
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

CSO: Constraint-guided Space Optimization for Active Scene
Mapping

Anonymous Authors
ABSTRACT
Simultaneously mapping and exploring a complex unknown scene
is an NP-hard problem, which is still challenging with the rapid
development of deep learning techniques. We present CSO, a deep
reinforcement learning-based framework for efficient active scene
mapping. Constraint-guided space optimization is adopted for both
state and critic space to reduce the difficulty of finding the global
optimal explore path and avoid long-distance round trips while
exploring. We first take the frontiers-based entropy as the input
constraint with the raw observation into the network, which guides
the training start from imitating the local greedy searching. How-
ever, the entropy-based optimization can easily get stuck with few
local optimal or cause inefficient round trips since the entropy
space and the real world do not share the same metric. Inspired by
constrained reinforcement learning, we then introduce an action
mask-based optimization constraint to align the metric of these
two spaces. Exploration optimization in aligned spaces can avoid
long-distance round trips more effectively. We evaluate our method
with a ground robot in 29 complex indoor scenes with different
scales. Our method can perform 19.16% more exploration efficiency
and 3.12% more exploration completeness on average compared to
the state-of-the-art alternatives. We also implement our method
in real-world scenes that can efficiently explore an area of 649𝑚2.
The experiment video can be found in the supplementary material.

KEYWORDS
Active Mapping, Space Alignment, Constrained Reinforcement
Learning, Information Entropy, Graph Neural Network.

1 INTRODUCTION
Building a complete map from an unknown indoor environment
based on robot scanning is critical for many applications in com-
puter vision and robotic communities. However, it is time-consuming
and inconvenient if the scanning is human-operated. Introducing
artificial intelligence to guide the robot scanning automatically is
then proposed by many previous works[9, 16, 17, 27, 42, 43, 45],
which form the optimization problem of active scene mapping.

The goal of active mapping is finding the shortest exploration
path to perform the complete scanning. However, solutions based
on global planning theory, like the Travelling Salesman Problem
(TSP) [30], formulate it as an NP-hard problem[26], which makes
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Figure 1: Illustration of space alignment for avoiding long-
distance round trips. We employ Multidimensional Scaling
(MDS) to visualize the metrics of different spaces in (1), (2),
and (3), where points 𝐴, 𝐵, 𝐶, and 𝐷 represent the robot’s po-
sition, the optimal position, a position with higher frontier
entropy, and a position farther from the robot, respectively.
When two metric spaces are aligned, the distances between
any two points in these spaces should be similar or exhibit
proportional scaling. As shown in (4), we select 𝐵𝑖 ,𝐶𝑖 , 𝐷𝑖 from
spaces (1), (2), (3) to construct 3 triangles △𝐵𝑖𝐶𝑖𝐷𝑖 , 𝑖 = 1, 2, 3
individually. It is evident that 𝐵2𝐶2

𝐵3𝐶3
≈ 𝐶2𝐷2

𝐶3𝐷3
≈ 𝐵2𝐷2

𝐵3𝐷3
, yet

𝐵1𝐶1
𝐵2𝐶2

0 𝐶1𝐷1
𝐶2𝐷2

0 𝐵1𝐷1
𝐵2𝐷2

, which suggests that space (3) aligns
with (2) but not with (1). The final result is depicted in (c), the
robot prefers the closer point 𝐵 with lower entropy instead of
the farther point 𝐶 with higher entropy, thus avoiding long-
distance round trips(orange dashed path, 𝐴 → 𝐶 → 𝐵) and
follow a more rational path (green solid path, 𝐴 → 𝐵 → 𝐶).

it unsolvable if the environment is large and complex. Hybrid-
stage optimization[6, 34], which combines the greedy search and
global planning, is then proposed for map reconstruction of large
scenes. The core idea is that global planning is only adopted at the
coarse-grained level of the mapping, while explicit local explor-
ing is performed by greedy search based on information entropy.
This solution shows good time efficiency even if the unknown en-
vironment is complex. However, the two optimization stages are
relatively independent. Local exploration sometimes would drive
global planning into a local optimal.

The recently developed reinforcement learning techniques pro-
vide another efficient solution for this NP-hard problem. A critic

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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network is introduced to replace the handcrafted rules to estimate
the importance of each exploration destination. A correlated action
network is adopted to perform the final planning. [43] takes ad-
vantage of the recent reinforcement learning solutions and neural
graph networks for more efficient and complete map construction
with multi-robots, whose excellence is that the whole optimiza-
tion is end-to-end. However, raw scanning data is not informative
enough if we only have a single robot for mapping. Bad mapping
initials and noised input without cross-validation between robots
highly limit the performance of previous multi-robot-based meth-
ods, which sometimes leads to long-distance round trips during
global planning in a complex scene.

