
Learning on Random Balls is Sufficient
for Estimating (Some) Graph Parameters

Anonymous Author(s)
Affiliation
Address
email

Abstract

Theoretical analyses for graph learning methods often assume a complete obser-1

vation of the input graph. Such an assumption might not be useful for handling2

extremely large graphs due to the scalability issues in practice. In this work, we3

develop a theoretical framework for graph classification problems in the partial4

observation setting. Equipped with insights from graph limit theory, we propose a5

new graph classification model that works on a randomly sampled subgraph and a6

novel topology to characterize the representability of the model. Our theoretical7

framework leads to new learning-theoretic results on generalization bounds and8

size-generalizability without any assumption on the input graphs.9

1 Introduction10

Going beyond regular structural inputs such as grids (images), sequences (time series, sentences),11

or general feature vectors is an important research direction of machine learning and computational12

sciences. Arguably, most interesting objects and problems in nature can be described as graphs [32].13

For such reason, graph learning methods, especially Graph Neural Networks (GNN) [55], have14

recently proven to be a useful solution to many problems in computer vision [9, 11, 21, 58], complex15

network analyses [19, 28, 68], molecule modeling [15, 29, 36, 40], and physics simulations [3, 27, 49].16

The significant value of graph learning models in practice has inspired a large amount of theoretical17

work dedicated to exploring their representational limits and the possibilities of improving them.18

Most notably, the representational capability of GNNs has been in the spotlight of recent years.19

To answer the question “Can GNNs approximate all functions on graphs?”, researchers discussed20

universal invariant and equivariant neural networks [24, 35, 39, 46] as theoretical upper limits for21

neural architectures or showed the correspondence between message-passing GNNs (MP-GNNs) to22

the Weisfeiler-Lehman (WL) algorithm [62] as practical upper limits [41, 65].23

Given an extremely large graph as an input, it is often impractical to keep the whole graph in24

the working memory. Therefore, practical graph learning methods often utilize neighborhood25

samplings [19, 68] or random walks [48] to handle this scalability issue. Because existing analyses26

assumed a complete observation of the input graphs [24, 46, 52], it is unclear what can be learned27

if we combine graph learning models with random samplings. Thus, the relevant question in this28

scenario is “What graph functions are representable by GNNs when we can only observe random29

neighborhoods?.” This question adds another dimension to the discussion of GNN expressivity; even30

if we have a powerful GNN (in both theoretical and practical senses), what kind of graph functions31

can we learn if the input graphs are too large to be computed as a whole?32

Contributions This study proposes a theoretical approach to address graph learning problems on33

large graphs by identifying a novel topology of the graph space. We discuss the graph classification34

problem in the main part of the paper and extend the discussion to the vertex classification problem in35

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Appendix C. We first introduce a random ball sampling GNN (RBS-GNN), which is a mathematical36

model of GNNs implementable in a random neighborhood computational model, and prove that37

the model is universal in the class of estimable functions (Theorem 3). Our main contribution is38

introducing randomized Benjamini–Schramm topology in the space of all graphs and identifying the39

estimability of the function as the uniform continuity in this topology (Theorem 5). By applying our40

main theorem, we obtain the following learning-theoretic results.41

• We prove that the functions representable by RBS-GNNs are generalizable by showing an42

upper bound of the Rademacher complexity of Lipschitz graph functions (Theorem 8).43

• We identify size-generalizable functions with estimable functions (Theorem 9). Then, by44

recognizing the size-generalization as a domain adaptation, we provide a size-generalization45

error based on the Wasserstein distance (Theorem 11).46

Unlike existing studies, which assumed a random graph model [23, 25] or boundedness [10, 24, 46,47

53], our framework does not assume anything about the graph class; instead, we assume the continuity48

of the graph functions. Our results listed above are model-agnostic, i.e., we only discuss the property49

of the function space, regardless of how GNN models are implemented. The model-agnostic nature of50

our results gives a systematic view to general graph parameters learning; their generality is especially51

useful as there are many different GNN architectures in practice [52, 64, 73].52

2 Related Work53

Large-scale GNNs The success of GNNs, especially vertex classification models like GCN [28]54

and GraphSAGE [19], has led to various large-scale industrial GNN systems (see [1] and references55

therein). Aiming to increase computational throughput while maintaining the predictive performance,56

most of these systems implemented fixed-size neighborhood sampling [19] to enable large-scale57

batching [20, 68, 71, 72]. GNNs have also been applied to the 3D point clouds classification58

problem [61], which translates a computer vision problem to the large graph classification problem,59

and the random sampling was empirically shown to be effective [30]. In this context, our work60

contributes a theoretical justification for the random sampling procedure.61

Graph Parameter Learning Graph function, graph parameter, or graph invariant refer to a (real or62

integer value) property of graphs, which only depends on the graph structure. In other words, they63

are functions defined on isomorphism classes of graphs [32]. Determining graph properties from64

data has long been a topic of interest in theoretical computer science [7, 32] and is an important65

machine learning task in computational chemistry [8, 15] and biology [5, 14]. Recently, GNNs have66

been proven successful on a wide range of graph learning benchmark datasets. Current literature67

analyzed their expressivity to gain a better understanding of the architectures [24, 38, 46]. Several68

works identify MP-GNNs to the 1-dimensional WL isomorphism test [65] and further improve the69

GNN architectures to more expressive variants such as k-dimensional WL [41], port-numbered70

message passing [53], and sparse WL [43]. GNNs are also linked to the representational power of71

logical expressions [2]. These theoretical results assumed the complete observation of the input72

graph; therefore, it is difficult to see to what extent these results would hold when the only partial73

observation is available. By studying the RBS-GNN model, we give an answer to this issue. We74

use GNNs because they are the most expressive graph learning methods [24, 65]. Nonetheless, our75

results generalize for other universal (Theorem 3) and partially-universal (Theorem 15) methods.76

Generalization Besides expressivity, another challenge in graph learning is to understand the gener-77

alization bounds. Scarselli et al. [56] introduced an upper bound for the VC-dimension of functions78

computable by GNNs, in which the output is defined on a special supervised vertex. Garg et al. [13]79

derived tighter Rademacher complexity bounds for similar MP-GNNs by considering the local com-80

putational tree structures. Liao et al. [31] obtained a generalization gap of MP-GNNs and GCNs [28]81

using PAC-Bayes techniques. Du et al. [10] obtained a sample complexity using a result in the kernel82

method for their graph neural tangent kernel model in learning propagation-based functions. Verma83

and Zhang [60] obtained a generalization gap of single-layer GCNs by analyzing the stability and84

dependency on the largest eigenvalue of the graph; Lv [34] derived a Rademacher bound for a similar85

GCN model with a similar dependency. Keriven et al. [25] assumed an underlying random kernel86

(similar to graphons [32]) and analyzed the stability of discrete GCN using a continuous counterpart87

c-GCN. They derived the convergence bounds by looking at stability when diffeomorphisms [37]88

are applied to the underlying graph kernel, the distribution, and the signals. All these methods89

2

placed some assumptions on the graph space; either bounded degree [13, 31, 34], bounded number of90

vertices [10, 56, 60], or graphs belong to a random model [25]. Therefore, all these results become91

either inapplicable or unbounded in the general graph space. Our Theorem 8 contributes a complexity92

bound without assumptions on the graphs.93

Property Testing and Constant-Time Local Algorithms Property testing on graphs is a task to94

identify whether the input graph satisfies a graph property Π or ε-far from Π [16]. Often a researcher in95

this area tries to derive an algorithm whose complexity is constant (i.e., only depends on ε) or sublinear96

in the input size [51]. Several graph properties admit sub-linear (or constant-time) algorithms; the97

examples include bipartite testing, triangle-free testing, edge connectivity, and matching [44, 69].98

Recently, by bridging the constant-time algorithms and the GNN literature, Sato et al. [54] showed99

that, for each vertex, the neighborhood aggregation procedure of a GNN layer (they called it “node100

embedding”) can be approximated in constant time. However, this does not result in a constant-time101

learning algorithm for GNNs because we still need to access all the vertices to get the desired outputs.102

Our results provide the first “fully constant-time” GNNs in the sense that the whole learning and103

prediction process runs in time independent of the size of the graphs (Section 4).104

3 Preliminaries105

3.1 Graphs106

A (directed) graph G is a tuple (V,E) of the set of vertices V and the set of edges E ⊆ V × V . We107

use V (G) for V and E(G) for E when the graph is unclear from the context. A graph is weakly108

connected if the underlying undirected graph has a path between any two vertices. A weakly connected109

component is a maximal weakly connected subgraph. Two graphs G and H are isomorphic if there is110

a bijection φ : V (G)→ V (H) such that (φ(u), φ(v)) ∈ E(H) if and only if (u, v) ∈ E(G). Let G111

be the set of all directed graphs. A ball of radius r centered at v, Br(v) (also simply B), is the set of112

vertices whose shortest path distance from v is bounded by r. For U ⊆ V (G), G[U] is the subgraph113

of G induced by U .114

A rooted graph (G, v) is a graph G augmented with a vertex v in V (G). The isomorphism between115

(G, v) and (H,u) is defined in the same way as for graphs with the extra requirement that it maps v116

to u. A k-rooted graph (G, v1, . . . , vk) is defined similarly. We often recognize the graph induced by117

the ball Br(v) as a rooted graph whose root is v and by the union of k balls as a k-rooted graph.118

