
the generalizability of our method against unseen forgery cases. In
the cross-forgery scenario, the detectors are required to detect arti-
facts of unseen forgery cases. To simulate this scenario, we divide
FakeAVCeleb samples into four cases: RVRA, RVFA, FVRA, and
FVFA, and hold out the evaluated forgery case while training the
models on the remaining cases. We show the results in Table 4, and
it could be observed as follows. (1) Compared with unimodal detec-
tors, audio-visual joint modeling enables the multimodal detectors
to detect RVFA samples and achieve acceptable performance. Mean-
while, naive and simple cross-modal interaction of existing methods
leads to performance degradation when detecting visual-related
artifacts, i.e., FVRA and FVFA. (2) The cross-modal inconsisten-
cies differ from various forgery cases, i.e., RVFA, FVRA, and FVFA,
and require more adequate and fine-grained modeling by cross-
modal interaction. Compared with existing audio-visual methods,
the design of progressive interaction in FRADE could effectively
model audio-visual relationships and better deal with various un-
seen forgery cases.

5 Ablation Studies
5.1 Component Contribution
Table 5 illustrates the contribution of each proposed module and
loss to overall performance improvement in FRADE. Note that for
measuring the contribution of the audio-distilled interaction, we
compare the proposed method with its variant, which performs
vanilla cross-attention interaction utilized in [47]. It is observed
in Table 5 as follows. (1) Both AFI and ACI modules are crucial in
modeling audio-visual relationships and further identifying con-
vincing forgery artifacts. (2) Compared with the vanilla interaction,
the audio-distilled interaction of the ACI module includes the extra
step beside cross-attention interaction, i.e., leveraging intermediate
tokens to distill modality-agnostic audio information. This well-
designedmodule effectively encloses the domain gap in audio-visual
modalities and thus improves the model’s capability of modeling
audio-visual relationships. (3) Furthermore, L𝑐𝑚𝑐 and L𝑐𝑐 provide
more compact latent space corresponding to robust decision bound-
aries to the detector. When evaluated on the DeAVMiT dataset,
which contains relatively low-quality audio-visual samples, the
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Table 1: Intra-dataset Evaluation. Note that the detector with † represents it belongs to the unimodal method, i.e., visual detector.

FakeAVCeleb KoDF DFDC DeAVMiTMethod Venue ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%)
LipForensics† [14] CVPR 2021 80.1 82.4 93.16 93.72 71.3 73.5 73.1 77.2
MultiAttn† [53] CVPR 2021 77.6 79.3 91.1 90.5 89.8 92.2 - -
RealForensics† [13] CVPR 2022 90.1 92.3 - - 89.6 91.5 92.8 96.2
MDS [2] MM 2020 82.8 86.5 95.68 95.24 89.8 91.6 92.0 94.3
Joint-AVD [56] ICCV 2021 82.5 83.3 92.96 93.59 90.2 91.9 89.6 93.7
AVFakeNet [17] ASC 2022 78.4 83.4 - - 82.8 86.2 91.8 93.7
AVoiD-DF [47] TIFS 2023 83.7 89.2 - - 91.4 94.8 90.1 93.9
MCL [32] TCSVT 2023 86.0 89.6 97.8 98.1 97.9 98.3 - -
AVAD [8] CVPR 2023 94.2 94.5 87.6 86.9 93.2 96.7 96.3 97.7
PVASS-MDD [48] TCSVT 2023 95.7 97.3 - - 96.3 98.9 97.6 99.1
FRADE Ours 98.6 99.8 99.1 99.8 97.2 99.0 98.8 98.6

Table 2: Cross-dataset Evaluation. All detectors are trained
on FakeAVCeleb, and tested on the other three datasets, re-
spectively. Results are reported in terms of AUC (%).

Method Venue KoDF DeAVMiT DFDC
LipForensics [14] CVPR 2021 86.6 52.5 53.1
FTCN [55] ICCV 2021 68.1 - -
MDS [2] MM 2020 - 75.2 73.1
Joint-AVD [56] ICCV 2021 - 77.8 76.7
AVAD [8] CVPR 2023 86.9 83.7 81.4
PVASS-MDD [48] TCSVT 2023 - 87.5 84.8
AVoiD-DF [47] TIFS 2023 - 83.2 80.7
FRADE Ours 92.4 89.3 83.8

Table 3: Cross-dataset Evaluation. All detectors are evalu-
ated on one specific dataset while trained on the remaining
datasets. Results are reported in terms of AUC (%).

