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Figure 1: Qualitative results of our model with 512 × 512 pixels. AB denotes the result of swapping A to B and BA denotes the
result of swapping B to A. Benefiting from our powerful symmetrical framework, we can achieve face swapping results with
high-fidelity and realism.
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Abstract
Face swapping, the technique of transferring the identity from one
face to another, merges as a field with significant practical applica-
tions. However, previous swapping methods often result in visible
artifacts. To address this issue, in our paper, we propose CodeSwap, a
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symmetrical framework to achieve face swapping with high-fidelity
and realism. Specifically, our method firstly utilizes a codebook that
captures the knowledge of high quality facial features. Building
on this foundation, the face swapping is then converted into the
code manipulation task in a code space. To achieve this, we design
a Transformer-based architecture to update each code indepen-
dently, which enable more precise manipulations. Furthermore, we
incorporate a mask generator to achieve seamless blending of the
generated face with the background of target image. A distinctive
characteristic of our method is its symmetrical approach to pro-
cessing both target and source images, simultaneously extracting
information from each to improve the quality of face swapping.
This symmetry also simplifies the bidirectional exchange of faces in
a singular operation. Through extensive experiments on ClelebA-
HQ and FF++, our method is proven to not only achieve efficient
identity transfer but also substantially reduce the visible artifacts.

CCS Concepts
• Computing methodologies→ Image-based rendering.
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1 Introduction
With the rise of video media and the continuous development of
image editing methods, face swapping techniques receive a lot
of attention from both academic community and industry. With
widely applications in various fields such as digital avatars [31], the
movie industry, privacy preservation [6], face swapping aims to
seamlessly transfer the identity of a source face to a target face while
preserving the attributes of the target face, including expression,
pose, and background.

Initially, face swapping methodologies were elementary, relying
on simple cropping and replacement of inner facial pixels [3, 7].
These methods are often sensitive to variations in lighting and
angles, resulting in distinguishing forgeries easily. The rise of Gen-
erative Adversarial Networks (GANs) significantly revolutionize
this field. A variety of GAN-based approaches have been intro-
duced [5, 11, 22, 46], proficient in transferring identity features of
the source while retaining the attributes of the target face, but also
struggle in generating high fidelity result. Additionally, there are
also methods [23, 47, 52] utilizing pre-trained StyleGAN [19] to
achieve a higher definition face swap results. And more recently,
diffusion based methods for face swapping like those in [20, 50]
have emerged. However, these methods still encounter challenges
associated with visible artifacts.

To tackle this problem, we propose a novel framework called
CodeSwap, which manipulating codes symmetrically in a code
space to achieve face swap. Specifically, our method leverage a

discrete codebook rich in high quality facial features, which can
effectively eliminate visible artifacts and improve the generation
quality. After encoding the images into the code space, the swap-
ping task is transferred to meticulously identifying and substituting
specific segments of the target face from the codebook to achieve
face swapping. To achieve this, we design a global fusion network
based on Transformers [39] to capture global information from
both images and manipulate the codes within the code space. It is
worth noting that our approach does not require an additional face
recognition model to extract the identity features of the source im-
age for explicit control. Instead, we design a Unified Self-Attention
mechanism, which treat source and target images equally, enabling
a capture of more information and mutual face swapping in a single
step. Different from [24], which employs an asymmetric training
method to stabilize the training process, our network is structurally
symmetric and can not be decoupled.

Furthermore, we propose a mask generator module that utilize
middle-layer semantic features of our encoder and decoder to gen-
erate masks and successfully ensures high quality image generation.
Extensive experiments demonstrate that our method can generate
swapping results with high-fidelity and realism. In summery, our
contributions are as follows:

• We design a novel symmetrical face swapping structure by
simultaneously and equally utilizing the information from
two input facial images.

• We propose an innovative approach that conceptualizes face
swapping as a process of code manipulation in a code space.
By leveraging priors inherent to high quality faces, our
method greatly reduces the occurrence of visible artifacts.

• Through extensive experiments, we demonstrate that our
approach outperform the previous methods, especially in
the term of high-fidelity and realism.

