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ABSTRACT

The development of foundation models for embodied intelligence critically de-
pends on access to large-scale, high-quality robot demonstration data. Recent
approaches have sought to address this challenge by training on large collec-
tions of heterogeneous robotic datasets. However, unlike vision or language data,
robotic demonstrations exhibit substantial heterogeneity across embodiments and
action spaces as well as other prominent variations such as senor configurations
and action control frequencies. The lack of explicit designs for handling such
heterogeneity causes existing methods to struggle with integrating diverse fac-
tors, thereby limiting their generalization and leading to degraded performance
when transferred to new settings. In this paper, we present HiMoE-VLA, a novel
vision–language–action (VLA) framework tailored to effectively handle diverse
robotic data with heterogeneity. Specifically, we introduce a Hierarchical Mixture-
of-Experts (HiMoE) architecture for the action module which adaptively handles
multiple sources of heterogeneity across layers and gradually abstracts them into
shared knowledge representations. Through extensive experimentation with sim-
ulation benchmarks and real-world robotic platforms, HiMoE-VLA demonstrates
a consistent performance boost over existing VLA baselines, achieving higher ac-
curacy and robust generalization across diverse robots and action spaces.

1 INTRODUCTION

The success of vision–language models (VLMs) in capturing rich multimodal representations (Beyer
et al., 2024; Touvron et al., 2023; Achiam et al., 2023; Jiang et al., 2023) has motivated their ex-
tension into robotics, giving rise to vision–language–action (VLA) models that integrate perception,
instruction understanding, and control. By leveraging multimodal inputs, VLA models (Brohan
et al., 2022; Stone et al., 2023) can map visual observations and language instructions into exe-
cutable robot actions (Zitkovich et al., 2023; Kim et al., 2024; Team et al., 2024b; Black et al.,
2024). With the increasing availability of large-scale robotic datasets (O’Neill et al., 2024; Khaz-
atsky et al., 2024), these models have recently demonstrated encouraging progress in manipulation,
marking an important step toward robotic foundation models.

Compared to the relative uniformity of textual and visual data in VLM, current VLA models face a
fundamental challenge: large-scale robotic datasets are inherently heterogeneous from different as-
pects. Robots differ in embodiment, action space, state representation, and control frequency; obser-
vations vary across number of sensors, viewpoints, and environments; and even when identical tasks
are collected in the same environment, variations in teleoperation styles, such as operator speed,
can introduce additional heterogeneity. This diversity makes knowledge transfer across datasets and
embodiments particularly difficult. As a result, a central and pressing question for the field is how
to learn a generalizable foundation model for robotics from such highly heterogeneous robotic data.

Recent methods (Li et al., 2024; Qu et al., 2025; Kim et al., 2025; Liu et al., 2024) pre-train on
large-scale datasets such as the Open X-Embodiment (OXE) dataset (O’Neill et al., 2024) and sub-
sequently fine-tune on specific target domains in pursuit of robotic foundation models. Although
this paradigm has yielded encouraging results, it still lacks principled designs to effectively handle
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data heterogeneity and diversity. As a result, they often struggle to integrate diverse data, leading to
limited generalization and inefficient knowledge transfer.

In this paper, we introduce HiMoE-VLA, a vision–language–action (VLA) framework grounded
in a Hierarchical Mixture-of-Experts (HiMoE) architecture, designed to enable robust knowledge
transfer across diverse robotic datasets. The framework integrates two complementary components:
a pretrained vision–language model (VLM) that processes visual and text inputs, and a hierarchical
MoE module that operates on robot states and noisy action signals. Considering that data from dif-
ferent action spaces are largely non-transferable, directly mixing this source of heterogeneity with
other variations often leads to integration difficulties (as empirically demonstrated in Table 6 (b)).
To address this challenge, we propose a hierarchical expert structure composed of three complemen-
tary components. At the boundary layers, the Action-Space MoE (AS-MoE) specializes in handling
discrepancies between action spaces (e.g., joint-angle-space versus end-effector–space control). Ad-
jacent to it, the Heterogeneity-Balancing MoE (HB-MoE) adaptively processes broader sources of
variability, such as embodiment-specific kinematics and sensor configurations. At the middle lay-
ers, a dense transformer block consolidates these heterogeneous signals into shared representations,
thereby enabling effective cross-domain generalization.

To further enhance this hierarchical abstraction process, we introduce two targeted regularizations.
Action-Space Regularization (AS-Reg), implemented as a contrastive objective, sharpens expert spe-
cialization over different action spaces. Heterogeneity-Balancing Regularization (HB-Reg) guides
experts to progressively abstract broader sources of variability into unified knowledge. Addition-
ally, we employ a flow-matching loss to effectively model multimodal action distributions. To-
gether, these objectives constitute the unified training signal of HiMoE-VLA, promoting both robust
knowledge transfer and principled expert specialization within the framework.

We pre-train HiMoE-VLA on the OXE (O’Neill et al., 2024) dataset as well as the open-source
ALOHA (Fu et al., 2024; Zhao et al., 2023; Liu et al., 2024) dataset, covering diverse embodiments,
action spaces, state representations, and tasks. Building on this pre-training, we fine-tune and eval-
uate HiMoE-VLA across multiple challenging benchmarks, including CALVIN (Mees et al., 2022)
and LIBERO (Liu et al., 2023), as well as on two distinct robot platforms, xArm and ALOHA.
Extensive experiments demonstrate that HiMoE-VLA achieves state-of-the-art performance, signif-
icantly surpassing existing VLA baselines in both success rates and generalization. Notably, our
model exhibits strong generalization to unseen objects and environments, as well as robust adapta-
tion to new robots and tasks, underscoring the effectiveness of our design.

