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1 DETAILED IMPLEMENTATIONS
1.1 Implementation details
Inspired by [4, 12], we split the entire decision-making process into
three parts: environment state generation, global policy, and local
policy, as shown in figure 2 of the main paper. The environment
state generation is used to generate the state input for the global
policy, including the occupancy map, the distance map, and the
frontiers-based entropy map. The global policy receives the state
and predicts the long-term goal for the local policy. The local policy
generates the specific actions for the robot. In our experiments, we
set the global policy to be updated every 25 steps in the simulation
environments, while in the real-world environments, we adjusted it
to update every 15 steps based on practical considerations. During
the local planning stage, the long-term goal does not change, and
the local policy determines the action of each step according to it.

1.2 Data processing
Our simulation experiments are conducted on the Matterport3D
dataset [3]. In addition to the standard train/val/test environments
split of Matterport3D, we further split the dataset into small(<
30𝑚2), middle(30− 100𝑚2), large(100− 260𝑚2), and super large(>
260𝑚2) based on the traversable areas. The training set has 61
scenes, including 8 small scenes, 27 medium scenes, 16 large scenes,
and 10 super large scenes. We evaluate our algorithm on both the
test set and the val set, which contains 4 small scenes, 12 middle
scenes, 10 large scenes, and 3 super large scenes. The splits are
disjoint, therefore all evaluations are conducted in novel scenes.

1.3 Greedy-Dist and Greedy-Info
Based on [11], we further design two heuristic methods, Greedy-
Info and Greedy-Dist, which select the long-term goal greedily
based on the geodesic distance or frontiers-based entropy. Specifi-
cally, the Greedy-Info method selects the frontier with the maxi-
mum information entropy within the valid distance range as the
long-term goal. When there are multiple frontiers with the same
maximum entropy value at the same time, we select the frontier
closest to the robot as the long-term goal. Similarly, the Greedy-Dist
method chooses the closest frontier within the valid distance range
as the long-term goal. When there are multiple frontiers with the
same minimum distance value at the same time, we choose the
frontier with the largest information entropy as the long-term goal.
Both valid distance settings are the same as in our method.

1.4 Experiments in Real-World
In addition to simulated environments, we test our method in the
real world. For experiments in the real world, we deploy the LIMO
robot equipped with an ORBBEC Dabai Depth Camera and an EAI
YDLIDAR X2L 360◦ 2D laser range lidar sensor to explore 3 distinct
real-world scenes, the exploration results are shown in figure 7 of

the main paper. These scenes consist of 2 large scenes (a) and (b),
alongside a super large scene (c), where (a) is composed of labo-
ratories and corridors, (b) is a supermarket, and (c) is part of the
student innovation and practice center. We leverage the gmapping
algorithm [7], a particle filtering-based laser SLAM algorithm, to
generate the robot’s exploration map in the real world based on Li-
DAR and Odometry data. Simultaneously, we employ the ACML [1],
an adaptive Monte Carlo localization algorithm to estimate the ro-
bot’s pose while exploring accurately. We also provide the video of
the real-world experiments in the supplementary material.

2 MORE COMPARISON RESULTS AND
DISCUSSIONS

2.1 Comparison discussions
From the coverage curves in figure 4: (c),(f),(g),(h) of the main paper,
it can be found that in the early stage of exploration, heuristics
such as Greedy-Dist and Greedy-Info achieve a higher exploration
efficiency than our method. However, in the later stage, our explo-
ration curve will gradually be higher than others, either by being
the first to finish exploring or by reaching the highest exploration
completeness. This illustrates that although the greedy-based strat-
egy can achieve higher exploration efficiency in some scenarios, it
is easy to fall into local optimal and cannot maximize the long-term
reward. In contrast, our approach uses frontiers-based entropy as
the state input, while using action masks as the learning constraints
to align the critic value space with the real-world geodesic distance
space, thus achieving more efficient exploration and ensuring larger
accumulated rewards.

Greedy Dist Ours

Figure 1: The similar exploration trajectories of ours and
Greedy Dist in some ideal cases. The highly similar trajec-
tories further demonstrate the alignment of the critic value
space with the geodesic distance space in our method.

