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ABSTRACT

Federated learning is a powerful paradigm for large-scale machine learning, but it
faces significant challenges due to unreliable network connections, slow commu-
nication, and substantial data heterogeneity across clients. FEDAVG and SCAF-
FOLD are two prominent algorithms to address these challenges. In particular,
FEDAVG employs multiple local updates before communicating with a central
server, while SCAFFOLD maintains a control variable on each client to compen-
sate for “client drift” in its local updates. Various methods have been proposed to
enhance the convergence of these two algorithms, but they either make impracti-
cal adjustments to the algorithmic structure or rely on the assumption of bounded
data heterogeneity. This paper explores the utilization of momentum to enhance
the performance of FEDAVG and SCAFFOLD. When all clients participate in the
training process, we demonstrate that incorporating momentum allows FEDAVG
to converge without relying on the assumption of bounded data heterogeneity even
using a constant local learning rate. This is novel and fairly surprising as existing
analyses for FEDAVG require bounded data heterogeneity even with diminishing
local learning rates. In partial client participation, we show that momentum en-
ables SCAFFOLD to converge provably faster without imposing any additional
assumptions. Furthermore, we use momentum to develop new variance-reduced
extensions of FEDAVG and SCAFFOLD, which exhibit state-of-the-art conver-
gence rates. Our experimental results support all theoretical findings.

1 INTRODUCTION

Federated learning (FL) is a powerful paradigm for large-scale machine learning (Konečnỳ et al.,
2016; McMahan et al., 2017a). In situations where data and computational resources are dispersed
among a diverse range of clients, including phones, tablets, sensors, hospitals, and other devices and
agents, federated learning facilitates local data processing and collaboration among these clients
(Kairouz et al., 2021). Consequently, a centralized model can be trained without transmitting decen-
tralized data from clients directly to servers, thereby ensuring a fundamental level of privacy.

Federated learning encounters several significant challenges in algorithmic development. Firstly,
the reliability and relatively slow nature of network connections between the server and clients pose
obstacles to efficient communication during the training process. Secondly, the dynamic availability
of only a small subset of clients for training at any given time demands strategies that can adapt to
this variable environment. Lastly, the presence of substantial heterogeneity of non-iid data across
different clients further complicates the training process.

FEDAVG (Konečnỳ et al., 2016; McMahan et al., 2017a; Stich, 2019; Yu et al., 2019a; Lin et al.,
2020; Wang & Joshi, 2021) emerges as a prevalent algorithm for FL, leveraging multiple stochastic
gradient descent (SGD) steps within each client before communicating with a central server. While
FEDAVG is readily implementable and succeeds in certain applications, its performance is notably

∗Equal Contribution. This work is supported in part by National Natural Science Foundation of China
(NSFC) Grant 12301392, 92370121, and 12288101

†Corresponding Author. Kun Yuan is also affiliated with National Engineering Labratory for Big Data
Analytics and Applications, and AI for Science Institute, Beijing, China.

1



Published as a conference paper at ICLR 2024

hindered by the presence of data heterogeneity, i.e., non-iid clients, even when all clients partici-
pate in the training process (Li et al., 2019; Yang et al., 2021). To mitigate the influence of data
heterogeneity, SCAFFOLD (Karimireddy et al., 2020b) maintains a control variable on each client
to compensate for “client drift” in its local SGD updates, making convergence more robust to data
heterogeneity and client sampling. Due to their practicality and effectiveness, FEDAVG and SCAF-
FOLD have become foundational algorithms in federated learning, leading to the development of
numerous variants that cater to decentralized (Koloskova et al., 2020; Rizk et al., 2022; Nguyen
et al., 2022; Alghunaim, 2023), compressed (Haddadpour et al., 2021; Reisizadeh et al., 2020; Mitra
et al., 2021), asynchronous (Chen et al., 2020a;b; Xu et al., 2021a), and personalized (Fallah et al.,
2020; Pillutla et al., 2022; Tan et al., 2022; T Dinh et al., 2020) federated learning scenarios.

Various methods have been proposed to enhance the convergence of FEDAVG, SCAFFOLD, and
their variance-reduced1 extensions. While exhibiting superior convergence rates, these approaches
typically make impractical adjustments to algorithmic structures. For instance, STEM (Khanduri
et al., 2021) requires increasing either the batch size or the number of local steps with algorithmic
iterations. Similarly, CE-LSGD (Patel et al., 2022) and MIME (Karimireddy et al., 2020a) mandate
computing a large-batch or even full-batch local gradient per round for each client. Additionally,
FEDPROX (Li et al., 2020), FEDPD (Zhang et al., 2021), and FEDDYN (Durmus et al., 2021) rely
on solving “local problems” to an extremely high precision. These adjustments may not align with
the practical constraints in federated learning setups.

Furthermore, many of these algorithms, including FEDAVG, STEM, FEDPROX, MIME, and CE-
SGD, still rely on the assumption of bounded data heterogeneity. When this assumption is violated,
their theoretical analyses become invalid. While some algorithms, such as LED (Alghunaim, 2023)
and VRL-SGD (Liang et al., 2019), can handle unbounded data heterogeneity, their convergence
rates are not state-of-the-art, as stated in Table 1. These limitations motivate us to develop novel
strategies that are easy to implement, robust to data heterogeneity, and exhibit superior convergence.

1.1 MAIN RESULTS AND CONTRIBUTIONS

This paper examines the utilization of momentum to enhance the performance of FEDAVG and
SCAFFOLD. To ensure simplicity and practicality in implementations, we only introduce mo-
mentum to the local SGD steps, avoiding any inclusion of impractical elements, such as gradient
computation of multiple minibatches or solving local problems to high precision. Remarkably,
this straightforward approach effectively alleviates the necessity for stringent assumptions regarding
bounded data heterogeneity, leading to noteworthy improvements in convergence rates. The main
findings and contributions of this paper are summarized below.

First, when all clients participate in the training process:
• We show that incorporating momentum allows FEDAVG and its variance-reduced extension to

converge under unbounded data heterogeneity, even using constant local learning rates. This
is rather surprising as, to our knowledge, all existing analyses for FEDAVG, e.g., Karimireddy
et al. (2020b); Yang et al. (2021); Wang et al. (2020b) require bounded data heterogeneity even
with diminishing local learning rates.

• We further establish that, by effectively removing the influence of data heterogeneity on con-
vergence, momentum empowers FEDAVG and its variance-reduced extension with state-of-
the-art convergence rates in the context of full client participation.

Second, when partial clients participate in the training process per iteration:
• The proposed SCAFFOLD-M that incorporates momentum into SCAFFOLD achieves prov-

ably faster convergence. To our knowledge, this is the first result that improves SCAFFOLD
without imposing additional assumptions beyond those in Karimireddy et al. (2020b).

• We further introduce momentum to SCAFFOLD with variance reduction, obtaining the first
variance-reduced FL algorithm that converges without bounded data heterogeneity. This
method attains the state-of-the-art convergence rate in the context of partial client participa-
tion and unbounded data heterogeneity.

Tables 1 and 2 present a comprehensive comparison of the convergence rates and associated assump-
tions of prior algorithms and our proposed methods. It is observed that by simply adding momentum

1Throughout the paper, variance reduction refers to techniques aiming to mitigate the influence of within-
client gradient stochasticity, as opposed to the inter-client data heterogeneity.
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Table 1: The comparison of convergence rates of FL algorithms when all clients participate in training. No-
tation L is the smoothness constant of objective functions, ∆ = f(x0) − minx f(x) is the initialization
gap, σ2 is the variance of gradient noises, N is the number of clients, K is the number of local steps per
round, and R is the number of communication rounds, ζ2 and G are uniform bounds of data heterogeneity
(1/N)

∑
1≤i≤N ∥∇fi(x) − ∇f(x)∥2 and gradient norm G := supx max1≤i≤N ∥∇fi(x)∥ with G2 ≫ ζ2

typically. The “Assumptions” column lists all assumptions beyond Assumption 1 and 3.

Algorithm Convergence Rate E[∥∇f(x̂)∥2] ≲ Assumptions

FEDAVG

(Yu et al., 2019b)
(

L∆σ2

NKR

)1/2
+
(
L∆G
R

)2/3
+ L∆

R Bounded grad.

(Koloskova et al., 2020)
(

L∆σ2

NR

)1/2
+
(

L∆Kζ
R

)2/3
+ L∆K

R Bounded hetero.

(Karimireddy et al., 2020b)
(

L∆σ2

NKR

)1/2
+
(

L∆ζ
R

)2/3
+ L∆

R Bounded hetero.

(Yang et al., 2021)
(

L∆σ2

NKR

)1/2
+ L∆

R Bounded hetero.1

FEDCM2

(Xu et al., 2021b)

(
L∆(σ2+NKG2)

NKR

)1/2
+
(

L∆(σ/
√
K+G)

R

)2/3 Bounded grad.
Bounded hetero.

LED
(Alghunaim, 2023)

(
L∆σ2

NKR

)1/2
+
(

L∆σ√
KR

)2/3
+ L∆

R −

VRL-SGD2

(Liang et al., 2019)

(
L∆σ2

NKR

)1/2
+
(

L∆σ√
KR

)2/3
+ L∆

R −

FEDAVG-M (Thm. 1)
(

L∆σ2

NKR

)1/2
+ L∆

R −

VARIANCE-REDUCTION

BVR-L-SGD
(Murata & Suzuki, 2021)

(
L∆σ
NKR

)2/3
+ σ2

NKR + L∆
R

Sample smooth
O(K) minibatches3

CE-LSGD
(Patel et al., 2022)

(
L∆σ
NKR

)2/3
+ σ2

NKR + L∆
R

Sample smooth
O(K) minibatches3

STEM
(Khanduri et al., 2021)

L∆+σ2+ζ2

(NKR)2/3
+ L∆

R

Sample smooth
Bounded hetero.

