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Real2Gen Overview
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Experiment – Mesh Generation

● Imitation learning promising 

paradigm to learn new tasks

● Commonly trained on robot 

demos, but collecting with 

tele-operation or kinesthetic 

teaching is tedious

→ Real2Gen: Transform human 

demos to robot demos using 

generative simulation

● Compare human effort for mesh retrieval against 

querying a database using tags

● Apply matching and manually verify

● Real2Gen provides almost 3x more available 

meshes

Experiment – Policy Learning

Mesh
Source

Available 
Meshes

100 Mesh
Pre-Selection

Matching Successful 
and Task Relevant

Point-E[3] (ours) ∞ Random 54%

Objaverse[6] 690
Most viewed* 19%

Random* 18%

Method
Sponge on

Tray 
[%] (↑)

Coke on
Tray 
[%] (↑)

Paperroll
upright

 [%] (↑)

Mean
SR 

[%] (↑)

DITTO[1] 6.3±2.1 26.0±3.6 0.3±0.5 10.9±2.1

DITTO[1] 
w/ ZSP[4] 4.3±1.2 19.7±3.8 0.7±0.6 8.2±1.8

Real2Gen 
(ours)

41.3±4.5 46.3±6.4 25.0±1.0 37.5±3.0

1. Use DITTO[1] or ORION[2] 

to extract object masks + 

traj.

2. Generate 3D asset using 

Point-E[3] and align to 

demo with ZSP[4]

3. Re-generate scenarios 

and use privileged info to 

generate demonstrations

4. Train a policy, e.g. flow 

matching[5]

Policy Learning Results
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Ablation Study

● Real2Gen shows robustness over DITTO

● Performance gain 
diminishes with 
more 
demonstrations

● Mesh amount are 
more relevant

*if less than a 100 meshes are available we use all 


