
Appendix for BEHAVIOR: Benchmark for Everyday Household Activities in
Virtual, Interactive, and Ecological Environments

A.1 Visualizing 100 BEHAVIOR Activities

Assembling gift baskets Bottling fruit Boxing books up for storage Bringing in wood

Brushing lint off clothing Chopping vegetables Cleaning a car Cleaning barbecue grill

Cleaning bathrooms Cleaning bathtub Cleaning bedroom Cleaning carpets

Cleaning closet Cleaning cupboards Cleaning floors Cleaning freezer

Cleaning garage Cleaning high chair Cleaning kitchen cupboard Cleaning microwave oven

Cleaning out drawers Cleaning oven Cleaning shoes Cleaning sneakers

Cleaning stove Cleaning table after clearing Cleaning the hot tub Cleaning the pool

Cleaning toilet Cleaning up after a meal Cleaning up refrigerator Cleaning up the kitchen only

Cleaning windows Clearing dinner table Collecting aluminum cans Collect misplaced items

Defrosting freezer Filling an Easter basket Filling a Christmas stocking Installing alarms

Installing a fax machine Installing a modem Installing a printer Installing a scanner

Laying tile floors Laying wood floors Loading the dishwasher Locking every door

Figure A.1: BEHAVIOR 100 activities: Each pair of images depict a frame of the execution of the activity
in BEHAVIOR from the agent’s perspective in virtual reality (left) and the same activity in real-life from a
YouTube video (right). All activities are selected from the American Time Use Survey [34], and correspond to
simulatable household chores relevant in human’s everyday life. The set of activities cover common areas like
cleaning, maintenance, preparation for social activities, or household management.

15

Locking every window Making tea Mopping floors Moving boxes to storage

Opening packages Opening presents Organizing boxes in garage Organizing file cabinet

Organizing school stuff Packing adults’ bags Packing bags or suitcase Packing boxes for move

Packing car for trip Packing child’s bag Packing food for work Packing lunches

Packing picnics Picking up take-out food Picking up trash Polishing furniture

Polishing shoes Polishing silver Preparing a shower for child Preparing salad

Preserving food Putting away Christmas decor Putting away Halloween decor Putting away toys

Putting away cleaned dishes Putting leftovers away Putting up Christmas decor Re-shelving library books

Rearranging furniture Serving a meal Serving hors d oeuvres Setting mousetraps

Setting up candles Sorting books Sorting groceries Sorting mail

Storing food Storing the groceries Thawing frozen food Throwing away leftovers

Unpacking suitcase Vacuuming floors Washing car Washing dishes

Washing floor Washing pots and pans Watering houseplants Waxing car

Figure A.1: BEHAVIOR 100 activities (cont.)

16

A.2 Additional Comparison between BEHAVIOR and other Embodied AI Benchmarks

BEHAVIOR

AI2THOR Visual Room Rearrangement

TDW Transport Challenge

Rearrangement T5 (Habitat)

ManipulaTHOR ArmPointNav

Interactive Gibson Benchmark

Virtu
alHome

ALFRED
OCRTOC

RLBench

Metaw
orld

IKEA Furniture Assembly

Robosuite

SoftG
ym

DeepMind Control Suite

OpenAIGym

Habitat 1.0

Gibson

Realistic
activities

Activities match
human time-use � � � � � � � � � � � � � � � � � �

Realistic
physics

Kinematics,
dynamics � � � � � � � � � � � � � � � � � �

Continuous temperature � � � � � � � � � � � � � � � � � �
Flexible materials � � � � � � � � � � � � � � � � � �

R
ea

lis
m

Realistic
embodied AI

agents

Realistic action
execution � � � � � � � � � � � � � � � � � �

Realistic
observations � � � � � � � � � � � � � � � � � �

Realistic
scenes

Visually
realistic � � � � � � � � � � � � � � � � � �

Scenes reconstructed
from real homes � � � � � � � � � � � � � � � � � �

Realistic
object models

Visually
realistic � � � � � � � � � � � � � � � � � N/A

Weight, CoM,
texture, cook temp � � � � � � � � � � � � � � � � � N/A

Diverse
activities

Activities 100 1 1 1 1 2 549 7 5 100 50 1 5 10 28 8 2 3

D
iv

er
si

ty

Infinite scene-
agnostic instantiation � � � � � � � � � � � � � � � � � N/A

Diverse scenes
and objects

Object models 1217 118 112 YCB 150 152 84 101 + YCB 73+ 28 80 10 4 4 4 Matterport N/A

Scenes / Rooms 15 /
100

- /
120

15 /
90-120

55 static /
-

- /
30

10 /
-

7 /
-

- /
120

1 /
-

1 /
-

1 /
-

1 /
-

1 /
-

1 /
-

1 /
-

1 /
-

Matterport
+ Gibson

572
static

Diverse skills
and activity reqs:

Benchmark
requires

manipulating. . .

objects’ pose � � � � � � � � � � � � � � � � � �
agent’s global pose � � � � � � � � � � � � � � � � � �
objects’s joint config � � � � � � � � � � � � � � � � � �

objects’s geom. � � � � � � � � � � � � � � � � � �
with two hands � � � � � � � � � � � � � � � � � �

objects’s functional
state (ON/OFF) � � � � � � � � � � � � � � � � � �

with tools � � � � � � � � � � � � � � � � � �
object’s surface � � � � � � � � � � � � � � � � � �
objects’s temp. � � � � � � � � � � � � � � � � � �

Activity
length (steps)

300-
20000 <100 100-1000 100-1000 <100 100-1000 <100 <100 100-1000 <1000 <100 <100 <100 <100 <100 <100 <100 100-1000

C
om

pl
ex

ity Objs. per activity 3-34 5 7-9 2-5 2-3 10 1-24 2 5-10 1-2 1-2 1 1-3 1-3 1-3 1 0-1 N/A
Obj. cats. in act. 2-17 1-5 7-10 2-5 1 1 1-18 2 1-10 1-2 1-2 1 1-2 1-3 1-3 1-2 0-1 N/A

Diff. state changes required
per activity (see A.2) 2-8 4 4 4 2 1-3 1-7 2-3 1 1-3 1-4 4 1 1-3 1-2 1-2 1 1

Benchmark focus:
Task-Planning
and/or Control

TP+C TP TP+C TP+C TP+C C TP TP TP+C C TP+C C C C C C C C

Human VR demos 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Human VR demos � � � � � � � � � � � � � � � � � �

Table A.1: Comparison between BEHAVIOR and other existing benchmarks for embodied AI. Expanded version
of Table 1.

A.3 Defining BEHAVIOR Activities

This section includes additional information on how we define the 100 activities of BEHAVIOR,
including details on 1) the process to select them from the American Time Use Survey [34] (ATUS),
2) BDDL, the predicate logic language to define them, 3) the crowdsourcing process to generate
definitions (initial and goal conditions) for the activities, 4) and real BDDL examples of the generated
definitions.