2 Related Work
2.1 Face Swapping
Research in face swapping attracts significant interest because of
its potential practical applications. Early efforts in addressing this
challenge primarily utilized classical image processing techniques
and three-dimensional morphable models (3DMMs) [3, 29], which
frequently resulted in face swaps that looked obviously artificial.
However, the emergence of generative networks marked a signifi-
cant step forward. FSGAN [29], an early pioneer, utilizes GANs for
face reenactment and blending back to target image, but struggle
with preserving the target’s authentic attributes. This problem fa-
cilitates the development of AdaIN-based [15] methods [5, 11, 22],
which focus on identity transfer and attribute preservation. Sim-
Swap [5], for instance, adopts a pretrained face recognition model
to extract the identity features of the source image and fuses them
with the target features in the latent space, while FaceShifter [22]
emphasizes attribute retention by incorporating target features
during upsampling. InfoSwap [11] introduces mutual information
to disentangle non-identity information, aiming for extracting the
most valuable information from the identity representation. Blend-
Face [35] proposes a new face encoder to mitigate attribute leakage.
To further enhance image quality, several studies [25, 44, 45, 52]
have explored StyleGAN’s [19] potential for refined face swapping.
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MegaFS [52] creates face swaps by substituting the target images’
high-level semantic features with those from the source images.
FSLSD [45] conveys attributes across multiple levels by utilizing
the side-outputs from StyleGAN. E4S [25] adopts regional GAN
inversion to separating facial shape and texture. Despite such ad-
vancements, the quest for artifact-free results continues. Recent
diffusion-based methods [20, 50] introduce innovative approaches.
For example, DiffFace [20] utilizes addtional facial guidance driven
by pretrained models to guide the denoising process, and DiffSwap
employs a 3DMM to blend faces and extract landmarks for explicit
facial shape control. Although these diffusion-based methods adopt
more complex training procedures and extended inference dura-
tions, the problem of visible artifacts remain. However, our method
suppresses visible artifacts to a large extent, resulting in a more
natural-looking face swap.

2.2 Codebook Learning
Traditional methods that adopt sparse representation through the
use of learned dictionaries have significantly advanced image pro-
cessing tasks, particularly in the areas of restoration [12, 36, 37, 48]
and denoising [9]. Building on these works, innovations like Vector
Quantized Variational AutoEncoders (VQVAE) [32, 38] and Vector
Quantized Generative Adversarial Networks (VQGAN) [10] take a
further step by introducing the idea of compact codebooks. These
codebooks efficiently compress image data into a set of discrete
vectors, resulting in a compact and rich image representation. This
development has significantly raised the bar for image quality and
computational efficiency, offering improvements over traditional
sparse representation methods by facilitating more detailed image
reconstructions with less computational overhead. Such progress
finds extensive application across various domains, including face
restoration [13, 42, 51], motion generation [27, 43], gesture synthe-
sis [2], and so on.

Drawing inspiration from the concept of codebook learning, this
work utilizes a prior codebook of faces to achieve face swapping. By
manipulating codes with high quality facial priors, we can achieve
more natural face-swapping results.

3 Method
The overarching structure of our face swapping framework is illus-
trated in Figure 2. This section intoduces our innovative approach
to face swapping. We begin by describing the training of prior
codebook in Section 3.1, which serves as the foundation of our
framework. Leveraging this facial prior, we create a globally aware
and symmetric code swapping framework. This framework effec-
tively update the original facial code with entries from the codebook
in the code space, facilitating precise face swapping. For further
details, please refer to Section 3.2. To preserve the complex back-
ground details, we introduce a mask generator in Section 3.3. This
module utilizes middle layer features of encoder and decoder to
generate masks that seamlessly integrate with our face swapping
architecture.

