
A Instantaneous Regret Bound

Conditioned on the event that (8) in Lemma 1 holds (with probability ≥ 1− δ), it follows that

cf (x∗;α) ≤ cut−1
(x∗;α)

cf (xt;α) ≥ clt−1
(xt;α) .

Therefore, with probability ≥ 1− δ,

rt , cf (x∗;α)− cf (xt;α)

≤ cut−1(x∗;α)− clt−1(xt;α)

≤ cut−1
(xt;α)− clt−1

(xt;α) (18)

where the last inequality is because xt ∈ argmaxx cut−1(x;α).

Based on the relationship between CVaR and VaR in (3),

cut−1(xt;α)− clt−1(xt;α) =
1

α

∫ α

0

vut−1(xt;α
′)− vlt−1(xt;α

′) dα′

≤ 1

α

∫ α

0

vut−1
(xt;αt)− vlt−1

(xt;αt) dα′

= vut−1(xt;αt)− vlt−1(xt;αt) (19)

where αt ∈ argmaxα′∈(0,α] vut−1
(xt;α

′)− vlt−1
(xt;α

′) (7).

As wt is selected as an LV w.r.t. αt, xt, lt−1, and ut−1,

lt−1(xt,wt) ≤ vlt−1
(xt;αt) ≤ vut−1

(xt;αt) ≤ ut−1(xt,wt) .

Therefore,

vut−1(xt;αt)− vlt−1(xt;αt) ≤ ut−1(xt,wt)− lt−1(xt,wt)

= 2β
1/2
t σt−1(xt,wt) (20)

where the last equality is due to (5).

From (18), (19), and (20), we obtain (9), (10), and (11), respectively.

B Proof of Theorem 1

From (11) and the nondecreasing property of βt, with probability ≥ 1− δ,

RT =

T∑
t=1

rt ≤
T∑
t=1

2β
1/2
t σt−1(xt,wt)

≤ 2β
1/2
T

T∑
t=1

σt−1(xt,wt)

≤ 2β
1/2
T

√√√√T

T∑
t=1

σ2
t−1(xt,wt)

where the last inequality is due to the Cauchy-Schwarz inequality. Assuming κ(x,w) ≤ 1 for all
x ∈ X and w ∈W, Lemma 5.3 and Lemma 5.4 in [21] show that

2β
1/2
T

√√√√T

T∑
t=1

σ2
t−1(xt,wt) ≤

√
C1TβT γT (21)

where C1 = 8/ log(1 + σ−2n ) and γT is the maximum information gain about f that can be obtained
by observing any set of T observations. Therefore,

RT ≤
√
C1TβT γT

holds with probability ≥ 1− δ.
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C Decomposition of rBayes
t

By selecting xt as a sample from the posterior belief of x∗ given yDt−1
, it is noted that the distribution

of xt and x∗ are the same, i.e., p(xt|yDt−1
) = p(x∗|yDt−1

). Furthermore, given yDt−1
, ut−1 is a

deterministic function, so p(cut−1
(x∗;α)|yDt−1

) = p(cut−1
(xt;α)|yDt−1

) and

E[cut−1
(x∗;α)] = E[cut−1

(xt;α)] (22)

Therefore, following [18], we can decompose rBayes
t as follows:

rBayes
t , E[cf (x∗;α)− cf (xt;α)]

= E[cf (x∗;α)]− E[cut−1
(x∗;α)] + E[cut−1

(xt;α)]− E[cf (xt;α)] from (22)
= E[cf (x∗;α)]− E[cut−1

(x∗;α)] + E[cut−1
(xt;α)]− E[clt−1

(xt;α)]

+ E[clt−1(xt;α)]− E[cf (xt;α)]

= E[clt−1
(xt;α)− cf (xt;α)] + E[cf (x∗;α)− cut−1

(x∗;α)]

+ E[cut−1
(xt;α)− clt−1

(xt;α)]

Since E[Z] ≤ E[max(0, Z)] for a random variable Z, it follows that

rBayes
t ≤ E[max

(
0, clt−1(xt;α)− cf (xt;α)

)
] + E[max

(
0, cf (x∗;α)− cut−1(x∗;α)

)
]

+ E[cut−1
(xt;α)− clt−1

(xt;α)]

= E[∆lower
c (xt;α)] + E[∆upper

c (x∗;α)] + E[cut−1(xt;α)− clt−1(xt;α)]

where ∆lower
c (xt;α) , max(0, clt−1(xt;α) − cf (xt;α)) and ∆upper

c (x∗;α) , max(0, cf (x∗;α) −
cut−1(x∗;α)).