Method Venue KoDF FakeAVCeleb DFDC
LipForensics [14] CVPR 2021 74.7 77.8 74.3
FTCN [55] ICCV 2021 78.1 79.3 74.0
MDS [2] MM 2020 79.0 79.3 72.3
Joint-AVD [56] ICCV 2021 82.5 83.5 75.7
AVAD [8] CVPR 2023 86.9 - 81.4
MCL [32] TCSVT 2023 87.2 87.1 86.8
FRADE Ours 93.5 93.1 85.4

detector without above optimization objectives, i.e., L𝑐𝑚𝑐 and L𝑐𝑐 ,
suffers from the noisy features and achieve inferior results. There-
fore, both optimization objectives are essential for the audio-visual
detector to learn a more generalized feature representation.

The Impact of 𝑑𝑓 and 𝑁inter values. In each ViT block of the pro-
posed FRADE, 𝑑𝑓 in the AFI module controls the degree of filtering,
and the larger 𝑑𝑓 value indicates the more intensive filtering effect,
which discards wider-range frequency contents. Moreover, 𝑁inter in
the ACI module determines the number of intermediate tokens for

Table 4: Cross-Forgery Evaluation. All detectors are evaluated
on one specific forgery case while trained on the remaining
cases. The results are reported in terms of AUC (%).

Method Multimodal Forgery Case
RVFA FVRA FVFA

Lipforensics [14] - 97.7 88.9
FTCN [55] - 97.4 91.6
RealForensics [13] - 93.0 98.5
Joint-AVD [56] ✓ 73.3 97.4 85.0
AVBYOL [9] ✓ 50.0 61.3 58.5
AVAD [8] ✓ 80.5 93.7 92.7
FRADE ✓ 97.7 97.3 99.2

Table 5: Component Contribution Evaluation. The FRADE
and its variants are trained on the FakeAVCeleb.

Variant FakeAVCeleb KoDF DeAVMiTAFI ACI L𝑐𝑚𝑐 L𝑐𝑐

✓ 95.7 74.1 64.8
✓ ✓ 99.7 88.7 84.4
✓ ✓ ✓ 99.2 78.5 65.3
✓ ✓ ✓ 100.0 91.5 87.7
✓ ✓ ✓ 99.5 93.2 87.3
✓ ✓ ✓ ✓ 99.8 92.4 89.3

audio distillation and controls the distillation degree of audio infor-
mation. The results are depicted in Table 6 and analyzed as follows:
(1) When the 𝑑𝑓 value grows larger, the corresponding high-pass
filter tends to discard more high-frequency information and leads
to a severe performance drop on the cross-forgery scenario. (2)
Besides, when the 𝑁inter grows larger, more modality-specific infor-
mation is inevitably introduced into distilled tokens, which causes
the detector to overfit specific audio-visual forgery clues and thus
damages the generalizability of the detector.

The Impact of the Modality Distillation. We realize that audio
and visual contents differ from the information volume and design
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Table 6: Hyperprameter Evaluation.We utilize various combi-
nations of 𝑁inter and 𝑑𝑓 to train the FRADE on FakeAVCeleb.

𝑁inter 𝑑𝑓
FakeAVCeleb KoDF DeAVMiTRVFA FVRA FVFA

2 0 97.3 99.2 98.5 87.9 85.7
4 0 98.2 98.4 99.5 90.6 86.1
4 7 95.2 93.8 97.6 91.8 88.4
4 11 95.7 94.2 98.2 92.1 87.5
8 3 98.5 97.9 99.7 89.8 90.1
16 3 98.4 97.6 99.9 88.2 87.3
4 3 97.7 97.3 99.2 92.4 89.3

Table 7: Modality Distillation Evaluation.We designmultiple
distillation strategies and evaluate all detectors trained on
FakeAVCeleb in terms of AUC (%).