A.3.1 Selection of 100 Activities for BEHAVIOR

Our activities are extracted from the American Time Use Survey [34] that contains more than
2200 activities Americans spend their everyday time on. To select a subset for BEHAVIOR,
we follow a set of criteria: i) semantic diversity: we select activities that span a wide range of
semantic areas, from cleaning to food preparation, or repairing (see Fig. A.2a); ii) diversity in
the required state changes in the environment: we select activities that requires manipulating
different properties of the objects, their pose, temperature, cleanliness level, wetness level. . . (see
Fig. A.2, b and c); and iii) simulation feasibility: given the current state of simulation environments,
we select for BEHAVIOR activities that can be realistically simulated entirely in an indoor
environment, involving only objects, most of them rigid or articulated, excluding activities
outdoors, interactions with other humans or animals, or heavy simulation of flexible materials
and fluids. The resulting full list of 100 BEHAVIOR activities selected can be visualized
in Fig. A.1. They cover a large variety of activities such as cleaning (CleaningBathtub,
CleaningTheKitchenOnly, WashingPotsAndPans), installing (InstallingAScanner,
InstallingAlarms), waxing/polishing (PolishingSilver, WaxingCarsOrOtherVehicles),
tidying (PuttingAwayToys, PuttingDishesAwayAfterCleaning), packing/assembling
(PackingPicnics, AssemblingGiftBaskets), and preparing food (PreservingFood,
ChoppingVegetables). Fig. A.2 depict statistics of the selected activities supporting that they
approximate the semantic distribution of activities in the time use survey, and that they require
a broad set changes in the environment. As comparison, Rearrangement tasks [23] and related
benchmarks focus on activities that can be achieved by agent’s pose (navigation), object’s pose

17

(a) Distribution Comparison of Activities in Categories
from the American Time Use Survey [34]

(b) Number of Activities in BEHAVIOR en-
abled by Type of State-Change (cumulative)

(c) Requirements of each Activity in BEHAVIOR

Figure A.2: Statistics of the 100 activities in BEHAVIOR: a) Distribution of simulatable activities in the
American Time Use Survey (left axis) and BEHAVIOR (right axis) based on categories from the survey –
BEHAVIOR covers a realistic distribution of activities; b) Cumulative visualization of activities enabled by
different types of state changes in BEHAVIOR with comparison to recent prior work – based on requirements,
some activities could be considered transport/rearrangement (blue) or visual-room rearrangement (blue and
green), while others are out of their scope (red); c) We visualize the specific requirements for each of the
BEHAVIOR activities, with the same coloring scheme as in b). Activities in BEHAVIOR present significantly
more diverse requirements than prior work focused on transport/rearrangement tasks [23, 25, 24] enabling the
evaluation of more general embodied AI solutions.

Figure A.3: Activity volume in BEHAVIOR: The number of literals in flattened goal conditions (volume, see
Sec. A.3.2) provides a measure of the complexity of the activity and its length/horizon. The volume in BEHAV-
IOR activities span from one to 25 literals, very long horizon activities. Activities with one literal are often still
long-horizon as they may require cleaning large surfaces (e.g. vacuumFloors or cleaningBathtub)

(pick-and-place), and joint configuration of articulated objects. VisualRoom Rearrangement [24]
includes objects that can be broken (changing object geometry).

A.3.2 BDDL– BEHAVIOR Domain Definition Language

In BEHAVIOR, activities are defined using a new predicate logic language, BDDL, BEHAVIOR
Domain Definition Language. BDDL creates a logic-symbolic counterpart to the physical state
simulated by iGibson 2.0 through a set of logic functions (predicates). In this way, BDDL defines a set
of symbols grounded into simulated objects and their states. The goal of BDDL is to enable defining
activities in a unique, unifying language that connects to natural language to facilitate interpretability.

18

In this section, we provide additional information about the similarities and differences between
BDDL and PDDL [58], a full description of the BDDL elements, syntax and grammar, and information
about evaluation, grounding and “flattening” conditions, and the concept of “activity volume”.

We adopt the common formalism of partially-observable Markov decision processes (POMDP) to
represent activities in BDDL. Each activity is represented by the tuple M = (S,A,O, T ,R, �).
Here, S is the state space; A is the action space; O is the observation space; T (s0|s, a), s 2 S, a 2 A,
is the state transition model; R(s, a) 2 R is the reward function; � is the discount factor. Based on a
full representation of the physical state, S , the simulation environment generates realistic transitions
to embodied AI agents’ actions, a 2 A, i.e., physical interactions, and close-to-real observations,
o 2 O, e.g., virtual images.

BDDL vs. PDDL: BDDL is inspired by PDDL [58] but distinct. BDDL’s syntax, domain structure,
and problem structure are a subset of standard PDDL [58]. Problems in various forms of PDDL and
description logics are written in terms of state descriptions represented by ground predicates [73], in
the same manner as BDDL’s ground initial condition and solutions to its compositional and variable
goal expression. The problems in both PDDL and BDDL are declarative [73]. Furthermore, such
languages often use object category type hierarchies [73], like BDDL’s WordNet-based object space.
We use PDDL syntax to encourage adoption of BDDL as the field-standard description language.

However, goals and requirements are significantly distinct. PDDL aims to define a complete space for
symbolic planning [73, 74]. BDDL aims to parametrize initial and goal physical states symbolically
and process-agnostically. Therefore, PDDL requires definition of additional symbols for agent actions,
while BDDL represents only the state. A key example is the use of PDDL in ALFRED [11]: BDDL
and ALFRED specify activities in similar formats, though it is important to note that the sources are
different (crowdsourcing vs. hand-definition). ALFRED uses PDDL for action plans annotated from
demonstrations, while BDDL facilitates problem definitions without engaging in plans.

Finally, PDDLs’ logic operators generally obey the axioms of first-order logic [74]. BDDL’s quanti-
fiers are a superset of standard PDDL’s, with the additional quantifiers only obeying first-order logic
for certain object spaces. This is because BDDL is designed for usability, so that annotators without
a computational background can easily write flexible definitions.

BDDL Syntax: In BDDL, we consider the following syntactic elements, a subset of the syntax of
predicate logic defined in Aho and Ullman [75]:

• Predicate: logic function that takes as input one (unary) or two (binary) objects and returns a
boolean value. Examples in BDDL: ontop, stained, cooked.

• Variable: element in a logical expression representing an object of the indicated category,
always bound by a quantifier. Categories in BDDL are defined by WordNet [35] synsets (semantic
meaning), indicated by the label structure categoryName.n.synsetEntry. A variable is
then indicated by a character ? followed by the category. Examples in BDDL: ?apple.n.01,
?table.n.02.

• Constant: ground term, i.e., variable linked to a specific instance of an object. In BDDL,
constants are identified by a numerical id suffix (_n) appended to the variable name. Examples in
BDDL: apple.n.01_1, table.n.02_3).

• Category: attribute of a constant or variable indicating the class of object it belongs to, and
therefore which predicates it can be given as input to (e.g., cooked, sliceable). Examples in
BDDL: apple.n.01, table.n.02.

• Type: synonymous with category, conventional for PDDL and therefore defined for BDDL.
• Argument: variable or constant used as input in a predicate.
• Atomic formula: single predicate with an appropriate number of arguments. Example in

BDDL: (onTop(apple.n.01_1, table.n.02_1)
• Logic operator: Function mapping logical expressions to new logical expressions. In BDDL

we include all four propositional logic operators: and (^), or (_), not (¬), if ()), and iff
(,).

• Quantifier: Function of a variable to map existing logical expressions to new logical expres-
sions. In BDDL we include the standard universal quantification (8), and existential quantification
(9), and additional operators: for_n, for_pairs, for_n_pairs (definitions below).

19

• Logical expression: expression obtained by composing atomic formulas with logical opera-
tors. Example in BDDL: (and (onTop(apple.n.01_1, table.n.02_1)) (forall
(?apple.n.01 - apple.n.01) cooked(apple.n.01)))

• Initial condition: set of atomic formulas that are guaranteed to be True at the beginning of
all instances of the associated BEHAVIOR activity. See examples in Listings 1 and 2.

• Goal condition: logical expression that must be True for the associated BEHAVIOR activity
to be considered successfully executed. See examples in Listings 1 and 2.

• Literal: atomic formula or negated atomic formula. Example in BDDL:
not(onTop(apple.n.01_1, table.n.02_1))

• Fact: ground atomic formula evaluated on the current state of the simulated world and returning
a Boolean. Example in BDDL: onTop(apple.n.01_1, table.n.02_1) = True.

• State: set of facts about the current state of the simulated world providing a logical representa-
tion that can be evaluated wrt. the goal condition.

Initial and final conditions for household activities could be expressed using the aforementioned first
order logic syntax combined with BEHAVIOR’s predicates. However, our activities are defined by
non-technical annotators through a crowdsourcing procedure. The annotators are not required to have
background knowledge in formal logic or computer science. To facilitate their work, we include the
following additional non-standard quantifiers:

• for_n: for some non-negative integer n and some object category C, the child condition must
hold true for at least n instances of category C

• for_pairs: for two object categories C1 and C2, the child condition must hold true for some
one-to-one mapping of object instances of C1 to object instances of C2 that covers all instances of
at least one category

• for_n_pairs: for some non-negative integer n and two object categories C1 and C2, the
child condition must hold true for at least n pairs of instances of C1 and instances of C2 that follow
a one-to-one mapping.