D Proof of Lemma 2

E
[
∆lower
c (x;α)

]
= E

[
max(0, clt−1

(x;α)− cf (x;α))
]

= E
[
max

(
0,

1

α

∫ α

0

(
vlt−1

(x;α′)− vf (x;α′)
)

dα′
)]

≤ E
[

1

α

∫ α

0

max
(
0, vlt−1(x;α′)− vf (x;α′)

)
dα′
]

=
1

α

∫ α

0

E
[
max

(
0, vlt−1(x;α′)− vf (x;α′)

)]
dα′

=
1

α

∫ α

0

E
[
∆lower
v (x;α′)

]
dα′

where ∆lower
v (x;α′) , max

(
0, vlt−1

(x;α′)− vf (x;α′)
)
.

E Proof of Lemma 3

We prove the following Lemma 4 which is then used to prove Lemma 5. Lemma 3 follows from
Lemma 5.
Lemma 4. Let Wupper

lt−1
, {w ∈W : lt−1(x,w) ≥ vlt−1

(x;α′)}, then P (W ∈Wupper
lt−1

) > 1− α′.

Proof. By contradiction, if P (W ∈Wupper
lt−1

) ≤ 1− α′, then

P (W ∈W \Wupper
lt−1

) = 1− P (W ∈Wupper
lt−1

) ≥ α′ .
Furthermore, we assume that |W| is finite, so the above implies that

P

(
lt−1(x,W) ≤ max

w∈W\Wupper
lt−1

lt−1(x,w)

)
≥ α′ .

13



Therefore, from the definition of VaR,

max
w∈W\Wupper

lt−1

lt−1(x,w) ≥ vlt−1(x;α′) .

From the definition of Wupper
lt−1

, the above implies that

max
w∈W\Wupper

lt−1

lt−1(x,w) ∈Wupper
lt−1

.

However, max
w∈W\Wupper

lt−1

lt−1(x,w) ∈W \Wupper
lt−1

.

Thus, Wupper
lt−1
∩
(
W \Wupper

lt−1

)
6= ∅

which is a contradiction.

Lemma 5. Consider a realization f1 of the black-box function f following the GP posterior belief
given yDt−1

that satisfies
vlt−1(x;α′)− vf1(x;α′) > ω (23)

for α′ ∈ (0, 1), x ∈ X, and ω ≥ 0. Let Wupper
lt−1

, {w ∈W : lt−1(x,w) ≥ vlt−1
(x;α′)}. Then,

∃w0 ∈Wupper
lt−1

, vlt−1(x;α′)− f1(x,w0) > ω .

Proof. By contradiction, if ∀w0 ∈ Wupper
lt−1

, vlt−1
(x;α′) − f1(x,w0) ≤ ω, i.e., ∀w0 ∈

Wupper
lt−1

, f1(x,w0) + ω ≥ vlt−1
(x;α′). Furthermore, from (23), vlt−1

(x;α′) > vf1(x;α′) + ω.
Therefore,

∀w0 ∈Wupper
lt−1

, f1(x,w0) + ω > vf1(x;α′) + ω .

Equivalently,
∀w0 ∈Wupper

lt−1
, f1(x,w0) > vf1(x;α′) . (24)

By Lemma 4, we have

P

(
f1(x,W) ≥ min

w∈Wupper
lt−1

f1(x,w)

)
= P (W ∈Wupper

lt−1
) > 1− α′ . (25)

Therefore,

1 = P (W ∈W)

≥ P (f1(x,W) ≤ vf1(x;α′)) + P

(
f1(x,W) ≥ min

w∈Wupper
lt−1

f1(x,w)

)
due to (24)

> α′ + 1− α′ due to (25) and the definition of VaR
= 1

which is a contradiction.

Recall that Wupper
lt−1

, {w ∈ W : lt−1(x,w) ≥ vlt−1
(x;α′)}. Therefore, ∀w0 ∈

Wupper
lt−1

, lt−1(x;α′)− f1(x,w0) ≥ vlt−1
(x;α′)− f1(x,w0). Thus, Lemma 5 implies Lemma 3.

