ACCELERATED PHOTOCATALYTIC C-C COUPLING VIA INTERPRETABLE DEEP LEARNING: SINGLE-CRYSTAL PEROVSKITE CATALYST DESIGN USING FIRST-PRINCIPLES CALCULATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Photocatalytic C–C coupling reactions have garnered significant attention for their potential to drive sustainable chemical transformations. The design of efficient photocatalysts is critical in optimizing these reactions. In this study, we use a computational materials science approach, leveraging first-principles calculations to evaluate the bandgap values of 158 single-crystal perovskite materials. We employ a deep learning model, incorporating a multi-head-attention mechanism within a ResNet architecture, to predict the bandgap based on features such as τ , Group-A, Group-B, Pettifor number, χ M-B, χ P-B, Ea-A, cB, KB, and Ra-B. This model's performance is compared to traditional machine learning techniques, including K-means, MLP, Random Forest, PCA, and Multivariable Linear Regression. The results demonstrate that the self-attention ResNet model achieves a training R^2 of 0.819 and a test R^2 of 0.803, indicating strong predictive accuracy. The model's interpretability is enhanced by visualizing the permutation importance of each feature, shedding light on the contributions of various factors to the prediction. These findings highlight the potential of machine learning, particularly deep learning, in accelerating the design of photocatalysts for C–C coupling reactions.

031 032

008

009

010 011 012

013 014 015

016 017

018

019

021

023

025

026

027

028

029

033 034

1 INTRODUCTION

The photocatalytic C–C coupling reaction, which enables the efficient synthesis of carbon–carbon bonds, is a pivotal process in catalysis, especially for sustainable chemical production (Roy et al., 2023). The efficiency of photocatalysts directly impacts the rate and selectivity of this reaction. Perovskite materials have emerged as promising candidates for photocatalysis due to their tunable electronic properties, but designing effective catalysts requires a deep understanding of their structural and electronic characteristics. Traditional methods of catalyst design are often time-consuming and experimentally demanding (Wang et al., 2020). In this context, machine learning (ML) and deep learning (DL) techniques offer an accelerated approach to predicting material properties and optimizing catalyst performance (Ren et al., 2023; Li et al., 2024).

This paper explores the application of deep learning, specifically a multi-head-attention enhanced ResNet model, to predict the bandgap values of 158 single-crystal perovskite materials. The model's predictions are compared against traditional ML methods such as K-means, MLP, Random Forest, PCA, and multivariable linear regression. We focus on the interpretability of the model, making use of techniques such as feature importance analysis to provide insights into the decision-making process of the model (LeCun et al., 2015; He et al., 2016; Breiman, 2001; Hartigan & Wong, 1979; Voita et al., 2019; Ashish, 2017). This study focuses on a dataset of 158 single-crystal perovskite materials, carefully selected for their relevance to photocatalytic C–C coupling. The material features used to train our deep learning model were derived from an initial pool of 38 features through a rigorous feature engineering process, resulting in a set of 10 highly effective descriptors.

054 2 DATA COLLECTION

055 056

069

070 071

073

075 076

077

079

081

The dataset used in this study consists of first-principles computed bandgap values for 158 singlecrystal perovskite materials. These materials were specifically chosen for their potential relevance to photocatalytic applications, focusing on a specific class of perovskites characterized by their similar crystal structures and elemental compositions conducive to specific electronic properties. While we initially explored larger databases such as the Materials Project, inconsistencies between some of their data and existing literature led us to construct a smaller, highly curated dataset using Density Functional Theory (DFT) calculations to ensure data accuracy. This approach allows for a more controlled and reliable dataset for training our machine learning models.

In addition to the bandgap values, we collected an initial set of 38 material features hypothesized to
influence the electronic structure of the materials (Hafner, 2008; Wang et al., 2019; Hehre, 1976)..
Through a process of feature engineering, we identified and selected the 10 most informative and
efficient features as descriptors for our machine learning model. These features include (Green et al., 2014; Cheng et al., 2020; Wang et al., 2024):

- τ (transition metal parameter)
 - Group-A (group of elements in the periodic table)
 - Group-B (group of elements in the periodic table)
 - Pettifor number (atomic bonding characteristics)
 - χ M-B (electronegativity of the metal-B component)
 - χ P-B (electronegativity of the perovskite-B component)
 - Ea-A (activation energy for charge transfer)
 - cB (bonding parameter)
- KB (bulk modulus)
 - Ra-B (atomic radii)

The rationale behind selecting these 10 features is that they represent a combination of electronic, structural, and chemical properties known to significantly impact the bandgap of perovskite materials. Our feature engineering process involved analyzing feature correlations, assessing their individual and combined importance through preliminary model training, and considering domain knowledge from materials science. This selection aims to provide an efficient and physically meaningful representation of the perovskite materials for the predictive model.