Modern graph learning problems ask for a function p : G → D from training data, where D is a119

“learning-friendly” domain such as the set of real numbers R, a d-dimensional real vector space120

Q ⊆ Rd, or some finite sets. In most cases, the function p is required to be isomorphism-invariant (or121

invariant for short). This notion of graph functions coincides with the definition of graph parameters.122

Another term used in the literature is graph property, which can be formalized as a graph function123

whose co-domain is {0, 1}. Our work focuses on the case in which the co-domain is R.124

3.2 Computational Model125

Extremely large graphs are usually stored in some complicated storage. Thus, there are some126

constraints on how we can access the graphs. In the area of property testing, such a situation127

is modeled by introducing a computational model, which is an oracle for accessing the graph.128

Importantly, each computational model induces a topology on the graph space. As we will show in129

later sections, the ability to represent graph functions is related to this topology.130

There are three main computational models in the literature: the adjacency predicate model [18],131

the incidence function model [17], and the general graph model [22, 47]. The adjacency predicate132

model, also known as the dense graph model, allows randomized algorithms to query whether two133

vertices are adjacent or not. With the incidence function model, also known as the bounded-degree134

graph model, algorithms can query a specific neighbor of a vertex. The general graph model lets the135

algorithms ask for both a specific neighbor and for whether two vertices are adjacent; hence, this is136

the most realistic model for actual algorithmic applications [16].137

In this study, we consider the following random neighborhood model, which allows us to access the138

input graph G via the following queries:139

3

• SampleVertex(G): Sample a vertex u ∈ V uniformly randomly.140

• SampleNeighbor(G, u): Sample a vertex v from the neighborhood of u uniformly randomly,141

where u is an already obtained vertex.142

• IsAdjacent(G, u, v): Return whether the vertices u and v are adjacent, where u and v are143

already obtained vertices.144

This model is a randomized version of the general graph model. Czumaj et al. [7] proposed a similar145

model to analyze edge streaming algorithms for property testing. However, their model does not have146

the IsAdjacent query, i.e., it is a randomized version of the incidence function model.147

The computational model naturally specifies the estimability of the graph parameters. A graph148

parameter p is constant-time estimable on the random neighborhood model (estimable for short) if149

for any ε > 0 there exists an integer N and a randomized algorithm A in the random neighborhood150

model such thatA performs at most N queries and |A(G)− p(G)| < ε with probability at least 1− ε151

for all graphs G ∈ G. Some examples of (non-)estimable graph parameters are:152

Example 1. The number of vertices, min/max degree, and connectivity are not estimable.153

Example 2. The triangle density and the local clustering coefficient are estimable.154

Additional examples of estimable graph parameters and experimental results are provided in Ap-155

pendix D. In the next section, we implement a GNN following the proposed random neighborhood156

computational model. By showing the connection between the GNN and algorithms in the random157

neighborhood model, we obtain several theoretical results in Section 5.158

4 Random Balls Sampling Graph Neural Networks (RBS-GNN)159

This section introduces RBS-GNN, a theoretical GNN architecture based on the random neighborhood160

model. RBS stands for “Random Balls Sampling” and also ”Random Benjamini–Schramm” because161

our random neighborhood model extends the topology of the Benjamini–Schramm convergence [4].162

Given an input graph, an RBS-GNN samples k random vertices and proceeds to sample random balls163

B1, . . . , Bk rooted at each of these vertices. A random ball of radius r and branching factor b is a164

subgraph obtained by the procedure RandomBallSample, illustrated in Figure 1 for r = 1 and b = 4.165

The exact procedure is presented in Algorithm 1. It is trivial to see that RandomBallSample can be166

implemented under the random neighborhood model with SampleVertex and SampleNeighbor.167

After sampling k random balls, the next step is identifying the induced subgraph G[B1 ∪ · · · ∪Bk]168

using the IsAdjacent procedure and computing the weakly connected components C1, . . . , CNC of169

the induced subgraph (Step 3 of Figure 1). The classifier part of an RBS-GNN has two trainable170

components: a multi-layer perceptron g and a GNN f . The output of an RBS-GNN is defined as171

RBS-GNN(G) = g

∑
j

f(Cj)

 . (1)

It should be emphasized that, as mentioned in the end of Section 2, our RBS-GNN can be evaluated172

in constant time (i.e., only dependent on the hyperparameters) because the subsets returned by173

RandomBallSample has a constant size regardless of the size of input graph G.174

Relation to Existing GNN Models While RBS-GNN is motivated by the random neighborhood175

model, it has a strong connection with existing message-passing GNNs and optimization techniques in176

graph learning. When we select f to be a simple message-passing GNN, RBS-GNN is a generalization177

of the mini-batch version of GraphSAGE (Algorithm 2 in [19]), and the multi-layers perceptron178

module g acts as the global READOUT as in the GIN [65] architecture. On the other hand, f can also179

be a more expressive variant such as high-order WL [43], k-treewidth homomorphism density, or a180

universal approximator [24, 46].181

5 Main Result182

In this section, we conduct theoretical analyses of RBS-GNN for the graph classification problem.183

All the proofs are in Appendix A. To simplify the analysis, we assume the hyperparameters k, b, and184

4

r1

2r

3r

r1

2r

3r

r1

2r

3r

B1

2B

3B

Step 1: Sample random roots Step 2: Sample random neighbors Step 3: Get induced subgraphs
and connected components

Figure 1: Random Balls Sampling Procedure (Algorithm 1). Our computational model is different
from the existing general graph model at Step 2, where we sample neighbors randomly instead of
taking all neighbors. In Step 3, the randomly sampled edges are shown with color, and the induced
edges are black. The weakly connected components C1 and C2 are inputs to the GNN.

Algorithm 1 Randomized Benjamini–Schramm GNN
1: procedure RANDOMBALLSAMPLE(G, b, r)
2: layer[0]← [], . . . , layer[r]← [];
3: Sample one random vertex from V (G) and insert to layer[0];
4: for i = 1, . . . , r do
5: for u in layer[i− 1] do
6: Sample b random vertices (with replacement) from N (u) and insert to layer[i].
7: return G[layer[0] ∪ · · · ∪ layer[r]]

8: procedure RBS-GNN(G, f, g, b, r, k)
9: B1, . . . , Bk ← RandomBallSample(G, b, r) . Runs k times to get k balls.

10: C1, . . . , CNC ←WeaklyConnectedComponents(G[B1 ∪ . . . Bk])
11: return g(

∑
j f(Cj))

r have the same value, and by a slight abuse of notation, we denote these values by r. Note that this185

setting would not alter the notion of estimability. We further simplify the discussion by assuming the186

graphs have no vertex features. Similar results hold when the vertices have finite-dimensional vertex187

features; see Appendix B. Additionally, as mentioned in Section 1, we obtained complementary188

results for the vertex classification problem in Appendix C.189

5.1 Universality of RBS-GNN190

We first characterize the expressive power of RBS-GNN. The following shows the universality of191

RBS-GNN, with a universal GNN component f , in the space of the estimable functions.192

Theorem 3 (Universality of RBS-GNN). If a graph parameter p : G → R is estimable (in the193

random neighborhood model), then it is estimable by an RBS-GNN with a universal GNN f .194

The proof of this theorem is an adaptation of the proof techniques by Czumaj et al. [7]. We first195

introduce a canonical estimator, which is an algorithm in the random neighborhood model defined196

by the following procedure. (1) Sample r random balls B1, . . . , Br using RandomBallSample(G,197

r, r); (2) Return a number according to the isomorphism class of the subgraph G[B1 ∪ · · · ∪ Br]198

induced by the balls. Since the number of random balls, the branching factor, and the radius are199

constant, we can see that the size of G[B1 ∪ · · · ∪ Br] is bounded by rr+2. Therefore, we can list200

all isomorphism classes of all graphs having at most rr+2 vertices and assign a unique number to201

each of them. Also, since the induced subgraph is bounded, it is possible to construct a universal202

approximator GNN [24, 46]. Therefore, we obtained the following.203

Lemma 4. If a graph parameter p is estimable, then it is estimable by a canonical estimator.204

Since a canonical estimator assigns a number according to the isomorphism class of the input, we see205

that RBS-GNN can approximate the canonical estimator by letting f be a universal approximator for206

bounded graphs. See the proof in Appendix A.1 for more detail.207

Relation to Universality Results Existing universal GNNs assumed that the number of vertices208

of the input graphs are bounded. Theorem 3 shows that these universal GNNs for bounded graphs209

5

can be extended to general graphs by approximating the general graphs using the random balls210

sampling procedure. As a drawback, the theorem is only applicable to the continuous functions in211

the randomized Benjamini–Schramm topology introduced below. We emphasize that this drawback212

shows the limitation of the partial-observation (random neighborhoods) setting.213

5.2 Topology of Graph Space: Estimability is Uniform Continuity214

The previous section defined the estimability by the existence of an estimation algorithm. Such215

definition is suitable for algorithmic analysis; however, it is not suitable for further analysis, such as216

deriving the generalization error bounds. This section rephrases our estimability by the continuity in217

a new topology induced by a distance between two graphs.218

For an integer r, an r-profile Zr(G) of a graph G is a random variable of the (k-rooted) isomorphism219

class of G[B1 ∪ · · · ∪ Br], where each Bj is obtained from RandomBallSample(G, r, r). As220