F Proof of Theorem 2

Recall f is considered as a random variable, Lemma 3 implies that

P (vlt−1
(x;α′)− vf (x;α′) > ω) ≤ P (∃w ∈Wupper

lt−1
, lt−1(x,w)− f(x,w) > ω)

≤
∑

w∈Wupper
lt−1

P (lt−1(x,w)− f(x,w) > ω) . (26)

14



From (16),

E
[
∆lower
v (x;α′)

]
=

∫ ∞
0

P (vlt−1(x;α′)− vf (x;α′) > ω) dω

≤
∫ ∞
0

∑
w∈Wupper

lt−1

P (lt−1(x,w)− f(x,w) > ω) dω from (26)

≤
∑

w∈Wupper
lt−1

∫ ∞
0

P (lt−1(x,w)− f(x,w) > ω) dω

=
∑

w∈Wupper
lt−1

E [max(0, lt−1(x,w)− f(x,w))] . (27)

Since lt−1(x,w)− f(x,w) is a Gaussian random variable with mean lt−1(x,w)− µt−1(x,w) =

−β1/2
t σt−1(x,w) and variance σ2

t−1(x,w), it follows that

E [max(0, lt−1(x,w)− f(x,w))]

=

∫ ∞
0

ω

σt−1(x,w)
√

2π
exp

(
− (ω + β

1/2
t σt−1(x,w))2

2σ2
t−1(x,w)

)
dω

≤ σt−1(x,w)√
2π

exp

(−βt
2

)
=
σt−1(x,w)√

2π

δ

|X||W|πt
since βt = 2 log(|X||W|πt/δ) in Lemma 1

≤ δ

|X||W|
√

2π
π−1t (28)

where the last inequality is due to the assumption κ(x,w) ≤ 1 ∀(x,w) ∈ X×W.

From (27) and (28),

E
[
∆lower
v (x;α′)

]
≤ |Wupper

lt−1
| δ

|X||W|
√

2π
π−1t ≤ δ

|X|
√

2π
π−1t . (29)

Similar to the bound of ∆lower
v (x;α′), we can bound ∆upper

v (x;α′) by considering the set Wlower
ut−1

,
{w ∈W : ut−1(x,w) ≤ vut−1

(x;α′)}:

E [∆upper
v (x;α′)] ≤ |Wlower

ut−1
| δ

|X||W|
√

2π
π−1t ≤ δ

|X|
√

2π
π−1t . (30)

From (15), (29) and (30), we have

E[∆lower
c (x;α)] ≤ δ

|X|
√

2π
π−1t (31)

E[∆upper
c (x;α)] ≤ δ

|X|
√

2π
π−1t . (32)

From (13), (14), (31), and (32), rBayes
t can be bounded:

rBayes
t ≤ δ

√
2

|X|√ππ
−1
t + 2β

1/2
t σt−1(xt,wt) (33)
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Algorithm 2 CV-TS with batch queries for optimizing CVaR of a black-box function
1: Input: k, X, W, initial observation yD0 , prior µ0 = 0, σn, κ
2: for t = 1, 2, . . . do
3: Sample k functions (fj)

k
j=1 from the GP posterior belief given yDk(t−1)

4: for j = 1, 2, . . . , k do
5: Select xk(t−1)+j ∈ argmax

x
cfj (x;α)

6: Find αk(t−1)+j ∈ arg max
α′∈(0,α]

vuk(t−1)
(xt;α

′)− vlk(t−1)
(xt;α

′)

7: Given αk(t−1)+j , select wk(t−1)+j as an LV w.r.t. xk(t−1)+j , uk(t−1), and lk(t−1).
8: end for
9: Incorporate new observations at the batch query: yDkt

= yDk(t−1)
∪ {y(xi,wi)}kti=k(t−1)+1

10: Update the GP posterior belief given yDkt
to obtain µkt and σ2

kt
11: end for

Therefore, the Bayesian cumulative regret is bounded by:

RBayes
t = E

[
T∑
t=1

rBayes
t

]

≤ E

[
δ
√

2

|X|√π

T∑
t=1

π−1t +

T∑
t=1

2β
1/2
t σt−1(xt,wt)

]

≤ δ
√

2

|X|√π +
√
C1TβT γT (34)

where the last inequality is because
∑T
t=1 π

−1
t ≤ ∑

t≥1 π
−1
t = 1 (in Lemma 1) and∑T

t=1 2β
1/2
t σt−1(xt,wt) ≤

√
C1TβT γT shown in Appendix B.