Our contributions are summarized as follows:

• We propose a new Vision–Language–Action framework targeted at handling diverse
robotic data with heterogeneity - ranging from action and state spaces to embodiments and
sensor configurations - into shared knowledge representations, thus facilitating effective
cross-domain transfer.

• We introduce a hierarchical Mixture-of-Expert architecture with an Action-Space MoE
(AS-MoE) and a Heterogeneity-Balancing MoE (HB-MoE), supported by targeted regu-
larizations. The AS-MoE addresses discrepancies across action spaces, while the HB-MoE
abstracts broader variability into shared knowledge.

• Our model achieves better performance than previous VLA approaches across both sim-
ulation benchmarks and real-world single-arm and dual-arm robot platforms, exhibiting
quick adaptation to new robots and tasks and effective generalization to unseen objects and
environments

2 RELATED WORK

Vision-Language-Action Models. Rapid progress of large language models (LLMs) (Achiam
et al., 2023; Touvron et al., 2023; Team et al., 2024a) and vision-language models (VLMs) (Ab-
din et al., 2024; Beyer et al., 2024) has spurred the development of vision-language-action (VLA)
models that couple pretrained VLMs with robotic action generation. Representative approaches
include RT-2 (Zitkovich et al., 2023) and OpenVLA (Kim et al., 2024), which discretize actions
into tokens, RoboFlamingo (Li et al., 2023), which predicts continuous actions, and UniVLA (Bu
et al., 2025) and Pi0 (Black et al., 2024), which incorporate action-aware objectives and multiview
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Figure 1: Overview of HiMoE-VLA. The left blue part illustrates the VLM backbone initialized
from PaliGemma (Beyer et al., 2024), and the right orange part depicts our proposed action module
with a novel Hierarchical Mixture-of-Experts (HiMoE), which is responsible for processing different
robot states and noisy actions and generating final action outputs.

inputs. In parallel, video-pretrained policies (Wu et al., 2023; Cheang et al., 2024) exploit Internet-
scale videos to learn visuomotor representations without explicit action supervision. Despite these
advances, most VLAs overlook the intrinsic heterogeneity of robotic data, including action spaces
(e.g., joint-angle vs. end-effector control) and embodiments, which limits their robustness. Recent
efforts attempt to address this: RDT-1B (Liu et al., 2024) introduces a unified action space for biman-
ual manipulation but lacks architectural mechanisms to handle heterogeneity within the same action
space, while HPT (Wang et al., 2024a) employs dataset-specific stems and heads to align diverse
inputs, at the cost of limiting transfer across datasets. Our work differs by introducing a hierarchical
MoE design that explicitly disentangles action-space discrepancies and broader heterogeneity, while
consolidating them into shared knowledge representations.

Mixture of Experts. Mixture-of-Experts (MoE) architectures were originally proposed to improve
scalability by activating only a subset of parameters per input, achieving sparse computation without
sacrificing model capacity. This idea has been widely adopted in LLMs (Fedus et al., 2022; Lep-
ikhin et al., 2020), and later extended to vision (Riquelme et al., 2021) and diffusion models (Fei
et al., 2024). The most common routing strategy is top-k token routing, where each input token is dy-
namically assigned to a subset of experts. Various extensions have been proposed to improve routing
efficiency and load balancing, such as hashing-based routing (Roller et al., 2021), dynamic expert ac-
tivation (Guo et al., 2024; Wang et al., 2024b), and regularization-based balancing losses (Dai et al.,
2024). Compared with prior MoE designs, our hierarchical organization places action-space experts
at shallow layers and heterogeneity-balancing experts at deeper layers, interleaved with Transformer
blocks. This enables specialization over fine-grained action variations while progressively consoli-
dating broader sources of heterogeneity into shared knowledge representations.

3 METHOD

3.1 PROBLEM FORMULATION

Our objective is to develop a generalist vision–language–action (VLA) model that enables robots
with different embodiments (e.g., single-arm and dual-arm manipulators) to execute diverse tasks
conditioned on multimodal inputs. Specifically, at each time step t, the model is given a language
instruction l and multimodal observations consisting of robot proprioception qt and RGB images ot,
and it outputs a sequence of future actions At = [at, at+1, . . . , at+H−1] over a prediction horizon
H . Formally, policy π can be expressed as:

π : (l, qt, ot) 7→ At,

where qt denotes the proprioceptive state of the robot (e.g., joint positions or end-effector states), and
the language instruction l represents the task description expressed as a sequence of tokens. Visual
observation ot is defined as: ot = [I1t , . . . , I

n
t ], where Iit denotes the i-th RGB image (normally i

ranges from 1 to 3).

The action sequence At is represented as a chunk of low-level robot control signals, where each at
can correspond to either end-effector deltas or joint angle commands, depending on the embodiment.
This chunking formulation allows the model to generate temporally consistent actions that capture
fine-grained manipulation dynamics.
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Figure 2: Detailed structure of the Hierarchical Mixture-of-Experts (HiMoE). The architecture fol-
lows a layered hierarchy: AS-MoE modules at the boundaries specialize in action-space variations,
adjacent HB-MoE modules address broader heterogeneity, and the central Transformer blocks serve
as shared layers for cross-domain knowledge integration.