089

091

092

094

095

096

3 DATA PREPROCESSING AND FEATURE ENGINEERING

Prior to model training, the dataset was preprocessed to handle missing values and normalize the features (Eck & Waltman, 2009). Features such as the transition metal parameters and atomic radii were scaled to ensure consistency across different material compositions. The dataset was then split into training and testing subsets, ensuring a proper distribution of data points. Feature engineering was performed to evaluate the relationships between different features and their impact on the bandgap values (Reitermanova et al., 2010).

097 098 099

4 MODEL DEVELOPMENT: MULTIHEAD-ATTENTION ENHANCED RESNET AND TRADITIONAL ML MODELS

100 101

The primary model used in this study is a deep learning model based on the ResNet architecture, enhanced with a self-attention mechanism to better capture the complex relationships between the features and the bandgap values (He et al., 2016; Voita et al., 2019; Ashish, 2017). The ResNet architecture was chosen due to its ability to learn deep representations of the data, while the self-attention mechanism improves the model's ability to focus on important features, enhancing its predictive power. The specific hyperparameters and training details of our ResNet model are as follows:

108	100 0.09 0.17 0.10 0.00 0.12 0.07 0.16 0.10 0.11 0.05
109	
110	
111	Group8 - 0.17 0.10 1.00 0.11 0.50 0.80 0.99 0.24 0.32 0.38 0.09
112	pettifer_runder - 0.10 0.51 0.11 1.00 0.13 0.17 0.09 0.07 0.01 4.29 0.17 -0.8
113	1948 - 6.08 0.16 0.50 0.33 1.00 0.09 0.09 0.01 0.11 0.35 0.044 -0.4
114	1 ⁶ 8 - 0.12 0.18 0.80 0.17 0.09 1.00 4.06 4.21 0.32 4.33 4.40 -0.2
116	E+4 - 407 0.16 40.09 0.09 40.09 1.00 0.13 0.05 40.09 0.02 ^{-0.0}
117	-0.2 -0.4
118	K2 - 410 0.05 0.32 0.01 0.11 0.32 0.05 0.38 1.00 4.50 0.22
119	5 -8 - 0.11 0.18 0.19 0.33 0.33 0.09 0.37 0.50 1.00 0.17
120	949 - 4.05 4.19 4.09 4.17 4.44 -1440 4.02 0.19 0.22 0.17 100
121	т т Алана (1994) 1994 - Салана (1994)
122	o o o o o o o o o o o o o o o o o o o
123	
124	Figure 1: Pearson Heatmap showing the correlation between features.
125	
126	
127	• Number of neurons in the hidden layers (neuro): 1280
120	Number of ResNet layers (layer): 10
130	• Dropout rate (drop): 0.4
131	
132	• Dimension of each attention head (head_dim): 320
133	 Number of training epochs (times): 200
134	• Learning rate (LR)• 0.0001
135	
136	• Learning rate decay factor (gam): 0.999
138	 Number of neurons in the transformer encoder layers (transneuro): 160
139	Optimizer: Adam
140	•
141	In addition to the ResNet model, several traditional machine learning models were also trained for
142	comparison, including:
143 144	• K-means clustering (Hartigan & Wong, 1979)
145	• Multilayer Perceptron (MLP) (Taud & Mas, 2017)
146 147	• Random Forest (Breiman, 2001)
148	• Principal Component Analysis (PCA) (Abdi & Williams, 2010; Greenacre et al., 2022)
149	Multiveriable Linear Degression
150	• Multivariable Linear Regression
151	
152	5 MODEL EVALUATION
153	
154	The models were evaluated based on their performance on both the training and testing datasets
155	The primary evaluation metric used was the coefficient of determination (R^2) , which measures the
157	proportion of variance in the bandgap values explained by the model (Raschka, 2018; Eperon et al.,
158	2016; Straus & Cava, 2022). The results of this evaluation are summarized in Table 1.
159	The ResNet model, with the added self-attention mechanism, achieved a training R^2 of 0.819 and a
160	testing R^2 of 0.803, demonstrating its ability to generalize well to unseen data. Traditional models,
161	such as Random Forest and MLP, performed adequately but did not match the performance of the

To enhance the interpretability of the deep learning model, we performed a permutation importance analysis of the features. This analysis provided insight into how each feature contributes to the model's predictions. The permutation importance values were visualized in a boxplot (Figure 4), showing that certain features, such as the χ M-B and Ea-A, had a significant impact on the model's performance (Altmann et al., 2010; Zhang & Zhu, 2018).