Following the format of PDDL [58], in BDDL we consider two types of “files”: a domain file shared
for all activities, and problem files for each activity. The domain file defines all possible predicates,
including object categories (corresponding in BEHAVIOR to categories from WordNet) and semantic
symbolic states. Each activity in BEHAVIOR is defined by a different problem file that includes the
object instances involved in the activity (categorized), the conditions for initial and final states.

Evaluating Logical Expressions: For a logical expression to be evaluated, we first decompose
recursively it into subcomponents at the operators and quantifiers until we obtain a hierarchical
structure of atomic formulae. Each atomic formula is composed of a predicate and arguments, i.e., a
mathematical relationship on the simulated object(s) properties passed as arguments. For example,
the atomic formula (cooked apple.n.01_1) is evaluated by checking the relevant thermal
information of the simulated object apple.n.01_1. For details on the implementation of each
predicate, see the attached cross-submission on the simulator iGibson 2.0. Once the atomic formulae
have been evaluated into facts with queries to the grounding simulated object states, we compose the
facts through the logical operators to obtain the overall binary result of the whole expression. The
BDDL symbolic definition of logical expressions creates flexibility: see Fig. A.6 bottom row for
examples of multiple correct solutions accepted by the same BDDL specification.

Instantiating and Grounding Initial Conditions: The initial conditions of an activity in BEHAV-
IOR are defined at the beginning of each BDDL problem file. They include a list of object constants
and a set of ground literals based on these constants. Instances of a BEHAVIOR activity are simulated
physical states that fulfill all literals in the conditions. In our implementation of BDDL in iGibson
2.0, the initial conditions are instantiated in the simulated state by assigning all object constants
to physical objects of the appropriate category, either matching to physical objects already in the
simulated scene or instantiating new ones in the locations specified by the binary atomic formulae
(e.g., ontop, inside, etc.). The ground unary literals are satisfied by setting the physical states
of the simulated objects according to the value their associated constants as given in the initial
condition (e.g., (not(cooked(chicken.n.01_1))) sets the temperature of the associated
chicken.n.01_1 instance to a value that corresponds to uncooked). Our instantiation of BDDL
in iGibson 2.0 provides a sampling mechanism of unary and binary predicates that can generate po-
tentially infinite variations of each set of initial conditions (more details in the iGibson 2.0 submission

20

attached as supplementary) See Fig. A.6 top row for examples of multiple instantiations from the
same BDDL specification.

“Flattening” a Goal Condition in an Activity Instance: BDDL provides a powerful mechanism
to define the goal conditions in BEHAVIOR in their general form, e.g., forall(?toy.n.01 -
toy.n.01) inside(toy.n.01, box.n.01). As logical expression, BDDL goal conditions
are independent of the concrete objects and the scene, and thus valid to all instances and capturing all
variants of the solution. However, there are situations where grounding the goal conditions in the
concrete instance of the activity at hand is helpful to understand the complexity (i.e., compute the
activity volume), and the incremental progression towards the goal (i.e., compute the success score).
Following on the previous example, for a possible goal condition of PickingUpToys, the activity’s
complexity would be very different when the condition is applied on an activity instance (scene) with
100 toys or with only 1 toy. We call goal condition “flattening” in an activity instance to the process
of generating possible ground states of a specific simulated world fulfilling a condition. Flattening
involves decomposing the nested structure of operators and quantifiers in the logical expression into a
flat structure of disjointed conjunctions Ci of ground literals lji ,

W
Ci

V
lji

lji , and grounding the literals

in all possible ways in the given instance. The final output of the flattening process is a list of options,
each of which is a list of ground literals that would satisfy the goal condition. Because disjunctions,
existential quantifiers, and for_n, for_n_pairs are satisfied as soon as one/n of their children
is/are satisfied, our implementation of the flattening process for BDDL in BEHAVIOR acts lazily,
generating only the minimal number of literals to fulfill each component of the goal condition. This
prioritizes efficient solutions without losing any recall of possible solutions.

Activity Volume: The result of flattening a goal condition in an activity instance is a list of possible
options to accomplish the activity, each option being a list of ground atomic literals. We define
the activity volume as the length of the shortest flattened goal option for a given activity in a
concrete instance. The activity volume provide a measure of the logical complexity of an activity,
i.e., the number of atomic formulae that the agent needs to fulfill. For our previous example for
PickingUpToys, the activity would have a volume of N for an activity instance with N toys,
indicating the different complexity for an instance with 100 or with 1 toys.

A.3.3 Crowdsourcing the Annotation of Activities

Thanks to the connection in BDDL between the logical predicates and language semantics, BEHAV-
IOR activity definitions can be generated through crowdsourced annotation from non-experts workers,
i.e., without background in computer science or logic. Through a visual interface, annotators can
easily generate activity definitions in BDDL that reflect their idea of what the core of the activity
is, and that are guaranteed to be simulatable in iGibson 2.0. We crowdsourced the generation of
activity definitions to ensure that we do not introduce researcher biases in the design. The annotator
pool was sourced from Upwork [76], limiting to Upwork freelancers based in the United States of
America to maintain consistency and familiary with ATUS activities. Each annotator was given
a salary of $15 per annotation, roughly $20-30 per hour. Because the above process constitutes a
complex annotation task, we developed a custom interface to guide and facilitate annotators’ work,
and guarantee simulatable output.

Annotation Process and Interface: The annotation procedure is as follows. First, the annotator
is presented with a BEHAVIOR activity label. When necessary, we modify the original labels to
add a numerical context, e.g., “packing four lunches” for the original BEHAVIOR activity “packing
lunches”. Then, the annotator reads the annotation instructions and enters the label into the interface.
As response, the interface prompts the annotator to select one or more rooms that are relevant for the
activity, and to choose objects already present in these rooms that are relevant to the activity (Fig. A.4
(a)). The annotators then select small objects from the BEHAVIOR Dataset of Objects organized in
the WordNet hierarchy (Fig. A.4 (b)). To facilitate the annotation, instead of presenting the hierarchy
for the entire BEHAVIOR Dataset, we preselect the most possible categories per activity based on a
parsing procedure on how-to articles retrieved online, primarily from wikiHow [77] (see Sec. A.5).
However, annotators can access the full hierarchy if the preselected items are not sufficient.

After this first phase to select activity-relevant objects, the annotator enters the second phase to
annotate initial and goal conditions. First, they are introduced to a block-based, visual tool to generate
BDDL (Fig. A.4 (c)) built on Blockly [78], which makes generating logical expressions intuitive and

21

Figure A.4: Sections of the interface given to activity definition annotators. a� shows selection of relevant rooms
and scene objects. For the purpose of creating definitions compatible with multiple iGibson 2.0 scenes and
likely to fit with new scenes, annotators were allowed to pick scene objects from the intersection of object sets
in three pre-selected scenes. b� shows selection of additional objects that would be added to the scene during
activity instantiation, sourced from wikiHow [77] and taxonomized via WordNet [35]. c� shows examples
of the Blockly [78] version of BDDL, and d� shows the prompt for initial conditions and an example for a
simple “packing lunches” definition. e� shows the decision of the agent’s start point and the interface for
“checking feasibility”, i.e. confirming that the BDDL is syntactically correct, the intial and goal conditions are
satisfiable, and the set-up can be physically simulated in iGibson 2.0 by attempting a sampling in an iGibson
2.0 instance on a remote server. Not shown: introductory instructions, goal condition prompt and example
(similar to initial condition), some BDDL blocks, remote server communication. Full interface available online:
http://verified-states.herokuapp.com (server currently disabled).