Additionally, the misalignment of space metric between the en-
vironment and corresponding critic value space leads to random
stuck under exceptional circumstances since the robot chooses the
next exploration goal based on the critic value estimated for each
position. More specifically, the misalignment would make goal po-
sitions with similar critic values distribute around the whole scene.
This situation would keep the robot on the run with round trips be-
tween these locations. Therefore, aligning the metric between these
two spaces, which gives the critic network more specific guidance,
is critical for efficient active mapping with a single robot.

This paper proposes a novel reinforcement learning-based active
mapping approach with constraint-guided space optimization for
both state and critic space. Specifically, we first introduce a frontiers-
based entropy as the input constraint with the raw observation
into the network to boost the local optimization. The advantage of
this is that the heuristic-based entropy can cover the bad planning
given by the critic network with incomplete initials, which can
significantly enhance the mapping efficiency at the beginning. It
is important to emphasize that this extra input would not mess
up the global planning with enough observation like the previous
hybrid-stage optimization approaches. Since the entropy is given
implicitly through the network, the two-stage optimizations are
highly correlated.

The second stage of space optimization is performed by the ac-
tion network, which takes the outputs of the critic network to give
the global planning. We introduce an action mask strategy to solve
the misalignment problem of the space metric we mentioned above.
It is not easy to align the metric without explicit supervision. In-
spired by constrained reinforcement learning[21, 23, 44], we utilize
the relevance of the critic network and action network to perform
the alignment. At the beginning of training, we constrain the action
network through a local action mask with a limited size near the
robot. In response, the critic network tends to tune down the esti-
mated scores for these long-distance goals since the action network
is not selecting them. And then the critic value space will gradually
align with the real-world space, as shown in figure 1.

We evaluate our method with a ground robot in 29 complex
indoor scenes. In the experiments, our method can perform 19.16%
more exploration efficiency and 3.12% more exploration complete-
ness on average compared to the state-of-the-art alternatives. Fur-
thermore, the experiments demonstrate that our method also has
significantly better mapping performance on more complex and
larger-scale scenes thanks to the frontiers-based entropy design.
Some visual examples are given in figure 6, which demonstrate
the proposed action mask’s effectiveness in avoiding long-distance

round trips during active mapping. We also implement our method
with a ground robot in 3 real-world scenes that can efficiently ex-
plore areas from 170𝑚2 to 649𝑚2, as shown in figure 7. In summary,
the contributions of this paper include the following:

• We introduce a frontiers-based entropy to constrain the net-
work input, which can significantly improve training effi-
ciency and mapping performance. This design explored a
novel way to make integration of the heuristic-based method
and advanced reinforcement learning-based techniques.

• We propose an action mask constraint to guide the network
to do efficient global planning by aligning the metric be-
tween the critic value space and the real-world space. This
design is demonstrated to be effective for avoiding round
trips during the exploration, which can significantly improve
the efficiency of active mapping.

• The proposed constraint-guided space optimization-based ac-
tive scene mapping outperforms state-of-the-art alternatives
with indoor scenes, which gains 19.16% more exploration
efficiency and 3.12% more exploration completeness on the
Matterport3D dataset.

2 RELATEDWORK
Traditional Heuristic Method: The pioneering work [42] first
proposed the concept of the frontier for active mapping, i.e., the
boundary areas between explored free space and unexplored space,
aiming to guide the robot to the frontiers until the entire space
is observed. Many subsequent works [2, 11, 13, 17, 20, 37, 46, 47]
achieve both 2D and 3D active mapping based on this concept. In
addition, [6, 16, 19] have also achieved good performance based on
Rapidly Exploring Random-Trees [24], Travelling Salesman Prob-
lem [30], etc. These methods work well for active mapping. How-
ever, most of them either greedily select frontiers, making it difficult
to obtain an approximate global optimal solution, or the planning
process is time-consuming and computationally expensive.

Learning-Based Method. [9, 10, 43] employ convolution neural
network or graph neural network [22] to regress the goal position
by maximizing the long-term value via reinforcement learning,
providing less planning time and approximate optimal strategy.
These works directly use raw data as state input without further
data processing, which will improve exploration efficiency. In addi-
tion, [7] successfully uses an attention-based deep reinforcement
learning approach for active mapping. However, they only conduct
experiments in perfect and synthetic 2D scene maps, so for realistic
scene data such as Matterport3D [8], Gibson [41], and real-world,
it may cause the performance drop due to the lack of sim-to-real.