G CV-TS with Batch Queries

Let us consider CV-TS with a batch query of size k at each iteration. To simplify the notation, let us
assume that the set of initial observations is empty, i.e., D0 = ∅. Following the indexing of observed
inputs from [11], inputs in the first batch query (at BO iteration t = 1) are indexed by i = 1, . . . , k,
inputs in the second batch query (at BO iteration t = 2) are indexed by i = k + 1, . . . , 2k, and so
on. We denote Di , {xj}ij=1. Then, the set of observed inputs at index i is Dkb i−1

k c
where b i−1k c

is the greatest integer less than or equal to i−1
k . At BO iteration t, CV-TS selects a batch query

{xi}kti=k(t−1)+1 by drawing k samples of the maximizer of cf (x;α) given observations at {xj}k(t−1)j=1

(i.e., Dk(t−1)).

Since at index i we only have access to observations yD
kb i−1

k
c
, the confidence bound of f(x,w) at

index i is [
lkb i−1

k c
(x,w), ukb i−1

k c
(x,w)

]
.

At index i, given Dkb i−1
k c

, the distribution of xi is the same that that of x∗ (due to the selection

strategy of CV-TS), so E
[
cu

kb i−1
k
c
(x∗;α)

]
= E

[
cu

kb i−1
k
c
(xi;α)

]
. Let us use T to denote the total

number of observations. Then, T is a multiple of k because there are k observations at each BO
iteration and we assume that |D0| = ∅. We can decompose the Bayesian cumulative regret of CV-TS
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with a batch query of size k, denoted as RBayes
T (k):

RBayes
T (k) = E

[
T∑
i=1

cf (x∗;α)− cf (xi;α)

]

= E


T∑
i=1

E
[
cf (x∗;α)− cu

kb i−1
k
c
(x∗;α)|yD

kb i−1
k
c

]
︸ ︷︷ ︸

A0


+ E

[
T∑
i=1

cu
kb i−1

k
c
(xi;α)− cl

kb i−1
k
c
(xi;α)

]
︸ ︷︷ ︸

B

+ E


T∑
i=1

E
[
cl

kb i−1
k
c
(xi;α)− cf (xi;α)|yD

kb i−1
k
c

]
︸ ︷︷ ︸

A1

 .

Similar to (31) and (32), A0 and A1 can be bounded by the tail expectations of CVaR which are
bounded by δ

|X|
√
2π
π−1
kb i−1

k c
. Then,

E

[
T∑
i=1

A0

]
≤ E

[
T∑
i=1

δ

|X|
√

2π
π−1
kb i−1

k c

]
=

δ

|X|
√

2π

T∑
i=1

π−1
kb i−1

k c
≤ δ

|X|
√

2π

∑
t≥1

π−1t =
δ

|X|
√

2π

(35)

E

[
T∑
i=1

A1

]
≤ E

[
T∑
i=1

δ

|X|
√

2π
π−1
kb i−1

k c

]
=

δ

|X|
√

2π

T∑
i=1

π−1
kb i−1

k c
≤ δ

|X|
√

2π

∑
t≥1

π−1t ≤ δ

|X|
√

2π
.

(36)

The term B is bounded as follows.

B = E

[
T∑
i=1

cu
kb i−1

k
c
(xi;α)− cl

kb i−1
k
c
(xi;α)

]

≤ E

[
T∑
i=1

2β
1/2

kb i−1
k c+1

σkb i−1
k c

(xi,wi)

]
(37)

= E

[
k∑
i=1

2β
1/2

kb i−1
k c+1

σkb i−1
k c

(xi,wi) +

T∑
i=k+1

2β
1/2

kb i−1
k c+1

σkb i−1
k c

(xi,wi)

]

≤ E

[
k∑
i=1

2β
1/2
1 +

T∑
i=k+1

2β
1/2

kbT−1
k c+1

σi−k−1(xi,wi)

]
(38)

≤ 2kβ
1/2
1 + E

[
2β

1/2

kbT−1
k c+1

T−k∑
i=1

σi−1(xi,wi)

]

≤ 2kβ
1/2
1 + E

2β
1/2

kbT−1
k c+1

√√√√(T − k)

T−k∑
i=1

σ2
i−1(xi,wi)

 (39)

≤ 2kβ
1/2
1 +

√
8(T − k)βkbT−1

k c+1γT−k

log(1 + σ−2n )
(40)

≤ 2kβ
1/2
1 +

√
C1(T − k)βT−k+1γT−k (41)

where
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• (37) is because of (19) and (20).

• (38) is because βt is nondecreasing, κ(x,w) ≤ 1 (our assumption), and σi−k−1 ≥ σkb i−1
k c

for i = k + 1, . . . , T (since Di−k−1 ⊂ Dkb i−1
k c

).