RandomBallSample(G, r, r) produces a graph of size at most rr, we can identify Zr(G) as a221

random finite-dimensional vector. Let zr(G) = E[Zr(G)] be the probability distribution over the222

isomorphism classes in terms of the k-rooted graph isomorphism, where the expectation is taken over223

SampleVertex and SampleNeighbor. The sampling distance of two graphs is defined by224

d(G,H) =

∞∑
r=1

2−rdTV (zr(G), zr(H)), (2)

where dTV is the total variation distance of two probability distributions given by dTV (p, q) =225

(1/2)‖p − q‖1. It should be emphasized that the sampling distance allows us to compare any two226

graphs even though they have a different number of vertices. We call the topology on the set of227

all graphs G induced by this sampling distance randomized Benjamini–Schram topology. A graph228

parameter p (resp. a randomized algorithm A) is uniformly continuous in the randomized Benjamini–229

Schramm topology if for any ε > 0 there exists δ > 0 such that for any G and H , d(G,H) ≤ δ230

implies |p(G)− p(H)| < ε (resp. |A(G)−A(H)| ≤ ε with probability at least 1− ε) holds. This231

topology connects the estimability in terms of the continuity as follows.232

Theorem 5. A graph parameter p is estimable in the random neighborhood model if and only if it is233

uniformly continuous in the randomized Benjamini–Schramm topology.234

The “if” direction of this theorem is given by the triangle inequality and the (optimal) coupling235

theorem [6]; the “only-if” is proved using the fact that the graph space is totally bounded as follows.236

Lemma 6 (Totally Boundedness of Graph Space). For any ε > 0, there exists a set of graphs237

{H1, . . . ,HC} with C ≤ 22(log 1/ε)O(log 1/ε)

such that minj∈{1,...,C} d(G,Hj) ≤ ε for all G.238

Theorem 5 allows us to apply existing “functional analysis techniques” to analyze the estimable239

functions. We present such applications in Section 6.240

Relation to Benjamini–Schramm Topology Our topology is a generalization of the Benjamini–241

Schramm topology defined on the space GD of all graphs of degree bounded by D. Let us define the242

“r-profile” by the union of r balls of radius r whose centers are sampled randomly. Then, the sampling243

distance defined using this r-profile induces a topology called the Benjamini–Schramm topology.244

This topology was first studied by Benjamini and Schramm [4] to analyze the planar packing problem,245

and now it is widely used to analyze the limit of bounded degree graphs, where the limit object is246

identified as the graphing; see [33]. A practical issue of the Benjamini–Schramm topology is that247

it is only applicable to bounded degree graphs, where many real-world extremely large graphs are248

complex networks having power-law degree distributions (i.e., unbounded degree). We addressed this249

issue by introducing the randomized Benjamini–Schramm topology, which is applicable to all graphs.250

6 Theoretical Applications251

6.1 Robustness Against Perturbation252

The continuity immediately implies the robustness against the structural perturbation, i.e., for any253

ε > 0 there exists δ > 0 such that the output of RBS-GNN does not change more than ε if the graph254

6

is perturbed at most δ in the sampling distance. As the perturbation in sampling distance may not be255

intuitive in practice, we here provide a bound regarding the additive perturbation edges.256

Proposition 7. Let G be a graph and let G′ be the graph obtained from G by adding δ|V (G)| edges257

completely randomly where 0 < δ < 1. Then d(G,G′) = O(1/ log(1/δ)).258

This result indicates that to change the output of RBS-GNN, one needs to add linearly many random259

edges; it is impractical in extremely large graphs. Note that the “adversarial” perturbation can change260

the distance more easily, especially if there is a “hub” in the graph; see Appendix A.3 for details.261

6.2 Rademacher Complexity262

Thus far, we only discussed the expressibility of the functions regardless of the learnability. Here,263

we derive the Rademacher complexity for the class of Lipschitz functions in the random Benjamini–264

Schramm topology. This gives an algorithm-independent bound of the learnability of the functions.265

Theorem 8. Let n be the number of training instances. The Rademacher complexity Rn of the set of266

1-Lipschitz functions that maps to [0, 1] is (log log n)−O(1/ log log log logn). It is o(1/ log log log n).267

This result implies that, by minimizing the empirical error of n instances, we can achieve the268

generalization gap of o(1/ log log log n) with high probability. To the extent of our knowledge, this is269

the first Rademacher bound for the general graph space, which guarantees the asymptotic convergence270

on any graph learning problem without assuming any graph structure.271

Comparison with Existing Results The significant difference between existing studies [10, 13, 31,272

34, 56, 60] and our bound (Theorem 8) is that ours is independent of any structural property, such as273

the maximum number of vertices, the maximum degree, and the spectrum of the graphs. Thus, ours274

can be applied to any graph distribution. Simply put, this is a consequence of the totally boundedness275

of the graph space (Lemma 6): For any ε > 0, the space of all graphs is approximated by finitely276

many graphs; hence any graph parameter is bounded by the values among them, which is a constant277

depending on ε. The drawback of this generality is its poor dependency on the number of instances278

n, which leaves significant room for quantitative improvement. One possible way to improve the279

bound is by assuming some properties of the graph distribution because the above derivation is280

distribution-agnostic; a concrete strategy for improvement is left for future works.281

6.3 Size-Generalizability282

One interesting topic of GNNs is size-generalization, which is a property that a model trained on small283

graphs should perform well on larger graphs. Size-generalization is observed in several tasks [26];284

however, it has also been proved that some classes of GNNs do not naturally generalize [67]. Hence,285

we want to know about the conditions for GNNs to generalize.286

We need to distinguish the “approximation-theoretic” size-generalizability and the “learning-theoretic”287

size-generalizability. The former is the possibility of size-generalization, which is proved by showing288

the existence of size-generalizing models. This, however, does not mean that a size-generalizable289

model is obtained by training; thus, we need to introduce the latter. The latter is the degree of size-290

generalizability when we train a model using a dataset (or a distribution); it is proved by bounding291

the generalization error.292

6.3.1 Approximation-Theoretic Size-Generalizability293

We say that a function p is size-generalizable in approximation-theoretic sense if for any ε > 0,294

there exists N > 0 such that we can construct an algorithm A using dataset {(p(G≤N), G≤N) :295

|V (G≤N)| ≤ N} such that |p(G)−A(G)| ≤ ε with probability at least 1− ε for all G ∈ G. This296

gives one mathematical formulation of the size-generalizability as it requires to fit algorithm A to all297

graphs using the dataset of bounded graphs. In this definition, we have the following theorem.298

Theorem 9. Estimable functions are size-generalizable in the approximation-theoretic sense.299

This theorem is proved by constructing a size-generalizable algorithm. We first pick the continuity300

constant δ for ε using Theorem 5. Then, we construct a δ-net using Lemma 6. By storing all the301

values p(Gi) for the graphs in the δ-net, we obtain a size-generalizable algorithm, where N is the302

maximum number of the vertices in the δ-net.303

7

6.3.2 Learning-Theoretic Size-Generalizability304

From the learning theoretic viewpoint, size-generalization is a domain adaptation from the distribution305

of smaller graphs to the distribution of larger graphs [67]. Thus, it is natural to utilize the domain306

adaptation theory [50]. Especially since we have introduced the sampling distance defined on all pairs307

of graphs irrelevant to their sizes, we here employ the Wasserstein distance-based approach [57].308

We start from a general situation. Let D1 and D2 be joint distributions of graphs and their labels, and309

G1 and G2 be the corresponding marginal distributions of graphs. We abbreviate E1 and E2 for the310

expectations on D1 and D2, respectively. The Wasserstein distance between G1 and G2 is given by311

W (G1,G2) = inf
π

E(G1,G2)∼πd(G1, G2), (3)

where d is the sampling distance of the graphs, and π runs over the couplings between these312

distributions. Let λ = infh{E1|y − h(G)|+ E2|y − h(G)|} be the optimal combined error, where313

infh runs over all 1-Lipschitz functions. We have the following lemma.314

Lemma 10. For any 1-Lipschitz functions h and h′, we have the following.315

E1|y − f(G)| ≤ E2|y − f(G)|+ 2W (G1,G2) + λ, (4)

Combining this result with the Rademacher complexity (Theorem 8), we obtain the following316

generalization bound.317

Theorem 11. Let ε > 0. Let (y21, G21), . . . , (y2n, G2n) be independently drawn from D2. If318

λ = O(ε) and n ≥ 222Ω̃(1/ε)

, then, for any 1-Lipschitz function h, we have319

E(G1,y1)∼D1
[|y1 − h1(G)|] ≤ 1

n

n∑
i=1

|y2i − h(G2i)|+ 2W (D1,D2) +O(ε) (5)

with probability at least 1− ε.320

The condition λ = O(ε) requires the existence of a “consistent rule” among both D1 and D2. For321

example, this condition holds when the labels are generated by y = f(G) + εN (0, 1) for some322

1-Lipschitz function f , where N (0, 1) is the standard normal distribution. We can obtain the size-323

generalization bound by applying the above theorem for the distribution of large graphs G1 and of324

small graphs G2. Thus, we only need to evaluate their Wasserstein distance. The Wasserstein distance325

can be large in the worst-case; thus, we here consider concrete examples of graph distributions.326

First, we consider the case that undirected graphs are drawn from the configuration model of d-regular327

graphs. In this model, a graph is constructed by the following procedure: (1) It creates N vertices328

with d half-edges; (2) Then, it pairs the half-edges and connects them to obtain edges. We see that a329

learning problem on this distribution is size-generalizable.330

Proposition 12. Let G be a distribution of random d-regular graphs generated by the configuration331

model, and G≤N be the distribution conditioned on only graphs of size bounded by N . If N ≥332