Additionally, partial dependence plots (PDPs) were generated for the Random Forest model, further shedding light on the relationships between features and the predicted bandgap. These plots demonstrate how variations in individual features influence the output of the model, with more pronounced curves indicating higher importance of the feature (Figure 5).

- 204
- 205 206

7 CONCLUSION AND OUTLOOK

207 208

This work demonstrates the potential of using deep learning, particularly a self-attention enhanced ResNet model, for the accelerated design of photocatalysts. The model's strong predictive performance and interpretability suggest that it can be used as a tool for discovering new materials with optimized properties for photocatalytic C–C coupling reactions. Future work will focus on expanding the dataset, exploring other deep learning architectures, and validating the predicted materials through experimental synthesis.

215 The development of this approach holds great promise for advancing the field of photocatalysis and for the broader application of AI in materials science.

269 André Altmann, Laura Toloşi, Oliver Sander, and Thomas Lengauer. Permutation importance: a corrected feature importance measure. *Bioinformatics*, 26(10):1340–1347, 2010.

324 325 326	Haobo Li, Xinyu Li, Pengtang Wang, Zhen Zhang, Kenneth Davey, Javen Qinfeng Shi, and Shi- Zhang Qiao. Machine learning big data set analysis reveals c-c electro-coupling mechanism. <i>Journal of the American Chemical Society</i> , 146(32):22850–22858, 2024.
328 329	Sebastian Raschka. Model evaluation, model selection, and algorithm selection in machine learning. <i>arXiv preprint arXiv:1811.12808</i> , 2018.
330 331	Zuzana Reitermanova et al. Data splitting. In WDS, volume 10, pp. 31–36. Matfyzpress Prague, 2010.
333 334 335	Yuqing Ren, Yao Chen, Qingfei Zhao, Zhenmin Xu, Meijun Wu, and Zhenfeng Bian. Engineering palladium nanocrystals boosting c- c coupling by photocatalysis. <i>Applied Catalysis B: Environmental</i> , 324:122264, 2023.
336 337 338	Debojyoti Roy, Sunandita Paul, and Jyotishman Dasgupta. Photocatalytic terminal c- c coupling reaction inside water soluble nanocages. <i>Angewandte Chemie International Edition</i> , 62(45): e202312500, 2023.
339 340 341	Daniel B Straus and Robert J Cava. Tuning the band gap in the halide perovskite cspbbr3 through sr substitution. <i>ACS Applied Materials & Interfaces</i> , 14(30):34884–34890, 2022.
342 343	Hind Taud and Jean-Franccois Mas. Multilayer perceptron (mlp). In <i>Geomatic approaches for modeling land change scenarios</i> , pp. 451–455. Springer, 2017.
344 345 346 347	Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. <i>arXiv preprint arXiv:1905.09418</i> , 2019.
348 349 350 351	Kang Wang, Haipeng Lu, Xiaolin Zhu, Yixiong Lin, Matthew C. Beard, Yong Yan, and Xihan Chen. Ultrafast reaction mechanisms in perovskite based photocatalytic c-c coupling. ACS Energy Letters, 5(2):566–571, 2020. doi: 10.1021/acsenergylett.9b02714. URL https: //doi.org/10.1021/acsenergylett.9b02714.
352 353 354 355	Shifu Wang, Fuhua Li, Jian Zhao, Yaqiong Zeng, Yifan Li, Zih-Yi Lin, Tsung-Ju Lee, Shuhui Liu, Xinyi Ren, Weijue Wang, et al. Manipulating cc coupling pathway in electrochemical co2 reduction for selective ethylene and ethanol production over single-atom alloy catalyst. <i>Nature Communications</i> , 15(1):10247, 2024.
356 357 358	Vei Wang, Nan Xu, Jin Cheng Liu, Gang Tang, and Wen-Tong Geng. Vaspkit: a pre-and post- processing program for vasp code. <i>arXiv preprint arXiv:1908.08269</i> , 2019.
359 360 361	Quan-shi Zhang and Song-Chun Zhu. Visual interpretability for deep learning: a survey. <i>Frontiers</i> of Information Technology & Electronic Engineering, 19(1):27–39, 2018.
362 363 364	
365 366 367	
368 369	
370 371 372	
373 374 375	
376	