jar knife strawberry beef refrigerator countertop

object

food furniturekitchenware

pan

a b

BEHAVIOR Activity Definition

Figure A.5: Activity annotation process for preserving_food: a) annotators select objects from the
WordNet organized BEHAVIOR Dataset of Objects; b) the selected objects are composed into logical predicates
in BDDL for initial and final conditions using a visual interface derived from Blockly [78]; the result is a BDDL
definition of the activity as logic predicates connected by logic operators and quantifiers, grounded in simulatable
objects with physical properties

accessible to people without a programming background [26]. They use the tool to generate initial
and goal conditions based on their concept of the activities (Fig. A.4 (d)). The resulting definitions
have several guarantees: 1) they only use objects from the BEHAVIOR Dataset of Objects, 2) they
only apply logical predicates to objects in a semantically meaningful manner (e.g., cooked can

22

only be applied to cookable objects such as food). This is because blocks’ predicate fields are
conditioned on entered categories that have been annotated with possible predicates in a separate
manual WordNet annotation. 3) They will be in syntactically correct BDDL, through the implemented
translation from Blockly. 4) They will not contain free variables or logically unsatisfiable conditions.
5) It will be possible to simulate them physically in at least three simulated scenes from iGibson 2.0.
To guarantee feasibility, we assigned three possible home scenes from iGibson 2.0 to each activity
and let the annotators evaluate the feasibility of their conditions at any point by clicking a button
“Check feasibility” (Fig. A.4 (e)). The request will send the BDDL definition to up to three iGibson
2.0 simulators on a remote server that will attempt to sample the initial conditions and check if the
goal conditions are feasible, returning real-time feedback to the annotators to correct any unfeasible
condition. With the crowdsourcing procedure we obtain two alternative definitions per activity that
are guarantee to be feasible in at least three simulated scenes.

A.3.4 Example Definitions

(define
(problem packing_lunches_1)
(:domain igibson)

(:objects
shelf.n.01_1 - shelf.n.01
water.n.06_1 - water.n.06
countertop.n.01_1 - countertop.n.01
apple.n.01_1 - apple.n.01
electric_refrigerator.n.01_1 -

electric_refrigerator.n.01
hamburger.n.01_1 - hamburger.n.01
basket.n.01_1 - basket.n.01

)

(:init
(ontop water.n.06_1 countertop.n.01_1)
(inside apple.n.01_1

electric_refrigerator.n.01_1)
(inside hamburger.n.01_1

electric_refrigerator.n.01_1)
(ontop basket.n.01_1 countertop.n.01_1)
(inroom countertop.n.01_1 kitchen)
(inroom electric_refrigerator.n.01_1

kitchen)
(inroom shelf.n.01_1 kitchen)

)

(:goal
(and

(for_n_pairs
(1)
(?hamburger.n.01 - hamburger.n.01)
(?basket.n.01 - basket.n.01)
(inside ?hamburger.n.01 ?basket.n.01)

)
(for_n_pairs
(1)
(?basket.n.01 - basket.n.01)
(?water.n.06 - water.n.06)
(inside ?water.n.06 ?basket.n.01)

)
(for_n_pairs
(1)
(?basket.n.01 - basket.n.01)
(?apple.n.01 - apple.n.01)
(inside ?apple.n.01 ?basket.n.01)

)
(forall
(?basket.n.01 - basket.n.01)
(ontop ?basket.n.01 ?countertop.n.01_1)

)
)

)
)

Listing 1: packing_lunch

(define
(problem serving_hors_d_oeuvres_1)
(:domain igibson)

(:objects
tray.n.01_1 tray.n.01_2 - tray.n.01
countertop.n.01_1 - countertop.n.01
oven.n.01_1 - oven.n.01
sausage.n.01_1 sausage.n.01_2 - sausage.n.01
cherry.n.03_1 cherry.n.03_2 - cherry.n.03
electric_refrigerator.n.01_1 -

electric_refrigerator.n.01
)

(:init
(ontop tray.n.01_1 countertop.n.01_1)
(ontop tray.n.01_2 countertop.n.01_1)
(inside sausage.n.01_1 oven.n.01_1)
(inside sausage.n.01_2 oven.n.01_1)
(inside cherry.n.03_1

electric_refrigerator.n.01_1)
(inside cherry.n.03_2

electric_refrigerator.n.01_1)
(inroom oven.n.01_1 kitchen)
(inroom electric_refrigerator.n.01_1

kitchen)
(inroom countertop.n.01_1 kitchen)

)

(:goal
(and

(exists
(?tray.n.01 - tray.n.01)
(and

(forall
(?sausage.n.01 - sausage.n.01)
(ontop ?sausage.n.01 ?tray.n.01)

)
(forall

(?cherry.n.03 - cherry.n.03)
(not

(ontop ?cherry.n.03 ?tray.n.01)
)

)
)

)
(exists

(?tray.n.01 - tray.n.01)
(and

(forall
(?cherry.n.03 - cherry.n.03)
(ontop ?cherry.n.03 ?tray.n.01)

)
(forall

(?sausage.n.01 - sausage.n.01)
(not

(ontop ?sausage.n.01 ?tray.n.01)
)

)
)

)
)

)
)

Listing 2: serving_hors_doeuvres

23

In Listings 1 and 2, we include two examples of activity definitions (initial and goal conditions) in
BDDL. They are generating by mapping the input from crowdsourcing workers in our Blockly-like
interface into BDDL language. The activities include several objects and predicates in the initial and
goal specifications.

A.4 iGibson 2.0

While BEHAVIOR is agnostic to the underlying simulator, we provide a fully functional instantation
in iGibson 2.0. The details about iGibson 2.0 can be found in the cross-submission included in the
supplementary material. Here we summarize its most important features in relation to BEHAVIOR.

Agents – Realistic Sensing and Actuation: We implement in iGibson 2.0 the two embodied
agents mentioned in Sec. 5 to perform BEHAVIOR activities: a bimanual humanoid and a Fetch
robot. Agents embodying the bimanual humanoid must control 24 degrees of freedom (DoF) to
navigate, move and grasp (1 continuous DoF) with the hands, and move the pose of the head that
controls the camera point of view. The continuous action space for the bimanual humanoid includes a
single degree of freedom per hand, that map to a coordinated closing movement of all the revolute
joints in the fingers and thumb. In the VR interface, this continuous degree of freedom corresponds
to the degree of actuation of the trigger in the HTC Vive hand controllers. To facilitate the use of the
complex humanoid hand and make the VR experience more natural and the efficiency of humans
closer that in the real task, in iGibson grasping with the humanoid is assisted by a mechanism: the
assistive grasping creates an additional kinemtic constraint between the hand and an object when
1) the degree of freedom controlling the closure of the hand goes over a certain threshold, and 2)
an object is detected to be between the fingers and the palm (through ray tracing). This additional
constraint breaks if the force between hand and object surpasses a threshold, forcing the agent to
use grasping strategies closer to the ones required in real world (e.g. grasping a heavy object may
require two hands). Additional information about the implementation of the assistive grasping can
be found in the cross-submission iGibson 2.0. The bimanual humanoid is the embodiment used by
humans in VR due to its similarity to human body; all demonstrations in the BEHAVIOR dataset
were collected with the bimanual humanoid. Agents embodying the Fetch robot control 12 or 13
DoF: the navigating motion of the base, the pose of the end-effector (6 DoF), or alternatively, the
joint configuration of the arm (7 DoF), one continuous prismatic joint to grasp and release (similar to
the real robot), and pan/tilt motion of the head that moves the cameras. The fetch robot uses entirely
physically simulated grasping, with the assisted grasping implementation disabled by default.

The sensors used by humanoid agent and Fetch leverages the realistic sensor simulation from iGibson
2.0. iGibson 2.0 features a physically-based renderer that can generate highly photorealistic RGB
camera images, as well as other modalities, including depth, surface normal, semantic segmentation,
instance segmentation, lidars, scene flows and optical flows. Fig. A.7 highlights a subset of the
generated sensor signals.

