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Abstract: Multi-fingered hands offer great potential for compliant and robust1

grasping of unknown objects, yet their high-dimensional force control presents2

a significant challenge. This work addresses two key problems: (1) distributing3

contact forces to counteract an object’s weight, and (2) preventing rotational slip4

caused by gravitational torque when a grasp is distant from the object’s center of5

mass. We address these challenges via tactile feedback and a quadratic program-6

ming (QP)-based controller, without explicit torque modeling or slip detection.7

Our key insights are (1) rotational slip will induce translational slip for a multi-8

fingered grasp, and (2) the ratio of tangential to normal force at each contact is9

an effective early stability indicator. By actively constraining this ratio for each10

finger below the estimated friction coefficient, our controller maintains grasp sta-11

bility against both translational and rotational slip. Real-world experiments on 1212

diverse objects demonstrate the robustness and compliance of our approach.13

Figure 1: TacDexGrasp. (A-C) Our system enables stable and safe grasping for multi-fingered
hands on objects with diverse, unknown mass distributions, friction coefficients, and deformation
materials. (D) Our QP-based controller can also compensate for gravitational torque to prevent the
rotational slip without explicit torque modeling.

1 Introduction14

Applying appropriate forces is essential for both stability and safety in robotic grasping. Excessive15

force may damage delicate objects, while insufficient force can lead to slippage or grasp failure. Prior16

work on compliant grasping [1, 2, 3, 4, 5, 6, 7, 8] has largely focused on parallel grippers or highly17

underactuated multi-fingered hands. These designs simplify grasp synthesis and control by reducing18

the number of degrees of freedom (DoF), but at the cost of dexterity and adaptability in complex19

tasks. For example, parallel grippers are particularly limited in preventing rotational slip caused by20

gravitational torque when a grasp is offset from an object’s center of mass.21

In contrast, fully actuated dexterous hands—with their human-like morphology—hold greater po-22

tential for versatile and robust grasping. However, their increased DoF and more complex contact23

interactions introduce a new challenge in how to distribute forces across multiple fingers to sup-24

port an object’s weight. Moreover, it is also underexplored how to prevent the rotational slip by a25

multi-fingered hand.26
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In this work, we tackle these challenges using tactile feedback and a quadratic programming (QP)-27

based force controller, without relying on torque modeling or slip detection. Our first key insight28

is that rotational slip of the object inevitably induces translational slip at some contacts in a multi-29

fingered grasp. This means that explicitly modeling gravitational torque is unnecessary; preventing30

translational slip at each finger is sufficient for stability.31

Our second observation is that the ratio of tangential to normal force at a contact provides an early32

and reliable stability indicator. By constraining this ratio below the estimated friction coefficient, slip33

can be avoided before it occurs. This constraint can be naturally integrated into a QP formulation,34

which we solve efficiently in around 2 ms to compute the optimal force distribution across contacts.35

The resulting target forces are then tracked using a PID controller on the robot hand.36

We validate our method in real-world experiments on 12 objects with diverse, unknown mass37

distributions, friction coefficients, and deformation materials. Our approach achieves a 83% grasp38

success rate without damaging delicate objects, outperforming prior baselines. Furthermore, our39

controller demonstrates robustness by adapting to unexpected external disturbances during grasping.40

2 Method41

2.1 Solving Contact Force by Quadratic Programming42

In this section, we introduce our QP formulation to compute the target force for each contact to43

balance the object’s weight, while constraining the ratio of tangential to normal force to prevent slip.44

We consider an object 𝑂 grasped at 𝑚 contact points. For each contact 𝑖, n𝑖 ∈ R3 is the inward45

surface normal, while d𝑖 , c𝑖 ∈ R3 are orthogonal tangents with n𝑖 = d𝑖 × c𝑖 , all expressed in the46

world frame. The Coulomb friction cone F𝑖 and local-to-world transformation J𝑖 are defined as47

F𝑖 =
{
x𝑖 ∈ R3 | 0 ≤ 𝑥𝑖,1 ≤ 𝛾, 𝑥2

𝑖,2 + 𝑥
2
𝑖,3 ≤ 𝜇2𝑥2

𝑖,1
}

, J𝑇𝑖 =
[
n𝑖 d𝑖 c𝑖

]
∈ R3×3 (1)

Here, 𝛾 is the force upper bound and 𝜇 is the friction coefficient.48

To balance the object’s weight, the target contact forces (f𝑡1, ..., f
𝑡
𝑚) at timestep 𝑡 are obtained from49