FEDAVG-M-VR (Thm. 2)
(

L∆σ
NKR

)2/3
+ L∆

R Sample smooth4

FEDAVG-M-VR (Thm. 15)
(

L∆σ
NKR

)2/3
+ σ2

NKR + L∆
R Sample smooth4

1 The local learning rate vanishes to zero when data heterogeneity is unbounded, i.e., ζ → ∞.
2 The works have not been published in peer-reviewed venues.
3 A large number of minibatches are utilized on each client per communication round.
4 The difference roots in the amount of batches used for initialization. See the values of B in Thm. 15.

to local steps, FEDAVG, SCAFFOLD, and their variance-reduced variants all attain state-of-the-art
convergence rates without resorting to further assumptions such as bounded data heterogeneity. We
support our theoretical findings with extensive numerical experiments.

1.2 RELATED WORK

FL with homogeneous clients. FEDAVG is a well-known algorithm introduced by McMahan et al.
(2017b) as a heuristic to enhance communication efficiency and data privacy in federated learning.
Numerous subsequent studies have focused on analyzing its convergence under the assumption of
homogeneous datasets, where clients are independent and identically distributed (iid) and all clients
participate fully (Stich, 2019; Yu et al., 2019b; Wang & Joshi, 2021; Lin et al., 2020; Zhou & Cong,
2017). However, when dealing with heterogeneous clients and partial client participation, FEDAVG
is found to be vulnerable to data heterogeneity because of the ”client drift” effect (Karimireddy
et al., 2020b; Yang et al., 2021; Wang et al., 2020b; Li et al., 2019).

FL with heterogeneous clients. Numerous research efforts are devoted to mitigating the impact
of data heterogeneity in FL. For example, Li et al. (2020) propose FEDPROX, which introduces a
proximal term to the objective function. Yang et al. (2021) utilize a two-sided learning rate approach,
while Wang et al. (2020a) propose FEDNOVA, a normalized averaging method. Additionally, Zhang
et al. (2021) presents FEDPD, which addresses data heterogeneity from a primal-dual optimization
perspective. Notably, Karimireddy et al. (2020b) introduces SCAFFOLD, an effective algorithm
that employs control variables to mitigate the influence of data heterogeneity and partial client partic-
ipation. FEDGATE (Haddadpour et al., 2021) and LED (Alghunaim, 2023) are two recent effective
algorithms that have alleviated the impact of data heterogeneity, utilizing gradient tracking (Xu et al.,
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Table 2: The comparison of convergence rates of FL algorithms when S out of N clients participate in
training per iteration. Notations are the same as those in Table 1.

Algorithm Convergence Rate E[∥∇f(x̂)∥2] ≲ Assumptions

SCAFFOLD
(Karimireddy et al., 2020b)

(
L∆σ2

SKR

)1/2

+ L∆
R

(
N
S

)2/3 −

SCAFFOLD-M (Thm. 3)
(

L∆σ2

SKR

)1/2

+ L∆
R

(
1 + N2/3

S

)
−

VARIANCE-REDUCTION

MIMELITEMVR1

(Karimireddy et al., 2020a)

(
L∆(σ+ζ)

R

)2/3

+ L∆+σ2+ζ2

R

Sample smooth
Noiseless grad.

MB-STORM
(Patel et al., 2022)

(
L∆σ

S
√
KR

)2/3

+
(
L∆ζ
SR

)2/3
+ ζ2

SR
+ L∆

R
+ σ2

SKR

Sample smooth
Bounded hetero.
O(K) minibatches2

CE-LSGD 1

(Patel et al., 2022)

(
L∆σ

S
√
KR

)2/3

+
(
L∆ζ
SR

)2/3
+ ζ2

SR
+ L∆

R
+ σ2

SKR

Sample smooth
Bounded hetero.
O(K) minibatches2

SCAFFOLD-M-VR (Thm. 4)
(

L∆σ

S
√
KR

)2/3

+ L∆
R

(
1 + N1/2

S

)
Sample smooth3

SCAFFOLD-M-VR (Thm. 22)
(

L∆σ

S
√
KR

)2/3

+ L∆
R

(
1 + N1/2

S

)
+ σ2

SKR
Sample smooth3

1 MIMELITEMVR and CE-LSGD consider the setting of streaming clients.
2 A large number of minibatches are utilized on each client per communication round.
3 The difference roots in the amount of batches used for initialization. See the values of B in Thm. 22.

2015; Di Lorenzo & Scutari, 2016; Pu & Nedić, 2020; Xin et al., 2020; Alghunaim & Yuan, 2021;
Huang et al., 2024) and exact-diffusion (Yuan et al., 2019; 2020; 2023) techniques, respectively.
FL with momentum. The momentum mechanism dates back to Nesterov’s acceleration (Yurri,
2004) and Polyak’s heavy-ball method (Polyak, 1964), which later flourishes in the stochastic opti-
mization (Yan et al., 2018; Yu et al., 2019a; Liu et al., 2020) and other areas (Yuan et al., 2021; He
et al., 2023b;a; Chen et al., 2023; Huang et al., 2024). Extensive research has explored incorporat-
ing momentum into FL (Reddi et al., 2021; Wang et al., 2020b; Karimireddy et al., 2020a; Khanduri
et al., 2021; Patel et al., 2022; Das et al., 2022; Yu et al., 2019a; Xu et al., 2021b), and have demon-
strated its impact on enhancing the empirical performance of FL methods (Wang et al., 2020b; Xu
et al., 2021b; Reddi et al., 2021; Jin et al., 2022; Kim et al., 2022). However, whether momentum can
offer theoretical benefits to FL, especially in mitigating the impact of data heterogeneity, remains
unclear. This work demonstrates that momentum can benefit non-iid federated learning simply and
provably. Notably, the utility of momentum is demonstrated in domains other than FL. For instance,
Guo et al. (2021) proves that momentum can correct the bias experienced by the ADAM method,
while recently Fatkhullin et al. (2023) shows that momentum can improve the error feedback tech-
nique in communication compression. The analysis presented in this work distinguishes from prior
works including Guo et al. (2021); Fatkhullin et al. (2023) due to the unique challenges encountered
in FL including multiple local updates, data heterogeneity, and partial client participation.

2 PROBLEM SETUP

This section formulates the problem of non-iid federated learning. Formally, we consider minimiz-
ing the following objective with the fewest number of client-server communication rounds:

min
x∈Rd

f(x) :=
1

N

N∑
i=1

fi(x) where fi(x) := Eξi∼Di
[F (x; ξi)].

Here, the random variable ξi represents a local data point available at client i, while the function
fi(x) denotes the non-convex local loss function associated with client i. This function takes expec-
tation concerning the local data distribution Di. In practice, the local data distributions Di among
different clients typically differ from each other, resulting in the inequality fi(x) ̸= fj(x) for any
pair of nodes i and j. This phenomenon is commonly referred to as data heterogeneity. If all local
clients were homogeneous, meaning that all local data samples follow the same distribution D, we
would have fi(x) = fj(x) for any i and j. In addition, throughout the paper, we assume that the
function f is bounded from below and possesses a global minimum f∗. To facilitate convergence
analysis, we also introduce the following standard assumptions.
Assumption 1 (STANDARD SMOOTHNESS). Each local objective fi is L-smooth, i.e.,
∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, for any x, y ∈ Rd and 1 ≤ i ≤ N .
Assumption 2 (SAMPLE-WISE SMOOTHNESS). Each sample-wise objective F (x; ξ) is L-smooth,

i.e., ∥∇F (x; ξi)−∇F (y; ξi)∥ ≤ L∥x− y∥ for any x, y ∈ Rd, 1 ≤ i ≤ N , and ξi
iid∼ Di.
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Algorithm 1 FEDAVG-M: FEDAVG with momentum
Require: initial model x0 and gradient estimate g0, local learning rate η, global learning rate γ,

momentum β
for r = 0, · · · , R− 1 do

for each client i ∈ {1, . . . , N} in parallel do
Initialize local model xr,0

i = xr

for k = 0, · · · ,K − 1 do
Compute gr,ki = β∇F (xr,k

i ; ξr,ki ) + (1− β)gr ▷ β = 1 implies FEDAVG

Update local model xr,k+1
i = xr,k

i − ηgr,ki
end for

end for
Aggregate local updates gr+1 = 1

ηNK

∑N
i=1

(
xr − xr,K

i

)
Update global model xr+1 = xr − γgr+1

end for

It is worth noting that Assumption 2 implies Assumption 1, which is typically used in variance-
reduced algorithms, e.g., Karimireddy et al. (2020a); Khanduri et al. (2021); Fang et al. (2018);
Cutkosky & Orabona (2019). We will utilize either Assumption 1 or 2 in different algorithms. It is
worth highlighting that, these are the only assumptions required for all our theoretical analyses.

Assumption 3 (STOCHASTIC GRADIENT). There exists σ ≥ 0 such that for any x ∈ Rd and
1 ≤ i ≤ N , Eξi [∇F (x; ξi)] = ∇fi(x) and Eξi [∥∇F (x; ξi)−∇fi(x)∥2] ≤ σ2 where ξi

iid∼ Di.

3 ACCELERATING FEDAVG WITH MOMENTUM

This section focuses on full client participation. We will introduce momentum to both FEDAVG and
its variance-reduced extension. Furthermore, we will justify that the incorporation of momentum
effectively mitigates the impact of data heterogeneity, leading to improved convergence rates.