3.1 Stage 1: Facial Prior Codebook Learning
The face prior guarantees the generation of highly natural faces
with diversity. To capture the facial prior knowledge, we leverage

the task of face reconstruction through large number of natural
faces as depicted in Figure 3, utilizing the VQGAN [10] architecture.
The facial image 𝐼𝑓 ∈ R𝐻×𝑊 ×3 undergoes a transformation into a
code space via an encoder E, yielding 𝑍 𝑓 ∈ R𝑚×𝑛×𝑑 . Subsequently,
within this code space, we substitute each item by identifying the
nearest term from a learnable codebook𝑄 = {𝑞𝑘 ∈ R𝑑 }𝑁

𝑘=1, thereby
acquiring the quantized facial features 𝑍𝑞 ∈ R𝑚×𝑛×𝑑 :

𝑍𝑞 = (argmin
𝑞𝑘 ∈𝑄

{| |𝑍𝑖 𝑗 − 𝑞𝑘 | |2}) ∈ R𝑚×𝑛×𝑑 (1)

Finally, 𝑍𝑞 is sent to decoder D to obtain the restructed face image
𝐼𝑓 . As shown in the lower path in Figure 3, given a low quality face
image, the prior codebook learned from natural faces can reduce
the visible artifacts and produce a high quality recovered one.

3.1.1 Training Losses. Similar to [10, 38], we adopt gradient replica-
tion to address the issue of gradient truncation that arises during the
quantization process. This strategy allows us to train the encoder,
decoder and prior codebook in an end-to-end manner utilizing the
following loss function:

𝐿 = 𝐿1 + 𝐿𝑝𝑒𝑟 + 𝜆𝐿𝑎𝑑𝑣 + 𝐿𝑐𝑜𝑑𝑒 , (2)

where the first three of terms aims to enhance the quality of the
reconstruction. Here, 𝐿1 represents the L1 loss, 𝐿𝑝𝑒𝑟 indicates per-
ceptual loss [17], and 𝐿𝑎𝑑𝑣 denotes adversarial loss with 𝜆 serving
as a adaptive weight. These components are expressed as follows:

𝐿1 = | |𝐼𝑓 −𝐼𝑓 | |1, 𝐿𝑝𝑒𝑟 = | |𝑉𝐺𝐺 (𝐼𝑓 ) −𝑉𝐺𝐺 (𝐼𝑓 ) | |2,
𝐿𝑎𝑑𝑣 = log𝐷 (𝐼𝑓 ) + log(1 − 𝐷 (𝐼𝑓 )) .

(3)

The last term, 𝐿𝑐𝑜𝑑𝑒 , is meticulously crafted to minimize the dis-
crepancy between the code 𝑄 and the features 𝑍 𝑓 , defined as:

𝐿𝑐𝑜𝑑𝑒 = | |𝑠𝑔[𝑍𝑞] − 𝑍 𝑓 | |2 + 𝛽 | |𝑠𝑔[𝑍 𝑓 ] − 𝑍𝑞 | |2, (4)

where 𝑠𝑔[·] stands for gradient-stop operation and 𝛽 = 0.25 is a
weighting factor.

3.2 Stage 2: Symmetrically Code Swapping
After training the a prior codebook, the next step is to manipulate
the code of the image to achieve face swapping. As depicted in
Figure 2, face images 𝐼𝑎 and 𝐼𝑏 are fed into a shared encoder to
the code space and then flattened to derive the feature embeddings
𝑍𝑎, 𝑍𝑏 ∈ R𝑚𝑛×𝑑 . These embeddings are then concatenated to form
𝑍 :

𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑍𝑎, 𝑍𝑏 ) ∈ R2𝑚𝑛×𝑑 . (5)
Since the encoder is trained on the reconstruction task in Stage 1,
the concatenated feature 𝑍 contains all the information of the two
images, which we called global features. The global features 𝑍 will
be fed into a global fusion module and a code selector to choose
the best codes from prior codebook to achieve face swap.