(log 1/ε)Ω(log 1/ε) then W (G,G≤D) = O(ε).333

This result can be generalized to a general distribution of graphs with large girth. Next, we consider334

the case where undirected graphs are drawn from a graphon. A graphonW is a functionW : [0, 1]×335

[0, 1]→ [0, 1]. A graphGN is drawn fromW if we first drawN random numbers x1, . . . , xN ∈ [0, 1]336

uniformly randomly. Then, for each pairs (xi, xj), we put an edge with probabilityW(xi, xj). This337

model extends Erdos–Renyi random graph and stochastic block model; see [32] for more detail.338

Proposition 13. Let W be a graphon. Let N1 and N2 be integers with N1 < N2. Let GNi be a339

distribution of graphs of Ni vertices drawn fromW . If N1 ≥ 2O(1/ε2) then W (GN1 ,GN2) ≤ ε.340

Finally, we consider the case that DN is obtained from D by the metric projection. Let ΠN be the341

projection onto the space of graphs of size at most N , i.e., Π(G) = argminGN :|V (GN)|≤Nd(G,GN).342

Proposition 14. Let G be any graph distribution and let G≤N = Π(G) be the projected distribution343

of graphs of size at most N . For any ε > 0, there exists N such that W (G,G≤N) ≤ ε.344

A drawback of this result is that an explicit bound of N is not known, even for its deterministic345

variant in the bounded degree graphs (See Proposition 19.10 in [32]). The only known bound is for346

the bounded degree graphs with large girth [12].347

8

Comparison with Existing Results Size-generalization of GNNs is reported on several tasks, but348

its theoretical analysis is limited. Yehudai et al. [67] studied the size-generalizability using the349

concept of d-pattern, which is information obtained from d-ball; it is similar to our r-profile. Their350

results are approximation-theoretic as they showed the (non-)existence of size-generalizable models351

but did not show how such models can be obtained by training on data. Xu et al. [66] proved the352

size-generalization of the max-degree function under several conditions on the training data and353

GNNs. Their result is essentially an approximation-theoretic as it assumes the dataset lies in and354

spans a certain space that is sufficient to identify the max-degree function.355

6.4 Partially-Universal RBS-GNNs356

Thus far, we assumed the universal GNNs are plugged into the RBS-GNNs for theoretical analysis.357

This assumption achieves the maximum expressive power in this framework; however, in practice,358

we often use expressive but more efficient GNNs such as GCN [28], GIN [65], or GAT [59]. Here,359

we discuss what will be changed if we made this modification.360

Let≡ be an equivalence relation on graphs. We assume that≡ is consistent with the weakly connected361

component decomposition, i.e., if G1 ≡ H1 and G2 ≡ H2 then G1 + G2 ≡ H1 + H2, where the362

“+” symbol denotes the disjoint union of two graphs. We say that a function h (resp. a randomized363

algorithm A) is ≡-indistinguishable if h(G) = h(G′) (resp. A(G) = A(G′) given the random364

sample) for all G ≡ G′. A GNN is ≡-universal if it can learn any ≡-indistinguishable functions. For365

example, it is known that GIN is universal with respect to the WL indistinguishable functions [65].366

Let RBS-GNN[≡] be a class of RBS-GNNs that uses an ≡-universal GNN f in Equation (1). The367

following shows the partial universality of this architecture.368

Theorem 15. If f is estimable and ≡-indistinguishable, then it is estimable by an RBS-GNN[≡].369

One application of this theorem is extending the expressivity of GraphSAGE to the partial observation370

setting. GraphSAGE can represent the local clustering coefficient if we have the complete observation371

of the graph [19, Theorem 1]. We can prove the local clustering coefficient is estimable (Proposition 22372

in Appendix D). By applying Theorem 15 to the equivalence relation G1 ≡ G2 defined by f(G1) =373

f(G2) for all function f representable by GraphSAGE, we obtain the following.374

Proposition 16. The mini-batch version of the GraphSAGE (Algorithm 2 in [19]) can estimate the375

local clustering coefficient.376

Comparison with Existing Studies Equivalence relations associated with GNNs are mainly studied377

in the context of the “limitation” of GNNs: If a GNN is ≡-indistinguishable, then it cannot learn any378

function h that is non ≡-indistinguishable. Morris et al. [41] proved a message-passing type GNN379

cannot distinguish two graphs having the same d-patterns. Garg et al. [13] identified indistinguishable380

graphs of several GNNs, including GCN [28], GIN [65], GPNGNN [53], and DimeNet [29].381

On the other hand, we should use non-universal GNNs in practice because more expressive GNNs382

have higher computational costs (e.g., universal GNNs [24] is more costly than the graph isomorphism383

test). We here considered RBS-GNN[≡] because≡-universal GNNs are theoretically tractable classes384

of non-universal GNNs. With similar motivation, [46] proposed GNNs parameterized by information385

aggregation pattern and proved the ≡-universality, where ≡ is induced by the aggregation patterns.386

7 Conclusion387

We answered the question “What graph functions are representable by GNNs when we can only388

observe random neighborhoods?” by proving the functions representable by RBS-GNNs coincides389

with the estimable functions in the random neighborhood model, which is equivalent to the uniformly390

continuous functions in the randomized Benjamini–Schramm topology. The result holds without any391

assumption on the input graphs, such as the boundedness. This result gives us a “functional analysis392

view” of graph learning problems and leads to several new learning-theoretic results. The weakness393

of our result is the poor dependency on the number of training instances, which is the trade-off for394

generality. We believe addressing this issue will be an interesting future direction.395

Potential Impact Our work contributes an understanding of general graph learning models whose396

inputs are random samples of extremely large graphs. Due to the theoretical nature of our results, we397

believe there will not be a direct nor indirect negative societal impact.398

9

References399

[1] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard Alarcón. Com-400

puting graph neural networks: A survey from algorithms to accelerators. arXiv preprint401

arXiv:2010.00130, 2020.402

[2] Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan Pablo Silva.403

The logical expressiveness of graph neural networks. In International Conference on Learning404

Representations, 2019.405

[3] Peter W Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu.406

Interaction networks for learning about objects, relations and physics. arXiv preprint407

arXiv:1612.00222, 2016.408

[4] Itai Benjamini and Oded Schramm. Recurrence of distributional limits of finite planar graphs.409

In Selected Works of Oded Schramm, pages 533–545. Springer, 2011.410

[5] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola,411

and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21412

(suppl_1):i47–i56, 2005.413

[6] Juan A Cuestaalbertos, L Ruschendorf, and Araceli Tuerodiaz. Optimal coupling of multivariate414

distributions and stochastic processes. Journal of Multivariate Analysis, 46(2):335–361, 1993.415

[7] Artur Czumaj, Hendrik Fichtenberger, Pan Peng, and Christian Sohler. Testable properties in416

general graphs and random order streaming. arXiv preprint arXiv:1905.01644, 2019.417

[8] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and418

Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic419

nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of420

medicinal chemistry, 34(2):786–797, 1991.421

[9] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks422

on graphs with fast localized spectral filtering. In Advances in Neural Information Processing423

Systems, pages 3844–3852, 2016.424

[10] Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, and425

Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels.426

CoRR, abs/1905.13192, 2019.427

[11] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. SplineCNN: Fast428

geometric deep learning with continuous B-spline kernels. In IEEE Conference on Computer429

Vision and Pattern Recognition (CVPR), 2018.430

[12] Hendrik Fichtenberger, Pan Peng, and Christian Sohler. On constant-size graphs that preserve431

the local structure of high-girth graphs. In Approximation, Randomization, and Combinatorial432

Optimization. Algorithms and Techniques, 2015.433

[13] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits434

of graph neural networks. In International Conference on Machine Learning, pages 3419–3430.435

PMLR, 2020.436

[14] Thomas Gärtner. A survey of kernels for structured data. ACM SIGKDD Explorations Newsletter,437

5(1):49–58, 2003.438

[15] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.439

Neural message passing for quantum chemistry. In Proceedings of the 34th International440

Conference on Machine Learning, volume 70, pages 1263–1272. JMLR, 2017.441

[16] Oded Goldreich. Introduction to testing graph properties. In Property testing, pages 105–141.442

Springer, 2010.443

[17] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. In Proceedings of444

the twenty-ninth annual ACM symposium on Theory of computing, pages 406–415, 1997.445

10

[18] Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection to446

learning and approximation. Journal of ACM, 45(4):653–750, 1998.447

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large448

graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.449

[20] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. Improving the accuracy,450

scalability, and performance of graph neural networks with roc. In I. Dhillon, D. Papailiopoulos,451

and V. Sze, editors, Proceedings of Machine Learning and Systems, volume 2, pages 187–198,452

2020.453

[21] Michael Kampffmeyer, Yinbo Chen, Xiaodan Liang, Hao Wang, Yujia Zhang, and Eric P Xing.454

Rethinking knowledge graph propagation for zero-shot learning. In Proceedings of the IEEE455

Conference on Computer Vision and Pattern Recognition, pages 11487–11496, 2019.456

[22] Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing bipartiteness in457

general graphs. SIAM Journal on computing, 33(6):1441–1483, 2004.458

[23] Tatsuro Kawamoto, Masashi Tsubaki, and Tomoyuki Obuchi. Mean-field theory of graph neural459

networks in graph partitioning. In Advances in Neural Information Processing Systems, pages460