• (39) is because of the Cauchy-Schwarz inequality.

• (40) is because of Lemma 5.3 and Lemma 5.4 in [21] and our assumption κ(x,w) ≤ 1.

From (35), (36), and (41), the Bayesian cumulative regret is bounded by:

RBayes
T (k) ≤ δ

√
2

|X|√π + 2kβ
1/2
1 +

√
C1(T − k)βT−k+1γT−k . (42)

Recall the Bayesian cumulative regret bound for CV-TS with single queries (i.e., k = 1) in (34):

RBayes
T ≤ δ

√
2

|X|√π +
√
C1TβT γT . (43)

Hence, the average of the Bayesian cumulative regret for CV-TS with single queries, RBayes
T /T , and

batch queries, RBayes
T (k)/T , are similar, especially when the number of observations T is large (so

that 2kβ
1/2
1 /T vanishes).

H A Thompson Sampling Approach to Optimize VaR of Black-Box
Functions

H.1 Algorithm

We present an algorithm to optimize VaR vf (x;α) of a black-box function f(x,W). Unlike the
existing V-UCB algorithm in [13] that is based on the upper confidence bound, this algorithm is based
on the Thompson sampling approach which is called V-TS (Algorithm 3).

Following the popular Thompson sampling approach (or posterior sampling [18]), V-TS selects xt as
a sample of the maximizer of VaR vf (x;α) by: (line 4 of Algorithm 3) using the random Fourier
feature approximation method [16] to draw a function sample f1 from the GP posterior belief given
yDt−1

and (line 5 of Algorithm 3) assigning the maximizer of vf1(x;α) to xt.

Given the selected xt, we select wt to reduce the uncertainty of VaR vf (xt;α) quantified by the size
of its confidence bound vut−1

(xt;α)− vlt−1
(xt;α). Following the same approach in Sec. 3.2, we

select wt as an LV w.r.t. α, xt, lt−1, and ut−1 (line 7 of Algorithm 3). If there are multiple LVs,
we select the LV with the maximum probability p(W). It is a heuristic to improve the empirical
performance suggested by [13].

Like CV-TS with batch queries (Appendix G), V-TS can also be extended to handle a batch query of
size k, i.e., V-TS selects a batch of k inputs to query for their observations at each BO iteration. This
batch of k inputs are obtained by: drawing k samples of the maximizer of vf (x;α) given yDt−1

and
finding the corresponding k LVs w.r.t. these k samples, α, lt−1, and ut−1.

H.2 Theoretical Analysis

Let us consider V-TS that selects a single query at each BO iteration (Algorithm 3). We would like to
show that the Bayesian cumulative regret of V-TS is sublinear. Let x∗ ∈ argmaxx∈X vf (x;α). The
Bayesian cumulative regret can be expressed as

RBayes
T = E

[
T∑
t=1

vf (x∗;α)− vf (xt;α)

]

= E

[
T∑
t=1

E
[
vf (x∗;α)− vf (xt;α)|yDt−1

]]
.
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Algorithm 3 V-TS: A BO Algorithm for optimizing VaR of a black-box function
1: Input: X, W, initial observation yD0

, prior µ0 = 0, σn, κ
2: for t = 1, 2, . . . do
3: {Selecting xt}
4: Sample a function f1 from the GP posterior belief given yDt−1

5: Select xt ∈ argmax
x

vf1(x;α)

6: {Selecting wt}
7: Select wt as an LV w.r.t. α, xt, ut−1, and lt−1
8: {Collecting data and updating GP}
9: Incorporate new observation at input query: yDt = yDt−1 ∪ {y(xt,wt)}

10: Update the GP posterior belief given yDt

11: end for

The expectation E
[
vf (x∗;α)− vf (xt;α)|yDt−1

]
can be decomposed into (in a similar fashion to

(13) where we omit yDt−1
to ease the notational clutter):

E
[
vf (x∗;α)− vut−1

(x∗;α)
]

+ E
[
vut−1

(x∗;α)− vlt−1
(xt;α)

]
+ E

[
vlt−1

(xt;α)− vf (xt;α)
]

= E
[
vf (x∗;α)− vut−1

(x∗;α)
]

+ E
[
vut−1

(xt;α)− vlt−1
(xt;α)

]
(44)

+ E
[
vlt−1(xt;α)− vf (xt;α)

]
≤ E

[
max

(
0, vf (x∗;α)− vut−1

(x∗;α)
)]

+ E
[
vut−1

(xt;α)− vlt−1
(xt;α)

]
+ E

[
max

(
0, vlt−1

(xt;α)− vf (xt;α)
)]

= E [∆upper
v (x∗;α)] + E

[
vut−1

(xt;α)− vlt−1
(xt;α)

]
+ E

[
∆lower
v (xt;α)

]
where (44) is because we select xt as a sample of the maximizer of vf (x;α) given yDt−1 (lines 4-5
of Algorithm 3), i.e., the distribution of xt is the same as that of x∗ given yDt−1 .