3.1 FEDAVG WITH MOMENTUM

Algorithm. We introduce momentum to enhance the estimation of the stochastic gradient, re-
sulting in the algorithm FEDAVG-M, as presented in Algorithm 1. In FEDAVG-M, the subscript i
represents the client index, while the superscripts r and k denote the outer loop index and inner local
update index, respectively. The structure of FEDAVG-M remains identical to the vanilla FEDAVG,
except for the inclusion of momentum in gradient computation (see highlight in Algorithm 1):

gr,ki = β∇F (xr,k
i ; ξr,ki ) + (1− β)gr, (1)

where β ∈ [0, 1] is the momentum coefficient, and gr represents a global gradient estimate updated
in the outer loop r. It is important to note that FEDAVG-M will reduce to the vanilla FEDAVG
when β = 1. Furthermore, FEDAVG-M is easy to implement, as it maintains the same algorithmic
structure and incurs no additional uplink communication overhead compared to FEDAVG. Notably,
no extra downlink commmunication cost is needed if clients store the last iterate model xr so that
momentum gr+1 can recovered through (xr+1 − xr)/γ.

Convergence property. The inclusion of momentum in FEDAVG yields notable theoretical im-
provements. Firstly, it eliminates the need for the data heterogeneity assumption, also known as the
gradient similarity assumption. The assumption can be expressed as

1

N

N∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ ζ2, ∀x ∈ Rd (Bounded data heterogeneity)

where ζ2 measures the magnitude of data heterogeneity. By incorporating momentum, the above
assumption is no longer required for the convergence analysis of FEDAVG. Secondly, momentum
enables FEDAVG to converge at a state-of-the-art rate. These improvements are justified as follows:
Theorem 1. Under Assumption 1 and 3, if we set g0 = 0, β, γ, and η as in (5), FEDAVG-M enjoys

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
√

L∆σ2

NKR
+

L∆

R
,

where ∆ ≜ f(x0)−minx f(x) and ≲ absorbs numeric numbers. See proof in Appendix B.1.
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Comparison with FEDAVG. Table 1 compares FEDAVG-M with prior algorithms when all clients
participate in the training process. The results demonstrate that FEDAVG-M attains the most fa-
vorable convergence rate without relying on any assumption of data heterogeneity. Moreover, this
rate matches the lower bound provided by Arjevani et al. (2019). Notably, a recent work (Huang
et al., 2023) establishes the convergence of FEDAVG by relaxing the bounded data heterogeneity
to a bound on f⋆ − 1

N

∑N
i=1 f

⋆
i where f⋆ ≜ minx f(x) and f⋆

i ≜ fi(x). However, their con-
vergence does not benefit from local updates. Moreover, it still suffers from data heterogeneity
f⋆ − 1

N

∑N
i=1 f

⋆
i and gets slow as the number of clients N increases, resulting in a suboptimal rate.

Comparison with FEDCM. FEDAVG-M coincides with the FEDCM algorithm proposed by Xu
et al. (2021b). However, our result outperforms that of Xu et al. (2021b) in several aspects. First,
our convergence only utilizes the standard smoothness of objectives and gradient stochasticity while
Xu et al. (2021b) additionally require bounded data heterogeneity and bounded gradients which are
rarely valid in practice, suggesting the limitation of their result. Second, the convergence established
by Xu et al. (2021b) is significantly weaker than ours and cannot even asymptotically approach the
customary rate O(1/

√
NKR) in non-convex FL, as demonstrated by the results stated in Table 1.

Constant local learning rate. Based on Theorem 1, it can be inferred that when R ≳ NKL∆/σ2,
FEDAVG-M allows the utilization of constant local learning rate η which does not necessarily decay
as the number of communication rounds R increases. This characteristic eases the tuning of the local
learning rate and improves empirical performance. In contrast, many existing convergence results of
FEDAVG necessitate the adoption of local learning rates that diminish as R increases, as exemplified
by e.g., Yang et al. (2021); Li et al. (2019); Karimireddy et al. (2020b); Koloskova et al. (2020).
Intuition on the effectiveness of momentum. The momentum mechanism relies on an accumu-
lated gradient estimate gr, which is updated through gr+1 = β

NK

∑N
i=1

∑K−1
k=0 ∇F (xr,k

i ; ξr,ki ) +
(1− β)gr. While gr is a biased gradient estimate, it exhibits reduced variance due to its accumula-
tion nature compared to a stochastic gradient ∇F (xr,k

i ; ξr,ki ) computed with a single data minibatch.
Importantly, by utilizing directions β∇F (xr,k

i ; ξr,ki ) + (1− β)gr for local updates, an “anchoring”
effect is achieved, effectively mitigating the “client-drift” phenomenon. In the extreme case where
β = 0, all clients remain synchronized in their local updates, eliminating the drift incurred by
data heterogeneity in the vanilla FEDAVG. By appropriately tuning the coefficient β, FEDAVG-M
maintains the same convergence rate as (Yang et al., 2021) while removing the requirement of data
heterogeneity assumption utilized in their analysis.

3.2 VARIANCE-REDUCED FEDAVG WITH MOMENTUM

When each local loss function is further assumed to be sample-wise smooth (i.e., Assumption 2), we
can replace the local descent direction in Algorithm 1 with a variance-reduced momentum direction

gr,ki = ∇F (xr,k
i ; ξr,ki ) + (1− β)(gr −∇F (xr−1; ξr,ki )) (2)

to further enhance convergence, leading to variance-reduced FEDAVG with momentum, or
FEDAVG-M-VR for short, see the detailed algorithm in Appendix B.2. The variable xr−1 is the
last-iterate global model maintained in the server. The construction of the variance-reduced direc-
tion (2) effectively mitigates the influence of within-client gradient noise and can be traced back to
SARAH (Nguyen et al., 2017) and STORM (Cutkosky & Orabona, 2019) in stochastic optimization;
more discussion can be found in Tan et al. (2022). Same as FEDAVG-M, turning off the variance-
reduced momentum of FEDAVG-M-VR, i.e., setting β = 1, recovers FEDAVG. FEDAVG-M-VR
shares the same algorithmic structure and uplink communication workload as FEDAVG.

Theorem 2. Under Assumption 2 and 3, if we take g0 = 1
NB

∑N
i=1

∑B
b=1 ∇F (x0; ξbi )

2 with

{ξbi }Bb=1
iid∼ Di and set β, γ, η, and B as in (8), FEDAVG-M-VR enjoys

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
(

L∆σ

NKR

)2/3

+
L∆

R
.

Comparison with prior works. FEDAVG-M-VR outperforms existing variance-reduced FL
methods in convergence rate, as justified by the results listed in Table 1. Additionally, compared
to BVR-L-SGD (Murata & Suzuki, 2021) and CE-LSGD (Patel et al., 2022), FEDAVG-M-VR
conducts each local update using 1 + 1/K = O(1) minibatches on average, contrasting with the

2We use B data minibatches per client to initialize the gradient estimate g0 with small variance E[∥g0 −
∇f(x0)∥2], after which only one minibatch is utilized per local gradient computation. The same applies below.
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Algorithm 2 SCAFFOLD-M: SCAFFOLD with momentum
Require: initial model x0, gradient estimator g0, control variables {c0i }Ni=1 and c0, local learning

rate η, global learning rate γ, momentum β
for r = 0, · · · , R− 1 do

Uniformly sample clients Sr ⊆ {1, · · · , N} with |Sr| = S
for each client i ∈ Sr in parallel do

Initialize local model xr,0
i = xr

for k = 0, · · · ,K − 1 do
Compute gr,ki = β(∇F (xr,k

i ; ξr,ki )− cri + cr) + (1− β)gr ▷β = 1 implies SCAFFOLD

Update local model xr,k+1
i = xr,k

i − ηgr,ki
end for
Update control variable cr+1

i := 1
K

∑K−1
k=0 ∇F (xr,k

i ; ξr,ki ) (for i /∈ Sr, cr+1
i = cri )

end for
Aggregate local updates gr+1 = 1

ηSK

∑
i∈Sr

(
xr − xr,K

i

)
Update global model xr+1 = xr − γgr+1

Update control variable cr+1 = cr + 1
N

∑
i∈Sr

(cr+1
i − cri )

end for

O(K) minibatches in BVR-L-SGD and CE-LSGD. Furthermore, in comparison to STEM (Khan-
duri et al., 2021), FEDAVG-M-VR does not rely on the assumption of bounded data heterogeneity.

Based on discussions in Sections 3.1 and 3.2, we demonstrate that FEDAVG-M and FEDAVG-M-
VR, in the context of full client participation, can achieve the state-of-the-art convergence rate with-
out resorting to any stronger assumption, e.g., bounded data heterogeneity or impractical algorithmic
structures such as a large number of minibatches in local gradient computation.

4 ACCELERATING SCAFFOLD WITH MOMENTUM

This section addresses the scenario where a random subset of clients participates in each training
round. To tackle the challenges of partial participation, SCAFFOLD employs a control variable in
each client to counteract the “client drift” effect during local updates. We will introduce momentum
to both SCAFFOLD and its variance-reduced extension to gain better convergence results.

4.1 SCAFFOLD WITH MOMENTUM

Algorithm. We introduce momentum to enhance the estimation of the stochastic gradient, result-
ing in the newly proposed algorithm SCAFFOLD-M, outlined in Algorithm 2. In SCAFFOLD-
M, S clients are randomly selected from a pool of N clients for each training iteration. The control
variables ci and c are maintained by the client and server, respectively. In SCAFFOLD, the local
descent direction is given by ∇F (xr,k

i ; ξr.ki ) − cri + cr. In contrast, SCAFFOLD-M incorporates
momentum directions for local updates:

gr,ki = β(∇F (xr,k
i ; ξr,ki )− cri + cr) + (1− β)gr, (3)

where gr represents the global stochastic gradient vector maintained by the server. It is worth noting
that SCAFFOLD-M can reduce to SCAFFOLD by setting β = 1.
Convergence property. Our momentum yields notable theoretical improvements to SCAFFOLD:

Theorem 3. Under Assumption 1 and 3, if we take g0 = 0, c0i = 1
B

∑B
b=1 ∇F (x0; ξbi ) with

{ξbi }Bb=1
iid∼ Di, c0 = 1

N

∑N
i=1 c

0
i and set β, γ, η, and B as in (9), SCAFFOLD-M enjoys

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
√

L∆σ2

SKR
+

L∆

R

(
1 +

N2/3

S

)
.