3.2 NETWORK ARCHITECTURE

In this section, we describe the architecture of the HiMoE-VLA model, as illustrated in Fig. 1,
which integrates a pre-trained vision–language backbone (Beyer et al., 2024)) with a dedicated
action expert to enable policy learning from multimodal inputs. The model is trained with flow-
matching (Lipman et al., 2022) loss for action generation, following recent advances in diffusion-
based policy learning. At each time step, the policy takes as input the robot’s proprioceptive state, a
noised action vector, and cross-attended image–text tokens from the VLM backbone, and produces
a denoised sequence of future actions. In the following, we elaborate on each module in detail.

3.2.1 VISION-LANGUAGE MODULE

Our VLM adopts the PaliGemma (Beyer et al., 2024) model, identical to that used in π0 (Black et al.,
2024). PaliGemma combines a SigLIP (Zhai et al., 2023) vision encoder with a Gemma (Team et al.,
2024a) language model to produce semantically aligned vision–language representations from input
images and language instructions.

We extract intermediate key–value (KV) representations from the language model layers and feed
them to the action expert for cross-attention with proprioception and action tokens (see Appendix C
for details), which provides stronger conditioning than using only the final layer. At inference time,
we employ a KV cache to reuse previously computed representations, substantially accelerating
rollout without degrading performance.

3.2.2 ACTION MODULE WITH HIERARCHICAL MOE

On the action side, we propose a Hierarchical Mixture-of-Experts (HiMoE) architecture, referred
to as the action expert, to process the robot’s proprioceptive state together with the noised action
sequences. Both inputs are first projected into a unified vector representation, where different ac-
tion spaces (e.g., joint-angle-based or end-effector–based control) are consistently assigned to fixed
positions within the vector. These unified vectors are normalized to zero mean and unit variance
across the dataset, and subsequently transformed by lightweight MLPs before being passed into the
HiMoE.
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The HiMoE itself is composed of two key expert modules—Action-Space MoE (AS-MoE) and
Heterogeneity-Balancing MoE (HB-MoE)—interleaved with standard Transformer blocks (see
Fig. 2 for details). The AS-MoE operates at shallow layers to specialize in action-space–specific
processing, ensuring that variations such as joint-based versus end-effector–based control are effec-
tively captured. The HB-MoE, in contrast, functions at the adjacent layers to progressively abstract
heterogeneous factors and balance representation learning across diverse embodiments, thereby con-
solidating the information into shared knowledge.

At each layer, the expert outputs are fused with intermediate key–value (KV) representations ex-
tracted from the PaLI-Gemma backbone, enabling the model to integrate low-level visual cues with
high-level semantic information throughout the hierarchy. This layer-wise fusion provides rich con-
textual conditioning: shallow layers achieve effective specialization, while deeper layers promote
stronger generalization and transfer across tasks and embodiments. Finally, the fused representa-
tions are used to generate denoised action chunks under the flow-matching (Lipman et al., 2022)
training objective.

3.3 TRAINING OBJECTIVE

The training objective of HiMoE-VLA consists of three components: a flow-matching loss for learn-
ing action distributions, an Action-Space Regularization (AS-Reg) to enhance expert specialization
in the AS-MoE, and a Heterogeneity-Balancing Regularization (HB-Reg) to encourage balanced
abstraction in the HB-MoE. The overall objective is given by:

L = Lflow + λAS LAS + λHB LHB, (1)

where λAS and λHB control the relative contributions of the two regularization terms. Below, we
elaborate on each loss in detail.

Flow-Matching Loss. We adopt the flow-matching objective (?) to model the conditional distribu-
tion of action sequences, as it provides a more stable and efficient alternative to traditional diffusion
training. Given an action chunk At = [at, at+1, . . . , at+H−1], flow matching defines a continuous-
time trajectory that transports a noise distribution to the target action distribution. Specifically, we
define perturbed actions as:

Aτ
t = τAt + (1− τ)ϵ, ϵ ∼ N (0, I), τ ∈ [0, 1], (2)

where τ is the flow-matching timestep. The model then learns a vector field vθ that predicts the
denoising direction:

Lflow = Eτ, At, ϵ

[∥∥vθ(Aτ
t , τ, ot, l, qt)−

(
ϵ−At

)∥∥2
2

]
, (3)

where ot denotes the visual observation, l the language instruction, and qt the proprioceptive state.
During training, τ is sampled from a Beta distribution, following practices in recent work such
as Black et al. (2024), to emphasize noisier steps and thereby improve robustness. At inference
time, future actions are generated by integrating the learned vector field from τ = 0 to τ = 1,
starting from Gaussian noise.

Action-Space Regularization (AS-Reg). The AS-MoE, located at shallow layers of the H-MoE,
is designed to capture fine-grained variations in action spaces, such as differences between joint-
based and end-effector–based control. To reinforce this specialization, we introduce an Action-Space
Regularization (AS-Reg) based on a contrastive objective. Let u ∈ {1, . . . , U} index tokens in the
input sequence. For each token u, we treat pairs of experts (i, j) assigned to the same action-space
token as positive pairs, while pairs (i, k) with k ̸= j are considered negatives. Denote by hi,u the
score produced by expert i for token u. The loss is defined as

LAS = − 1

U

U∑
u=1

log
exp(sim(hi,u, hj,u)/τ)∑N

k=1 exp(sim(hi,u, hk,u)/τ)
, (4)

sim(hi,u, hj,u) =
hi,u · hj,u

∥hi,u∥ ∥hj,u∥
, (5)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: CALVIN task performance under D→
D. Numbers are the average count of consecu-
tively completed tasks for sequence lengths 1–5
(higher is better).

