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ABSTRACT

Photocatalytic C–C coupling reactions have garnered significant attention for their
potential to drive sustainable chemical transformations. The design of efficient
photocatalysts is critical in optimizing these reactions. In this study, we use a
computational materials science approach, leveraging first-principles calculations
to evaluate the bandgap values of 158 single-crystal perovskite materials. We
employ a deep learning model, incorporating a multi-head-attention mechanism
within a ResNet architecture, to predict the bandgap based on features such as
τ , Group-A, Group-B, Pettifor number, χM-B, χP-B, Ea-A, cB, KB, and Ra-B.
This model’s performance is compared to traditional machine learning techniques,
including K-means, MLP, Random Forest, PCA, and Multivariable Linear Re-
gression. The results demonstrate that the self-attention ResNet model achieves a
training R2 of 0.819 and a test R2 of 0.803, indicating strong predictive accuracy.
The model’s interpretability is enhanced by visualizing the permutation impor-
tance of each feature, shedding light on the contributions of various factors to the
prediction. These findings highlight the potential of machine learning, particu-
larly deep learning, in accelerating the design of photocatalysts for C–C coupling
reactions.

1 INTRODUCTION

The photocatalytic C–C coupling reaction, which enables the efficient synthesis of carbon–carbon
bonds, is a pivotal process in catalysis, especially for sustainable chemical production (Roy et al.,
2023). The efficiency of photocatalysts directly impacts the rate and selectivity of this reaction.
Perovskite materials have emerged as promising candidates for photocatalysis due to their tunable
electronic properties, but designing effective catalysts requires a deep understanding of their struc-
tural and electronic characteristics. Traditional methods of catalyst design are often time-consuming
and experimentally demanding (Wang et al., 2020). In this context, machine learning (ML) and deep
learning (DL) techniques offer an accelerated approach to predicting material properties and opti-
mizing catalyst performance (Ren et al., 2023; Li et al., 2024).

This paper explores the application of deep learning, specifically a multi-head-attention enhanced
ResNet model, to predict the bandgap values of 158 single-crystal perovskite materials. The model’s
predictions are compared against traditional ML methods such as K-means, MLP, Random Forest,
PCA, and multivariable linear regression. We focus on the interpretability of the model, making
use of techniques such as feature importance analysis to provide insights into the decision-making
process of the model (LeCun et al., 2015; He et al., 2016; Breiman, 2001; Hartigan & Wong, 1979;
Voita et al., 2019; Ashish, 2017). This study focuses on a dataset of 158 single-crystal perovskite
materials, carefully selected for their relevance to photocatalytic C–C coupling. The material fea-
tures used to train our deep learning model were derived from an initial pool of 38 features through
a rigorous feature engineering process, resulting in a set of 10 highly effective descriptors.
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2 DATA COLLECTION

The dataset used in this study consists of first-principles computed bandgap values for 158 single-
crystal perovskite materials. These materials were specifically chosen for their potential relevance to
photocatalytic applications, focusing on a specific class of perovskites characterized by their similar
crystal structures and elemental compositions conducive to specific electronic properties. While we
initially explored larger databases such as the Materials Project, inconsistencies between some of
their data and existing literature led us to construct a smaller, highly curated dataset using Density
Functional Theory (DFT) calculations to ensure data accuracy. This approach allows for a more
controlled and reliable dataset for training our machine learning models.

In addition to the bandgap values, we collected an initial set of 38 material features hypothesized to
influence the electronic structure of the materials (Hafner, 2008; Wang et al., 2019; Hehre, 1976)..
Through a process of feature engineering, we identified and selected the 10 most informative and
efficient features as descriptors for our machine learning model. These features include (Green et al.,
2014; Cheng et al., 2020; Wang et al., 2024):

• τ (transition metal parameter)

• Group-A (group of elements in the periodic table)

• Group-B (group of elements in the periodic table)

• Pettifor number (atomic bonding characteristics)

• χM-B (electronegativity of the metal-B component)

• χP-B (electronegativity of the perovskite-B component)

• Ea-A (activation energy for charge transfer)

• cB (bonding parameter)

• KB (bulk modulus)

• Ra-B (atomic radii)

The rationale behind selecting these 10 features is that they represent a combination of electronic,
structural, and chemical properties known to significantly impact the bandgap of perovskite ma-
terials. Our feature engineering process involved analyzing feature correlations, assessing their
individual and combined importance through preliminary model training, and considering domain
knowledge from materials science. This selection aims to provide an efficient and physically mean-
ingful representation of the perovskite materials for the predictive model.