Information-Theoretic Methods Another popular way for ac-
tive mapping is using the information theory. By calculating the
information gain or uncertainty value [3, 14, 15, 19, 29, 31, 32], the
robot chooses actions that can maximize information gain or reduce
uncertainty of the scene. The earliest information-theoretic strate-
gies are those proposed by [40] and [18]. [1, 4, 38, 39] maximize
information gain over the next few actions. And these works can
also be extended to solve multi-robot tasks [5, 12, 28].
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Figure 2: The Overview of CSO for Active Scene Mapping. The robot first uses the Mapping Module to construct an Exploration
Map based on the Observations 𝐶 (𝜔𝑡 ), and uses Information Aggregation to compute the frontiers-based entropy 𝐼 (𝑀𝑡 ) of each
frontier(Section 3.2). Then the State Generator generates the state input 𝑠 (𝜔𝑡 ) for the Global Policy. At the global planning
stage, the Graph Neural Network-based encoder is used for feature fusion and extraction(Section 3.4). Based on the sampling
probabilities of frontiers output by the actor network, the ActionMask Guided Space Alignment(Section 3.3) filters unreasonable
frontiers and guides the critic value space to align with the geodesic distance space. Once a frontier is selected as the long-term
goal, the Local Policy drives the robot to reach this goal and update the Exploration Map based on new observations 𝐶 (𝜔𝑡+1).
This planning cycle is iteratively implemented until the termination criteria are triggered.

3 METHOD
3.1 Problem Statement and Formulation
The goal of active mapping is to let the robot automatically de-
cide its next action based on its local observations in an unknown
environment and gradually generate a globally optimal shortest
exploration path, which can completely scan the scene and build a
complete map. This optimization process can be defined as:

𝐿 = min
Ω={𝜔0,𝜔1,...,𝜔𝑘 }

∑︁
𝑡

dist(𝜔𝑡 , 𝜔𝑡+1), (1)

𝑠 .𝑡 .

�����𝐸 −
∑︁
𝑡

𝐶 (𝜔𝑡 )
����� = 0

where 𝐿 is the exploration trajectory length, dist(·) is the travel
length from location 𝜔𝑡 to 𝜔𝑡−1, 𝐶 (·) is the coverage area from a
certain scanning location, 𝐸 is the complete environment mapping,
𝜔𝑡 is the robot’s location at 𝑡 . Note that 𝐸 and𝐶 (·) are unknown be-
fore the mapping. Thus this optimization can not be solved directly.

Since we can not solve the optimization at one step, we formulate
equation 1 as a Markov Decision Process (MDP) to solve this ill-
posed problem step-by-step, whose training details can be found
in section 3.4. Specifically, the learning process is determined by
the tuple: (𝑆,𝐴,Π, 𝑅), where 𝑆 is the state space constructed from
the scanning during the exploration while 𝐴 is the action space
of the robot. Note that we use the frontiers of the occupancy map
constructed while exploring the scene as the state and action space,
which can greatly reduce the space size and make the learning
process easier to converge. Furthermore, we propose a frontiers-
based entropy as the input constraint for the state space 𝑆 , which
guides the training start from imitating the local greedy searching.
Details about 𝑆 can be found in section 3.2. We then introduce an
action mask design as a constraint to align the metric of 𝑆 and the
critic space given by Π. Π(𝑎 |𝑠) denoting the probability of selecting

action a under state 𝑠 . Details of action mask design can be found
in section 3.3. The overview of our pipeline is shown in figure 2.

3.2 Environment State Design
The state for our framework mainly consists of three parts, the
occupancy map𝑀𝑡 , the distance map 𝐷 (𝑀𝑡 , 𝜔𝑡 ), and the proposed
frontiers-based entropy 𝐼 (𝑀𝑡 ).

𝑠 (𝜔𝑡 ) = (𝑀𝑡 , 𝐷 (𝑀𝑡 , 𝜔𝑡 ), 𝐼 (𝑀𝑡 )) (2)

Occupancy map. Given the observation 𝐶 (𝜔𝑡 ) from the robot at
location 𝜔𝑡 , a 2D global map from the top-down view of the 3D
scene is constructed as the occupancy map. The occupancy map is
denoted as𝑀𝑡 ∈ [0, 1]𝑋×𝑌×2 at time step 𝑡 , where𝑋,𝑌 are the map
size. The two channels indicate the explored and occupied regions
separately. Each cell in 𝑀𝑡 can be classified as one of the three
classes, open (explored but not occupied), occupied, and unknown
(unexplored). Frontier cells 𝐹𝑡 ⊂ 𝑀𝑡 are defined as the open cells
whose adjacent to at least one unknown cell.

Distance map. Given the current position𝜔𝑡 and the constructed
occupancy map𝑀𝑡 build by the robot while exploring, we further
construct a distancemap𝐷 (𝑀𝑡 , 𝜔𝑡 ) ∈ R𝑋×𝑌 , inwhich𝐷𝑥,𝑦 (𝑀𝑡 , 𝜔𝑡 )
represents the geodesic distance from the location (𝑥,𝑦) to the ro-
bot’s position 𝜔𝑡 .