Method 1 2 3 4 5 All

Octo 0.771 0.535 0.318 0.206 0.136 1.968
OpenVLA 0.716 0.385 0.180 0.088 0.042 1.411
RDT-1B 0.757 0.495 0.359 0.243 0.184 2.038

DeeR 0.853 0.696 0.549 0.420 0.312 2.830
MDT 0.937 0.845 0.741 0.644 0.556 3.723
π0 0.914 0.830 0.739 0.676 0.599 3.758

HiMoE-VLA 0.932 0.855 0.789 0.731 0.660 3.967

Table 2: LIBERO task performance across four
suites. Numbers denote average success rates
(%) across 50 demonstrations per task.

Method Spatial Object Goal Long Avg.

Diffusion Policy 78.3 92.5 68.3 50.5 72.4
Octo 78.9 85.7 84.6 51.1 75.1

OpenVLA 84.7 88.4 79.2 53.7 76.5
SpatialVLA 88.2 89.9 78.6 55.5 78.1

OpenVLA-OFT 97.6 98.4 97.9 94.5 97.1
UniVLA 96.5 96.8 95.6 92.0 95.2

π0 96.8 98.8 95.8 85.2 94.2

HiMoE-VLA 98.2 99.4 98.6 94.8 97.8

where τ is a temperature parameter, N is the number of experts, and sim(·, ·) denotes cosine similar-
ity. By encouraging agreement among experts routed to the same action-space tokens while reducing
similarity to others, this objective guides AS-MoE experts toward targeted specialization, ensuring
that action-space heterogeneity is effectively captured at shallow layers.

Heterogeneity-Balancing Regularization (HB-Reg). The HB-MoE, in contrast, functions in
deeper layers to progressively abstract broader sources of heterogeneity—spanning robot embodi-
ments, sensor configurations, and scene variations—and to consolidate them into shared knowledge.
To support this role, we introduce Heterogeneity-Balancing Regularization (HB-Reg).

Let N denote the number of experts, K the number of routed experts per token (top-K gating), U
the number of tokens in the sequence, and si,u ∈ [0, 1] the gating score assigned to expert i for the
u-th token. After top-K selection, we define a binary routing indicator

ri,u = 1{token u is routed to expert i}.
The (empirical) routing frequency and the expected routing probability for expert i are defined as

fi =
1

KU

U∑
u=1

ri,u, Pi =
1

U

U∑
u=1

si,u. (6)

The heterogeneity-balancing loss is then defined as

LHB =

N∑
i=1

fi Pi. (7)

This objective ensures that the expected routing probability (Pi) and the realized routing frequency
(fi) are aligned, thus distributing heterogeneous inputs more evenly across experts. In doing so, HB-
Reg prevents expert underutilization and promotes balanced abstraction at deeper layers, enabling
the HB-MoE to consolidate diverse information into generalizable shared representations.

In summary, AS-Reg drives specialization in the AS-MoE for capturing action-space differences
at shallow layers, while HB-Reg enforces balancing in the HB-MoE for integrating heterogeneous
factors at deeper layers. Together with the flow-matching loss, these objectives enable HiMoE-VLA
to learn expressive and transferable policies from highly diverse robotic data.

4 EXPERIMENTS

Pre-training Dataset. We pre-train HiMoE-VLA on a large-scale mixture of the Open X-
Embodiment (OXE) subset (O’Neill et al., 2024) (22.5M frames) and publicly available Aloha
datasets (Liu et al., 2024; Zhao et al., 2023; Fu et al., 2024) (36.3M frames), totaling 58.8M frames.
This combination provides diverse embodiments, action spaces, and tasks, enabling effective cross-
domain learning. More details are provided in the Appendix B.1

Implementation Details. HiMoE-VLA (4B parameters) is trained end-to-end on 16 A100 GPUs
with DeepSpeed optimization. The model consumes third-person and wrist-mounted camera views,
along with unified state–action vectors for both single- and dual-arm settings. The MoE design uses
N = 32 experts with top-k = 4, and the auxiliary regularization coefficients are set following best
practices. More details are provided in the Appendix C
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Table 3: Real-world evaluation on the XArm7 robot across three single-arm manipulation tasks:
“Fruit-to-Plate”, “Cup-in-Cup” and “Block-on-Block”. Each task is decomposed into sub-stages
(Pick/Place, Pick/Insert, Pick/Stack), and success rates are reported for each stage with the overall
average across all tasks.

Method Fruit-to-Plate Cup-in-Cup Block-on-Block Task (All)

Pick Place Pick Insert Pick Stack Avg.

Octo-Base 31.3 18.8 33.3 16.7 16.7 0.0 19.3
OpenVLA 37.5 25.0 27.8 16.7 22.2 0.0 21.2
CogACT 65.6 59.4 77.8 63.9 69.4 33.3 61.5

π0 68.8 62.5 77.8 61.1 72.2 33.3 62.5
HiMoE-VLA 81.3 75.0 88.9 72.2 83.3 50.0 75.0

4.1 SIMULATION EXPERIMENTS

Experiment setup. We evaluate HiMoE-VLA on two widely used simulation benchmarks:
CALVIN (Mees et al., 2022) and LIBERO (Liu et al., 2023). CALVIN benchmarks instruction-
conditioned, long-horizon tabletop manipulation with a Franka Panda arm. We adopt the challenging
D→D setting, training on a limited subset of demonstrations and evaluating on held-out instructions,
with comparisons against strong baselines including Octo, OpenVLA, RDT-1B, DeeR, MDT, and
π0.