4361–4371, 2018.461

[24] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.462

arXiv preprint arXiv:1905.04943, 2019.463

[25] Nicolas Keriven, Alberto Bietti, and Samuel Vaiter. Convergence and stability of graph convo-464

lutional networks on large random graphs. arXiv preprint arXiv:2006.01868, 2020.465

[26] Elias B Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial466

optimization algorithms over graphs. In NIPS, 2017.467

[27] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural468

relational inference for interacting systems. In International Conference on Machine Learning,469

pages 2688–2697. PMLR, 2018.470

[28] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional471

networks. In International Conference on Learning Representations, 2017.472

[29] Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for473

molecular graphs. In International Conference on Learning Representations, 2020.474

[30] Itai Lang, Asaf Manor, and Shai Avidan. SampleNet: Differentiable Point Cloud Sampling. In475

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),476

pages 7578–7588, 2020.477

[31] Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization478

bounds for graph neural networks. In International Conference on Learning Representations,479

2021.480

[32] László Lovász. Large networks and graph limits. American Mathematical Soc., 2012.481

[33] László Lovász and Balázs Szegedy. Limits of dense graph sequences. Journal of Combinatorial482

Theory, Series B, 96(6):933–957, 2006.483

[34] Shaogao Lv. Generalization bounds for graph convolutional neural networks via rademacher484

complexity. arXiv preprint arXiv:2102.10234, 2021.485

[35] Takanori Maehara and Hoang NT. A simple proof of the universality of invariant/equivariant486

graph neural networks. arXiv preprint arXiv:1910.03802, 2019.487

[36] Pierre Mahé and Jean-Philippe Vert. Graph kernels based on tree patterns for molecules.488

Machine learning, 75(1):3–35, 2009.489

[37] Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics,490

65(10):1331–1398, 2012.491

11

[38] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant492

graph networks. arXiv preprint arXiv:1812.09902, 2018.493

[39] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful494

graph networks. arXiv preprint arXiv:1905.11136, 2019.495

[40] Andreas Mayr, Günter Klambauer, Thomas Unterthiner, and Sepp Hochreiter. DeepTox: toxicity496

prediction using deep learning. Frontiers in Environmental Science, 3:80, 2016.497

[41] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,498

Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural499

networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages500

4602–4609, 2019.501

[42] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion502

Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML503

2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL504

www.graphlearning.io.505

[43] Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards506

scalable higher-order graph embeddings. In Advances in Neural Information Processing Systems,507

2020.508

[44] Huy N Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local im-509

provements. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages510

327–336. IEEE, 2008.511

[45] Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass512

filters. arXiv preprint arXiv:1905.09550, 2019.513

[46] Hoang NT and Takanori Maehara. Graph homomorphism convolution. In Proceeding of the514

37th International Conference on Machine Learning, pages 7306–7316. PMLR, 2020.515

[47] Michal Parnas and Dana Ron. Testing the diameter of graphs. Random Structures & Algorithms,516

20(2):165–183, 2002.517

[48] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-518

sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge519

discovery and data mining, pages 701–710, 2014.520

[49] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning521

mesh-based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.522

[50] Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and Younes Bennani. Advances523

in domain adaptation theory. Elsevier, 2019.524

[51] Ronitt Rubinfeld and Asaf Shapira. Sublinear time algorithms. SIAM Journal on Discrete525

Mathematics, 25(4):1562–1588, 2011.526

[52] Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint527

arXiv:2003.04078, 2020.528

[53] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural529

networks for combinatorial problems. In 33rd Conference on Neural Information Processing530

Systems (NeurIPS 2019), 2019.531

[54] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Constant time graph neural networks.532

arXiv preprint arXiv:1901.07868, 2019.533

[55] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.534

The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.535

[56] Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis536

dimension of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.537

12

www.graphlearning.io

[57] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation538

learning for domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence,539

volume 32, 2018.540

[58] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learning localized generative models for541

3d point clouds via graph convolution. International Conference on Learning Representations,542

2019.543

[59] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua544

Bengio. Graph attention networks. International Conference on Learning Representations,545

2017.546

[60] Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural547

networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge548

Discovery & Data Mining, pages 1539–1548, 2019.549

[61] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.550

Solomon. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph., 38(5), October551

2019.552

[62] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra553

which appears therein. NTI, Series, 2(9):12–16, 1968.554

[63] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A555

comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.556

[64] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A557

comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.558

[65] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural559

networks? International Conference on Learning Representations, 2019.560

[66] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie561

Jegelka. How neural networks extrapolate: From feedforward to graph neural networks. arXiv562

preprint arXiv:2009.11848, 2020.563

[67] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local564

structures to size generalization in graph neural networks. arXiv preprint arXiv:2010.08853,565

2021.566

[68] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure567

Leskovec. Graph convolutional neural networks for web-scale recommender systems. In568

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &569

Data Mining, pages 974–983, 2018.570

[69] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation571

algorithm for maximum matchings. In Proceedings of the Forty-First Annual ACM Symposium572

on Theory of Computing, STOC ’09, page 225–234, New York, NY, USA, 2009. Association573

for Computing Machinery.574

[70] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,575

and Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems,576

pages 3391–3401, 2017.577

[71] Dalong Zhang, Xin Huang, Ziqi Liu, Zhiyang Hu, Xianzheng Song, Zhibang Ge, Zhiqiang578

Zhang, Lin Wang, Jun Zhou, Yang Shuang, et al. Agl: a scalable system for industrial-purpose579

graph machine learning. arXiv preprint arXiv:2003.02454, 2020.580

[72] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng581

Zhang, and George Karypis. Distdgl: Distributed graph neural network training for billion-scale582

graphs. arXiv preprint arXiv:2010.05337, 2020.583

[73] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng584

Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and585

applications. AI Open, 1:57–81, 2020.586

13

Checklist587

1. For all authors...588

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s589

contributions and scope? [Yes]590

(b) Did you describe the limitations of your work? [Yes] See the discussion after each591

result.592

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See the593

conclusion.594

(d) Have you read the ethics review guidelines and ensured that your paper conforms to595

them? [Yes]596

2. If you are including theoretical results...597

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See the598

beginning of Section 5 and 6.599

(b) Did you include complete proofs of all theoretical results? [Yes] Proof ideas are600

described in the main content, and complete proofs are provided in Appendix A.601

3. If you ran experiments...602

(a) Did you include the code, data, and instructions needed to reproduce the main experi-603

mental results (either in the supplemental material or as a URL)? [Yes]604

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they605

were chosen)? [Yes] See Appendix D.2.606

(c) Did you report error bars (e.g., with respect to the random seed after running experi-607

ments multiple times)? [Yes] See result tables and figures.608

(d) Did you include the total amount of compute and the type of resources used (e.g., type609

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D.2, paragraph610

“Computational Recourses”.611

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...612

(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix D and613

citation [42].614

(b) Did you mention the license of the assets? [N/A] There is no explicit license provided615

by the original creator in both their website and their manuscript [42].616

(c) Did you include any new assets either in the supplemental material or as a URL? [No]617

We did not curate any new asset.618

(d) Did you discuss whether and how consent was obtained from people whose data you’re619

using/curating? [N/A]620

(e) Did you discuss whether the data you are using/curating contains personally identifiable621

information or offensive content? [N/A]622

5. If you used crowdsourcing or conducted research with human subjects...623

(a) Did you include the full text of instructions given to participants and screenshots, if624

applicable? [N/A]625

(b) Did you describe any potential participant risks, with links to Institutional Review626

Board (IRB) approvals, if applicable? [N/A]627

(c) Did you include the estimated hourly wage paid to participants and the total amount628

spent on participant compensation? [N/A]629

14

A Complete proofs630

A.1 Theorem 3631

Theorem 3 states the universality of the proposed RBS-GNN. This theorem was proposed to address632

the question “Even if we have a powerful GNN, what kind of graph functions can we learn if the input633

graphs are too large to be computed as a whole?” posed in the Introduction. We think of this theorem634

from two perspectives. In one view, this theorem extends the universality of “complete-observation”635

GNNs in to “partial-observation”. In another, the theorem reduced the universality of GNNs to only636

universal on estimable functions. This section presents proofs leading up to Theorem 3.637

Proof of Lemma 4. We construct a canonical estimator from the original estimator. Let E be the638

original estimator and let N be the total number of queries of to achieve accuracy ε2/2. We first639

construct an estimator E1. E1 samples an N random balls using RandomBallSample(G, N , N) and640

simulates E on E1 using a permutation π over the vertices ofB1∪· · ·∪Br. Because of the simulation,641

we obtain642

ProbS,π
[
|f(G)− E1(G | S, π)| > ε2/2

]
< ε2/2. (6)

Then, we construct the final estimator E2. E2 returns the expected value of the output of E1 over all643

simulations. Here,644

ES [|f(G)− E2(G | S)]|] = ES [|f(G)− Eπ[E1(G | S, π)]|] (7)
≤ ES,π[|f(G)− E1(G | S, π)|] (8)

≤ ε2. (9)

Thus, by the Markov inequality,645

ProbS [|f(G)− E2(G | S)]| > ε] ≤ ε. (10)