Global FusionModule is consist of several unified self-attention
mechanism, which can fuse the features of two images with a global
attention and output new embeddings symmetrically. The fusion
mechanism is shown in Figure 4 (b) and expressed as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑍𝑙 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝑙𝐾

𝑇
𝑙√︁
𝑑𝑘

)𝑉𝑙 = 𝐴𝑉𝑙 , (6)
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Figure 3: The upper path demonstrate the trainning phase
of prior codebook based on natural face images. And the
lower path shows our high quality facial prior can reduce
the visible artifacts of low quality images.

where 𝑍𝑙 denotes the output of the 𝑙𝑡ℎ layer, 𝑄𝑙 , 𝐾𝑙 ,𝑉𝑙 are ob-
tained from 𝑍𝑙 through linear transformations from𝑊𝑄 ∈ R𝑑×𝑑𝑘 ,
𝑊𝐾 ∈ R𝑑×𝑑𝑘 ,𝑊𝑉 ∈ R𝑑×𝑑𝑣 , respectively. And 𝐴 is the calculated
attention map of all codes from both images. After the self-attention
mechanism, a linear layer is utilized to project the dimension into
2𝑚𝑛×𝑑 , and a Feed-Forward Network (FFN) to generate the updated
features 𝑍𝑙+1.

As shown in Figure 4, compare to traditional AdaIN-based meth-
ods, our global fusion module has several advantages.

i) Previous AdaIN-based methods [5, 11, 22] use additional pre-
trained face recognition models to extract identity features from
the source image. While some methods employ more powerful en-
coders to gather extensive information [49, 52], they may overlook
the potential contributions of the target image. In contrast, our
model uses an encoder from a reconstruction task to extract global

features from both images and applies unified self-attention to
leverage information from both, thus enhancing the swap process.

ii) Compared to AdaIN’s impact on the overall style of the image,
our approach manipulates each code individually based on the
calculated attention map, which ensures more precise updating of
features.

iii) Our symmetric process manipulates the features of both
images at the same time, thus enabling swapping two faces at once,
extending a functionality absent in previous methods.

Code Selector. After the global fusion module, we adopt a code
selector to select the suitable items from the prior codebook to up-
date the original one, which is a MLP module and can be expressed
as:

𝑃 = MLP(𝑍𝑙𝑎𝑠𝑡 ) ∈ R2𝑚𝑛×𝑁 , (7)

where 𝑍𝑙𝑎𝑠𝑡 ∈ R2𝑚𝑛×𝑑 is the output of global fusion module and
𝑁 denotes the number of items in codebook. Instead of employing
𝑎𝑟𝑔𝑚𝑎𝑥 function for 𝑃 to get the code with the highest probability,
we adopt soft quantization to refer to all the codes in the codebook,
which is expressed as:

𝑍𝑞 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑃) ×𝑄 ∈ R2𝑚𝑛×𝑑 . (8)

The obtained 𝑍𝑞 selectively refers to the individual codes and con-
tribute to the generation of more natural details, which is then
passed to the decoder D to generates high-fidelity swapped face
images.

3.2.1 Training Losses. To train our symmetrical swap module ef-
fectively, we apply following losses:

𝐿𝑠𝑤𝑎𝑝 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝜆𝑖𝑑𝐿𝑖𝑑 + 𝜆𝑝𝑒𝑟𝐿𝑝𝑒𝑟 + 𝜆𝑒𝑥𝑝𝐿𝑒𝑥𝑝 + 𝐿𝑐𝑦𝑐 , (9)

where the weights 𝜆𝑖𝑑 , 𝜆𝑝𝑒𝑟 , 𝜆𝑒𝑥𝑝 are set to 1.5, 2 × 10−3, and 0.5,
respectively. The perceptual loss, 𝐿𝑝𝑒𝑟 , is same to Equation (3). The
identity loss, 𝐿𝑖𝑑 , ensures the transfer of identity features between
face images and is expressed as:
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𝐿𝑖𝑑 = 1 − 𝐶𝑜𝑠𝑆𝑖𝑚(𝐸𝑖𝑑 (𝐼𝑎), 𝐸𝑖𝑑 (𝐼𝑎𝑏 )) +𝐶𝑜𝑠𝑆𝑖𝑚(𝐸𝑖𝑑 (𝐼𝑏 ), 𝐸𝑖𝑑 (𝐼𝑏𝑎))
2