3 DATA PREPROCESSING AND FEATURE ENGINEERING

Prior to model training, the dataset was preprocessed to handle missing values and normalize the
features (Eck & Waltman, 2009). Features such as the transition metal parameters and atomic radii
were scaled to ensure consistency across different material compositions. The dataset was then split
into training and testing subsets, ensuring a proper distribution of data points. Feature engineer-
ing was performed to evaluate the relationships between different features and their impact on the
bandgap values (Reitermanova et al., 2010).

4 MODEL DEVELOPMENT: MULTIHEAD-ATTENTION ENHANCED RESNET
AND TRADITIONAL ML MODELS

The primary model used in this study is a deep learning model based on the ResNet architecture,
enhanced with a self-attention mechanism to better capture the complex relationships between the
features and the bandgap values (He et al., 2016; Voita et al., 2019; Ashish, 2017). The ResNet
architecture was chosen due to its ability to learn deep representations of the data, while the self-
attention mechanism improves the model’s ability to focus on important features, enhancing its
predictive power. The specific hyperparameters and training details of our ResNet model are as
follows:
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Figure 1: Pearson Heatmap showing the correlation between features.

• Number of neurons in the hidden layers (neuro): 1280

• Number of ResNet layers (layer): 10

• Dropout rate (drop): 0.4

• Dimension of each attention head (head dim): 320

• Number of training epochs (times): 200

• Learning rate (LR): 0.0001

• Learning rate decay factor (gam): 0.999

• Number of neurons in the transformer encoder layers (transneuro): 160

• Optimizer: Adam

In addition to the ResNet model, several traditional machine learning models were also trained for
comparison, including:

• K-means clustering (Hartigan & Wong, 1979)

• Multilayer Perceptron (MLP) (Taud & Mas, 2017)

• Random Forest (Breiman, 2001)

• Principal Component Analysis (PCA) (Abdi & Williams, 2010; Greenacre et al., 2022)

• Multivariable Linear Regression

5 MODEL EVALUATION

The models were evaluated based on their performance on both the training and testing datasets.
The primary evaluation metric used was the coefficient of determination (R2), which measures the
proportion of variance in the bandgap values explained by the model (Raschka, 2018; Eperon et al.,
2016; Straus & Cava, 2022). The results of this evaluation are summarized in Table 1.

The ResNet model, with the added self-attention mechanism, achieved a training R2 of 0.819 and a
testing R2 of 0.803, demonstrating its ability to generalize well to unseen data. Traditional models,
such as Random Forest and MLP, performed adequately but did not match the performance of the
deep learning model.
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Figure 2: Architecture of the Multihead-Attention Enhanced ResNet model.

Table 1: Model performance comparison.
Model Train R2 Test R2

ResNet 0.819 0.803
K-means 0.583 0.031
MLP 0.792 -66.437
Random Forest 0.946 0.581
PCA 0.439 -0.107
Linear Regression 0.005 -0.033

6 MODEL INTERPRETABILITY

To enhance the interpretability of the deep learning model, we performed a permutation importance
analysis of the features. This analysis provided insight into how each feature contributes to the
model’s predictions. The permutation importance values were visualized in a boxplot (Figure 4),
showing that certain features, such as the χM-B and Ea-A, had a significant impact on the model’s
performance (Altmann et al., 2010; Zhang & Zhu, 2018).

Additionally, partial dependence plots (PDPs) were generated for the Random Forest model, further
shedding light on the relationships between features and the predicted bandgap. These plots demon-
strate how variations in individual features influence the output of the model, with more pronounced
curves indicating higher importance of the feature (Figure 5).

7 CONCLUSION AND OUTLOOK

This work demonstrates the potential of using deep learning, particularly a self-attention enhanced
ResNet model, for the accelerated design of photocatalysts. The model’s strong predictive perfor-
mance and interpretability suggest that it can be used as a tool for discovering new materials with
optimized properties for photocatalytic C–C coupling reactions. Future work will focus on expand-
ing the dataset, exploring other deep learning architectures, and validating the predicted materials
through experimental synthesis.

The development of this approach holds great promise for advancing the field of photocatalysis and
for the broader application of AI in materials science.
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Figure 3: Predicted vs Observed bandgap values for the ResNet model.

Figure 4: Permutation importance analysis of the features.

8 DATA AVAILABILITY

All code and data used in this study will be made publicly available on GitHub for reproducibility
and further research purposes.
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André Altmann, Laura Toloşi, Oliver Sander, and Thomas Lengauer. Permutation importance: a
corrected feature importance measure. Bioinformatics, 26(10):1340–1347, 2010.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 5: Partial Dependence Plots (PDPs) for the Random Forest model.