646

Using Lemma 4, we obtain the proof for Theorem 3.647

Proof of Theorem 3. The output of the canonical estimator is determined by the isomorphism class of648

the subgraph induced by the balls. Hence, it is determined by the isomorphism classes of the weakly649

connected components of the induced subgraph. This means that we can write the canonical estimator650

as a function from the set of weakly-connected graphs: h({C1, . . . , Cl}). Here, we can injectively651

map each Cj as a finite-dimensional vector zj using a universal neural network f since it has a size652

bounded by a constant (depending on N). Also, the number of connected components is bounded653

by a constant (depending on N). Thus, we can identify the function h as a permutation-invariant654

function with a constant number of arguments whose inputs are finite-dimensional vectors. Therefore,655

we can apply Theorem 9 in [70], which shows that there exists continuous functions g and φ such that656

h(z1, . . . , zm) = g(
∑
i ρ(zm)). for all z1, . . . , zm. Because φ is approximated by a neural network,657

we can combine it with the GNN f ; therefore, we obtain the proof.658

A.2 Theorem 5659

Theorem 5 is perhaps the most important contribution of this work. This theorem continues to analyze660

the concept of estimable graph functions by providing a topology in which estimable functions are661

continuous and vice versa. We find that the result is quite useful when we want to apply functional662

analysis techniques to analyze graph learning problems. This section presents the proofs of Lemma 6663

and Theorem 5.664

Proof of Lemma 6. This is a variant of [32, Proposition 19.10], which is for a different topology665

(different computational model). We can prove our lemma by the same strategy, but here we provide666

a proof for completeness.667

Let r = dlog 2/εe. We choose a maximal set of graphs H1, . . . ,HN such that for all i 6= j,668

dTV (zs(Hi), zs(Hj)) > ε/4 holds on some s ≤ r. We can see that such a set exists (see below). By669

15

the maximality, for any graph G, there exists j such that dTV (zs(G), zs(Hj)) ≤ ε/4 for all s ≤ r,670

which implies d(G,H) ≤ (1/2)r + ε/2 ≤ ε.671

We show the upper bound of C. In the proof, we represent G by an r-tuple (z1(G), . . . , zr(G)) of672

probability distributions, where each zs(G) lies on 2s
s×ss = 2(log 1/ε)O(log 1/ε)

-dimensional simplex673

for s ≤ r. Because the packing number of d-dimensional simplex in the total variation distance674

(equivalently in the l1 metric) is (1/ε)O(d), we cannot choose more than 22(log 1/ε)O(log 1/ε)

points675

whose pairwise distance is at least ε/4.676

Proof of Theorem 5. Suppose f is estimable. For any ε > 0, we choose a canonical estimator A of677

accuracy ε. Then we have |f(G)− f(H)| ≤ |f(G)−A(G)|+ |A(G)−A(H)|+ |A(H)− f(H)|.678

Here, the first and last terms are at most ε by the definition of A with probability at least 1 − ε,679

respectively. We take δ = 2−rε for the second term. Then, for any G,H with d(G,H) ≤ δ, we680

have dTV (zr(G), zr(H)) ≤ ε; hence, by the optimal coupling theorem,1 there exists a coupling681

between Zr(G) and Zr(H) such that P (Zr(G) 6= Zr(H)) = dTV (zr(G), zr(H)) ≤ ε. Thus, the682

output of the algorithm A coincides on G and H with a probability at least 1− ε. Therefore we have683

|f(G)− f(H)| ≤ 3ε with probability at least 1− 3ε. By taking the expectation, we obtain the result.684

Suppose f is uniformly continuous. For any ε > 0, let δ > 0 be the corresponding constant in685

the continuity definition. Take a δ/2-net {H1, . . . ,HC} and let r = dlog 4/δe. The algorithm A686

performs random sapling to estimate the distribution (z1(G), . . . , zr(G)) with accuracy δ/2 with687

probability at least 1− ε. Then, it outputs f(Hj), where Hj is the nearest neighborhood of G. By the688

construction, the algorithm finds Hj with d(G,Hj) ≤ δ with probability at least 1− ε. Therefore,689

we have |f(G)−A(G)| = |f(G)− f(Hj)| ≤ ε with probability as least 1− ε.690

It should be emphasized that the space of all graphs equipped with the randomized Benjamini–691

Schramm topology is not compact, because there is a continuous but not uniformly continuous692

function; the average degree function is such an example.693

A.3 Proofs for Applications694

This section provides the proofs for the theoretical applications section in the main part (Section 6).695

Most notably, the proofs for Theorem 8, 9, and 11 are provided here.696

Proof of Proposition 7. Let M be the endpoints of the random edges. Then, M induces a uniform697

distribution on the vertices of G. Any run with Zr(G) ∩M = ∅ can be coupled with Zr(G′); so the698

coupling probability is699

P (M ∩ Zr(G) = ∅) =
∑
x∈M

P (x 6∈ Zr(G)) (11)

≤ |M |rr/n (12)
= 2rrδ. (13)

By the optimal coupling theorem, we have dTV (zr(G), zr(G
′)) = 2rrδ. Therefore,700

d(G,G′) =

∞∑
r=1

2−rdTV (Gr, G
′
r) (14)

≤
∞∑
r=1

2−r min{1, 2rrδ} (15)

≤ ssδ + 2−s (16)

for any s. By putting s = log log(1/δ), we obtain the result.701

If M is chosen adversarially, we cannot obtain the inequality (12). In particular, if M contains a702

vertex x with a large PageRank, as the probability of x ∈ Zr(G) is large, we cannot bound the703

distance.704

1See [6], or pages.uoregon.edu/dlevin/AMS_shortcourse/ams_coupling.pdf (May, 2021).

16

pages.uoregon.edu/dlevin/AMS_shortcourse/ams_coupling.pdf

Proof of Theorem 8. We use the following inequality that bounds the Rademacher complexity by the705

covering number CF (ε) of the function space F :706

Rn(F) ≤ inf
ε>0

{
ε+O

(√
logCF (ε)

n

)}
. (17)

We choose an ε/2-net of the graphs of sizeC(ε/2) by Lemma 6. Then, we define an (external) ε-cover707

of the space of 1-Lipschitz functions by the piecewise constant functions whose values are discretized708

by ε/2, where the pieces are the Voronoi regions of the ε-net; it is easy to verify this is an ε-cover of709

the space of 1-Lipschitz functions. This shows CF (ε) ≤ (2/ε)C(ε/2) = 2222O(log(1/ε) log log(1/ε))

. By710

substituting ε satisfying O(log(1/ε) log log(1/ε)) = log log log(n/ log n)), we obtain the result.711

logCF (ε) = 222O(log 1/ε log log 1/ε)

. We set ε to be O(log 1/ε log log 1/ε) = log log log(n/ log n)2.712

Then, by definition,
√

logCF (ε)/n = 1/ log n.713

We try to evaluate ε. We see ε satisfies log 1/ε log log 1/ε = Ω(log log log n).714

Recall that x log x = y iff y = eW (x) where W (x) is the Lambert W function. Since W (x) =715

log(x/ log x)+Θ(log log x/ log x), we have y ≥ x/ log x. By using this formula, we have log 1/ε =716

Ω(log log log n/ log log log log n).717

Proof of Theorem 9. By Theorem 5, an estimable function f is uniformly continuous. Let δ be the718

constant for ε for the continuity. By Lemma 6, there is an δ-net {H1, . . . ,HC} and let N(δ) be the719

maximum number of vertices in the graphs in the δ-net. Our algorithm A outputs A(G) = f(Hj)720

whereHj is the nearest neighbor ofG. This algorithm achieves the accuracy of ε because d(G,Hj) ≤721

δ. Also, the algorithm can be constructed only accessing graphs of size at most N = maxj |V (Hj)|.722

Hence, f is size-generalizable.723

Proof of Lemma 10. This is an adaptation of [57] to our metric space. Their proof only uses the724

“easy” direction of the Kantorovich–Rubinstein duality, which holds on any metric space. Hence, we725

obtain this lemma.726

To be self-contained, we will give a proof. For any 1-Lipschitz function f and any coupling π between727

D1 and D2, we have the following “easy” direction of the Kantorovich–Rubinstein duality:728

E1[f(G1)]− E2[f(G2)] = E(G1,G1)∼πE[f(G1)− f(G2)] (18)

≤ E(G1,G2)∼πE[d(G1, G2)] (19)

≤W (G1,G2). (20)

By putting f = (h− h′)/2, we obtain729

E1|h(G)− h′(G)| − E2|h(G)− h′(G)| ≤ 2W (G1,G2). (21)

Hence,730

E1|y − h(G)| ≤ E1|y − h′(G)|+ E1|h(G)− h′(G)| (22)

= E1|y − h′(G)|+ E1[h(G)− h′(G)|+ E2|h(G)− h′(G)| − E2|h(G)− h′(G)|
(23)

≤ E1|y − h′(G)|+ E2|h(G)− h′(G)|+ 2W (G1,G2) (24)

≤ E2|y − h(G)|+ E1|y − h′(G)|+ E2|h(G)− h′(G)|+ 2W (G1,G2). (25)

By taking the infimum over h′, we obtain the theorem.731

Proof of Theorem 11. We obtain the result by combining Theorem 8 and Lemma 10.732

Proof of Proposition 12. Let GN be the distribution of random d-regulra graphs of size N . Then,733

we can see that Zr(GN) | GN ∼ GN has no cycle with probability at least 1 − rO(r)/N . This734

implies that we can couple Zr(G) | G ∼ G and Zr(G≤N) | G≤N ∼ G≤N with probability at least735