,

(10)
where 𝐸𝑖𝑑 represents a pre-trained face recognition model [8] and
𝐶𝑜𝑠𝑆𝑖𝑚(·, ·) denotes the cosine similarity between two vectors. The
reconstruction loss, 𝐿𝑟𝑒𝑐𝑜𝑛 , is applied to ensure fidelity when the
input faces 𝐼𝑎 and 𝐼𝑏 in the training sample are identical. It is for-
mulated as:

𝐿𝑟𝑒𝑐𝑜𝑛 =

{ | |𝐼𝑏𝑎−𝐼𝑎 | |1+| |𝐼𝑎𝑏−𝐼𝑏 | |1
2 if 𝐼𝑎 = 𝐼𝑏

0 otherwise
(11)

What’s more, 𝐿𝑒𝑥𝑝 aims control ensure the resulting expression is
consistent with the face being swapped [26], expressed as:

𝐿𝑒𝑥𝑝 =
| |𝐸𝑒𝑥𝑝 (𝐼𝑎) − 𝐸𝑒𝑥𝑝 (𝐼𝑏𝑎) | |2 + ||𝐸𝑒𝑥𝑝 (𝐼𝑏 ) − 𝐸𝑒𝑥𝑝 (𝐼𝑎𝑏 ) | |2

2
.

(12)
Our symmetrical architecture also effectively utilizes code cycle

loss 𝐿𝑐𝑦𝑐 , which enhances the stability of training. Due to the frozen
encoder and decoder in this stage, we do not need to rerun the full
network, instead we only focus on achieveing this loss in the code
space. 𝐿𝑐𝑦𝑐 can be formulated as:

𝐿𝑐𝑦𝑐 = | |𝑍𝑎𝑏𝑎𝑞 − 𝑍𝑎 | |2 + ||𝑍𝑏𝑎𝑏𝑞 − 𝑍𝑏 | |2, (13)

where embeddings 𝑍𝑏𝑎𝑞 and 𝑍𝑎𝑏𝑞 are the result codes in the first
swap, and they are processed again through the modules in Stage 2
to derive 𝑍𝑎𝑏𝑎𝑞 , 𝑍𝑏𝑎𝑏𝑞 . Comparing 𝑍𝑎𝑏𝑎𝑞 , 𝑍𝑏𝑎𝑏𝑞 against original em-
beddings 𝑍𝑎 , 𝑍𝑏 for reconstruction loss, we can stable the training
process to produce high-fidelity results. This comprehensive loss
𝐿𝑠𝑤𝑎𝑝 ensures the successful transfer of identity features, while
maintaining the fidelity and expression consistency of the swapped
faces.

3.3 Stage 3: Mask Generator
In order to keep all the background information of the target image,
we design a mask generator that can distinguish between identity-
specific and unrelated regions. Inspired by previous methods [1, 44],
our approach utilize the middle layer features from both encoder
and decoder of our framework to produce detailed masks. This
involves concatenating features from encoder and decoder, refining
through 1×1 convolutions, activations, and upsampling to generate
the final mask, which is detailed in the appendix. The blending
operation yields the final images as follows:

𝐼𝑎𝑏 = 𝐼𝑛𝑎𝑖𝑣𝑒
𝑎𝑏

⊙ 𝑀𝑏 + 𝐼𝑏 ⊙ (1 −𝑀𝑏 ), (14)
where ⊙ denotes Hadamard product.

3.3.1 Training Losses. For optimal mask generator training, we
employ a dual-strategy approach: initially adopting a supervised
method by pretrained parsing model for coarse mask generation,
followed by an unsupervised technique to finetune the mask gen-
ertor for fine-grained mask creation. During the supervised phase,
We utilize ground truth obtained by a pretrained parsing model
from input images to guide mask production, with the training loss
formulated as:

𝐿 = | |𝑀 −𝑀𝐺𝑇 | |1 . (15)
Subsequently, we integrate the mask generator into the face swap-
ping framework in Stage 2, leveraging losses in Stage 2 for unsuper-
vised training. This enables the mask generator to automatically
distinguish between areas that are relevant and irrelevant to the
identity feature.