LIBERO is a simulation suite for lifelong learning and generalization, spanning four complementary
task suites—Spatial, Object, Goal, and Long—each with 10 tasks. We follow standard preprocessing
and evaluation protocols, comparing against baselines such as Diffusion Policy, Octo, OpenVLA,
SpatialVLA, OpenVLA-OFT, UniVLA, and π0.

Further dataset statistics, preprocessing details, and fine-tuning protocols are provided in the Ap-
pendix B.2

Results. Table 1 reports CALVIN performance under the D→D setting. HiMoE-VLA achieves the
best overall performance, completing an average of 3.94 tasks consecutively, surpassing all base-
lines. While MDT slightly outperforms HiMoE-VLA on the first task (0.937 vs. 0.932), HiMoE-
VLA consistently yields higher success rates from the second task onward, showing stronger ro-
bustness in long-horizon execution. Compared to π0 (3.76), which is among the strongest baselines,
HiMoE-VLA improves by +0.18, and compared to MDT (3.72), by + 0.21. The gap is even larger
against earlier methods such as DeeR (2.83), RDT-1B (2.04), Octo (1.97), and OpenVLA (1.41).
These results highlight HiMoE-VLA’s ability to maintain reliable performance as task sequences
grow longer, validating its effectiveness for instruction-conditioned manipulation under limited data.

Table 2 presents results on the four LIBERO task suites. HiMoE-VLA achieves the highest overall
average score of 97.8%, outperforming strong generalist baselines such as UniVLA (95.2%) and π0

(94.2%). Compared to OpenVLA-OFT, the previous state-of-the-art (97.1%), HiMoE-VLA delivers
consistent gains across all four suites: +0.6% on Spatial, +1.0% on Object, +0.7% on Goal, and
+0.3% on Long. These results establish HiMoE-VLA as the new SOTA on LIBERO, demonstrating
robust generalization across diverse manipulation tasks, including long-horizon planning.

4.2 REAL-WORLD EXPERIMENTS

We evaluate our model on two real-world robots: xArm7 single-arm and Aloha dual-arm robots.

Experiment setup. For the xArm7 (single-arm, 7-DoF with a 1-DoF gripper), we evaluate three ma-
nipulation tasks: (1) Fruit-to-Plate — placing fruits (apple, orange) onto colored plates (blue, pink);
(2) Cup-in-Cup — inserting one colored cup (red, yellow, blue) into another; and (3) Block-on-Block
— stacking one colored block onto another of a different color. Each task is further decomposed
into sub-stages (e.g., Pick/Place, Pick/Insert, Pick/Stack). We collect a total of 320 teleoperated
demonstrations: 80 for Fruit-to-Plate, 120 for Cup-in-Cup, and 120 for Block-on-Block, with 20
demonstrations per configuration. For evaluation, Fruit-to-Plate uses 4 settings with 4 trials each,
while Cup-in-Cup and Block-on-Block each use 6 settings with 3 trials each. We additionally assess

7
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Table 4: Real-world evaluation on Aloha dual-arm robot across three manipulation tasks: “Fold-
Shorts”, “Handover” and “Scoop”. Each task is decomposed into fine-grained sub-stages (e.g.,
Grasp, Transfer, Place, Pour), and success rates are reported for each stage with the overall average.

Method
Cup-Handover Scoop Fold-Shorts Task (All)

Grasp Transfer Place Scoop Pour Once Twice Avg.

ACT 40.0 0.0 73.3 6.6 0.0 20.0 6.6 20.9
RDT-1B 66.6 13.3 93.3 40.0 20.0 53.3 46.6 47.5

π0 80.0 13.3 93.3 46.6 26.6 66.6 53.3 54.2
HiMoE-VLA 80.0 26.6 100.0 53.3 40.0 80.0 66.6 63.7

Table 5: Real-world generalization evaluation on single-arm (XArm7) and dual-arm (Aloha) tasks
under two scenarios: Distractor Objects (unseen distractors) and Novel Objects (previously unseen
items). Results highlight each method’s generalization ability beyond the training distribution.

Method Single-Arm Dual-Arm

Distractor Novel Obj. Avg. Distractor Novel Obj. Avg.

OpenVLA 19.4 15.6 17.6 - - -
CogACT 52.8 50.0 51.5 - - -
RDT-1B - - - 28.9 26.7 27.8

π0 58.3 53.1 55.9 40.0 26.7 33.4
HiMoE-VLA 69.4 65.6 67.6 53.3 46.7 50.0

generalization with two tests: (1) introducing distractor objects such as an unseen pomegranate or
green cup, and (2) novel-object tasks such as placing fruit on a purple plate not seen during training.

For the Aloha (dual-arm, 14-DoF), we evaluate three tasks: (1) Fold-Shorts — folding a pair of
shorts with 50 teleoperated demonstrations; (2) Cup-Handover — the right arm grasps a colored
cup (red, yellow, blue) and hands it to the left arm, which places it on a plate (180 demonstrations
total); and (3) Scoop — the left arm positions a bowl and the right arm scoops materials (mung
beans, black rice, sticky rice) into it (120 demonstrations total). Altogether, 350 demonstrations are
collected. Evaluation includes 15 trials for Fold-Shorts, 5 trials per color for Cup-Handover, and 5
trials per material type for Scoop. For generalization, we test (1) distractor objects such as bananas
or green apples in Scoop, and (2) novel shorts in Fold-Shorts.