(f𝑡1, ..., f
𝑡
𝑚) = arg min

(x1 ,...,x𝑚 )
∥

𝑚∑︁
𝑖=1

J𝑇𝑜,𝑖x𝑖 − g∥2 + 𝛽1

𝑚∑︁
𝑖=1
∥x𝑡𝑖 − f𝑡−1

𝑖 ∥2 + 𝛽2

𝑚∑︁
𝑖=1
∥x𝑡𝑖 ∥2 (2)

s.t. x𝑖 ∈ F𝑖 , 𝑖 ∈ {1, ..., 𝑚} (3)
where g ∈ R3 is the object gravity,

∑𝑚
𝑖=1 ∥x𝑡𝑖 − f𝑡−1

𝑖
∥2 is the temporal smooth term, and

∑𝑚
𝑖=1 ∥x𝑡𝑖 ∥250

is the penalty term used to avoid large force. 𝛽1 and 𝛽2 are hyperparameters. Similar to [9, 10],51

approximating the cone constraints to a pyramid yields a linearly-constrained QP, which can be52

efficiently solved by Clarabel [11] via qpsolvers [12].53

However, the above QP formulation is not enough to prevent the slippage. Because the tangential54

contact force acts like a ”passive effect” of the normal contact force, which is not directly controllable.55

We can only use a PID controller to track the target normal force. As a result, the real tangential56

force can be much larger than the one solved by QP and may violate the cone constraint. To address57

this issue, we leverage the tactile feedback and update the lower bound of normal force as58

F𝑖 =
x𝑖 ∈ R3 |

√︃
( 𝑓 𝑟

𝑖,2)2 + ( 𝑓
𝑟
𝑖,3)2

𝜇
≤ 𝑥𝑖,1 ≤ 𝛾, 𝑥2

𝑖,2 + 𝑥
2
𝑖,3 ≤ 𝜇2𝑥2

𝑖,1

 (4)

where 𝑓 𝑟
𝑖,2 and 𝑓 𝑟

𝑖,3 are the tangential components of the real contact force obtained from the tactile59

sensor. Note that we still need to solve 𝑥𝑖,2 and 𝑥𝑖,3 to ensure that there is a valid friction combination60

to balance the object’s weight.61

2.2 Tactile-based Compliant and Robust Dexterous Grasping62

In this section, we introduce our system design for compliant and robust dexterous grasping with63

tactile feedback. The pseudocode is shown in Algorithm 1. Our system consists of three stages:64
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Algorithm 1 Tactile-based Compliant and Robust Dexterous Grasping
Data: 𝑃𝐶

Param: model, 𝑛1, 𝑛2, Δ𝑞𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 , 𝜇𝑖𝑛𝑖𝑡 , 𝐺𝑖𝑛𝑖𝑡

Init: 𝜇0 ← 𝜇𝑖𝑛𝑖𝑡 , 𝐺0 ← 𝐺𝑖𝑛𝑖𝑡 , 𝑡 ← 1
1: 𝑞𝑝𝑟𝑒𝑔𝑟𝑎𝑠𝑝 , Δ𝑞𝑔𝑟𝑎𝑠𝑝 ← model(𝑃𝐶) ⊲ 1. Prediction stage
2: Move(𝑞𝑝𝑟𝑒𝑔𝑟𝑎𝑠𝑝) ⊲ 2. Grasping stage
3: for 𝑖 = 1 to 𝑛1 do ⊲ Squeeze non-contacting fingers
4: 𝑚𝑎𝑠𝑘 𝑓 𝑖𝑛𝑔𝑒𝑟 ← GetNonContactFinger()
5: MoveDelta(Δ𝑞𝑔𝑟𝑎𝑠𝑝 · 𝑚𝑎𝑠𝑘 𝑓 𝑖𝑛𝑔𝑒𝑟 )
6: end for
7: while True do ⊲ 3. Transport stage
8: MoveDelta(Δ𝑞𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ) ⊲ Non-blocking arm control
9: for 𝑖 = 1 to 𝑛2 do ⊲ Adaptive hand control

10: 𝑛𝑡 , 𝑓 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← ReadTactile()
11: 𝜇𝑡 , 𝐺𝑡 ← Update(𝜇𝑡−1, 𝐺𝑡−1, 𝑓 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 )
12: 𝑓 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 ← QP(𝑛𝑡 , 𝜇𝑡 , 𝐺𝑡 , 𝑓 𝑡−1

𝑡𝑎𝑟𝑔𝑒𝑡 )
13: ContactForceController( 𝑓 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑓

𝑡
𝑡𝑎𝑟𝑔𝑒𝑡 )