Comparison with SCAFFOLD. Compared to SCAFFOLD, SCAFFOLD-M exhibits provably
faster convergence under partial participation, as justified in the comparison in Table 2. Specifically,
when the gradients are noiseless (i.e., σ2 = 0), achieving the same level of stationarity E[∥∇f(x̂)∥2]
requires a ratio, between SCAFFOLD-M and SCAFFOLD, of communication rounds:

1 +N2/3/S

(N/S)2/3
=

(
S

N

)2/3

+
1

S1/3
.
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Figure 1: Test loss of three-layer MLP versus the number of communication rounds

Thus, if S ≍ N2/3, SCAFFOLD-M achieves up to N2/9 times improvement in comparison to
the vanilla SCAFFOLD, when aiming for the same level of stationarity. This improvement is
significant as N , the number of clients in FL, is typically large. It is also worth highlighting that
prior to our SCAFFOLD-M, SCAFFOLD was the only known non-iid FL method, to the best
of our knowledge, that is robust to both unbounded data heterogeneity and partial client sampling,
and capable of attaining linear speedup without relying on impractical algorithmic structures. The
development of SCAFFOLD-M provides an alternative and superior choice.

4.2 VARIANCE-REDUCED SCAFFOLD WITH MOMENTUM

Similar to FEDAVG-M-VR, when the loss functions further enjoy the sample-wise smoothness prop-
erty, we can obtain SCAFFOLD-M-VR by replacing momentum directions in Algorithm 2 with
variance-reduced momentum directions

gr,ki = ∇F (xr,k
i ; ξr,ki )− β(cri − cr) + (1− β)(gr −∇F (xr−1; ξr,ki )).

The detailed algorithm is in Appendix C.2, and the convergence is shown below.

Theorem 4. Under Assumption 2 and 3, if we take c0i = 1
B

∑B
b=1 ∇F (x0; ξbi ) with {ξbi }Bb=1

iid∼ Di,
g0 = c0 = 1

N

∑N
i=1 c

0
i and set β, γ, η, and B as in (11), SCAFFOLD-M-VR enjoys

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
(

L∆σ

S
√
KR

)2/3

+
L∆

R

(
1 +

N1/2

S

)
.

Comparison with variance-reduced methods. SCAFFOLD-M-VR outperforms all existing
variance-reduced federated learning methods under partial participation in terms of convergence
rate when data heterogeneity is severe (i.e., ζ2 is large), see results listed in Table 2. Moreover,
SCAFFOLD-M-VR has the following additional advantages. Compared to MIMELITEMVR
(Karimireddy et al., 2020a), SCAFFOLD-M-VR does not need access to noiseless (full-batch)
local gradients per iteration. Compared to MB-STORM (Patel et al., 2022) and CE-LSGD (Patel
et al., 2022), SCAFFOLD-M-VR does not require bounded data heterogeneity and conducts each
local update using 1 + 1/K = O(1) minibatches on average, instead of O(K).
Based on Sections 4.1 and 4.2, we demonstrate that SCAFFOLD-M and SCAFFOLD-M-VR,
in the context of partial client participation, can achieve state-of-the-art convergence rates without
resorting to any stronger assumption, e.g., bounded data heterogeneity or impractical algorithmic
structures such as a large number of minibatches in local gradient computation.

5 EXPERIMENTS

We present experiments on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) with two neural net-
works (three-layer MLP, ResNet-18) to justify the efficacy of our proposed algorithms. We evaluate
them along with baselines including FEDAVG (Konečnỳ et al., 2016), SCAFFOLD (Karimireddy
et al., 2020b), MB-STORM, CE-LSGD (Patel et al., 2022). Parameters (such as learning rates)
in our implementation are set by grid search. We defer more experimental details and results (e.g.,
investigating the impact of momentum value β, setups with large N ) to Appendix D.

5.1 MLP EXPERIMENTS

The MLP experiments involve K = 32 local updates and N = 10 clients with data generated via
the Dirichlet distribution (Hsu et al., 2019) with a parameter of 0.5 and 0.2 for full and partial client
participation, respectively (small parameter value implies severe heterogeneity).

Firstly, we compare the performance of FEDAVG-M and SCAFFOLD-M with their momentum-
free counterparts, namely the vanilla FEDAVG and SCAFFOLD, under full client participation.
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Figure 2: Test accuracy of ResNet18 versus the number of communication rounds

The results are presented in Figure 1(a), in which it can be observed that incorporating momentum
significantly accelerates the convergence of both FEDAVG and SCAFFOLD.
Secondly, we compare four momentum-based variance-reduced methods: MINIBATCH-STORM,
CE-LSGD, FEDAVG-M-VR (our Algorithm 3), and SCAFFOLD-M-VR (our Algorithm 4), un-
der full client participation. The comparison is illustrated in Figure 1(b). Our proposed methods
outperform MINIBATCH-STORM and CE-LSGD with substantial margins.
Lastly, we investigate the case of partial client participation with S = 1 and compare the perfor-
mance of SCAFFOLD-M and SCAFFOLD-M-VR with vanilla SCAFFOLD. The results are
presented in Figure 1(c). Once again, we observe that the introduction of momentum leads to sig-
nificant improvements even when only a few clients participate in each round of training.

5.2 RESNET18 EXPERIMENTS

We further compare the above algorithms with a larger model: ResNet18 (He et al., 2016) under
varying data heterogeneity by setting the parameter of Dirichlet distribution as 0.5 and 0.1, respec-
tively, where a small parameter value suggests severe data heterogeneity. The experiment involves
N = 10 clients and K = 16 local updates. We set S = 2 in partial client participation.

Figure 2(a) reports the test accuracy of full and partial client participation under mild data het-
erogeneity while Figure 2(b) presents the counterparts under severe data heterogeneity, where the
bottom right one is smoothed by plotting the best-so-far result. Again, we observe that FEDAVG-M
and SCAFFOLD-M significantly outperform the vanilla FEDAVG and SCAFFOLD. Moreover, for
ResNet18 and severe data heterogeneity, FEDAVG-M and SCAFFOLD-M exhibit notably greater
advantages over their momentumless counterparts than for MLP scenarios under milder data het-
erogeneity. The observation demonstrates amplified advantages of the introduced momentum in
larger models and severely heterogeneous data, which is aligned with our theoretical predictions
and suggests the promising utility of our proposed methods in real-world applications.

6 CONCLUSION

We propose momentum variants of FEDAVG and SCAFFOLD under various client participation
situations and objectives’ smoothness. All the momentum variants make simple and practical ad-
justments to FEDAVG and SCAFFOLD yet obtain state-of-the-art performance among their peers,
especially under severe data heterogeneity or small gradient variance. In particular, FEDAVG-M
converges under unbounded data heterogeneity and admits constant local learning rates, giving the
first neat convergence for FEDAVG-type methods; SCAFFOLD-M is the first FL method that out-
performs SCAFFOLD unconditionally. Experiments conducted support our theoretical findings.
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Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2021.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and quan-
tization. In International Conference on Artificial Intelligence and Statistics, pp. 2021–2031.
PMLR, 2020.

Elsa Rizk, Stefan Vlaski, and Ali H Sayed. Privatized graph federated learning. arXiv:2203.07105,
2022.

Sebastian Urban Stich. Local sgd converges fast and communicates little. In International Confer-
ence on Learning Representations, 2019.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau en-
velopes. Advances in Neural Information Processing Systems, 33:21394–21405, 2020.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE Transactions on Neural Networks and Learning Systems, 2022.

Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis
of local-update sgd algorithms. The Journal of Machine Learning Research, 22(1):9709–9758,
2021.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020a.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. SlowMo: Improving
communication-efficient distributed sgd with slow momentum. In International Conference on
Learning Representations, 2020b.

12



Published as a conference paper at ICLR 2024

Ran Xin, Usman A Khan, and Soummya Kar. An improved convergence analysis for decentralized
online stochastic non-convex optimization. IEEE Transactions on Signal Processing, 2020.

Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. Asynchronous federated learning on
heterogeneous devices: A survey. arXiv preprint arXiv:2109.04269, 2021a.

J. Xu, S. Zhu, Y. C. Soh, and L. Xie. Augmented distributed gradient methods for multi-agent op-
timization under uncoordinated constant stepsizes. In IEEE Conference on Decision and Control
(CDC), pp. 2055–2060, Osaka, Japan, 2015.

Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. FedCM: Federated learning with
client-level momentum. arXiv:2106.10874, 2021b.

Yan Yan, Tianbao Yang, Zhe Li, Qihang Lin, and Yi Yang. A unified analysis of stochastic mo-
mentum methods for deep learning. In International Joint Conference on Artificial Intelligence,
2018.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker partici-
pation in non-iid federated learning. In International Conference on Learning Representations,
2021.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient mo-
mentum SGD for distributed non-convex optimization. In International Conference on Machine
Learning, pp. 7184–7193. PMLR, 2019a.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pp. 5693–5700, 2019b.

Kun Yuan, Bicheng Ying, Xiaochuan Zhao, and Ali H. Sayed. Exact diffusion for distributed opti-
mization and learning—part i: Algorithm development. IEEE Transactions on Signal Processing,
67:708–723, 2019.