Results. On the xArm7, HiMoE-VLA achieves the best overall average success rate of 75.0%,
outperforming strong baselines such as π0 (62.5%) and CogACT (61.5%). Gains are consistent
across sub-stages, with particularly notable improvements on the challenging Block-on-Block task,
where HiMoE-VLA reaches 50.0% success in the stacking stage compared to 33.3% for π0 and
CogACT. In the generalization tests (Table 5), HiMoE-VLA achieves 67.6% average success, again
outperforming π0 (55.9%) and CogACT (51.5%), demonstrating robustness to unseen distractors
(e.g., pomegranate, green cup) and novel objects (e.g., purple plate).

On the Aloha, HiMoE-VLA consistently surpasses π0 and RDT-1B across all three tasks (Table 4),
with particularly large improvements on Fold-Shorts and Scoop, highlighting the strength of hi-
erarchical experts in coordinated bimanual manipulation. In generalization evaluations (Table 5),
HiMoE-VLA achieves the best overall performance, demonstrating resilience to unseen distractors
(e.g., banana, green apple) in Scoop and novel shorts in Fold-Shorts.

4.3 ABLATION STUDY

To better understand the contributions of different components in HiMoE-VLA, we conduct a series
of ablation experiments under the CALVIN benchmark.

Effect of Initialization and Pretraining. Table 6 (a) compares models fine-tuned on CALVIN-D
with different initialization strategies. Removing MoE re-initialization during fine-tuning (w/o init)
slightly degrades performance compared to the full model, while training from scratch without pre-
trained weights (w/o pretrain) leads to a more notable drop. These results highlight the importance
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Pick up the apple and place 

the it onto the blue plate
Put the yellow cup 

into the red cup.

Place the yellow block on 

top of the red block.
Fold black shorts through 

multiple bimanual folds

Pick up the blue cup, switch 

hands, and place it on the 

plate.

Place the bowl in the middle 

of the table, then scoop the 

glutinous rice with a spoon.

Figure 3: Qualitative examples of real-world executions on (left) the single-arm xArm7 and (right)
the dual-arm Aloha robot. The snapshots cover representative stages across tasks such as Fruit-to-
Plate, Block-on-Block, Cup-Handover, and Scoop.

Table 6: Ablation studies on HiMoE-VLA. (a) initialization & pretraining, (b) hierarchical MoE
components, and (c) experts N with top-K routing. All numbers are averages over 5 runs.

(a) Init. & Pretrain.

Setting 1 2 3 4 5 Avg.

w/o init 0.917 0.832 0.753 0.698 0.627 3.827
w/o pretrain 0.928 0.845 0.752 0.686 0.615 3.826

Full 0.932 0.855 0.789 0.731 0.660 3.967

(b) Hierarchical MoE.

Setting 1 2 3 4 5 Avg.

w/o MoE 0.918 0.837 0.744 0.681 0.597 3.777
Full-HB-MoE 0.903 0.816 0.754 0.712 0.644 3.829
w/o AS-MoE 0.904 0.821 0.757 0.715 0.652 3.849

w/o Reg 0.897 0.819 0.751 0.709 0.650 3.826
Full 0.910 0.827 0.768 0.722 0.669 3.896

(c) Experts N and top-K routing.

K N 1 2 3 4 5 Avg.

2

2 0.895 0.811 0.757 0.712 0.648 3.823
4 0.901 0.814 0.761 0.715 0.653 3.844
8 0.910 0.827 0.768 0.722 0.669 3.896

16 0.920 0.846 0.781 0.733 0.671 3.951

4

8 0.921 0.847 0.776 0.715 0.657 3.916
16 0.923 0.846 0.774 0.729 0.682 3.954
32 0.943 0.864 0.797 0.734 0.674 4.012
64 0.919 0.854 0.785 0.738 0.672 3.968

8 16 0.911 0.773 0.637 0.546 0.458 3.325
32 0.897 0.794 0.719 0.673 0.612 3.695

of leveraging pretrained representations and carefully initialized experts for effective adaptation in
data-scarce regimes.

Role of Hierarchical MoE Components. Table 6 (b) studies the effect of different MoE con-
figurations when trained jointly on CALVIN-ABC (EEF actions) and CALVIN-D (joint actions).
Removing all MoE layers (w/o MoE) substantially reduces performance, confirming their central
role in handling heterogeneous action spaces. Using only the HB-MoE module (Full-HB-MoE)
or combining HB-MoE with Transformer blocks (HB-MoE+TB, equivalent to removing AS-MoE)
yields partial improvements but still lags behind the full model. Moreover, eliminating the auxiliary
regularizations (w/o Reg) also decreases performance, validating the necessity of both Action-Space
Regularization and Heterogeneity-Balancing Regularization in guiding expert specialization and ab-
straction.

Scaling the Number of Experts. Table 6 (c) studies the effect of the number of experts (N ) and the
top-k routing strategy (K). Results are reported across five runs (1–5) and the average. Increasing
N generally improves performance, with the best results at N = 32, K = 4. Further scaling
(N = 64) provides diminishing returns, while very high routing widths (K = 8) cause instability.
These findings indicate that moderate N and sparse routing K yield the best trade-off between
specialization and stability.