1− rO(r)/N . By putting r = log 1/ε, we obtain the result.736

17

Proof of Proposition 13. This follows from the proof of Lemma 10.31 and Exercise 10.31 in [32].737

738

Proof of Proposition 14. We can choose N by the maximum number of vertices in the ε-net. Then,739

we have d(G,Π(G)) ≤ ε. Thus the Wasserstein distance is bounded by ε.740

Proof of Theorem 15. We introduce a helper concept, ≡-indistinguishably estimable, which is a class741

of functions that is estimable by≡-indistinguishable computation on r-profile. By the same argument742

as Theorem 3, we can show that RBS-GNN[≡] can represent ≡-indistinguishably estimable function.743

Now we prove that if a function f is estimable and ≡-indistinguishable, then it is ≡-indistinguishably744

estimable. Because f is estimable, there exists δ > 0 such that |f(G)−f(H)| ≤ ε/2 if d(G,H) < δ.745

We fix a δ-net {H1, . . . ,HC} of the graph space. We consider a quotient space of the graphs by ≡,746

select a representative [G] to each quotient, and assign Hi to [G] which is the nearest neighbor of the747

representative G.748

Our estimator A is the following. First, we obtain a subgraph S by sampling sufficiently many749

vertices to be d(S,G) ≤ δ with probability at least 1− ε. Second, we take the representative [S] of750

the equivalent class containing S. Finally, we output the value f(H), where H is the nearest neighbor751

of [S]. By construction, A is an ≡-indistinguishable computation after the sampling. Here,752

|f(G)−A(G)| ≤ |f(G)− f(S)|+ |f(S)− f([S])|+ |f([S])− f(H)| ≤ ε (26)

with probability at least 1 − ε, where the first term in the right-hand side is at most ε/2 with753

probability at least 1 − ε due to the sampling and continuity, the second term is zero due to the754

≡-indistinguishability, and the last term is at most ε/2 due to the δ-net and uniform continuity.755

B Extended Results: Finite-Dimensional Vertex Features756

We can extend our framework to the vertex-featured case. We assume the vertex features are in [0, 1]d.757

This assumption is well-aligned with the pre-processing step in practice where vertex features are758

normalized [28, 45, 46].759

The estimability is defined similarly, where we additionally assume that the estimation is uniformly760

continuous with respect to the vertex features on the sampled subgraph (in the standard topology761

of Rd). Then, we can prove the RBS-GNN can estimate arbitrary estimable vertex-featured graph762

parameters.763

The difficulty is how to define the topology on the vertex-featured graphs. As in the non-featured case,764

We want to define Zr(G) by the “frequency” of the graphs. However, since there are uncountably765

many vertex-featured graphs, we need a technique. To address this issue, we fix an ε-net on [0, 1]d; it766

has the cardinality of (1/ε)d. Then, we approximate the vertex features of the sampled graph by the767

elements of the ε-net by the uniform continuity. Then, the number of “vertex-featured graphs” of N768

vertices is bounded by ((1/ε)d)O(N×N); hence we can define the randomized Benjamini–Schramm769

topology. The space is totally bounded since the ε-net is constructed by combining the ε-net of the770

graph and the ε-net of [0, 1]d. Note that this makes no significant difference on the size of the ε-net771

since the difference is absorbed in the nested power.772

C Extended Results: Vertex Classification Problems773

In this section, we extend our framework for the graph classification problem to the vertex classifica-774

tion problem.775

The vertex classification problem is usually defined as follows. We are given a set of graphs776

G1, . . . , GN with the “supervised vertices” S1 ⊆ V (G1), . . . , SN ⊆ V (GN) and the labels yu on777

the supervised vertices. The task is to find an equivariant function h : G 7→ (y1, . . . , yn) ∈ YV (G).778

This formulation, however, is not suitable for large graphs because it needs to output values to all the779

vertices. Here, we recognize a vertex classification problem as a rooted graph classification problem780

as in [45]: The input of the problem is a set of pairs (yvi , (Gi, vi)) of rooted graphs (Gi, vi) and the781

label yvi . The goal is to find a function h such that h((G, v)) ≈ yv . It should be noted that a graph G782

18

with a supervised nodes S ⊆ V (G) in the original formulation is transformed to |S| rooted graphs783

{(G, v) : v ∈ S}.784

Our framework for the graph classification problem is easily extended to the rooted graph classification785

problem. We first modify our computational model by assuming the root of the graph is available at786

the beginning of the computation. Then, the estimability of the function is defined in the same way787

using this computational model. Then, we modify the RBS-GNN to have one additional ball centered788

at the root vertex, i.e.,789

RBS-GNN((G, v)) = g

f(C0),

NC∑
j=1

f(Cj)

 (27)

where B0, . . . , Bk are the random balls obtained by RandomBallSample where the root of B0 is790

conditioned by v, and C0, . . . , CCS are the weakly connected components of G[B0∪· · ·∪Bk] where791

C0 contains v. We can prove that any estimable vertex parameter in the random neighborhood model792

for the rooted graph is estimable using the RBS-GNN. Also, by extending the randomized Benjamini–793

Schramm topology to the rooted graphs, we see the estimability coincides with the uniform continuity794

in the randomized Benjamini–Schramm topology of rooted graphs.795

Using this topology, we can obtain the vertex classification version of the results in Section 6. As the796

number of rooted graphs of N vertices is N times larger than the number of non-rooted graphs of N797

vertices, the covering number of the rooted graph space is larger than that of the non-rooted graph798

space. But this makes no significant difference because this gap is absorbed in the nested logarithm.799

This formulation gives several consequences on the vertex classification problem.800

• We can evaluate the required number of supervised vertices to obtain the desired accuracy.801

In this formulation, each supervised vertex v corresponds to a rooted graph (G, v). Thus, if802

the supervised vertices are chosen randomly, the required number of supervised vertices is803

evaluated by the Rademacher complexity of the model. In particular, we can obtain a model804

with an accuracy ε from the constantly many supervised vertices.805

• We can characterize the difficulty of a vertex classification problem with different supervision806

using transfer learning. Imagine a situation that the supervised vertices have large degrees,807

but we want to predict the vertex property on low-degree vertices. This situation can be808

recognized that the training and test rooted graph distributions, Gtrain and Gtest, are different.809

Therefore, we can apply Lemma 10 to obtain an estimation of the test error, which involves810

the Wasserstein distance of these distributions.811

D Extended Results: Practical Applications812

Many real-world graph parameters are estimable in our framework. This section provides a review813

of graph parameters and their estimability in our random neighborhood model. Most notably, this814

section demonstrates the usage of Theorem 5 for practical graph parameters and provide the proof815

for Proposition 16. In addition, we provide experimental results on real-world datasets to verify our816

theoretical claims.817

D.1 Graph Parameters818

For convenience, we re-state the random neighborhood model and the estimable definitions here. The819

original definitions were provided in Section 3.2.820

Definition 17 (Random Neighborhood Model). The random neighborhood computational model821

allows the following three queries given an input graph G:822

• SampleVertex(G): Sample a vertex u ∈ V uniformly randomly.823

• SampleNeighbor(G, u): Sample a vertex v from the neighborhood of u uniformly randomly,824

where u is an already obtained vertex.825

• IsAdjacent(G, u, v): Return whether the vertices u and v are adjacent, where u and v are826

already obtained vertices.827

This computational model induces an estimability definition and a topology, named random Benjamini-828

Schramm, on the graph space G.829

19

Definition 18 (Constant-Time Estimable Graph Parameter). A graph parameter p is constant-time830

estimable on the random neighborhood model (estimable for short) if for any ε > 0 there exists an831

integer N and a randomized algorithm A in the random neighborhood model such that A performs832

at most N queries and |A(G)− p(G)| < ε with probability at least 1− ε for all graphs G ∈ G.833

D.1.1 Non-estimable Graph Parameters834

We first see that an estimable parameter is bounded as follows.835

Proposition 19. An estimable parameter p is bounded.836

Proof. Recall that an estimable parameter is uniformly continuous (Theorem 5). Let δ be the constant837

for ε = 1 for the continuity. Let us fix an δ-net {G1, G2, . . . } of the graph space using the totally838

boundedness of the space (Lemma 6). Then, p is bounded by C = 1 + maxi p(Gi). In fact, for any839

graph G ∈ G, we have840

p(G) ≤ |p(G)− p(Gi)|+ |p(Gi)| ≤ C (28)

where Gi is the nearest neighbor of G in the ε-net.841

Example 1 in Section 3.2 states that the number of vertices and the min/max degrees are not estimable;842

these immediately follow form Proposition 19 since they are unbounded parameters. Similarly, the843

average degree is unbounded so it is not estimable. The connectivity function is an example of844

bounded but non-estimable graph parameter.845

Proposition 20. p(G) = 1[G is connected] is not estimable.846

Proof. We prove this proposition by giving a counter example showing p violates the definition for847

continuity. Since continuity is equivalent to estimability, such counter example would also disprove848

the estimability of p.849

We first fix ε = 1/2. Then, we choose two graphs G1 and G2 such that G1 is the disjoint union of850

two cliques of size N and G2 is obtained from G1 by adding one edge between them. The figure851

below demonstrates for the case N = 6.