Distillation Variant FakeAVCeleb KoDF DeAVMiT
None 99.7 83.4 81.8
Visual 98.9 86.3 81.4
Audio-Visual 99.9 88.8 85.6
Audio 99.8 92.4 89.3

Table 8: Scalability Evaluation. We adopt the FRADE frame-
work into different backbones. The AUC (%) scores and back-
bone parameter volumes ’Param’ (million, M) are reported
below. And the gray background indicates the default setting.

Backbone Param FakeAVCeleb KoDF DeAVMiT
Swin-V2-Base 88M 99.5 94.1 90.5
Swin-V2-Large 197M 99.8 94.5 91.2
ViT- Large 307M 99.6 92.6 87.7
ViT-Base 86M 99.8 92.4 89.3

unidirectional interaction, i.e., audio-distilled interaction, in the
ACI module. To verify this design, we evaluate multiple distillation
variants, including Visual-, Audio-, and bidirectional (Audio-Visual)
distilled interactions illustrated in Table 7. Overall, all variants, espe-
cially the audio-distilled variant, benefit from the design of modality
distillation and obtain the expected performance improvement. We
attribute this to the following factors: (1) Modality distillation effec-
tively encloses the domain gap between audio and visual modalities,
which is crucial for cross-modal interaction. (2) Moreover, the au-
dio modality is regarded as the time sequence with rich temporal
information, which could guide the detector to capture instinct
temporal artifacts in the visual modality by cross-modal interaction.
In contrast, besides temporal information, the visual forgery modal-
ity includes more obvious spatial artifacts, primarily dominant in
mining visual forgery clues [46]. That means performing a visual-
distilled interaction with audio would disturb the temporal forgery
clues of audio, thus causing significant performance degradation.

Real Fake

Figure 4: Visualization of cross-attention maps in the last
ACI module. The warmer color indicates a higher response
of audio-distilled 𝑥𝑖𝑛𝑡𝑒𝑟 to certain facial regions.

5.2 Scalability
We also emphasize that our FRADE framework is independent of
the specific ViT structure and conduct comparative experiments on
various ViTs with diverse parameter volumes. As illustrated in Table
8, it is observed that: (1) benefiting from the more sophisticated
structure, i.e., the sliced attention window in Swin Transformer
[33], our FRADE could achieve better generalization performance,
which indicates the FRADE is the backbone-agnostic design and has
the potential to adapt to various ViT structures, i.e., more advanced
structures bring better forgery representations. (2) Furthermore,
more designed modules in larger backbones, i.e., AFI and ACI, with
more learnable parameters would result in our FRADE overfitting
specific features, limiting its generalizability.

5.3 Visualization
To further demonstrate the cross-modal interaction effect of the
proposed ACI module in FRADE, we visualize and analyze cross-
attention score maps generated in Eq. (5). As illustrated in Figure
4, it is observed that: (1) the learnable intermediate tokens in ACI
could effectively distill interaction-specific information from audio
and guide the model to focus on certain face regions. (2) Moreover,
depending on different data types, i.e., Real and Fake, the tokens
would interact with different regions of the visual. For the real audio-
visual pairs, the high response concentrates on mouth-nose regions,
which are closely related to audio information. It suggests that the
learnable tokens could construct real audio-visual relationships via
mouth-nose movement. In contrast, fake audio or visual modality
would undermine real audio-visual relationships and distract the
attention of 𝑥𝑖𝑛𝑡𝑒𝑟 to mouth-nose regions.

6 Conclusion
This paper introduces a novel audio-visual deepfake detection
framework, i.e., the Forgery-Aware Audio-Distilled Multimodal
Learning (FRADE). Specifically, we introduce forgery-relevant knowl-
edge into the ViT backbones via trainable parameters while freezing
the pretrained parameters to preserve the general prior knowledge.
To effectively capture generalized intra-modal artifacts, we pro-
pose an Adaptive Forgery-aware Injection (AFI) module to explore
the universal frequency characteristics of audio-visual artifacts.
Furthermore, we develop an Audio-Distilled Cross-modal Interac-
tion (ACI) module to bridge the domain gap between audio-visual
modalities, enhancing cross-modal forgery interaction. Extensive
experiments demonstrate the superiority and scalability of the pro-
posed method.
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