𝐷𝑥,𝑦 (𝑀𝑡 , 𝜔𝑡 ) = dist𝑀𝑡 ((𝑥,𝑦), 𝜔𝑡 ) (3)
The geodesic distance dist𝑀𝑡 is the shortest distance for traver-

sal between two points in 𝑀𝑡 without collision. Compared with
the Euclidean distance, it can implicitly encode the underlying
scene layout information, which gives better guidance for robots to
explore. We compute dist𝑀𝑡 with the Fast Marching Method [35].

Frontiers-based Entropy. Besides the raw data𝑀𝑡 and 𝐷 (𝑀𝑡 , 𝜔𝑡 ),
we would like to introduce some high-level information as a con-
straint to reduce the searching space while the𝑀𝑡 is highly incom-
plete. Heuristically, the frontier cell 𝑓 ∈ 𝑀𝑡 indicates the potential
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Figure 3: We use the information aggregation module to
compute the frontiers-based entropy based on the frontier-
centric map, which is a 𝛾 × 𝛾 submap of the exploration map
centered on each frontier. The dark blue pixels in the purple
dashed circles denote the frontiers.

next best goal to explore since its surrounding is information incom-
plete. And the frontiers in a scene usually do not exist alone, but
have the characteristics of small-scale aggregation and large-scale
dispersion. Inspired by this, we propose a frontiers-based entropy
𝐼 to encode such information as input to constrain the network
searching, which can be described as:

𝐼𝑥,𝑦 (𝑀𝑡 ) =∥ {𝑓 ∈ 𝐹𝑡 |dist𝑀𝑡 (𝑓 , (𝑥,𝑦)) < 𝛾} ∥ (4)
where 𝐼𝑥,𝑦 (𝑀𝑡 ) denotes the number of frontiers calculated by

the Information Aggregation module based on the𝛾×𝛾 submap cen-
tered on (𝑥,𝑦) in𝑀𝑡 , as shown in figure 3. By doing this, the infor-
mation contained in each location, in addition to its map coordinates
(𝑥,𝑦), also contains statistical information within its neighborhood.
Note that 𝐼𝑥,𝑦 (𝑀𝑡 ) will give (𝑥,𝑦) a larger information entropy if it
is surrounded by more frontiers. For the discrete frontiers or noise
points, a smaller information entropy can appropriately reduce its
impact on global optimization.

3.3 Action Mask guided Space Alignment
In the reinforcement learning framework, the robot chooses the
next exploration goal𝜔𝑡+1 based on𝜔𝑡+1 = argmax𝑓 ∈𝐹𝑡 Π(𝑎 |𝑠 (𝜔𝑡 ).
The action space𝐴 is reduced to selecting a frontier 𝑓 from 𝐹𝑡 . If the
world space𝑀𝑡 is not aligned with the space metric of Π(𝑎 |𝑠 (𝜔𝑡 )),
it will cause the robot to randomly get stuck or turn back and forth
under exceptional circumstances, as shown in figure 1.

Therefore, aligning the metric between𝑀𝑡 and Π(𝑎 |𝑠 (𝜔𝑡 ), which
gives the critic network more specific guidance, is critical for effi-
cient active mapping with a single robot. Since there is no additional
supervision information, we introduce an action mask strategy to
solve the misalignment problem of the space metric. Specifically,
we design two action masks: the valid distance mask and the stuck
mask, to filter the actions in the action space of the global policy,
and constrain action sampling to be performed within the valid
action space, rather than the entire action space. By doing this, the
influence of abnormal data in the network learning process can be
reduced, and the network learning rate can be accelerated at the
same time so that𝑀𝑡 and Π(𝑎 |𝑠 (𝜔𝑡 ) can be aligned.

Valid Distance Mask. We first design a valid distance mask to
filter some obviously invalid goals in the action space. When the

robot explores a large-scale complex scene, a reasonable and effi-
cient exploration method should make the robot gradually explore
the scene instead of wandering back and forth between multiple
goals. We want the better actions given by Π(𝑎 |𝑠 (𝜔𝑡 )) distributed
in a reasonable range around 𝜔𝑡 to ensure the gradual exploration.
This heuristic property also implicitly requires the metric of 𝑀𝑡

and Π(𝑎 |𝑠 (𝜔𝑡 )) to be aligned.
To ensure the constraint is appropriate, not too strict or loose, we

filter the action space based on the geodesic distance information
from 𝜔𝑡 to each potential goal. Specifically, we set 2 thresholds,
𝛽near and 𝛽far. For the potential goals that exceed the threshold
range [𝛽near, 𝛽far] of 𝜔𝑡 , we set their sampling probability to 0 to
ensure that they will not be sampled, and only sample frontiers
within the valid distance. The masked Πmask (𝑓 |𝑠 (𝜔𝑡 )) is given as:

Πmask (𝑓 |𝑠 (𝜔𝑡 ) ) =
{
Π (𝑓 |𝑠 (𝜔𝑡 ) ), if 𝑑𝑖𝑠𝑡𝑀𝑡 (𝑓 ,𝜔𝑡 ) ∈ [𝛽near, 𝛽far ]
0, otherwise

(5)
where Πmask (𝑓 |𝑠 (𝜔𝑡 )) represents the masked probability of the

action to select 𝑓 as the next exploration goal, 𝑑𝑖𝑠𝑡𝑀𝑡 (𝑓 , 𝜔𝑡 ) is the
geodesic distance from robot position 𝜔𝑡 to the 𝑓 , and Π(𝑓 |𝑠 (𝜔𝑡 ))
is the original probability distribution from the network. We set
𝛽near = 0.2 and 𝛽far = 2 in our experiments.When there are no valid
distance frontiers within the range [𝛽near, 𝛽far], we first remove the
mask of 𝛽near to extend the valid range to [0, 𝛽far]. If there are still
no valid distance frontiers within range [0, 𝛽far], then we further
remove the mask of 𝛽far and select the goal from all frontiers.

Algorithm 1: Stuck Mask Filtering.
Input: Action function Πmask (𝑎 |𝑠 (𝜔𝑡 ) . Past 3 selected exploration

goals {𝜔𝑡 , 𝜔𝑡−1, 𝜔𝑡−2} and corresponded exploration area
{ ∥𝑀𝑡 ∥, ∥𝑀𝑡−1 ∥, ∥𝑀𝑡−2 ∥ }.

Output: Stuck masked Πmask (𝑎 |𝑠 (𝜔𝑡 )
Calculate the max moving length in the last 3 steps:
𝑙max = max𝑖∈{𝑡−1,𝑡−2} 𝑑𝑖𝑠𝑡𝑀𝑡 (𝜔𝑖 , 𝜔𝑖+1 )

Calculate the max area increment in the last 3 steps:
𝑐max = max𝑖∈{𝑡−1,𝑡−2} ∥𝑀𝑖 − 𝑀𝑖+1 ∥

Given 3 thresholds 𝛼1 = 1, 𝛼2 = 1 and 𝛼3 = 1
if 𝑙max < 𝛼1 and 𝑐max < 𝛼2 then

for Location 𝜔𝑎 given by 𝑎:
min𝑖∈{𝑡,𝑡−1,𝑡−2} 𝑑𝑖𝑠𝑡𝑀𝑡 (𝜔𝑖 , 𝜔𝑎 ) < 𝛼3 do

Πmask (𝑎 |𝑠 (𝜔𝑡 ) = 0
end

end

Stuck Mask. Besides the valid distance mask, we further design a
stuck mask, which is used to filter the actions from the action space
that will cause the robot to continue being stuck. To be specific, we
first determine whether the robot is stuck by collecting the robot’s
long-term goals, exploration areas, and moving distances in the
past 3 time steps. We consider the robot to be stuck if the maximum
moving length is less than the threshold 𝛼1 = 1 and the maximum
area increment is less than the threshold 𝛼2 = 1. Then, we calculate
the distance from the candidate actions to the past 3 long-term goals.
Only when the minimum distance is greater than the threshold
𝛼3 = 1, we consider the action to be a reasonable action that has a
probability of being selected as the long-term goal. By doing this, a
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new long-term goal that is different from the historical goals will
be chosen, which can help the robot get out of stuck. Details of the
stuck mask operation can be found in Algorithm 1.

3.4 Deep Reinforcement Learning Framework
We use the off-policy learning approach Proximal Policy Optimiza-
tion (PPO) [33] as the policy optimizer. The actor is trained to learn
a policy network that outputs the sampling probability of each
action. Graph neural network [22] is adopted as the encoder to per-
form feature extraction and fusion. The critic trains a state-value
network that predicts the state value 𝑉 (𝑠 (𝜔𝑡 )) to indicate how
much reward is earned from the current state, which is adopted to
train our actor network. Details of the network can be found in
the supplementary materials.