G1 G2

852

We see that d(G1, G2) ≤ δ for any chosen δ > 0 if N is sufficiently large. This is because the853

distribution zr(G1) and zr(G2) of isomorphism classes only different at the event that one of the854

two connected vertices of G2 is sampled. The probability for such event becomes increasingly855

insignificant when N is sufficiently large. Hence, the distance d(G1, G2) can be arbitrarily small856

as stated above. However, by the definition of the connectivity function, for any N we always857

have |p(G1) − p(G2)| = 1 > 1/2. Hence, p is not continuous, and by Theorem 5, it is also not858

estimable.859

D.1.2 Estimable Graph Parameters860

The following propositions proves statements in Example 2.861

Proposition 21. The triangle density is a uniformly continuous parameter and estimable.862

Using Theorem 5, it is clear that we only need to prove estimability or continuity. We show both863

proofs for this case as a demonstration. For simplicity, we assume the input graph G is undirected.864

Proof for Estimability. We show that the triangle density is estimable by constructing a random865

algorithm and prove that this algorithm estimates the triangle density to an arbitrary precision866

dependent only on the number of random samples (Definition 18). The randomized algorithm can be867

implemented under the random neighborhood computational model (Definition 17).868

20

Algorithm 2 Triangle Density Estimation in the Random Neighborhood Model
1: procedure ISTRIANGLE(G, u, v, q)
2: uv ← IsAdjacent(G, u, v);
3: uq ← IsAdjacent(G, u, q);
4: qv ← IsAdjacent(G, q, v);
5: return uv ∧ uq ∧ qv; . ∧ is the logical “and”.
6: procedure TRIANGLEDENSITY(G, T)
7: triangles← 0;
8: for i in 1, . . . , T do
9: u, v, q ← SampleVertex(G); . Runs 3 times to get 3 samples.

10: triangles← triangles + IsTriangle(G, u, v, q);
11: return 1

T triangles;

The procedure IsTriangle in Algorithm 2 return 1 if the three input vertices induce a triangle and869

0 otherwise. Let X be the output of IsTriangle given three random vertices u, v, and q from graph870

G, and X̄ be the output of TriangleDensity. By definition, the expectation E(X) is the true triangle871

density p∆. Since the p∆ and Var(X) are clearly finite, we can apply the Chebyshev’s concentration872

bound to the sample average X̄ with T samples to obtain the following. For any ε > 0,873

P(|X̄ − p∆)| ≥ ε) ≤ Var(X)

ε2T
. (29)

This bound shows that if we take T = O(ε−3) samples, then with probability at least 1− ε we obtain874

an estimation less than ε from the true value. Note that T is only dependent on the precision ε and875

not the size of G; this shows the intuition behind the constant-time nature of our RBS-GNN.876

877

Proof for Continuity. We now prove that the triangle density p∆ is uniformly continuous in the878

randomized Benjamini-Schramm topology. For a given ε > 0, we choose δ = 23ε. Let G1 and G2879

be two graphs satisfying d(G1, G2) ≤ δ. We denote two random variable X1 and X2 to represent the880

event that random sampling from G1 and G2 obtained a triangle. X1 and X2 follows z∆(G1) and881

z∆(G2) distributions, respectively. By the optimal coupling theorem, the random sampling on G1882

and G2 can be coupled with probability at least 1− ε.883

dTV (z∆(G1), z∆(G2)) = min
(X1,X2)−couplings

P(X1 6= X2) (30)

Hence, by the definition of the triangle density, these differs at most ε.884

Using a similar technique, we can prove the estimability or equivalently uniformly continuity of the885

local clustering coefficient.886

Proposition 22. The local clustering coefficient is uniformly continuous and estimable.887

D.2 Graph Classification in Random Neighborhood Model888

We show the results for RBS-GNN on social networks datasets in the TUDatasets repository [42]:889

COLLAB, REDDIT-BINARY, and REDDIT-MULTI5K. We preprocess these datasets in the same890

way as proposed by Xu et al. [65]. Because of this pre-processing, each vertex has a feature vector891

representing its position in the degree distribution. The reason for such setting is because in 1-WL,892

the degree determines the initial coloring [43]. A summary of the datasets is given in Table 1.893

To simulate the random ball sampling procedure of RBS-GNN, we pre-sample the original datasets894

and use these random samples in both training and testing. Table 1 shows the sampling setting we895

used to report the results in Table 2. We prepared multiple other settings for r, b, and k, see the896

provided source code for more detail (supp/notebooks/Preprocessing.ipynb). Let NG(·) be897

the neighborhood function of the sampled input graph, we construct a K-layers f as follows.898

h
(`)
G (u) = MLP(`)

 ∑
v∈NG(u)

h(`−1)(v)

 , ` = 1, . . . ,K (31)

21

Table 1: Overview of the graph classification datasets. This is a small part of the TUDataset [42].
|G| denotes the total number of graphs in the dataset, ν(G) denotes the average number of nodes per
graph, |c| denotes the number of classes, d denotes the dimensionality of vertex features (created
by [65]). r denotes the radius of random balls and also the branching factor. k denotes the number of
random balls. % denotes the average coverage of random balls in terms of the number of edges. %
Memory denotes the relative data storage size.

DATASETS |G| ν(G) |c| d r b k %|E(G)| % Memory

COLLAB 5000 74.5 3 367 2 5 3 58.3± 22.9 55.7
RDT-BINARY 2000 429.6 2 566 3 5 3 37.3± 28.6 14.9
RDT-MULTI5K 5000 508.5 5 734 3 5 3 23.8± 17.7 14.2

f(G) =
∑

`=1,...,K

∑
u∈G

h
(`)
G (u), (32)

where MLP` is a single layer MLP with no activation. Let g be a 2-layers MLP with ReLU activation899

functions, the final output of RBS-GNN[≡2] is given similar to Equation (1):900

RBS-GNN[≡2](G) = g

∑
j

f(G)

 . (33)

The implemented RBS-GNN is denoted by RBS-GNN[≡2] because its GNN component901

f resembles a message-passing GNN such as GIN [65]. In all our experiments, the902

graph neural network f has 4 propagation layers and 5 MLP layers, each of these lay-903

ers have 32 ReLU hidden units (see supp/src/rbsgnn/models/mpgnn_batched.py and904

supp/notebooks/Cross-Validation Scores.ipynb). Regularization methods are weight de-905

cay (10−3), step learning rate (initialized at 0.01, step size 50, γ = 0.5), and dropout (0.5).906

Computational Resources We run all our experiments on a single computer having a single Intel907

CPU (i7-8700K3.70GHz), 64GB DDR4 memory, and a NVIDIA GeForce GTX 1080Ti GPU with908

CUDA 11.3 (driver version 465.31). The system runs Linux Kernel 5.12.6. Our model’s prototype is909

implemented using Python 3.9 and PyTorch 1.8.1+cu111 (see supp/src/requirements.txt for910

the detail of the Python environment).911

Cross-Validation Scores Reporting the 10-folds (also 3-folds and 5-folds) cross-validation scores912

for graph learning model is a common task in the literature [10, 63, 65]. We compare our practical913

implementation of RBS-GNN to existing benchmarks. We show the results for other baselines914

reported by Xu et al. [65]. These baselines includes WL-subtree, PatchySan, and AWL (see Section 7915

in [65] for more detail). Note that RBS-GNN only has access to partial inputs for both training and916

testing procedures. The fractions of observed edges and storage memory are shown in Table 1.917

Table 2: Best test accuracy (in percentage) for the graph classification task. Note that RBS-GNN only
has access to 20∼60 percent of edges and 15∼50 percent of node features (Table 1).

MODELS COLLAB RDT-BINARY RDT-MULTI5K

GIN-0 80.2± 1.9 92.4± 2.5 57.5± 1.5
WL subtree 78.9± 1.9 81.0± 3.1 52.5± 2.1
PatchySan 72.6± 2.2 86.3± 1.6 49.1± 0.7
AWL 73.9± 1.9 87.9± 2.5 54.7± 2.9

RBS-GNN[≡2] 80.3± 1.5 79.0± 1.9 44.0± 1.4

The result in Table 2 shows that at best we can achieve similar result for COLLAB while observing918

only 55.7% of the data. Note that this experiment is different from any random pooling or drop-out919

techniques because we use random balls for both train and test. The results for REDDIT datasets920

are also quite similar to the results of complete-observation models. As shown in Table 1, we only921

22

observe about 14% of the REDDIT original datasets. We selected such extreme example to show that922

although by a small observation, in some cases GNNs can still predict well. This observation implies923

that the true labeling function of these dataset is smooth in the random Benjamini-Schramm topology.924

23

	Introduction
	Related Work
	Preliminaries
	Graphs
	Computational Model

	Random Balls Sampling Graph Neural Networks (RBS-GNN)
	Main Result
	Universality of RBS-GNN
	Topology of Graph Space: Estimability is Uniform Continuity

	Theoretical Applications
	Robustness Against Perturbation
	Rademacher Complexity
	Size-Generalizability
	Approximation-Theoretic Size-Generalizability
	Learning-Theoretic Size-Generalizability

	Partially-Universal RBS-GNNs

	Conclusion
	Complete proofs
	Theorem 3
	Theorem 5
	Proofs for Applications

	Extended Results: Finite-Dimensional Vertex Features
	Extended Results: Vertex Classification Problems
	Extended Results: Practical Applications
	Graph Parameters
	Non-estimable Graph Parameters
	Estimable Graph Parameters

	Graph Classification in Random Neighborhood Model