It is worth noting that from figure 1, the planning of Greedy-
Dist can also achieve an approximate performance to ours in some
ideal scenarios, which further proves the alignment of the critic
value space with the geodesic distance space in our method. Simi-
lar results can also be found in figure 6:(c)-6,(c)-7 of the main pa-
per. However, in most scenarios, our method still outperforms the
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Greedy-Dist no matter in exploration efficiency, completeness, or
path rationality. This is attributed to our method not solely relying
on geodesic distance but integrating both frontiers-based entropy
and geodesic distance to derive a set of action sequences that can
maximize long-term rewards, thus achieving better performance.

2.2 Comparison of Planning Time
Table 1 shows the planning time of different methods while explor-
ing. Compared to the time-consuming traditional planning method
RRT, our planning time is only 2.73% of it. At the same time, we
can achieve a more efficient and complete exploration. It is worth
noting that our method results in a longer planning time due to the
use of frontiers-based entropy and action mask operations. Despite
all of this, our method remains at a similar level while achieving
better performance compared to other learning-based methods and
simple greedy strategies.

Table 1: Comparison of planning time for different methods.

Method Planning Time (𝑠)

Greedy [11] 0.015
ANS [5] 0.004

UPEN(RRT) [6] 0.878
ARIADNE [2] 0.012

NeuralCoMapping [12] 0.019
Ours 0.024

3 NETWORK ARCHITECTURE DETAILS
We use the off-policy learning approach Proximal Policy Optimiza-
tion (PPO) [9] as the policy optimizer. The detailed network ar-
chitecture is shown in figure 2 (source code is provided in the
supplementary material).

The actor network is trained to learn a policy network that out-
puts the probability of each action being chosen. In our experiment,
a graph neural network(GNN) [8] is adopted as the actor network to
perform feature extraction and fusion based on the state input 𝑠 (𝜔𝑡 )
generated by the state generator. Specifically, the actor network
consists of two parts, the encoder and the GNN module. The en-
coder is composed of a multi-layer perception (MLP), which is used
to encode the feature of the nodes in graph 𝐺 (𝐹𝑡 ,Ω𝑡 ), including
the node (𝑥,𝑦) coordinate, semantic label, whether it is a historical
node or not, frontiers-based information entropy, and geodesic dis-
tance from the robot to each node, and finally obtain 32-dimensional
features. These features are fused through 3 GNN layers. Each layer
uses the MLP to further extract and fuse the features for the current
and historical frontiers, current and historical robot position, and
finally output a set of frontiers scores, which will be used to gen-
erate the sampling probability of each frontier. Subsequently, the
action mask-based action sampling is performed on all frontiers,
including the valid distance mask and the stuck mask, which is used
to filter out unreasonable frontiers that may cause long-distance
round trips or make the robot get stuck, ensuring that the robot
selects a valid frontier as the long-term goal.

The critic network trains a state-value network that predicts the
state value 𝑉 (𝑠 (𝜔𝑡 )) to indicate how much reward is earned from

Current Exploration Map
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Global Policy

Critic Network Critic Value
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Figure 2: Network Architecture Details

the current state, which is adopted to train the actor network. In
our experiment, the state input of the critic network is a vector of
[6,𝑤, ℎ], where [𝑤,ℎ] is the size of the exploration map, and the 6
channels are obstacle map, frontiers map, robot current position
map, robot historical trajectory map, explored map, and explorable
map respectively. The initial [𝑤,ℎ] is set to [480, 480], and before
feeding into the critic network, we use a maxpool operation to
compress it to [120, 120] for ease of calculation. The critic network
consists of 5 convolutional layers and 3 linear layers. A flatten
operation is inserted in the middle as a separation to flatten the
features into one dimension.

Based on the robot’s position, the estimated long-term goal, and
the exploration map, the local policy generates a moving trajectory
from the robot to the long-term goal. We adopt the Fast Marching
Method (FMM) [10] to achieve this purpose.
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