Graph Neural Network-based Encoder. We first construct a graph
𝐺 (𝐹𝑡 ,Ω𝑡 ) based on the frontiers 𝐹𝑡 and the explored path Ω𝑡 =

{𝜔0, ..., 𝜔𝑡 } to represent the context of the current scene. It estab-
lishes the correspondences between the robot and frontier nodes
extracted from the constructed occupancy map 𝑀𝑡 . We distrib-
ute the information given by state 𝑠 (𝜔𝑡 ) into nodes and edges of
𝐺 (𝐹𝑡 , 𝜔𝑡 ). For each node 𝑛𝑖 , the input feature 𝑓 (𝑛𝑖 ) ∈ R5 includes
the (𝑥,𝑦) coordinates in𝑀𝑡 , the semantic label that indicates𝑛𝑖 ∈ 𝐹𝑡
or 𝑛𝑖 ∈ Ω𝑡 , the history label that indicates 𝑛𝑖 is 𝜔𝑡 or explored
nodes 𝑛𝑖 ∈ {𝜔0, ..., 𝜔𝑡−1} and the proposed frontiers-based entropy
𝐼𝑛𝑖 (𝑀𝑡 ). The edge feature 𝑓 (𝑛𝑖 , 𝑛 𝑗 ) ∈ R32 is given by a multi-layer
perception(MLP) with 𝑙𝑖 𝑗 ∈ R1 indicates the geodesic distance from
node 𝑛 𝑗 to node 𝑛𝑖 . Then we feed these node and edge features into
the GNN network, which is our actor network, for feature trans-
fer and output a set of scores. Based on these scores, we compute
the probability Πmask (𝑓 |𝑠 (𝜔𝑡 )) of each action, followed by action
mask-based action sampling.

Reward. Our training goal is to maximize the accumulated re-
ward function𝐺 (𝜔𝑡 |Ω𝑡−1). For the active mapping task, the goal is
to pursue high-time efficiency and map completeness. To achieve
this goal, we use an efficiency reward 𝑅step and a coverage reward
𝑅𝑡coverage. The efficiency reward 𝑅step punishes unnecessary time
steps to encourage the robot for more efficient exploration. And
the coverage reward 𝑅𝑡coverage = ∥𝑀𝑡 ∥ − ∥𝑀𝑡−1∥ is defined as the
coverage increment at time step 𝑡 , where the coverage ∥𝑀𝑡 ∥ is the
area of the open space in the occupancy map𝑀𝑡 . Then the complete
reward function formula is defined as

𝐺 (𝜔𝑡 |Ω𝑡−1) =
𝑡−1∑︁
𝑡=0

(𝑅step + 𝜆𝑐𝑅
𝑡
coverage) (6)

where 𝜆𝑐 is the hyper-parameter to balance these two rewards.

4 EXPERIMENT
4.1 Experimental Setup
We test our method in both simulated and real-world environments.
For experiments in simulation, our experiments are conducted on
the Matterport3D [8] dataset using the iGibson[25, 36] simulator.
For experiments in the real world, we deploy a LIMO robot to
explore 3 distinct real-world scenes, as shown in figure 7. Detailed

implementations and the video of real-world experiments can be
found in the supplementary material.

Data processing. We conducted simulation experiments on the
Matterport3D dataset [8] containing 90 realistic indoor scenes
using the iGibson simulator [25, 36]. We followed the standard
train/val/test split of Matterport3D and further split them into four
scales: small(< 30𝑚2), middle(30−100𝑚2), large(100−260𝑚2) and
super large(> 260𝑚2) according to their traversable areas. Details
of the splits can be found in the supplementary materials.

Termination criteria. We consider exploration complete when
the coverage is greater than 99% while the unexplored area is less
than 1𝑚2, or there are no accessible frontiers in the environment.
Meanwhile, we also set the maximum exploration steps as 𝑛 = 3000.
If the exploration step exceeds 𝑛, we terminate exploration anyway.

Evaluation metrics. We evaluate the map completeness via the
coverage(%) that calculates the percentage of explored open space
over the ground truth open space in the environment, and the
exploration area(𝑚2) that calculates the area of explored open space
in the environment. In addition, we use the ratio of exploration area
to the time(𝑠𝑡𝑒𝑝) as the metric to evaluate the scene exploration
efficiency(𝑚2/𝑠𝑡𝑒𝑝), which represents the average area scanned at
each step while exploring a scene.

4.2 Alternatives for Comparison
We compare our method with learning-based methods (ANS, UPEN,
ARIADNE, NeuralCoMapping) and traditional heuristics methods
(Greedy-Info, Greedy-Dist), details of each method are as follows:

• Active Neural SLAM(ANS) [9]. ANS learns a policy that
uses an egocentric local map and a geocentric global map as
input and regresses the goal estimation for path planning.

• UPEN [19]. UPEN learns the occupancy priors over indoor
maps to generate occupancy maps beyond the field-of-view
of the agent and then leverages the model uncertainty over
the generated areas to formulate path selection policies for
the task of interest. In this work, the Rapidly Exploring
Random-Trees(RRT) [24] is used for path planning.