In terms of actuation, the physical (inter)actions are simulated realistically with (py)Bullet [59], the
physics engine used by iGibson 2.0. Bullet is currently one of the most used simulators in embodied
AI and robotics, and has demonstrated a useful and realistic engine to develop solutions that can
transfer to real world with some degree of domain adaptation. In our physics simulation we use a
very small physics simulation timestep of 1

300 s. This help reduce physics simulation artifacts, such as
objects clipping into each other, increasing realism.

Condition Checking and Sampling: The implementation of BEHAVIOR in iGibson 2.0 allows
activities to be initialized, executed, and checked for completion. Given an activity definition in
the BDDL, BEHAVIOR and iGibson 2.0 interface to generate a valid instance of the activity that
satisfies the given object list and initial conditions. This mechanism can generate potentially infinite
variation of scenes, objects and initial states to create different activity instances. In the generation of
an activity instance, the goal conditions are checked for feasibility, avoiding the generation of activity
instances that cannot lead to successful executions (see Fig. A.6, top). iGibson 2.0 implements all
necessary checking functionalities for the logical states. These checking function execute in realtime
together with the physical simulation and rendering, enabling live feedback to the agents for task
completion and capturing all possible valid solutions (Fig. A.6, bottom). For more information about
the condition checking and sampling, please refer to the concurrent submission iGibson 2.0 paper
included as part of the supplementary material.

24

Figure A.6: BDDL Initial and Goal Conditions: Our implementation in iGibson 2.0 can generate diverse valid
activity instances from each BDDL definition (top row), and detect all successful variations of the solution
(bottom row), promoting diversity and semantically-meaningful activities

Figure A.7: Virtual visual sensor signals generated by iGibson 2.0: Color images are generated with a high-
quality physics-based rendering procedure (PBR), exploiting the annotation of material (roughness, metallic) of
all surfaces in our objects and scenes. iGibson 2.0 is able to generate RGB, depth, surface normals, semantic
segmentation, instance segmentation, optical flow, scene flow and lidar (1-line and 16-line) sensors signals. Here
we visualize a subset of those sensor signals, namely RGB, depth, surface normal, instance segmentation and
optical flow.

Implementation of the Action Primitives: To facilitate the development of solutions and to study
the effect of the activity complexity on the performance of embodied AI algorithms, we provide action
primitives implemented in iGibson 2.0 and that can be used in BEHAVIOR. The action primitives are
temporally extended actions. We implemented six action primitives, namely navigate_to(obj),
grasp(obj), place_onTop(obj), place_inside(obj), open(obj), close(obj).
Each primitive can be applied relative to objects in the scene. For each action primitive, we imple-
mented two variants. The first variant is “fully-simulated motion primitive ”, where we first check the
feasibility of the target configuration, and then plan a full valid path between the initial and the target
configurations with a sampling based motion planner [61]. The second variant is “partially-simulated
motion primitive”, where we only check for feasibility of the desired final configuration, and directly
set the state of the world (agent and objects) to this desired configuration. This can be highly un-
realistic as we do not verify if there is a valid path between the initial and the final configurations.
The purpose of partially simulated motion primitive is to reduce the computation during RL training
and to measure the relative complexity of generating full interactions vs. just finding the sequence
of states to achieve an activity. Note that for both partially and fully simulated motion primitives,
privileged information is given to the agent and the motion planner. For example, the agent knows
how many activity-relevant objects are in the scene, and the motion planner knows the full geometry
of the environment.

For the implementation of partially-simulated motion primitives, we only perform feasibility check
when attempting to perform an action. For example, when trying to navigate_to an object, we
will randomly sample points around the object and attempt to place the agent there: the goal is to find

25

a collision-free location to place the agent. The second type of feasibility check is reachability: when
attempting to grasp, open or close an object, we will check the distance from the hand to the
closest point of the object is smaller than the arm length. When we place an object inside or
onTop of an object, we use the sampling functionality available in iGibson 2.0.

For the implementation of fully-simulated motion primitives, in additional to the feasibility check,
we attempt to plan and execute a collision free. We treat all objects as obstacles except for the objects
given as argument for the primitive (e.g., objects that need to be picked up, receptacles that need
to be opened), and plan a collision-free path from the start configuration to the target configuration.
We use Bidirectional RRT [61] for motion planning and execute the motion with position control.
In our experiments, we found that fully simulated motion primitives have much lower success rate
than partially simulated motion primitives (Table 2) indicating that the difficulty in BEHAVIOR
strives from solving the entire interaction rather than deciding on the strategy at a task-level. Our
partially-simulated primitives and other benchmarks that do not simulate the full interaction, bypass
this critical challenge.

Runtime performance of iGibson 2.0: iGibson 2.0 improved performance when compared to
iGibson 1.0 [79], with optimizations on both physics and rendering. To evaluate the performance
of iGibson 2.0 in BEHAVIOR activities, we benchmarked the different phases of each simulation
step. We benchmark the activities in “idle” setting, which means we initialize the activity, and runs
the simulation and condition checking loop. The agent applies zero actions and stays still. We
benchmarked in two conditions using the same action time step of ta but different physics time step of
ts, leading to slightly different reality in the physics simulation. The action step is the simulated-time
between agent’s actions, while the physics time step is the simulated-time interval that the kinematics
simulator (pyBullet) uses to integrate forces and compute the new kinematic states. We execute ns

queries to the simulator between agent actions, with ns = ta/ts. The first condition we evaluate
uses action time step ta =

1
30 s and physics time step of ts =

1
300 s, which creates high-fidelity

physics simulation. The second condition uses action time step of ta =
1
30 s and physics time step of

ts =
1

120 s, which has slightly lower physics fidelity, but has better performance and is sufficient for
RL training. Both settings are benchmarked on a computer with Intel 5930k CPU and Nvidia GTX
1080 Ti GPU, in a single process setting, rendering 128⇥128 RGB-D images.

As shown in Table A.2, for the highest-fidelity physics setup, we can achieve 36-59 steps per second,
47-71 steps per second with larger simulated timestep, even in a very large scene with 100-200
movable objects, and with all the physical and logical states evaluated at each step. This frequencies
provide pleasant experience in virtual reality. However, it only provide a ⇥2 acceleration over
clock-time to train RL agents. To increase the frequency in simulation and reduce the training time,
we are exploring the parallelization of simulation and rendering and the more aggressive “sleep” of
non-interacted objects.

Executing BEHAVIOR activities in iGibson 2.0: Here, we give examples of the physical require-
ments of possible solutions to various activities, to give a sense for what they call for. First, we
consider cleaningBathtub: this can be solved by navigating to the tub, grasping the brush (e.g.
an oblong with bristles), navigating to the sink with brush in hand, “toggling on” the faucet by
making contact between the hand and the toggle button, placing the brush in contact with a falling
water particle so that it becomes “soaked”, navigating back to the tub, and moving the brush around
so that its bristle side makes contact with at least 50% of the “stain” particles on the tub. Next,
fillingChristmasStockings: one way to solve this, seen in VR demos, is to navigate to a
bin sitting in the living room, grasp it, navigate to the kitchen with the bin in hand, open cabinet
drawers to find candy and pens in one of them, grasp each of the four pens (small) and candies (small,
irregular shapes) and place them into the bin, carry the bin full of candy and pens back to the living
room, collect the four small blocks scattered on the floor and place each one in the bin, and then
one-by-one navigate to each stocking, pick up one pen, then one candy, and one block from the bin in
any order with one hand, and fit it into the narrow opening of the stocking while holding the stocking
in the other hand. Finally, preservingFood: one possible solution is to grasp a dish from a
cabinet, place it on an accessible surface, grasp two mushrooms (small, irregular shape), tomatoes
(large, round), and chestnuts (small, round) off a countertop, and two onions (large, round) out of
a fridge and place each one into the dish, grasp a knife by the handle, and move it so that its blade
makes contact with each of the eight produce items one-by-one until it is sliced in two.