4 Experiment
4.1 Datasets
We train our models using two high-definition facial datasets: FFHQ
[19], which comprises 70,000 facial images, and VGGFace2-HQ [30]
, which is a high resolution version of VGGFace2 [4] and contains
millions of images with thousands of identities. Both datasets are
widely recognized and utilized for training generative models due
to their diverse and high quality image content. To train our model,
we resize the images into 512 × 512. To better validate the effect of
high resolution face swapping, we process the CelebA-HQ [18] and
FaceForensics++ (FF++) [33] as our test set, which represent high
quality images and low quality images, respectively.

4.2 Experimental settings
Our model processes 512× 512 images within a 16× 16× 512 latent
space and utilizes a codebook of 1,024 codes, following the autoen-
coder structure from [10]. Our model features a 6-layer Transformer
and is trained across three stages: 1,000K iterations for Stage 1, 600K
for Stage 2, and 10K for Stage 3, using a global batch size of 32 on
two NVIDIA Tesla A100 GPUs. We employ the Adam optimizer
[21] with a 10−4 learning rate.

4.3 Comparison with previous methods
To demonstrate the effectiveness of our method, we conduct quan-
titative experiments, qualitative experiments and user study, com-
paring our method with FSGAN [28], Simswap [5], InfoSwap [11],
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Table 1: Comparison of face swapping methods on CelebA-HQ and FF++ for ID retrieval, ID similarity, pose error, expression
error, and Frechet Inception Distance. Bold text highlights the best scores, and underline for the second best scores. The results
demonstrate that our method achieves comparable results to existing mothods.

Method CelebA-HQ FF++
ID R. ↑ ID Sim. ↑ Expr. ↓ Pose. ↓ FID ↓ ID R. ↑ ID Sim. ↑ Expr. ↓ Pose. ↓ FID ↓

FSGAN [28] 24.2 0.1934 0.0341 0.0336 54.05 31.56 0.2510 0.0315 0.0212 15.36
SimSwap [5] 97.8 0.5990 0.0346 0.0339 30.18 92.99 0.5488 0.0355 0.0149 7.48
MegaFS [52] 77.1 0.4188 0.0414 0.1577 53.10 50.70 0.2899 0.0404 0.1202 28.96
InfoSwap [11] 94.5 0.5860 0.0354 0.0316 21.67 86.81 0.4945 0.0396 0.0280 12.46
DiffSwap [50] 17.2 0.2570 0.0227 0.0223 23.18 18.80 0.2158 0.0247 0.0170 11.86
BlendFace [35] 89.6 0.5158 0.0260 0.168 20.92 78.48 0.4358 0.0311 0.0135 3.84
E4S [25] 87.7 0.4873 0.0385 0.0887 24.78 86.82 0.4870 0.0422 0.0550 25.34
CodeSwap 98.7 0.6118 0.0292 0.0187 20.68 93.72 0.5571 0.0301 0.0130 8.90

FSGAN MegaFS SimSwap InfoSwapBlendFace CodeSwapSource Target DiffSwap E4S

Figure 5: Qualitative comparison with other methods. Our method not only achieves excellent identity transfer but also
generates images with high-fidelity and realism. (Zoom in for details.)

MegaFS [52], DiffSwap [50], BlendFace [35], and E4S [25] as base-
lines.

4.3.1 Quantitative Comparisons. In quantitative study, we utilize
two distinct test datasets: CelebA-HQ [18] and FF++ [33]. For the
CelebA-HQ dataset, we select a subset of 1,000 images featuring
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unique identities and craft 1,000 testing pairs through random se-
lection. In the case of FF++, we extract 10 random frames from each
video, resulting in a dataset of 10,000 images. These images are
then combined randomly to generate an additional 10,000 images
for testing.