5 CONCLUSION

In this work, we introduced HiMoE-VLA, a vision–language–action framework based on a Hi-
erarchical Mixture-of-Experts architecture. By placing Action-Space MoE at shallow layers and
Heterogeneity-Balancing MoE at adjacent layers, interleaved with Transformer blocks, our model
captures fine-grained action variations while consolidating heterogeneous factors into shared repre-
sentations. Combined with flow-matching training and auxiliary regularizations, this design enables
effective transfer across diverse embodiments, action and state representations, and tasks. Extensive
simulation and real-world experiments demonstrate superior performance and robust generalization
of HiMoE-VLA. Looking ahead, we envision extending hierarchical expert architectures to broader
embodied intelligence scenarios, like mobile manipulation, multi-robot collaboration, and lifelong
adaptation.
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Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
cal report. arXiv preprint arXiv:2412.08905, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely as auxiliary tools for language polishing during the
paper writing process. LLMs were not involved in research ideation, dataset construction, method
design, experiments, or analysis. All scientific contributions, technical content, and claims in this
paper are the responsibility of the authors.

B DATASET AND EVALUATION

B.1 PRETRAINING DATASET

Our pre-training dataset is constructed by combining subsets of Open X-Embodiment (OXE) and
publicly available Aloha datasets, yielding a total of 58.78M frames.

OXE dataset. OXE (O’Neill et al., 2024) aggregates over 1 million real-world trajectories collected
from 60 datasets across 22 distinct robot embodiments. Following prior works such as Octo (Team
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et al., 2024b) and OpenVLA (Kim et al., 2024), we adopt a subset containing 22.5M frames, chosen
to balance scale and diversity while ensuring compatibility with our training pipeline. This subset
spans a wide range of single-arm robots and tasks, providing strong coverage of heterogeneous
embodiments and action spaces.

Aloha datasets. To complement OXE, we incorporate demonstrations from three high-quality,
publicly available Aloha datasets (Liu et al., 2024; Zhao et al., 2023; Fu et al., 2024), contribut-
ing 36.28M frames in total. Compared to OXE, they emphasize coordinated bimanual actions and
higher-fidelity manipulation skills, substantially enriching the diversity of our training corpus.

B.2 EVALUATION BENCHMARKS

CALVIN benchmark. CALVIN (Mees et al., 2022) is a benchmark for evaluating instruction-
conditioned policies in long-horizon tabletop manipulation tasks using a Franka Panda arm. It com-
prises 34 tasks spanning from simple pick-and-place to articulated object manipulation. In our
experiments, we adopt the challenging D→D setting, where policies are trained on a limited subset
of demonstrations from environment D and evaluated on held-out instruction sequences in the same
environment. This setup evaluates the model’s ability to generalize to novel instruction composi-
tions under restricted data conditions. For fair comparison, we include Octo (Team et al., 2024b),
OpenVLA (Kim et al., 2024), RDT-1B (Liu et al., 2024), DeeR (Yue et al., 2024), MDT (Reuss
et al., 2024), and π0 (Black et al., 2024) as baselines. For DeeR and MDT, we directly report the
results from their original papers. For Octo, OpenVLA, RDT-1B, and π0, we adopt their released
pre-trained weights and perform fine-tuning on CALVIN-D following their official training proce-
dures to ensure fairness and reproducibility.

LIBERO benchmark. LIBERO (Liu et al., 2023) is a simulation suite designed to evaluate life-
long learning and generalization in robotic manipulation. It contains four task suites—LIBERO-
Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long—each comprising 10 tasks with 50
human-teleoperated demonstrations per task. These suites test complementary aspects of general-
ization: spatial reasoning (Spatial), object-level transfer (Object), goal-directed adaptability (Goal),
and long-horizon planning (Long). Following prior works such as OpenVLA (Kim et al., 2024),
we preprocess demonstrations by removing failure cases, standardizing image inputs, and ensuring
consistent trajectory formatting. In our experiments, we perform supervised fine-tuning within each
task suite using the successful demonstrations and evaluate policies on held-out task episodes. We
compare against strong baselines, including Diffusion Policy (Chi et al., 2023), Octo (Team et al.,
2024b), OpenVLA (Kim et al., 2024), SpatialVLA (Qu et al., 2025), OpenVLA-OFT (Kim et al.,
2025), UniVLA (Bu et al., 2025), and π0 (Black et al., 2024), where reported results are either taken
directly from their papers or reproduced under their released implementations.

Real-world xArm7 benchmark. We conduct real-world evaluations on an xArm7 robot (7-DoF
manipulator with a 1-DoF gripper) across three tasks: (1) Fruit-to-Plate — placing fruits (apple,
orange) onto colored plates (blue, pink), e.g., “Pick up the apple and place it onto the blue plate”;
(2) Cup-in-Cup — inserting one colored cup (red, yellow, blue) into another, e.g., “Put the yellow
cup into the red cup”; (3) Block-on-Block — stacking one colored block onto a differently colored
block, e.g., “Place the yellow block on top of the red block.” Each task is decomposed into sub-stages
(e.g., Pick/Place, Pick/Insert, Pick/Stack) for fine-grained evaluation. We collect 320 teleoperated
demonstrations in total: 80 (Fruit-to-Plate), 120 (Cup-in-Cup), and 120 (Block-on-Block), with 20
demonstrations per configuration.

In-distribution evaluation. Fruit-to-Plate: 4 settings × 4 trials/setting = 16 trials in total, where
each “setting” is a fruit–plate pairing from {apple, orange} × {blue, pink}. Cup-in-Cup: 6 settings
× 3 trials/setting = 18 trials, where each “setting” is an ordered inner→outer color pair from {red,
yellow, blue} with distinct colors (i.e., 3 × 2 = 6 ordered pairs). Block-on-Block: 6 settings × 3
trials/setting = 18 trials, where each “setting” is an ordered top→bottom color pair (distinct) from
{red, yellow, blue}.