26

bringing_in_wood re-shelving_library_books laying_tile_floors
Number of Objects 134 144 216

Simulation steps per second (@ts =
1

300s / @ts =
1

120s) 59 / 74 51 / 68 36 / 47
Kinematic State Update Time [ms] (@ts =

1
300s / @ts =

1
120s) 7.4 / 3.5 9.4 / 4.2 12.6 / 5.7

Non-kinematic State Update Time [ms] 3.4 3.4 5.2
Rendering Time [ms] 5.8 6.1 9.3

Logical Condition Checking Time [ms] 0.4 0.4 0.6
Table A.2: Benchmarking Simulation Time for BEHAVIOR Activities in iGibson 2.0

Figure A.8: Statistics of objects in descriptions for the 100 BEHAVIOR activities: We parse descriptions
from WikiHow [77] and other online repositories of instructions for the activities in BEHAVIOR and obtain the
frequencies of appearance for each noun. The nouns are mapped to corresponding synsets in WordNet [35]. The
categories shown in the figure are based on the WordNet taxonomy (best seen in color). For object categories
included in the BEHAVIOR Dataset of Objects, we annotate the bar with an asterisk (the plot does not depict all
categories in the dataset). We include the vast majority of most frequent objects involved in the activities as
indicated by the natural language descriptions.

A.5 BEHAVIOR Dataset of Objects

In order to instantiate BEHAVIOR activities in iGibson 2.0, we created a new dataset of everyday
objects, the BEHAVIOR Dataset of Objects. To guide the selection of object categories, we analyze
how-to articles, primarily WikiHow [77], explaining how to perform the activities included in
BEHAVIOR. Specifically, we extract nouns of tangible objects from these articles that are activity-
relevant, map them to WordNet synsets, and then purchase 3D models of these object categories from
online marketplaces such as TurboSquid. This procedure allowed us to provide activity annotators
and VR demonstrators with the most frequent objects necessary for the activities (see Fig. A.8).

The diversity of BEHAVIOR activities naturally leads to the diversity of the object dataset. In total,
we curate 1217 object models across 391 object categories, to support 100 BEHAVIOR activities.
The categories range from food items to tableware, from home decorations to office supplies, and
from apparel to cleaning tools. In Fig. A.8, we observe that the BEHAVIOR Dataset of Objects cover
a wide range of object categories.

To maintain high visual realism, all object models include material information (metallic, roughness)
that can be rendered by iGibson 2.0 renderer. To maintain high physics realism, object models are
annotated with size, mass, center of mass, moment of inertia, and also stable orientations. The
collision mesh is a simplified version of the visual mesh, obtained with a convex decomposition using
the VHACD algorithm. Object models with a shape close to a box are annotated with a primitive box
collision mesh, much more efficient and robust for collision checking. For object categories that have
the semantic property openable annotated, we make sure at least a subset of their object models
have articulation, e.g. openable jars, backpacks, cars, etc. We either directly acquire them from
the PartNet-Mobility Dataset [80] or acquire non-articulated models from TurboSquid, manually
segment the models into parts, and then create the articulation in the URDF files. A subset of the
object models are visualized in Fig. A.10.

We will publicly release the object dataset to be used for BEHAVIOR benchmarking. To preserve the
rights of the model authors and the license agreement with TurboSquid, the 3D models are encrypted
so that they can only be used within iGibson 2.0 and cannot be exported for other applications.

All models in the BEHAVIOR Dataset are organized following the WordNet [35], associating them
to synsets. This structure allows us to define properties for all models of the same categories, but
it also facilitates more general sampling of activity instances fulfilling initial conditions such as
onTop(fruit, table) that can be achieved using any model within the branch fruit of
WordNet. Fig. A.9 shows an example taxonomy of objects of the dataset organized in the WordNet
taxonomy to perform a given household activity.

27

6/16/2021 React App

verified-states.herokuapp.com 4/5

Figure A.9: Object Taxonomy in the BEHAVIOR Dataset of Objects: Sample extract of the objects involved
in an activity in BEHAVIOR, organized based on the taxonomy from WordNet [35]; We map 3D models with
annotation of physical and semantic properties to synsets in WordNet. BEHAVIOR activities in BDDL use any
level entries of the WordNet taxonomy enabling the generation of more diverse instances with any object in the
downstream task (e.g. any food item)

Figure A.10: Example Models in BEHAVIOR Dataset of Objects: A selected subset of everyday objects in
the dataset to support the 100 activities in BEHAVIOR. The models present high-quality geometry, material, and
texture, and are annotated with realistic physical attributes such as size, mass, center of mass and moment of
inertia, and semantic properties such as cookable, sliceable, or toggleable.

A.6 BEHAVIOR Dataset of Human Demonstrations in Virtual Reality

The main role of the VR demonstrations in BEHAVIOR is to provide a mechanism to normalize
metrics, allowing to compare different embodied AI solutions between activity instances and scenes.
However, we believe that the generated dataset of VR demos has the potential to be applied to other
purposes, e.g., to generate AI solutions through imitation learning, or to study the mechanisms used
by humans to accomplish interactive activities. In the following, we provide additional details for
users interested in the dataset of VR demonstrations. We include 1) additional information about the
data collection procedure, 2) statistics of the data, and 3) information about collected human gaze
data.

A.6.1 Collecting Human Demonstrations in Virtual Reality

To generate data, humans control a bimanual humanoid embodiment with a main body, two hands
and a movable head based on stereo images displayed at 30 frames per second. The embodiment and
the VR can be used with the most common VR hardware but for our dataset, we used a HTC Vive
Pro Eye [81]. All recorded data can be deterministically replayed, achieving the same physical state
transitions as reaction to the recorded physical interactions, which allows to generate any additional
virtual sensor signal a posteriori. For more information about the VR interface, we provide the
cross-submitted publication of iGibson 2.0 as part of the supplementary material.

28

Figure A.11: Sub-activity segmentation across activity execution for re-shelvingLibraryBooks: We
observe multiple cycles of long-range pick-and-place operations that eventually lead to activity success. In this
figure, we show a sequence of snapshots of first-person view along with key frames (i.e. target objects placed on
shelf, items dropped and picked up with alternating hands).

We collect three different demonstrations of the same activity instance (same scene, same objects,
same initialization) for each of the 100 activities in BEHAVIOR, 100 additional demonstrations,
one for each activity for a different instance (different objects, different initialization) in the same
scene, and 100 additional demonstrations, one for each activity in a different scene. These 500
demonstrations cover both the diversity in human execution, and the dimensions of variability in
activity instances of BEHAVIOR. The data has been collected by voluntary participants and our own
team.

A.6.2 Analysis and Statistics of Virtual Reality Demonstrations

The BEHAVIOR Dataset of Human Demonstrations in VR provides rich data of navigation, manipu-
lation, and problem-solving from humans for long time-horizon and multi-step activities. Analyzing
the statistical characteristics of the data (duration, hand use, room visitation, etc.) provides insights
on how humans achieve their level of performance combining interaction and locomotion in the large
BEHAVIOR scenes. Fig. A.11 depicts the segmentation of a VR demonstration into navigation and
grasping phases while performing a pick-and-place rearrangement activity. This segmentation reveals
multiple initial phases of navigation as the demonstrator observes the scene and locates activity
relevant objects. For example, once the demonstrator reaches the table supporting the target objects
(approx. at 18s), they pick up the target object with the non-dominant hand (approx. at 20s) and
navigate to the goal location, before transferring the object to their dominant hand while positioning
it (approx. at 30s). The demonstrator shows a preference for moving objects one-at-a-time, instead of
stacking or carrying objects with each hand; this strategy will perform more poorly on the efficiency
metrics Tsim, Lbody , Lright, and Lleft.