Kun Yuan, Sulaiman A Alghunaim, Bicheng Ying, and Ali H Sayed. On the influence of bias-
correction on distributed stochastic optimization. IEEE Transactions on Signal Processing, 2020.

Kun Yuan, Yiming Chen, Xinmeng Huang, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao Yin.
DecentLaM: Decentralized momentum sgd for large-batch deep training. International Confer-
ence on Computer Vision, pp. 3009–3019, 2021.

Kun Yuan, Sulaiman A Alghunaim, and Xinmeng Huang. Removing data heterogeneity influence
enhances network topology dependence of decentralized sgd. Journal of Machine Learning Re-
search, 24(280):1–53, 2023.

Nesterov Yurri. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic
Publishers, Norwell, 2004.

Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao Yin, and Yang Liu. FedPD: A federated learning
framework with adaptivity to non-iid data. IEEE Transactions on Signal Processing, 69:6055–
6070, 2021.

Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic gradi-
ent descent algorithm for nonconvex optimization. arXiv preprint arXiv:1708.01012, 2017.

13



Published as a conference paper at ICLR 2024

A PRELIMINARIES OF PROOFS

Let F0 = ∅ and Fr,k
i := σ({xr,j

i }0≤j≤k ∪ Fr) and Fr+1 := σ(∪iFr,K
i ) for all r ≥ 0 where σ(·)

indicates the σ-algebra. Let Er[·] := E[·|Fr] be the expectation, conditioned on the filtration Fr,
with respect to the random variables {Sr, {ξr,ki }1≤i≤N,0≤k<K} in the r-th iteration. We also use
E[·] to denote the global expectation over all randomness in algorithms. Through out the proofs,
we use

∑
i to represent the sum over i ∈ {1, . . . , N}, while

∑
i∈Sr denotes the sum over i ∈ Sr.

Similarly, we use
∑

k to represent the sum of k ∈ {0, . . . ,K − 1}. For all r ≥ 0, we define the
following auxiliary variables to facilitate proofs:

Er := E[∥∇f(xr)− gr+1∥2],

Ur :=
1

NK

∑
i

∑
k

E[∥xr,k
i − xr∥]2,

ζr,ki := E[xr,k+1
i − xr,k

i |Fr,k
i ],

Ξr :=
1

N

N∑
i=1

E[∥ζr,0i ∥2],

Vr :=
1

N

N∑
i=1

E[∥cri −∇fi(x
r−1)∥2].

We remark that quantity Vr is only used in the analysis of SCAFFOLD-based algorithms. Through-
out the appendix, we let ∆ := f(x0) − f∗, G0 := 1

N

∑
i ∥∇fi(x

0)∥2, x−1 := x0 and E−1 :=

E[∥∇f(x0)− g0∥2]. We will use the following foundational lemma for all our algorithms.

Lemma 5. Under Assumption 1, if γL ≤ 1
24 , the following holds all r ≥ 0:

E[f(xr+1)] ≤ E[f(xr)]− 11γ

24
E[∥∇f(xr)∥2] + 13γ

24
Er.

Proof. Since f is L-smooth, we have

f(xr+1) ≤f(xr) + ⟨∇f(xr), xr+1 − xr⟩+ L

2
∥xr+1 − xr∥2

=f(xr)− γ∥∇f(xr)∥2 + γ⟨∇f(xr),∇f(xr)− gr+1⟩+ Lγ2

2
∥gr+1∥2.

Since xr+1 = xr − γgr+1, using Young’s inequality, we further have
f(xr+1)

≤f(xr)− γ

2
∥∇f(xr)∥2 + γ

2
∥∇f(xr)− gr+1∥2 + Lγ2(∥∇f(xr)∥2 + ∥∇f(xr)− gr+1∥2)

≤f(xr)− 11γ

24
∥∇f(xr)∥2 + 13γ

24
∥∇f(xr)− gr+1∥2,

where the last inequality is due to γL ≤ 1
24 . Taking the global expectation completes the proof.

To handle local updates and client sampling, we will also use the following technical lemmas.

Lemma 6 (Karimireddy et al. (2020b)). Suppose {X1, · · · , Xτ} ⊂ Rd be random variables that
are potentially dependent. If their marginal means and variances satisfy E[Xi] = µi and E[∥Xi −
µi∥2] ≤ σ2, then it holds that

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤

∥∥∥∥∥
τ∑

i=1

µi

∥∥∥∥∥
2

+ τ2σ2.

If they are correlated in the Markov way such that E[Xi|Xi−1, · · ·X1] = µi and E[∥Xi − µi∥2 |
µi] ≤ σ2, i.e., the variables {Xi − µi} form a martingale. Then the following tighter bound holds:

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤ 2E

∥∥∥∥∥
τ∑

i=1

µi

∥∥∥∥∥
2
+ 2τσ2.
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Lemma 7. Given vectors v1, · · · , vN ∈ Rd and v̄ = 1
N

∑N
i=1 vi, if we sample S ⊂ {1, · · · , N}

uniformly randomly such that |S| = S, then it holds that

E

∥∥∥∥∥ 1S ∑
i∈S

vi

∥∥∥∥∥
2
 = ∥v̄∥2 + N − S

S(N − 1)

1

N

N∑
i=1

∥vi − v̄∥2.

Proof. Letting 1{i ∈ S} be the indicator for the event i ∈ Sr, we prove this lemma by direct
calculation as follows:

E

∥∥∥∥∥ 1S ∑
i∈S

vi

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1S
N∑
i=1

vi1{i ∈ S}

∥∥∥∥∥
2


=
1

S2
E

∑
i

∥vi∥21{i ∈ S}+ 2
∑
i<j

v⊤i vj1{i, j ∈ S}


=

1

SN

N∑
i=1

∥vi∥2 +
1

S2

S(S − 1)

N(N − 1)
2
∑
i<j

v⊤i vj

=
1

SN

N∑
i=1

∥vi∥2 +
1

S2

S(S − 1)

N(N − 1)

∥∥∥∥∥
N∑
i=1

vi

∥∥∥∥∥
2

−
N∑
i=1

∥vi∥2


=
N − S

S(N − 1)

1

N

N∑
i=1

∥vi∥2 +
N(S − 1)

S(N − 1)
∥v∥2

=
N − S

S(N − 1)

1

N

N∑
i=1

∥vi − v∥2 + ∥v∥2.

In the following subsections, we present complete proofs of our main results. For FEDAVG-M
and SCAFFOLD-M, our proofs only rely on Assumption 1 and 3, while for FEDAVG-M-VR and
SCAFFOLD-M-VR, our proofs rely on Assumption 2 and 3.

15
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B FEDAVG WITH MOMENTM

B.1 FEDAVG-M

In this subsection, we present the proofs for the FEDAVG-M algorithm.

Lemma 8. If γL ≤ β
6 , the following holds for r ≥ 1:

Er ≤
(
1− 8β

9

)
Er−1 +

4γ2L2

β
E[∥∇f(xr−1)∥2] + 2β2σ2

NK
+ 4βL2Ur.

Additionally, it holds for r = 0 that

E0 ≤ (1− β)E−1 +
2β2σ2

NK
+ 4βL2U0.

Proof. For r ≥ 1,
Er = E[∥∇f(xr)− gr+1∥2]

= E

∥∥∥∥∥(1− β)(∇f(xr)− gr) + β

(
∇f(xr)− 1

NK

∑
i

∑
k

∇F (xr,k
i ; ξr,ki )

)∥∥∥∥∥
2


= E
[
∥(1− β)(∇f(xr)− gr)∥2

]
+ β2E


∥∥∥∥∥∥∇f(xr)− 1

NK

∑
i, k

∇F (xr,k
i ; ξr,ki )

∥∥∥∥∥∥
2


+ 2βE

〈(1− β)(∇f(xr)− gr),∇f(xr)− 1

NK

∑
i, k

∇f(xr,k
i )

〉 .

Note that {∇F (xr,k
i ; ξr,ki )}0≤k<K are sequentially correlated. Applying the AM-GM inequality

and Lemma 6, we have

Er ≤
(
1 +

β

2

)
E[∥(1− β)(∇f(xr)− gr)∥2] + 2βL2Ur + 2β2

(
σ2

NK
+ L2Ur

)
.

Using the AM-GM inequality again and Assumption 1, we have

Er ≤ (1− β)2
(
1 +

β

2

)[(
1 +

β

2

)
Er−1 +

(
1 +

2

β

)
L2E[∥xr − xr−1∥2]

]
+

2β2σ2

NK
+ 4βL2Ur

≤ (1− β)Er−1 +
2

β
L2E[∥xr − xr−1∥2] + 2β2σ2

NK
+ 4βL2Ur

≤
(
1− 8β

9

)
Er−1 + 4

γ2L2

β
E[∥∇f(xr−1)∥2] + 2β2σ2

NK
+ 4βL2Ur,

where we plug in ∥xr − xr−1∥2 ≤ 2γ2(∥∇f(xr−1)∥2 + ∥gr − ∇f(xr−1)∥2) and use γL ≤ β
6 in

the last inequality. Similarly for r = 0,

E0 ≤
(
1 +

β

2

)
E[∥(1− β)(∇f(x0)− g0)∥2] + 2βL2U0 + 2β2

(
σ2

NK
+ L2U0

)
≤ (1− β)E−1 +

2β2σ2

NK
+ 4βL2U0.

Lemma 9. If ηLK ≤ 1
β , the following holds for r ≥ 0:

Ur ≤ 2eK2Ξr +Kη2β2σ2(1 + 2K3L2η2β2).

Proof. Recall that ζr,ki := E[xr,k+1
i − xr,k

i |Fr,k
i ] = −η

(
(1− β)gr + β∇fi(x

r,k
i )
)

. Then we have

E[∥ζr,ji − ζr,j−1
i ∥2] ≤ η2L2β2E[∥xr,j

i − xr,j−1
i ∥2]

≤ η2L2β2(η2β2σ2 + E[∥ζr,j−1
i ∥2).