Generalization tests. (1) Distractors in Cup-in-Cup: 6 settings (the same 6 inner→outer color pairs
as above) × 3 trials/setting = 18 trials, with an unseen distractor (e.g., a pomegranate or a green cup)
placed in the scene. (2) Novel objects in Fruit-to-Plate: 4 settings × 4 trials/setting = 16 trials.
Here, “4×4” means that we test four novel configurations — placing a pomegranate onto a blue
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plate, a pomegranate onto a pink plate, an apple onto a purple plate, and an orange onto a purple
plate — with each configuration repeated for 4 trials.

Real-world Aloha benchmark. We further evaluate on the Aloha robot (dual-arm, 14-DoF) with
three tasks: (1) Fold-Shorts — folding a pair of shorts (50 teleoperated demonstrations), e.g., “Fold
black shorts through multiple bimanual folds”; (2) Cup-Handover — the right arm grasps a colored
cup (red, yellow, blue) and hands it to the left arm to place on a plate (60 demos per color; 180
total), e.g., “Pick up the blue cup, switch hands, and place it on the plate”; (3) Scoop — the left arm
places a bowl centrally, then the right arm uses a spoon to scoop materials (mung beans, black rice,
sticky rice) into the bowl (40 demos per material; 120 total), e.g., “Place the bowl in the middle of
the table, then scoop the glutinous rice with a spoon.” Altogether, 350 demonstrations are collected.

In-distribution evaluation. Fold-Shorts: 1 setting × 15 trials = 15 trials. Cup-Handover: 3 settings
(one per cup color) × 5 trials/setting = 15 trials. Scoop: 3 settings (one per material type) × 5
trials/setting = 15 trials.

Generalization tests. (1) Distractors in Scoop: 3 settings (the same three material types) × 3
trials/setting = 9 trials, with unseen distractors (e.g., banana or green apple) added to the scene. (2)
Novel garment in Fold-Shorts: 1 setting (previously unseen shorts) × 15 trials = 15 trials.

C IMPLEMENTATION DETAILS

Model scale and training setup. Our proposed HiMoE-VLA model contains approximately 4B
parameters and is trained end-to-end on 16 NVIDIA A100 GPUs (40GB each) for 100k steps with a
global batch size of 256. Training takes around 4 days with DeepSpeed optimization, and we adopt
the LeRobot data-loading framework to ensure efficient and scalable handling of large heterogeneous
datasets.

Input modalities. The visual encoder consumes one third-person camera view together with two
wrist-mounted views. When a view is unavailable in a dataset, the corresponding channel is zero-
padded and masked using attention masks, ensuring a consistent input format. For state and action
inputs, we construct a unified vector representation that jointly accommodates both joint-angle and
end-effector signals. In single-arm demonstrations, the available arm is mapped to the right-arm
channel, while the left-arm channel is zero-padded with masks to preserve compatibility with dual-
arm settings.

Mixture-of-Experts design. We set the number of experts to N = 32 with a top-k routing of
8. As shown in Table 6, this configuration consistently outperforms alternative settings in terms of
both average performance and stability, striking a favorable balance between model capacity and
computational efficiency. To encourage effective expert utilization and hierarchical abstraction, we
introduce two auxiliary regularizations: an Action-Space regularization term with coefficient λAS =
0.002, and a Heterogeneity-Balancing regularization term with coefficient λHB = 0.001. These
choices follow best practices for balancing specialization and generalization in MoE architectures.

Optimization and fine-tuning. We adopt the AdamW optimizer with an initial learning rate of
2.5 × 10−5, weight decay of 1 × 10−4, and a cosine decay schedule. The learning rate is linearly
warmed up for the first 1k steps, followed by exponential decay until 30k steps with a final floor of
2.5 × 10−6. For fine-tuning, we adapt the batch size and number of steps to each benchmark. On
the CALVIN benchmark, we use a global batch size of 32 for 40k steps. On LIBERO, we fine-tune
separately for each of the four task suites: for LIBERO-10, we use a batch size of 64 for 40k steps;
for GOAL OBJECT and SPATIAL, we use a batch size of 32 and train for 45k, 45k, and 35k steps
respectively. For real-world experiments, we fine-tune on both XARM and ALOHA robots with a
batch size of 64 for 50k steps.

Cross-layer KV integration. At each transformer layer l, HiMoE receives the key–value pairs
{KV

l , V V
l } from the corresponding VLM layer, which are concatenated with the locally computed

{KH
l , V

H
l } of the action expert:

K̃l =
[
KH

l ;K
V
l

]
, Ṽl =

[
V H
l ;V V

l

]
.
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Pick up the apple and place the it onto the pink plate.

Put the red cup into the blue cup.

Place the red blue cup into the yellow cup(unseen background).

Put the pomegranate into the pink plate (unseen object).

Place the red block on top of the blue block.

Figure 4: Overview of tasks on singe-arm robot Xarm, including seen tasks and unseen tasks (unseen
objects and unseen backgrounds).

The query QH
l then attends to the fused representation:

Attnl(QH
l , K̃l, Ṽl) = softmax

(
QH

l K̃
⊤
l√

dk

)
Ṽl.

This design enables each HiMoE layer to directly condition on semantically aligned signals from
its VLM counterpart, instead of relying solely on the final-layer representation. During inference,
we further employ a KV cache to reuse the VLM’s intermediate keys and values, substantially
accelerating policy rollout without degrading performance.

D MORE VISUALIZATIONS

The virtualization of all tasks are shown in Fig. 4 and Fig. 5.
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Figure 5: Overview of tasks on dual-arm robot ALOHA, including seen tasks and unseen tasks
(unseen objects and unseen backgrounds).
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