Fig. A.12 includes a) the duration of the VR demonstrations, b) the time spent in different room
types, c) the hand used to interact and manipulate, and d) the complexity of the activities in logical
representation vs. time. We observe that BEHAVIOR activities cover a wide range of time-horizons,
from 6 seconds to 11.3 minutes. This time horizon corresponds to an average of 3880 steps with
a standard deviation of 3157 steps. The longest task packingPicnics requires the user to pack
over 25 objects, which must first be discovered via exploration before packing. The activities show a
bias towards living spaces (kitchen, living-room, bedroom), with the most prevalent room being the
kitchen. A large portion of BEHAVIOR activities involve preparing food or cleaning appliances that
are only supported in kitchens. Furthermore, as expected, the data reflect a bias towards dominant
hand manipulation, followed by bimanual grasping, which is required for lifting and manipulating
large objects. The high use of two hands to manipulate correlate to the use in real-world; we
hope that our dataset helps exploring this type of interaction that has been traditionally less studied
in embodied AI. The total number of ground predicates (activity volume) is strongly correlated
with the total activity time indicating that the volume is a good measure of the complexity of an
activity. Outliers include activities with a high ratio of time to goal condition such as the ones that

29

(a)

(b)

(c)

(d)

Figure A.12: Analysis of human demonstrations of BEHAVIOR activities in virtual reality: a) Duration of
each successful demonstration (mean and individual trials, decreasing order); b) Fraction of total VR time spent
in each type of room; c) Fraction of total VR time spent manipulating with the dominant, non-dominant, or both
hands; d) Duration of each VR demonstration wrt. activity volume; blue dots denote individual demos and red
diamonds denote the mean time for each number of ground literals (activity volume). Larger volume correlates
with larger duration (R2 = 0.765).

require cleaning a large area (cleaningUpTheKitchenOnly, vacuumingFloors) or searching
(packingAdultsBag).

Analyzed individually, Fig. A.13 shows that room occupancy depends heavily on the
type of activity. Room occupancy reflects common intuition about household activities;
the ones associated with living-space decorations (puttingAwayChristmasDecorations,
puttingAwayHalloweenDecorations) take place primarily in the living room, whereas cooking
activities (preparingSalad, preservingFood) occur primarily in the kitchen. Similar activ-
ity preferences are observed in the grasping data; activities requiring installing unwieldy objects
(layingWoodFloors, layingTileFloors) require the use of both hands, whereas simple cleaning
activities (cleaningThePool) that require using a cleaning tool are performed with the dominant
hand.

A.6.3 Gaze Tracking in Virtual Reality

Our preference on HTC Vive Pro to collect the BEHAVIOR Dataset of Human Demonstrations
is motivated by its ability to track the gaze (pupil movement) of the demonstrator. We consider
gaze information to be a valuable source to understand human performance in the activities. While
other datasets of gaze are available [82], this is the largest dataset of active gaze attention during
manipulation in simulation, providing synchronized ground-truth information of the object being
observed, its state and full shape. Fig. A.15 depict examples of the tracked human gaze during
activity execution, with the object attracting the gaze indicated in magenta. Fig. A.16 includes several
statistics of the gaze attention over object categories in the entire dataset and for some example
activities. Both figures indicate a clear correlation between the gaze data and the goal of the activities:
we expect the dataset to be useful to study and predict human gaze attention, and to develop new
embodied AI algorithms for active [83, 84] and interactive perception [85].

30

(a)

(b)

Figure A.13: Further analysis of human demonstrations of BEHAVIOR activities in virtual reality: a)
Fraction of the duration of each activity spent in different types of room; b) Fraction of each activity spent
manipulating with the right, left, or both hands; BEHAVIOR activities present a large diversity of room types:
while some activities are mostly performed on a single type of room, others requires visiting different types;
while the majority the activities in BEHAVIOR are performed with the dominant hand, a significant number of
them require using both hands, e.g., layingWoodFloors or assemblingGiftBasket.

Figure A.14: Navigation trajectories of humans demonstrating activities in virtual reality: Trajectories
of different demonstrators in two scenes, Rs_int (left, center) and Merom_1_int (right), for two activi-
ties, re-shelvingLibraryBooks (left) and puttingAwayHalloweenDecorations (center, right);
Demonstrator trajectories present variation within activity instance and scene (each figure); Different activities
in the same scene (left, center) require different rooms and areas to be explored; Trajectories differ between
scenes (center, right) due to the placement of target objects and goal locations

A.7 Additional Details on the Experimental Setup

In the following, we share more details about the experimental setup and training procedure. We
primarily use two different training setups: reinforcement learning (RL) with continuous action space

31

assembling gift baskets brushing lint off clothing brushing lint off clothing cleaning high chair cleaning high chair cleaning high chair

cleaning out drawers cleaning out drawers loading the dishwasher loading the dishwasher loading the dishwasher organizing school stuff

Figure A.15: Human gaze during activity execution; Red dot: human gaze point, Magenta: object gazed; The
BEHAVIOR Dataset of Human Demonstrations in Virtual Reality includes 500 demonstrations (1077.7 min)
with gaze information while humans navigate and interact (accuracy: ±4� [86]); The gaze information correlates
strongly with activity; We hope that this data can support new research in visual attention and active vision to
control agent’s camera

assembling gift baskets boxing books up for storage bringing in wood brushing lint off clothing

Figure A.16: Statistics of the attention over object instances of WordNet categories in the BEHAVIOR Dataset
of Human Demonstrations in virtual reality aggregated for all demonstrations (top, logarithmic scale), and
segregated for four activities (bottom row, linear scale), for activity-relevant (green) and not activity-relevant
(blue) objects. In households, the aggregated of the visual attention goes to containers of objects (cabinets) and
doors separating rooms; For individual activities, visual attention concentrate on specific activity-relevant objects

and RL with motion primitives. We will first elaborate the shared setup between the two, then go into
their differences.

Shared Setup: In the normal “partial observability” setup, the observations include 128⇥128 RGB-
D images from the onboard sensor on the agent’s head and proprioceptive information (Head pose
in local frame, hand poses in local frame, and a fraction indicating how much each hand is closed).
The proprioceptive information is 20 dimentional. For the experiments with “full observability”, the
observations include the ground truth object poses for all the activity-relevant objects, the agent’s
pose, and the proprioceptive information.

32

The agent receives a reward of 1 for every ground goal condition (literal) that it satisfies during the
episode. The episode terminates if the agent achieves a success score Q of 1 (achieved all literals in
the goal condition) or it times out.

The policy network architecture is largely shared in the following setups. With RGB-D images as
input, we use a 3-layer convolutional neural network to encode the image into a 256 dimensional
vector. Proprioceptive information and/or poses for all activity-relevant objects are also encoded into
a 256 dimensional vector with an MLP, respectively. The features are concatenated and pass through
another MLP to generate action representation, which could be a box action space or discrete action
space depending on the setup (continuous actions or action primitives).

RL with Continuous Action Space: For this agent variant, we use Soft Actor-Critic (SAC) [16]
implemented by TF-Agents [87]. The action space is continuous and has a dimensionality of 18. The
first three dimensions represent the locomotion actions: desired x-y translation of the robot body
and the desired rotation around the vertical axis. The next seven dimensions represent the linear and
angular velocities of the left hand (in Cartesian space, 6 DoF) and 1 DoF closing/opening of the hand.
The last seven dimensions is the same action but for the right hand. The maximum episode length
depends on the experimental setup. For instance, if the initial state corresponds to 1 s away from a
goal state, we will give the agent three times the amount of time (i.e. 3 s) to accomplish the activity.
We train for 20K episodes, evaluate the final policy checkpoint and report the results in Table 2.

RL with Motion Primitives: For this agent variant, we use Proximal Policy Optimization
(PPO) [17] implemented with TF-Agents [87]. The action space is discrete, with nr ⇥m choices,
where nr is the number of activity-relevant objects and m is the number of action primitives. Here
we didn’t allow the agent to operate on all objects in the scene, but focus on activity-relevant objects
to facilitate learning. Following our implementation of motion primitives, m = 6. Laying out
the choices on a nr ⇥ m grid, and i-th column j-th row means to apply j-th action primitive on
i-th activity-relevant object. Not all combinations of action primitive and object are compatible
and action that is not feasible is converted into no-ops. The maximum episode length is set to 100

for all activities. We experiment with partially simulated motion primitives and fully simulated
motion primitives, as described in Sec. A.4). We train with partially simulated motion primitives
until convergence, and evaluate and report the results on partially simulated motion primitives and
fully simulated motion primitives, since training with motion planning in a complex scene is very
time-consuming. In the experimental results shown in Table 2, generally fully simulated motion
primitives results are much worse than partially simulated motion primitives, this is intuitive because
motion planning performs more rigorous checks and complies with the physical model, highlighting
the complexity of BEHAVIOR.