14: 𝑡 ← 𝑡 + 1
15: end for
16: end while

Prediction Stage (in line 1): This stage predicts grasp poses from the partial observation following [9,65

10]. Given a single-view segmented object point cloud denoted as 𝑃𝐶, we use a learned network to66

predict a pregrasp pose 𝑞𝑝𝑟𝑒𝑔𝑟𝑎𝑠𝑝 that remains a margin with the object, a delta pose Δ𝑞𝑔𝑟𝑎𝑠𝑝 that67

drives the hand to touch the object.68

Grasping Stage (in line 2-6) This stage controls the hand to establish contact with the object. The69

hand is first moved to the predicted pre-grasp pose 𝑞𝑝𝑟𝑒𝑔𝑟𝑎𝑠𝑝 , and then squeezed to touch the object70

over 𝑛1 steps. At each step, only those fingers that are not in contact with the object are squeezed,71

whose mask is obtained from the tactile signals. This strategy enables a soft and progressive72

approach, minimizing the risk of applying excessive initial force to the object.73

Transport Stage (in line 7-16) In this stage, the hand adjusts the grasping force in a closed-loop74

manner while moving the object to follow a predefined trajectory by the robot arm. In most of our75

experiments, the predefined trajectory first gradually lifts the object and then optionally performs76

irregular movements. Our adaptive force control for each time 𝑡 is performed as follows:77

• Read tactile data to extract contact normals 𝑛𝑡 , and actual contact forces 𝑓 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .78

• Update the estimated gravity and friction coefficient. In each timestep 𝑡, we first estimate79

the current value using the tactile data as80

𝜇̂𝑡 = mean
𝑖

𝑓 𝑡
𝑖,𝑡

𝑓 𝑡
𝑖,𝑛

, 𝐺̂𝑡 =
𝑔

𝑔 + 𝑎
∑︁
𝑖

𝑓 𝑡𝑖 , (5)

where 𝑓 𝑡
𝑖,𝑡

and 𝑓 𝑡
𝑖,𝑛

denote the tangential and normal components of the contact force at81

contact point 𝑖, respectively. 𝑔 is 9.8 N/kg, and 𝑎 is the object’s acceleration, which we82

estimate from the acceleration of the robot hand. We use a maximum sliding window filter83

and an average sliding window filter on 𝜇̂𝑡 and 𝐺̂𝑡 to get the final 𝜇𝑡 and 𝐺𝑡 ,84

• Using the QP formulation introduced in Section 2.1 to compute the target contact forces.85

• Using a joint position-based PID controller to track the target forces solved by QP:86

𝑞𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑞𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑘 𝑝𝜏 + 𝑘𝑖
∫

𝜏𝑑𝑡 + 𝑘𝑑 ¤𝜏 (6)

where 𝜏 = 𝐽𝑇 (𝑞𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ) ( 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ) is the error torque.87
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3 Real World Experiments88

As shown in Figure 2, 12 different objects with varied deformation materials, friction coefficients,89

and mass distributions, are used in our experiment. The object mass ranges from 20g to 200g,and the90

friction coefficients range from 0.4 to 1.2, measured by gradually opening from a parallel grasping91

and recording the force when the object falls.92

We use a 16-DoF Leap hand mounted on a 6-DoF UR5e robotic arm, and an Azure Kinect sensor93

to capture the RGB and depth images of the scene, while four visual-tactile sensors Tac3D [13] are94

attached to the fingertips of the Leap hand to provide tactile feedback.95
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Figure 2: Real World Setup. (Left) 12 diverse objects, ordered by their mass. (Middle) Friction
coefficients of each object. Note that the mass and friction coefficients are only presented as statistics
and not used in our experiments. (Right) Our real robots.

Our approach achieves 83% success rate on these objects, each with 5 trials. As a comparison,96

naively applying a pre-computed squeeze pose [10] only gives a success rate of approximately 72%,97

while exerting about 45% more force than our method.98

We also show some representative trial on four easily deformable objects in Figure 3, where the target99

contact forces from the QP formulation are compared against the actual forces measured by the tactile100

sensors. The QP targets begin with a low initial value and are gradually increased based on tactile101

feedback, demonstrating our method’s ability to achieve stable and safe grasps across objects with102

varying masses and friction coefficients, while avoiding excessive force that could cause deformation.103

Furthermore, the actual forces closely follow the QP targets, confirming that our controller effectively104

regulates the applied force.105

Figure 3: Real World Experiments. For diverse objects with different masses, deformation mate-
rials, and friction coefficients, our system quickly adapts and performs stable and safe grasps. The
real contact force matches well with the target force solved by QP.
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