We benchmark our method against prior works, evaluating per-
formance across several metrics including ID retrieval, ID similarity,
pose and expression accuracy, and the Frechet Inception Distance
(FID) [14]. ID retrieval is performed using a specialized face recog-
nition model [41] to extract identity features, employing cosine
similarity for matching. For CelebA-HQ, we match images within
the selected subset, while for FF++, to heighten the challenge, we
adopt the approach of [23] by matching against a single frame from
each video instead of all frames. Pose accuracy is assessed through
the Euclidean distance between estimated and ground truth poses
[34]. Meanwhile, expression accuracy is evaluated by comparing
the L2 distance between expression embeddings from the swapped
and target faces using a model distinct from the one used during
the training phase [40].

As shown in Table 1, our method obtains the highest ID Retrieval
and ID Similarity metrics on both datasets, indicating that our
method works well to transfer the facial identity from source to
target. The expression and pose accuracy metrics show that we are
also able to preserve the attribute of the target face. In addition
to this, our method achieves the lowest FID on the CelebA-HQ
dataset , indicating the capability to generate high-fidelity images
of the proposed methods. Our FID scores are slightly higher on the
FF++ dataset, which is likely due to visible artifact reduction in our
generated images compared to the original FF++ images. This leads
to differences in data distribution and the increase of FID.

4.3.2 Qualitative Comparisons. We perform qualitative compar-
isons on CelebA-HQ [18] and FFHQ [19]. As shown in Figure 5,
existing methods often have visible artifacts, especially at the cor-
ners of the mouth, nose, and forehead. But our method greatly
suppresses visible artifacts, producing a more natural image with a
higher clarity. It is noteworthy to mention the observation made
in the last line of Figure 5. When there is a significant difference
in the mouth shapes between the source and the target, existing
approaches either failing to alter the mouth shape properly or re-
sulting in obvious visible artifacts. In contrast, our method correctly
changes the shape of the mouth, renders the skin in the constricted
area of the mouth, and blends the skin color of the target face with
the texture of the source face for a natural look.

4.3.3 User Study. To explore human perception of face swapping
results, we perform a user study encompassing three distinct eval-
uations with ratings on a scale from 1 to 5: 1) identity similarity to
the source image, 2) consistency of expression, lighting, and pose
with the target image, and 3) the degree of realism. As illustrated
in Table 2, our method outperforms existing methods in all metrics,
especially in realism. These findings suggest that our method ef-
fectively preserves the attributes of the target image and ensures a
high-fidelity generation of realistic images, all while successfully
transfer the identity from the perspective of human.

Table 2: User Study Comparison.

Method Consistency ↑ Attribute ↑ Realism ↑
FSGAN [28] 1.82 2.68 2.05
SimSwap [5] 2.88 2.73 2.27
MegaFS [52] 1.86 1.36 1.86
InfoSwap [11] 2.86 3.05 2.35
BlendFace [35] 2.96 3.36 3.04
DiffSwap [50] 2.19 2.55 2.18
E4S [25] 3.58 2.14 2.68
CodeSwap 3.63 3.56 3.41

4.4 Ablation study
In this section, we prove the validity of some of the modules in our
CodeSwap.

4.4.1 Effectiveness of Prior Knowledge via the Codebook. To assess
the critical function of the codebook in embedding prior knowl-
edge, we skip the code selector and prior codebook, allowing the
Transformer’s feature outputs to directly proceed to the decoder
and retrain the model. The qualitative and quantitative results are
shown as w/o 𝐶 in Figure 6 and Table 3, respectively. The quali-
tative results, illustrated in Figure 6, demonstrate that the lack of
codebook results in more artifacts in the generated image and a
blurrier face. The FID metrics in Table 3 also demonstrates the bad
quality of generated images. These results prove the important role
of the prior codebook in generating high-fidelity images.

4.4.2 Significance of Symmetrical Swap. In our approach, we em-
ploy symmetrical swap, which utilize self-attention on concatenated
features to obtain the global information of both images and achieve
face swapping with each other at once. To prove the significance of
symmetrical swap, we adopt the cross-attention mechanism to fuse
the features from the source face, thus breaking the symmetrical
process. The qualitative and quantitative results are shown as w/o
𝑆 in Figure 6 and Table 3, respectively. Qualitative results show that
the generated images are not precise enough in expression accu-
racy especially the shape of the mouth. Quantitative experiments
also shows the degradation of its generation quality. Both results
demonstrate the validity of our symmetrical framework.