16
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For any 1 ≤ j ≤ k − 1 ≤ K − 2, using ηL ≤ 1
βK ≤ 1

β(k+1) , we have

E[∥ζr,ji ∥2] ≤
(
1 +

1

k

)
E[∥ζr,j−1

i ∥2] + (1 + k)E[∥ζr,ji − ζr,j−1
i ∥2]

≤
(
1 +

2

k

)
E[∥ζr,j−1

i ∥2] + (k + 1)L2η4β4σ2

≤ e2E[∥ζr,0i ∥2] + 4k2L2η4β4σ2,

where the last inequality is by unrolling the recursive bound and using
(
1 + 2

k

)k ≤ e2. By Lemma
6, it holds that for k ≥ 2,

E[∥xr,k
i − xr∥2] ≤ 2E


∥∥∥∥∥∥
k−1∑
j=0

ζr,ji

∥∥∥∥∥∥
2
+ 2kη2β2σ2

≤ 2k

k−1∑
j=0

E[∥ζr,ki ∥2] + 2kη2β2σ2

≤ 2e2k2E[∥ζr,0i ∥2] + 2kη2β2σ2(1 + 4k3L2η2β2).

This is also valid for k = 0, 1. Summing up over i and k finishes the proof.

Lemma 10. If 288e(ηKL)2((1− β)2 + e(βγLR)2) ≤ 1, then it holds for r ≥ 0 that
R−1∑
r=0

Ξr ≤ 1

72eK2L2

R−2∑
r=−1

(Er + E[∥∇f(xr)∥2]) + 2η2β2eRG0.

Proof. Note that ζr,0i = −η((1− β)gr + β∇fi(x
r)),

1

N

N∑
i=1

∥ζr,0i ∥2 ≤ 2η2

(
(1− β)2∥gr∥2 + β2 1

N

N∑
i=1

∥∇fi(x
r)∥2

)
.

Using Young’s inequality, we have for any q > 0 that
E[∥∇fi(x

r)∥2] ≤ (1 + q)E[∥∇fi(x
r−1)∥2] + (1 + q−1)L2E[∥xr − xr−1∥2]

≤ (1 + q)E[∥∇fi(x
r−1)∥2] + 2(1 + q−1)γ2L2(Er−1 + E[∥∇f(xr−1)∥2])

≤ (1 + q)rE[∥∇fi(x
0)∥2] + 2

q
γ2L2

r−1∑
j=0

(Ej + E[∥∇f(xj)∥2)(1 + q)r−j .

Take q = 1
r and we have

E[∥∇fi(x
r)∥2] ≤ eE[∥∇fi(x

0)∥2] + 2e(r + 1)γ2L2
r−1∑
j=0

(Ej + E[∥∇f(xj)∥2). (4)

17
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Note that this inequality is valid for r = 0. Therefore, using (4), we have
R−1∑
r=0

Ξr ≤
R−1∑
r=0

2η2E

[
(1− β)2∥gr∥2 + β2 1

N

N∑
i=1

∥∇fi(x
r)∥2

]

≤
R−1∑
r=0

2η2

(
2(1− β)2(Er−1 + E[∥∇f(xr−1)∥2]) + β2 1

N

N∑
i=1

E[∥∇fi(x
r)∥2]

)

≤
R−1∑
r=0

4η2(1− β)2(Er−1 + E[∥∇f(xr−1)∥2])

+ 2η2β2
R−1∑
r=0

 e

N

N∑
i=1

E[∥∇fi(x
0)∥2] + 2e(r + 1)(γL)2

r−1∑
j=0

(Ej + E[∥∇f(xj)∥2])



≤ 4η2(1− β)2
R−1∑
r=0

(Er−1 + E[∥∇f(xr−1)∥2])

+ 2η2β2

(
eRG0 + 2e(γLR)2

R−2∑
r=0

(Er + E[∥∇f(xr)∥2])

)
.

Rearranging the equation and applying the upper bound of η completes the proof.

Theorem 11. Under Assumption 1 and 3, if we take g0 = 0,

β = min

{
,

√
NKL∆

σ2R

}
for any constant c ∈ (0, 1], γ = min

{
1

24L
,
β

6L

}
,

ηKL ≲ min

{
1,

1

βγLR
,

(
L∆

G0β3R

)1/2

,
1

(βN)1/2
,

1

(β3NK)1/4

} (5)

then FEDAVG-M converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
√

L∆σ2

NKR
+

L∆

R
.

Here G0 := 1
N

∑N
i=1 ∥∇fi(x

0)∥2.

Proof. Combining Lemma 8 and 9, we have

Er ≤
(
1− 8β

9

)
Er−1 + 4

(γL)2

β
E[∥∇f(xr−1)∥2] + 2β2σ2

NK

+ 4βL2
(
2eK2Ξr +Kη2β2σ2(1 + 2K3L2η2β2

)
.

and

E0 ≤ (1− β)E−1 +
2β2σ2

NK
+ 4βL2

(
2eK2Ξ0 +Kη2β2σ2(1 + 2K3L2η2β2)

)
.
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Summing over r from 0 to R− 1 and applying Lemma 10,
R−1∑
r=0

Er ≤
(
1− 8β

9

) R−2∑
r=−1

Er + 4
(γL)2

β

R−2∑
r=0

E[∥∇f(xr)∥2] + 2
β2σ2

NK
R

+ 4βL2

(
2eK2

R−1∑
r=0

Ξr +RKη2β2σ2(1 + 2K3L2η2β2)

)

≤
(
1− 7β

9

) R−2∑
r=−1

Er +
(
4
(γL)2

β
+

β

9

) R−2∑
r=−1

E[∥∇f(xr)∥2] + 16β3(eηKL)2RG0

+
2β2σ2

NK
R+ 4β3(ηKL)2

(
1

K
+ 2(ηKLβ)2

)
σ2R

≤
(
1− 7β

9

) R−2∑
r=−1

Er +
2β

9

R−2∑
r=−1

E[∥∇f(xr)∥2] + 16β3(eηKL)2RG0 +
4β2σ2

NK
R.

Here in the last inequality we apply

4β(ηKL)2
(

1

K
+ 2(ηKLβ)2

)
≤ 2

NK
and γL ≤ β

6
.

Therefore,
R−1∑
r=0

Er ≤ 9

7β
E−1 +

2

7
E[

R−2∑
r=−1

∥∇f(xr)∥2] + 144

7
(eβηKL)2G0R+

36βσ2

7NK
R.

Combine this inequality with Lemma 5 and we get

1

γ
E[f(xR)− f(x0)] ≤ −1

7

R−1∑
r=0

E[∥∇f(xr)∥2] + 39

56β
E−1 +

78

7
(eβηKL)2G0R+

39βσ2

14NK
R.

Finally, noticing that g0 = 0 implies E−1 ≤ 2L(f(x0)− f∗) = 2L∆, we obtain

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲ L∆

γLR
+

E−1

βR
+ (βηKL)2G0 +

βσ2

NK

≲
L∆

R
+

L∆

βR
+

βσ2

NK
+ (βηKL)2G0

≲
L∆

R
+

√
L∆σ2

NKR
.

B.2 FEDAVG-M-VR

In this subsection, we present the proofs for the FEDAVG-M-VR algorithm, shown as in Algorithm
3.

Lemma 12. If γL ≤
√

βNK
54 , the following holds for r ≥ 1:

Er ≤ (1− 8β

9
)Er−1 +

4

β
L2Ur +

3β2σ2

NK
+

6(γL)2

NK
E[∥∇f(xr−1)∥2.

Also for r = 0, it holds that

E0 ≤ (1− β)E−1 +
4

β
L2Ur +

3β2σ2

NK
.
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Algorithm 3 FEDAVG-M-VR: FEDAVG with variance-reduced momentum
Require: initial model x−1 = x0 and gradient estimate g0, local learning rate η, global learning

rate γ, momentum β
for r = 0, · · · , R− 1 do

for each client i ∈ {1, . . . , N} in parallel do
Initial local model xr,0

i = xr

for k = 0, · · · ,K − 1 do
Compute direction gr,ki = ∇F (xr,k

i ; ξr,ki ) + (1− β)(gr −∇F (xr−1; ξr,ki ))

Update local model xr,k+1
i = xr,k

i − ηgr,ki
end for

end for
Aggregate local updates gr+1 = 1

ηNK

∑N
i=1

(
xr − xr,K

i

)
Update global model global xr+1 = xr − γgr+1

end for

Proof.

Er = E


∥∥∥∥∥∥ 1

NK

∑
i, k

∇F (xr,k
i ; ξr,ki ) + (1− β)

gr − 1

NK

∑
i, k

∇F (xr−1; ξr,ki )

−∇f(xr)

∥∥∥∥∥∥
2


=E

[∥∥∥∥∥(1− β)(gr −∇f(xr−1)) +
1

NK

∑
i, k

∇F (xr,k
i ; ξr,ki )−∇f(xr)

+ (1− β)

∇f(xr−1)− 1

NK

∑
i, k

∇F (xr−1; ξr,ki )

∥∥∥∥∥
2]

=(1− β)2Er−1 + 2E

〈(1− β)(gr −∇f(xr−1)),
1

NK

∑
i, k

∇fi(x
r,k
i )−∇f(xr)

〉
︸ ︷︷ ︸

Λ1

+ E

∥∥∥∥∥∥ 1

NK

∑
i, k

∇F (xr,k
i ; ξr,ki )−∇f(xr) + (1− β)

∇f(xr−1)− 1

NK

∑
i, k

∇F (xr−1; ξr,ki )

∥∥∥∥∥∥
2

︸ ︷︷ ︸
Λ2

.