The bounds of E
[
∆lower
v (x∗;α)

]
and E

[
∆upper
v (xt;α)

]
are obtained from (29) and (30), while the

bound of E
[
vut−1

(xt;α)− vlt−1
(xt;α)

]
is obtained from (20) (since wt is selected as an LV w.r.t.

α, xt, lt−1, and ut−1). Therefore,

RBayes
T ≤ E

[
T∑
t=1

δ
√

2

|X|√ππ
−1
t + 2β

1/2
t σt−1(xt,wt)

]
(45)

≤ δ
√

2

|X|√π +
√
C1TβT γT (46)

where C1, βT , δ, γT are elaborated in Theorem 2.

I Experimental Details

We use the Matérn 5/2 kernel,

κ(x,w; x′,w′) = σ2
s

(
1 +
√

5r +
5r2

3

)
exp

(
−
√

5r
)

(47)

where r2 , (x − x′)>L−2x (x − x′) + (w − w′)>L−2w (w − w′) is the squared scaled Euclidean
distance between [x,w] and [x′,w′], Lx , diag[l1, . . . , lm] and Lw , diag[lm+1, . . . , lm+n] are the
length-scales.

At BO iteration t, the GP hyperparameters (i.e., σ2
s , Lx, and Lw) and the noise variance σ2

n are learned
by maximizing the likelihood of the observations yDt−1

. We impose a Gamma prior distribution of
shape 1.1 and scale 0.5 over the noise variance and initialize the noise variance σ2

n at the mode of its
prior distribution, i.e., 0.05 (which is adopted from the implementation of [4]).

The domains of all input dimensions in the experiments are standardized to the range [0, 1]. There are
3 initial observations for the experiments with the Branin-Hoo and Goldstein-Price functions, and
20 initial observations for the experiment with the Hartmann-6D function with m = 5 and 10 initial
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observations for the experiment with the Hartmann-6D function with m = 1. The sizes |W| in the
experiments with Branin-Hoo, Goldstein-Price, Hartmann-6D m = 5, and Hartmann-6D m = 1 are
30, 50, 15, and 243, respectively. We perform experiments with both uniform distributions of W (in
the experiments with Branin-Hoo and Goldstein-Price) and a non-uniform distribution of W (in the
experiment with Hartmann-6D). The non-uniform distribution is a discretized Gaussian distribution
with mean 0.5 and standard deviation 0.2 over the support of W.

In the yacht hydrodynamics experiment, we would like to minimize the residuary resistance per unit
weight of displacement of a yacht by searching for the optimal hull geometry coefficients of the yacht
in the face of the uncertainty in the Froude number (the Froude number depends on the real-world
environment and we assume that it can be simulated with computers during the optimization). The
ground truth function is constructed using the yacht hydrodynamics data set [5]. The dimension of the
input variables x and W are m = 5 and n = 1 (the Froude number), respectively. The environmental
random variable W follows a discrete uniform random variable over the support of 15 values.

The simulated robot pushing experiment is taken from [23]. The simulation returns the location
of a pushed object given the robot’s location and the pushing duration, i.e., x. The locations are 2
dimensional and standardized in [0, 1]2. We follow the setting in [13] to perturb the robot’s location
with W following a discrete uniform distribution over 64 points in [0, 1]2. The location of the pushed
object returned by the simulation is added with a Gaussian noise of variance 0.0001 to generate noisy
observations. There are 30 initial observations, i.e., |D0| = 30.

The portfolio optimization problem is taken from [4]. The objective function is the average daily
return over a period of 4 years (obtained by a simulation) given the risk and trade aversion parameters,
and the holding cost multiplier. The environmental random variables W include the bid-ask spread
and the borrow cost. The distribution of W is a discretized Gaussian distribution with mean 0.5 and
standard deviation 0.15 over 25 points in [0.25, 0.75]2. The average daily returns are added with a
Gaussian noise of variance 0.0001 to generate noisy observations. There are 30 initial observations,
i.e., |D0| = 30.
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