4.4.3 Impact of Soft Quantization. In our approach, we utilize the
output probabilities from the code selector to achieve soft quantiza-
tion through a weighted averaging process. To evaluate the efficacy
of this technique, we contrasted two quantization methods: 1) hard
quantization which select the code with the highest probability
instead of our weighted average, and 2) Gumbel-Softmax trick [16],
which correspond to w/o 𝑆1 and w/o 𝑆2 both in Figure 6 and Table
3, respectively. The quantitative results of Table 3 show that both
methods have varying degrees of degradation in their effective-
ness especially the gumbel-softmax trick. The qualitative results
demonstrate that the use of soft quantization is able to synthesize
the information from the individual codes, leading to more natural
details.

4.4.4 Impact of the Mask Generator. Our CodeSwap focuses on
facial priors to generate high quality faces. In addition, we design
a mask generator to preserve the background information of the
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Table 3: Quantitative result of ablation study on CelebA-HQ.

Method ID R ↑ ID Sim ↑ Exp ↓ Pose ↓ FID ↓
w/o 𝐶 98.1 0.5788 0.0319 0.0229 26.22
w/o 𝑆 98.3 0.5859 0.0327 0.0225 20.77
w/o 𝑄1 97.7 0.5606 0.0299 0.0218 20.93
w/o 𝑄2 86.7 0.4271 0.0313 0.0369 20.96
Ours 98.7 0.6118 0.0292 0.0187 20.68

Source Target Ours w/o �1 w/o �2 w/o � w/o �  

Figure 6: Qualitative ablation results of CodeSwap.

target image. To validate the impact of our mask generator, we
conduct the experiment under the setting without mask generator
(w/o𝑀) . The result is shown in Figure 7, which demonstrates that
our generated mask can distinguish the identity related area and
help to achieve better background preservation.

Source Target w/o � Ours Mask

Figure 7: Qualitative ablation study on mask generator.

4.5 Additional Study
In this section, we extend our application to regional control face
swap and analyze some of the additional results.

4.5.1 Regional Control Swap. Although our method manipulates
on all codes of the input image, we demonstrate the ability of
regional control swap of our method. This can be achieved through
selective manipulation of codes in the code space. As shown in
Figure 8, our method allows for the high quality regional face
swap, which is not possible with purely pixel-level operations. This
characteristic ensures that even if part of the codes are manipulated,
the resulting image blends perfectly with other features of the face,
achieving highly natural results.

Source Target Eyes Mouth Nose All

Figure 8: Regional swap by only manipulates the code of the
corresponding area.

Inputs Visualization of ��Visualization of ��

Figure 9: Visualization of attention maps for a given area and
each region has attention on both input images for symmet-
rical swapping.

4.5.2 Visualization of Attention Map. To gain a deeper insight into
the feature fusion process of our global fusion module, we visualize
the attention maps generated during self-attention, as depicted
in Figure 9. Since we perform the self-attention mechanism after
concatenating the features of the two images, each code obtains two
attention maps from the image itself and the other input image. The
visualization results show that the global fusion module not only
successfully focuses on correct region of the other image but also
on other regions of its own image. This proves that our symmetrical
framework successfully obtains information on both images and
automatically discovers an optimal feature fusion strategy that is
particularly beneficial for face swap tasks.

5 Conclusion
In this paper, we propose the concept of code manipulation as a
novel approach to achieve face swapping. By leveraging a prior
codebook learned from natural face images, we manipulate the
codes to achieve high-fidelity results. Unlike traditional techniques
for extracting identity features, we propose a symmetrical frame-
work that concentrates on the global information of the both im-
ages and manipulates each code individually to achieve precise
face swap of two images at once. Our method is validated across a
broad range of experiments, proving its superior ability to produce
natural, high-fidelity facial images. We believe that this approach
will significantly contribute to advancing the field of face swapping
research.
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