By the AM-GM inequality and Assumption 2,

Λ1 ≤ β(1− β)2Er−1 +
1

β
L2Ur.

By Assumption 2,

Λ2 = E

[∥∥∥∥∥ 1

NK

∑
i, k

(∇F (xr,k
i ; ξr,ki )−∇F (xr; ξr,ki )) + β

 1

NK

∑
i, k

∇F (xr,k
i ; ξr,ki )−∇f(xr)


+ (1− β)

 1

NK

∑
i, k

(∇F (xr; ξr,ki )−∇F (xr−1; ξr,ki ))−∇f(xr) +∇f(xr−1)

∥∥∥∥∥
2]

≤ 3L2Ur + 3
β2σ2

NK
+ 3(1− β)2

L2

NK
E[∥xr − xr−1∥2.

Therefore, for r ≥ 1,

Er ≤ (1− β)Er−1 +
4

β
L2Ur +

3β2σ2

NK
+ 3(1− β)2

L2

NK
E[∥xr − xr−1∥2]

≤ (1− 8β

9
)Er−1 +

4

β
L2Ur +

3β2σ2

NK
+

6(γL)2

NK
E[∥∇f(xr−1)∥2].
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The last inequality is derived by ∥xr − xr−1∥2 ≤ 2γ2(∥∇f(xr−1)∥2 + ∥gr − ∇f(xr−1)∥2) and

γL ≤
√

βNK
54 . Similarly, for r = 0, we can obtain

E0 ≤ (1− β)E−1 +
4

β
L2U0 +

3β2σ2

NK
.

Lemma 13. If ηKL ≤ 1
4e , the following holds:

Ur ≤ 4eK2Ξr + 8(ηK)2(2(ηKL)2 +K−1)
(
β2σ2 + 2L2E[∥xr − xr−1∥2]

)
.

Proof. Note that ζr,ki = −η(∇fi(x
r,k
i ) + (1− β)(gr −∇fi(x

r−1)). Then we have

E[∥ζr,ji − ζr,j−1
i ∥2] ≤ η2L2E[∥xr,j

i − xr,j−1
i ∥2]

= η2L2
(
E[∥ζr,j−1

i ∥2] + E[Var[xr,j
i − xr,j−1

i |Fr,j−1
i ]]

)
.

Here we use bias-variance decomposition and Var[·|·] stands for the conditional variance. Since
E[Var[xr,j

i − xr,j−1
i |Fr,j−1

i ]]

=η2E
[∥∥∥∇F (xr,j−1

i ; ξr,j−1
i )−∇fi(x

r,j−1
i )− (1− β)

(
∇F (xr−1; ξr,j−1

i )−∇fi(x
r−1)

)∥∥∥2]
≤η2

(
2β2σ2 + 2(1− β)2L2E[∥xr−1 − xr,j−1

i ∥2
)
,

then
E[∥ζr,ji − ζr,j−1

i ∥2]

≤ η2L2
(
E[∥ζr,j−1

i ∥2 + 2β2η2σ2 + 2η2(1− β)2L2E[∥xr−1 − xr,j−1
i ∥2]

)
≤ η2L2

(
E[∥ζr,j−1

i ∥2] + 2β2η2σ2 + 4η2L2E[∥xr−1 − xr∥2 + ∥xr − xr,j−1
i ∥2]

)
.

Therefore for any 1 ≤ j ≤ k − 1 ≤ K − 2,

E∥ζr,ji ∥2 ≤ (1 +
1

k
)E[∥ζr,j−1

i ∥2 + (1 + k)E[∥ζr,ji − ζr,j−1
i ∥2]

≤
(
1 +

2

k

)
E∥ζr,j−1

i ∥2 + (k + 1)η2L2
(
2β2η2σ2 + 4η2L2E[∥xr−1 − xr∥2 + ∥xr − xr,j−1

i ∥2]
)

≤e2E∥ζr,0i ∥2 + 8k2L2η4(2β2σ2 + 4L2E[∥xr − xr−1∥2]) + 4e2k(ηL)4
j−1∑
j′=0

E[∥xr,j′

i − xr∥2].

(6)
Here the second inequality is by ηL ≤ 1

K ≤ 1
k+1 . The last inequality is by unrolling the recursive

bound and using
(
1 + 2

k

)k ≤ e2. By Lemma 6, it holds that

E[∥xr,k
i − xr∥2]

≤2E


∥∥∥∥∥∥
k−1∑
j=0

ζr,ji

∥∥∥∥∥∥
2
+ 2

k−1∑
j=0

E[Var[xr,j+1
i − xr,j

i |Fr,j
i ]]

≤2k

k−1∑
j=0

E[∥ζr,ji ∥2] + 2

k−1∑
j=0

(
2β2η2σ2 + 4η2L2E[∥xr−1 − xr∥2 + ∥xr − xr,j

i ∥2]
)
. (7)

Summing up (7) over k = 0, . . . ,K − 1, using (6) and 8(ηL)2 + 8e2(ηKL)4 ≤ 1
2 due to the

condition on η, we have

1

2K

K−1∑
k=0

E[∥xr,k
i −xr∥2 ≤ 2eK2E[∥ζr,0i ∥2]+(8(ηK)4L2+4η2K)

(
β2σ2 + 2L2E[∥xr − xr−1∥2]

)
.

This implies
Ur ≤ 4eK2Ξr + 8(ηK)2(2(ηKL)2 +K−1)

(
β2σ2 + 2L2E[∥xr − xr−1∥2]

)
.
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Lemma 14. If γL ≤ 1
24 and 288e(ηKL)2

(
289
72 (1− β)2 + 8e(γβLR)2

)
≤ β2, then the following

holds:
R−1∑
r=0

Ξr ≤ β2

288eK2L2

R−2∑
r=−1

(Er + E[∥∇f(xr)∥2]) + 4η2β2eRG0.

Proof. Recall that ζr,0i = −η((1− β)(gr −∇fi(x
r−1)) +∇fi(x

r)). Consequently, we have

∥ζr,0i ∥2 ≤ 2η2
(
(1− β)2∥gr∥2 + ∥∇fi(x

r)− (1− β)∇fi(x
r−1)∥2

)
≤ 2η2(1− β)2(1 + 2(γL)2)∥gr∥2 + 4η2β2∥∇fi(x

r)∥2

≤ 289

144
η2(1− β)2∥gr∥2 + 4η2β2∥∇fi(x

r)∥2.
Using Young’s inequality, we can obtain that for any q > 0,

E[∥∇fi(x
r)∥2] ≤ (1 + q)E[∥∇fi(x

r−1)∥2] + (1 + q−1)L2E∥xr − xr−1∥2

≤ (1 + q)E[∥∇fi(x
r−1)∥2] + 2(1 + q−1)(γL)2(Er−1 + E[∥∇f(xr−1)∥2])

≤ (1 + q)rE[∥∇fi(x
0)∥2] + 2

q
(γL)2

r−1∑
j=0

(Ej + E[∥∇f(xj)∥2])(1 + q)r−j .

Taking q = 1
r in the above, we have

E[∥∇fi(x
r)∥2] ≤ eE[∥∇fi(x

0)∥2] + 2e(r + 1)(γL)2
r−1∑
j=0

(Ej + E[∥∇f(xj)∥2]).

This inequality holds as well trivially for r = 0. Therefore, we have
R−1∑
r=0

Ξr ≤
R−1∑
r=0

E

[
289

144
η2(1− β)2∥gr∥2 + 4η2β2 1

N

N∑
i=1

∥∇fi(x
r)∥2

]

≤
R−1∑
r=0

289

72
η2(1− β)2(Er−1 + E[∥∇f(xr−1)∥2])

+ 4η2β2
R−1∑
r=0

 e

N

∑
i

E[∥∇fi(x
0)∥2] + 2e(r + 1)(γL)2

r−1∑
j=0

(Ej + E[∥∇f(xj)∥2])


≤ 289

72
η2(1− β)2

R−1∑
r=0

(Er−1 + E[∥∇f(xr−1)∥2])

4η2β2

(
eRG0 + 2e(γLR)2

R−2∑
r=0

(Er + E[∥∇f(xr)∥2])

)

≤ β2

288eK2L2

R−2∑
r=−1

(Er + E[∥∇f(xr)∥2]) + 4η2β2eRG0.

Here the last inequality is due to the upper bound of η.

Theorem 15. Under Assumption 2 and 3, if we take g0 = 1
NB

∑N
i=1

∑B
b=1 ∇F (x0; ξbi ) with

{ξbi }Bb=1
iid∼ Di and set

β = min

{
c,

(
NKL2∆2

σ4R2

)1/3
}

for any constant c ∈ (0, 1], γ = min

{
1

24L
,

√
βNK

54L2

}
,

ηKL ≲ min

{(
L∆

G0γLR

)1/2

,

(
β

N

)1/2

,

(
β

NK

)1/4
}
, B =

⌈
K

Rβ2

⌉
,

(8)
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FEDAVG-M-VR converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
(

L∆σ

NKR

)2/3

+
L∆

R
.

Alternatively, if B = Θ(KR) and β = min

{
1
R ,
(

NKL2∆2

σ4R2

)1/3}
, then FEDAVG-M-VR converges

as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
(

L∆σ

NKR

)2/3

+
σ2

NKR
+

L∆

R
.