Vaswani Ashish. Attention is all you need. Advances in neural information processing systems, 30:
I, 2017.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Xiao Cheng, Shuang Yang, Bingqiang Cao, Xutang Tao, and Zhaolai Chen. Single crystal perovskite
solar cells: development and perspectives. Advanced Functional Materials, 30(4):1905021, 2020.

Nees Jan van Eck and Ludo Waltman. How to normalize cooccurrence data? an analysis of some
well-known similarity measures. Journal of the American society for information science and
technology, 60(8):1635–1651, 2009.

Giles E Eperon, Tomas Leijtens, Kevin A Bush, Rohit Prasanna, Thomas Green, Jacob Tse-Wei
Wang, David P McMeekin, George Volonakis, Rebecca L Milot, Richard May, et al. Perovskite-
perovskite tandem photovoltaics with optimized band gaps. Science, 354(6314):861–865, 2016.

Martin A Green, Anita Ho-Baillie, and Henry J Snaith. The emergence of perovskite solar cells.
Nature photonics, 8(7):506–514, 2014.

Michael Greenacre, Patrick JF Groenen, Trevor Hastie, Alfonso Iodice d’Enza, Angelos Markos,
and Elena Tuzhilina. Principal component analysis. Nature Reviews Methods Primers, 2(1):100,
2022.

Jürgen Hafner. Ab-initio simulations of materials using vasp: Density-functional theory and beyond.
Journal of computational chemistry, 29(13):2044–2078, 2008.

John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm. Journal
of the royal statistical society. series c (applied statistics), 28(1):100–108, 1979.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Warren J Hehre. Ab initio molecular orbital theory. Accounts of Chemical Research, 9(11):399–406,
1976.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Haobo Li, Xinyu Li, Pengtang Wang, Zhen Zhang, Kenneth Davey, Javen Qinfeng Shi, and Shi-
Zhang Qiao. Machine learning big data set analysis reveals c–c electro-coupling mechanism.
Journal of the American Chemical Society, 146(32):22850–22858, 2024.

Sebastian Raschka. Model evaluation, model selection, and algorithm selection in machine learning.
arXiv preprint arXiv:1811.12808, 2018.

Zuzana Reitermanova et al. Data splitting. In WDS, volume 10, pp. 31–36. Matfyzpress Prague,
2010.

Yuqing Ren, Yao Chen, Qingfei Zhao, Zhenmin Xu, Meijun Wu, and Zhenfeng Bian. Engineering
palladium nanocrystals boosting c- c coupling by photocatalysis. Applied Catalysis B: Environ-
mental, 324:122264, 2023.

Debojyoti Roy, Sunandita Paul, and Jyotishman Dasgupta. Photocatalytic terminal c- c coupling
reaction inside water soluble nanocages. Angewandte Chemie International Edition, 62(45):
e202312500, 2023.

Daniel B Straus and Robert J Cava. Tuning the band gap in the halide perovskite cspbbr3 through
sr substitution. ACS Applied Materials & Interfaces, 14(30):34884–34890, 2022.

Hind Taud and Jean-Franccois Mas. Multilayer perceptron (mlp). In Geomatic approaches for
modeling land change scenarios, pp. 451–455. Springer, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Kang Wang, Haipeng Lu, Xiaolin Zhu, Yixiong Lin, Matthew C. Beard, Yong Yan, and Xihan
Chen. Ultrafast reaction mechanisms in perovskite based photocatalytic c–c coupling. ACS
Energy Letters, 5(2):566–571, 2020. doi: 10.1021/acsenergylett.9b02714. URL https:
//doi.org/10.1021/acsenergylett.9b02714.

Shifu Wang, Fuhua Li, Jian Zhao, Yaqiong Zeng, Yifan Li, Zih-Yi Lin, Tsung-Ju Lee, Shuhui
Liu, Xinyi Ren, Weijue Wang, et al. Manipulating cc coupling pathway in electrochemical co2
reduction for selective ethylene and ethanol production over single-atom alloy catalyst. Nature
Communications, 15(1):10247, 2024.

Vei Wang, Nan Xu, Jin Cheng Liu, Gang Tang, and Wen-Tong Geng. Vaspkit: a pre-and post-
processing program for vasp code. arXiv preprint arXiv:1908.08269, 2019.

Quan-shi Zhang and Song-Chun Zhu. Visual interpretability for deep learning: a survey. Frontiers
of Information Technology & Electronic Engineering, 19(1):27–39, 2018.

7

https://doi.org/10.1021/acsenergylett.9b02714
https://doi.org/10.1021/acsenergylett.9b02714

	Introduction
	Data Collection
	Data Preprocessing and Feature Engineering
	Model Development: Multihead-Attention Enhanced ResNet and Traditional ML Models
	Model Evaluation
	Model Interpretability
	Conclusion and Outlook
	Data Availability