Experimental Setup for the Effect of Diversity: To evaluate diversity, we train for individual
skills instead of full BEHAVIOR activities. Here, we adopt an easier experimental setup that allows
us to study the effect of diversity; the results are reported in Table 3. Specifically, we use RL with
continuous action space but with a more constrained action space: 6-dimensional representing the
desired linear and angular velocities of the right hand (assuming the rest of the agent is stationary).
For grasping, we adopt the “sticky mitten” simplification from other works [23]: we create a fixed
constraint between the hand and the object as soon as they get in contact. We also use distance-based
reward shaping to encourage the hand to approach activity-relevant objects. To evaluate the effect of
diversity in object poses, we use the same object models and randomize their initial poses during
training. To evaluate the effect of diversity in object instances, we randomize the object models
during training. For example, for the sliced single-predicate activity, the agent will encounter
different types of fruit (e.g. peach, strawberry, pineapple, etc) during training. We train for 10K
episodes, evaluate the final policy checkpoint and report the results in Table 3.

A.8 Potential to Transfer to Real-World

BEHAVIOR is a benchmark in simulation. This facilitates a continuous evaluation of solutions,
fair and equal conditions, and increased accessibility without expensive robot hardware. It is also
instrumental for modern robot learning procedures that require generating large amount of experiences.
However, the use of simulation introduces a gap between the activities in our benchmark and the
equivalent activities in real world. We argue that, while not negligible, we have taken measures

33

to close this gap with the goal of providing a benchmark where the performance of embodied AI
solutions is close to the performance they would have in a real world system.

Our instantation of BEHAVIOR includes realistic scenes and object models, with high-quality visuals
and close-to-real physical properties (mass, center of mass, friction) annotated in manual process
assisted by the information obtained in the Internet. The underlying physics engine, pyBullet [59], is
acknowledged as one of the standards in robotics and a high quality approximation of the underlying
mechanical processes. The physics-based rendering from iGibson 2.0 generates high quality images
to use as input in our evaluation. While our bimanual agent is not realistic, our second provided
embodiment is a realistic robot model, a Fetch, with similar kinematics, actuation and sensing,
facilitating the evaluation of solutions in BEHAVIOR that could act similarly on a real robot. Previous
works have demonstrated good results developing solutions in iGibson 2.0 that could transfer to real
world [2, 88], and evaluated the similarities between simulated and real-world sensor signals [22].
This indicates a high potential for the solutions evaluated in simulation in BEHAVIOR to perform
similarly in the real world, a claim that we plan to evaluate experimentally after the pandemic.

A.9 Ethical Considerations

A.9.1 Ethics of the Goals of BEHAVIOR

This benchmark aims to facilitate advancement of autonomous robots. In the real world, robots
that could do complex household activities like those in BEHAVIOR would have many significant
social and ethical implications. Two core considerations are the labor impacts of automation and the
physical safety of humans interacting with autonomous robots.

Labor and automation: Automation has a far-reaching impact on labor, especially automation of
cognitive abilities like planning, goal/subgoal setting, and quality consideration—all of which are
elements of this benchmark. Progress in AI will increasingly challenge the assumption that such
abilities are exclusively human.

As a result, autonomous robots will cause significant job loss according to multiple labor and
economics research groups. However, automation entering the labor force is inevitable and often
positive in that it saves resources and facilitates otherwise unattainable growth. The core ethical
consideration is in allocation of these resulting resources. If ownership of the ability to deploy
cognitively capable robots and the resulting resources are given to the labor force impacted by this
deployment, the harm can be turned into a benefit.

Furthermore, there may be potential to create managerial jobs in the space. The Federal Reserve of
St. Louis has pointed out that managerial jobs have grown alongside automation. Secondly, in line
with the Stanford Human-Centered AI Institute, we assert that all advancement in AI should work
for humans and not replace them: human oversight and collaboration must be involved no matter
how advanced autonomous robots get. Thirdly, the laborers whose jobs are being automated away
are generally most experienced in them. Industries that use e.g. human-guided agents will require
overseeing and collaboration jobs that laborers can be trained for, mitigating job loss.

Physical safety: We now consider the physical safety of humans interacting with autonomous
robots. A major benefit of BEHAVIOR being in simulation is the opportunity for physically safe
research, but an eventual goal is for an agent that succeeds on BEHAVIOR to end up powering a
physical robot deployed in close proximity to humans. A robot can seriously physically harm a
human if it cannot predict and avoid dangerous situations, but modeling human behavior is nowhere
close to being solved.

Possible steps forward include physical safety as a hard constraint, increasing autonomous robots’
ability to preempt dangerous situations, and careful deployment of autonomous robots that treats
physical safety as paramount. BEHAVIOR can easily be extended to fail any agent that creates a
predefined unsafe situation even if unrelated to the task at hand, e.g. leaving broken glass on the
floor. Furthermore, we commend and encourage research in robot prediction of human behaviors and
user-friendly human-robot interaction interfaces that help humans monitor safety.

34

A.9.2 Ethics of the Methods of BEHAVIOR

Demonstrator protection: BEHAVIOR includes virtual reality demonstrations performed by
humans. After evaluation, the Stanford Institutional Review Board deemed this project exempt
from review because we do not study the human data to draw conclusions about the demonstrators.
Because VR can have adverse side effects regardless of the data use, we ensured that our VR activity
satisfied the strictest guidelines for avoiding discomfort and all demonstrators were informed about
the duration and content, risks of VR, and research purpose before consenting. All identities were
kept confidential, and no identifiers (including likeness) exist in the dataset at all, nearly eliminating
the risk of unforeseen identifiability that is sometimes found in computer vision research.

Dataset bias: We are aware of potential biases of the BEHAVIOR benchmark. The demonstrations
and existing implementation in iGibson 2.0 are biased toward American homes that tend to be more
expensive than average. We also base our activity selection on ATUS: while curated by experts,
ATUS is ultimately focused on behavior of Americans. Both of these biases can be addressed by
expanding the socioeconomic and cultural diversity of our sources. In the meantime, we emphasize
transparency and clear communication of our sourcing and its focus/bias, and encourage users to take
BEHAVIOR ’s specific scope into account.

Accessibility: Our last point on method ethics is about BEHAVIOR’s accessibility. Because
BEHAVIOR, its assets, its dependencies, and at least one platform (iGibson 2.0) are all open-source
or can be used for free, it is highly accessible. Engagement in this research requires only a computer
to run on, making it as accessible as any other applied or experimental computer science research.

In conclusion, we believe BEHAVIOR’s goals do not pose any unaddressed ethical risks.

35

	Introduction
	Related Work
	BEHAVIOR: Benchmarking Realistic, Diverse, Complex Activities
	Defining Realistic, Diverse, and Complex Household Activities with BDDL
	Instantiating BEHAVIOR in a Realistic Physics Simulator
	Evaluation Metrics: Success, Efficiency and Human-Centric Metric
	Evaluating Reinforcement Learning in BEHAVIOR
	Conclusion and Future Work
	Visualizing 100 BEHAVIOR Activities
	Additional Comparison between BEHAVIOR and other Embodied AI Benchmarks
	Defining BEHAVIOR Activities
	Selection of 100 Activities for BEHAVIOR
	BDDL– BEHAVIOR Domain Definition Language
	Crowdsourcing the Annotation of Activities
	Example Definitions

	iGibson 2.0
	BEHAVIOR Dataset of Objects
	BEHAVIOR Dataset of Human Demonstrations in Virtual Reality
	Collecting Human Demonstrations in Virtual Reality
	Analysis and Statistics of Virtual Reality Demonstrations
	Gaze Tracking in Virtual Reality

	Additional Details on the Experimental Setup
	Potential to Transfer to Real-World
	Ethical Considerations
	Ethics of the Goals of BEHAVIOR
	Ethics of the Methods of BEHAVIOR