• ARIADNE [7]. ARiADNE proposes a reinforcement learn-
ing approach that relies on attention-based deep neural net-
works for autonomous exploration. However, they only con-
duct experiments in perfect and synthetic 2D scene maps in-
stead of realistic 3D simulated scenes such asMatterport3D[8].
Therefore, we pre-generate 2D maps of all scenes with the
same initialization information and then conduct tests.

• NeuralCoMapping [43]. Following the recent graph neural-
network-based reinforcement learning solutionNeuralCoMap-
ping, we adapt their work from a multi-robot active mapping
to a single-robot for comparison with our approach.

• Greedy-Info and Greedy-Dist [42]. Based on the frontiers
proposed by [42], we further design two heuristics methods,
Greedy-Info and Greedy-Dist, as two variants of our method
and use them as two alternatives for comparison based on
the greedy strategies. These two methods choose the long-
term goal in a greedy manner based on the geodesic distance
or frontiers-based entropy. Detailed implementations can be
found in the supplementary material.
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Table 1: Comparison with alternatives on the Matterport3D dataset [8].

Method Exploration Area(𝑚2) Coverage(%) Time(𝑠𝑡𝑒𝑝) Efficiency (𝑚2/𝑠𝑡𝑒𝑝)
ANS [9] 50.36 57.83 2754.81 0.02096

UPEN [19] 39.63 41.09 3000.00 0.01321
ARIADNE [7] 70.80 72.37 2601.03 0.02665

NeuralCoMapping [43] 73.44 72.67 2108.74 0.04092
Greedy-Info [42] 50.38 48.73 2707.20 0.02284
Greedy-Dist [42] 73.86 73.13 2185.47 0.03890

Ours 81.34 75.79 2037.77 0.04876
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Figure 4: We compared the coverage curves over global steps in 8 Matterport3D scenes with different scales. The closer the
curve is to the upper left corner, the corresponding method can explore a larger area over the same time, indicating a more
efficient exploration. It is obvious that our method(solid) is closer to the upper left than others(dashed).

4.3 Evaluation
Quantitative Comparison with State-of-the-art Alternatives. We

compared our algorithm with all alternatives in 29 prior unknown
scenes consisting of theMatterport3D test and val dataset according
to the standard split. We conducted 5 tests for each scene, with all
methods starting with the same position and orientation, and the
final statistics are shown in table 1. It’s obvious that our method
outperforms all alternatives in terms of exploration completeness,
time steps, and efficiency, demonstrating the superiority of our pro-
posed method. Specifically, our method improves the exploration
efficiency by about 19.16% and coverage by about 3.12% compared
with the state-of-the-art method NeuralCoMapping [43].

It can also be found from figure 5 that the superiority of our
method in exploration efficiency over alternatives becomes more
significant as the scene scale increases. This is because our method
effectively reduces long-distance round trips while exploring and
enables more efficient exploration. It is not a visible effect in small
scenes, but as the scene scale increases, the effect of long-distance
round trips on exploration efficiency becomes increasingly obvious.
Therefore, the larger the scale of the scene, the more pronounced
the superiority of our method becomes.

We also compared the planning time of all methods while ex-
ploring. Compared with the time-consuming traditional method
like RRT(0.878𝑠), our planning time(0.024𝑠) is only 2.73% of it.
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Figure 5: Comparison of exploration efficiency (top) and ef-
ficiency relative deviation (bottom) for each method across
different scene scales. As the scene scale increases, the supe-
riority of our method(red) becomes more and more obvious.

Due to using frontiers-based entropy and action mask operations,
our method causes a longer planning time than other learning-
based methods like NerualCoMapping(0.019𝑠) and simple greedy
strategies(0.015𝑠). Nevertheless, ourmethod still maintains the same
level while achieving better performance. Detailed planning times
for all methods can be found in the supplementary material.

Visual Comparison with State-of-the-art Alternatives. Figure 6
shows the visualization results of all methods in scenes with dif-
ferent scales from the Matterport3D dataset, where the scanning
completeness and exploration paths among different alternatives
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(a)-7(a)-6(a)-5(a)-1 (a)-4(a)-3(a)-2

(b)-7(b)-6(b)-5(b)-1 (b)-4(b)-3(b)-2

(c)-7(c)-6(c)-5(c)-1 (c)-4(c)-3(c)-2

(d)-7(d)-6(d)-5(d)-1 (d)-4(d)-3(d)-2
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(g)-7(g)-6(g)-5(g)-1 (g)-4(g)-3(g)-2

(h)-7(h)-6(h)-5(h)-1 (h)-4(h)-3(h)-2

Figure 6: Visual comparisons of our method with alternatives in the 8 scenes of figure 4, where red lines indicate the robot’s
exploration trajectories, gray areas are ground truth maps, light blue areas denote the explored regions, and green areas
represent obstacles. We also encircle unreasonable exploration trajectories with dashed blue circles.

can be intuitively compared. We also record the exploration cover-
age curves for each scene corresponding to figure 6, as shown in
figure 4. It can be seen from figure 6 that our method outperforms

others in both exploration coverage and path rationality. Mean-
while, our exploration curves in figure 4 are closer to the upper left,
meaning our method can explore scenes efficiently.
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Figure 7: We test our method in 3 real-world scenes using a LIMO robot, where the cumulative exploration area and steps are
labeled below. For each exploration map, the gray areas are the explored regions, the black areas represent obstacles, the red
line tracks the robot’s exploration trajectory, the red triangle marks its current position and orientation, and the red square
indicates its next long-term goal. Moreover, we marked some historical timesteps while exploring with the orange triangles,
and the images around the exploration map are first-view RGB images of the robot at the corresponding timesteps.

Specifically, for some small and simple scenes (a)-(c) where the
whole scene can be explored within 𝑛 = 3000 steps, our exploration
paths are more reasonable and there are no long-distance round
trips or serious stuck situations while exploring. As for large and
complex scenes (d)-(h) that all methods cannot explore the whole
scene within 𝑛 = 3000 steps, our method can explore more regions
with a more reasonable path and achieve higher exploration com-
pleteness. This is because the critic value space is aligned with
the real-world geodesic distance space, preventing the robot from
falling into local optimums and long-distance round trips.

In comparison, ANS [9] uses the entire map as the policy input
and outputs any position in the map as the next long-term goal
without any constraints, which makes it easy to select goals that
will cause long-distance round trips. NeuralCoMapping [43] and
ARIADNE [7] enhance exploration performance by constraining
the action space to frontiers or neighboring nodes around the robot
instead of the entire map. However, the same problem is still in-
evitable because the distance from frontiers or neighboring nodes
to the robot varies across different scenes due to different scene
scales and dynamics while exploring. In addition, UPEN [19] uses
RRT [24] for path planning based on the occupancymap uncertainty
predicted by their model and selects the path that can maximize
map uncertainty over candidate paths for exploration. Therefore, it
depends heavily on the model predictions. At the same time, path
planning based on RRT is also time-consuming. More comparison
results and discussions can be found in the supplementary material.

4.4 Ablation Study
We conduct ablation studies to evaluate the effects of introducing
two kinds of action masks and frontiers-based entropy on explo-
ration efficiency. The results are shown in table 2. We can find that
using either action masks (+AM) or frontiers-based entropy (+Info)
can improve exploration efficiency. This is because either of them
can provide positive guidance for network learning, guiding the
strategy to choose the actions with larger entropy value or filter
out some obvious invalid actions, thus improving the exploration
efficiency. However, these methods are still myopic. Especially
when exploring large-scale scenes that need to maximize long-
term rewards, it is still difficult to further improve the exploration
efficiency by simply using either of these two approaches.

Table 2: Ablation studies of our method, where “baseline"
is the NeuralCoMapping [43], “+SM" indicates using stuck
mask, “+VDM" indicates using valid distance mask, “+AM"
means that both stuck mask and valid distance mask are
used, and “+Info" indicates using frontiers-based entropy.

Method Efficiency (𝑚2/𝑠𝑡𝑒𝑝)

Baseline 0.04092
Baseline+SM 0.04001
Baseline+VDM 0.03956
Baseline+AM 0.04288
Baseline+Info 0.04388
Baseline+Info+SM 0.03761
Baseline+Info+VDM 0.04333
Baseline+Info+AM(Ours) 0.04876

Another important thing to note is that solely employing either
a stuck mask (+SM) or a valid distance mask (+VDM) will diminish
exploration efficiency. Only through the combined utilization of
both can exploration efficiency be enhanced. We analyze that if
only one type of action masking is performed, the probability of
sampling the other type of invalid actions will increase, thus leading
to a decrease in exploration efficiency. Only when both action
masks are used simultaneously can the policy learn effective action
sequences from valid actions, thus maximizing long-term rewards
and improving exploration efficiency.

5 CONCLUSION
We propose a constraint-guided space optimization for active scene
mapping. The space optimization consists of two aspects. We first
introduce the transitional heuristic rules to formulate a frontiers-
based entropy to constrain the search space, which can significantly
improve the exploration efficiency at the beginning of the scanning.
The second constraint is introduced by our action space design,
which can align the metric of the critic value space and the real-
world space. This design can significantly help the robot avoid long-
distance round trips while exploring a large and complex scene. The
evaluation results also demonstrate the superiority of our method
while comparing it with the state-of-the-art alternatives.
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