Proof. Combine Lemma 12, 13 and we have

Er ≤ (1− 8β

9
)Er−1 +

(6γL)2

NK
E[∥∇f(xr−1)∥2] + 3β2σ2

NK

+
4

β
L2
(
4eK2Ξr + 8(ηK)2(2(ηKL)2 +K−1)(β2σ2 + 2L2E[∥xr − xr−1∥2])

)
E0 ≤ (1− β)E−1 +

3β2σ2

NK + 4
βL

2
(
4eK2Ξ0 + 8(ηK)2(2(ηKL)2 +K−1))β2σ2

)
Summing over r from 0 to R− 1 and applying Lemma 14,

R−1∑
r=0

Er

≤(1− 8β

9
)

R−2∑
r=−1

Er +
6(γL)2

NK
E

[
R−2∑
r=0

∥∇f(xr)∥2
]
+

3β2σ2

NK
R

+
4

β
L2

(
4eK2

R−1∑
r=0

Ξr + 8(ηK)2(2(ηKL)2 +
1

K
)

(
Rβ2σ2 + 2L2

R−1∑
r=0

E[∥xr − xr−1∥2]

))

≤(1− 7β

9
)

R−2∑
r=−1

Er +
(
6(γL)2

NK
+

β

9

)
E[

R−2∑
r=−1

∥∇f(xr)∥2] + 64β(eηKL)2RG0

+
3β2σ2

NK
R+ 32β(ηKL)2

(
1

K
+ 2(ηKL)2

)
σ2R

≤(1− 7β

9
)

R−2∑
r=−1

Er +
2β

9
E

[
R−2∑
r=−1

∥∇f(xr)∥2
]
+ 64β(eηKL)2RG0 +

4β2σ2

NK
R.

Here in the second inequality, we apply
32β(ηKL)2( 1

K + 2(ηKL)2) ≤ β2

NK ,
128(ηKL)2

β ( 1
K + 2(ηKL)2)(γL)2 ≤ β

18 ,

γL ≤
√

βNK
54 .

Therefore, we obtain
R−1∑
r=0

Er ≤ 9

7β
E−1 +

2

7
E

[
R−2∑
r=−1

∥∇f(xr)∥2
]
+

576

7
(eηKL)2G0R+

36βσ2

7NK
R.

Combine this inequality with Lemma 5 and we get

1

γ
E[f(xR)− f(x0)] ≤ −1

7

R−1∑
r=0

E[∥∇f(xr)∥2] + 39

56β
E−1 +

312

7
(eηKL)2G0R+

39βσ2

14NK
R.
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Finally, for B =
⌈

K
Rβ2

⌉
, noticing that g0 = 1

NB

∑
i

∑B
b=1 ∇F (x0; ξbi ) implies E−1 ≤ σ2

NB ≤
β2σ2R
NK and thus

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲ L∆

γLR
+

E−1

βR
+ (ηKL)2G0 +

βσ2

NK

≲
L∆

γLR
+

βσ2

NK

≲
L∆

R
+

L∆√
βNKR

+
βσ2

NK

≲
L∆

R
+

(
L∆σ

NKR

)2/3

Similarly, for B = KR, E−1 ≤ σ2

NB ≤ σ2

NKR , and we have

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲ L∆

γLR
+

E−1

βR
+ (ηKL)2G0 +

βσ2

NK

≲
L∆

γLR
+

σ2

βNKR2
+

βσ2

NK

≲
L∆

R
+

L∆√
βNKR

+
σ2

βNKR2
+

βσ2

NK

≲
L∆

R
+

(
L∆σ

NKR

)2/3

+
σ2

NKR
.
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C SCAFFOLD WITH MOMENTUM

C.1 SCAFFOLD-M

In this subsection, we present the proofs for the SCAFFOLD-M algorithm.

Lemma 16. If γL ≤ β
12 , the following holds for r ≥ 1:

Er ≤
(
1− 8β

9

)
Er−1 +

16

β
(γL)2E[∥∇f(xr−1)∥2] + 4β2σ2

SK
+ 10βL2Ur + 6β2 N − S

S(N − 1)
Vr.

In addition,

E0 ≤ (1− β)E−1 +
4β2σ2

SK
+ 8βL2U0 + 4β2 N − S

S(N − 1)
V0.

Proof. Note that 1
N

∑N
i=1 c

r
i = cr holds for any r ≥ 0. Using Lemma 7, we have

Er = E


∥∥∥∥∥∥∇f(xr)− 1

NK

∑
i, k

gr,ki

∥∥∥∥∥∥
2
+

N − S

S(N − 1)

1

N

N∑
i=1

E


∥∥∥∥∥∥ 1

K

∑
k

gr,ki − 1

NK

∑
j,k

gr,kj

∥∥∥∥∥∥
2


= E


1− β)(∇f(xr)− gr) + β

 1

NK

∑
i, k

∇F (xr,k
i ; ξr,ki )−∇f(xr)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
Λ1

+
β2(N − S)

S(N − 1)

1

N

N∑
i=1

E


∥∥∥∥∥∥ 1

K

∑
k

∇F (xr,k
i ; ξr,ki )− 1

NK

∑
j,k

∇F (xr,k
j ; ξr,kj )− (cri − cr)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
Λ2

.

For r ≥ 1, similar to the proof of Lemma 8, we have

Λ1 ≤ (1− β)Er−1 +
2

β
L2E[∥xr − xr−1∥2] + 2β2σ2

NK
+ 4βL2Ur.

Besides, by AM-GM inequality and Lemma 6,

Λ2 ≤ 1

N

N∑
i=1

E

∥∥∥∥∥ 1

K

∑
k

∇F (xr,k
i ; ξr,ki )− cri

∥∥∥∥∥
2


≤ 2σ2

K
+

2

N

∑
i

E

∥∥∥∥∥ 1

K

∑
k

∇fi(x
r,k
i )− cri

∥∥∥∥∥
2


≤ 2σ2

K
+ 6(L2Ur + L2E[∥xr − xr−1∥2] + Vr).

Since E[∥xr − xr−1∥2] ≤ 2γ2(Er−1 + E[∥∇f(xr−1)∥2]) and
(

2
β + 6β2 N−S

S(N−1)

)
2(γL)2 ≤

16
β (γL)2 ≤ β

9 , we have

Er ≤
(
1− 8β

9

)
Er−1 +

16

β
(γL)2E[∥∇f(xr−1)∥2] + 4β2σ2

SK
+ 10βL2Ur + 6β2 N − S

S(N − 1)
Vr.

The case for r = 0 is similar.

Lemma 17. If γL ≤ 1√
2β

and ηKL ≤ 1
β , it holds for all r ≥ 1 that

Ur ≤ η2K2
(
8e(Er−1 + 2E[∥∇f(xr−1)∥2] + β2Vr) + β2σ2(K−1 + 2(βηKL)2))

)
.

Proof. Since ζr,ki = E[xr,k+1
i − xr,k

i |Fr,k
i ] = −η(β∇fi(x

r,k
i ) + (1 − β)gr − β(cri − cr)) and

Var[xr,k+1
i − xr,k

i |Fr,k
i ] ≤ β2η2σ2, with exactly the same procedures of Lemma 9, we have

Ur ≤ 2eK2Ξr +Kη2β2σ2(1 + 2K3L2η2β2).
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Additionally, by AM-GM inequality,

Ξr =
η2

N

∑
i

E[∥β∇fi(x
r) + (1− β)gr − β(cri − cr)∥2]

=
η2

N

∑
i

E
[
∥β(∇fi(x

r)−∇fi(x
r−1)) + (1− β)(gr −∇f(xr−1))

−β
(
cri − cr −∇fi(x

r−1) +∇f(xr−1)
)
+∇f(xr−1)∥2

]
≤ 4η2

(
β2L2E[∥xr − xr−1∥2] + (1− β)2Er−1 + β2Vr + E[∥∇f(xr−1)∥2]

)
≤ 4η2(Er−1 + 2E[∥∇f(xr−1)∥2] + β2Vr).

Plug this inequality into the above bound completes the proof.

Lemma 18. Under the same conditions of Lemma 17, if βηKL ≤ 1
24K1/4 and ηK ≤ N

5S γ, then we
have

R−1∑
r=0

Vr ≤ 3N

S

(
V0 +

4SR

NK
σ2 +

8N

S
(γL)2

R−2∑
r=−1

(Er + E[∥∇f(xr)∥2])

)
.

Proof. Since

cr+1
i =

{
cri with probability 1− S

N
1
K

∑
k ∇F (xr,k

i ; ξr,ki ) with probability S
N ,

using Young’s inequality repeatedly, we have

Vr+1 =

(
1− S

N

)
1

N

N∑
i=1

E[∥cri −∇fi(x
r)∥2] + S

N

1

N

N∑
i=1

E

∥∥∥∥∥ 1

K

∑
k

∇F (xr,k
i ; ξr,ki )−∇fi(x

r)

∥∥∥∥∥
2


≤
(
1− S

N

)
1

N

N∑
i=1

E[∥cri −∇fi(x
r)∥2] + S

N

(
2σ2

K
+ 2L2Ur

)

≤
(
1− S

N

)
1

N

N∑
i=1

E
[(

1 +
S

2N

)
∥cri −∇fi(x

r−1)∥2 +
(
1 +

2N

S

)
L2∥xr − xr−1∥2

]
+

2S

N

(
σ2

K
+ L2Ur

)
≤
(
1− S

2N

)
Vr +

2N

S
L2E[∥xr − xr−1∥2] + 2Sσ2

NK
+

2S

N
L2Ur.

Here we apply Lemma 6 to obtain the second inequality. Combine this with Lemma 17,

Vr+1 ≤
(
1− S

2N
+ 16e

S

N
(βηKL)2

)
Vr + 2σ2

(
S

NK
+

2S

N
(βηKL)2(K−1 + 2(βηKL)2)

)
+

(
4N

S
(γL)2 +

32eS

N
(ηKL)2

)
(Er−1 + E[∥∇f(xr−1)∥2])

≤
(
1− S

3N

)
Vr +

4S

NK
σ2 +

8N

S
(γL)2(Er−1 + E[∥∇f(xr−1)∥2]),

where we apply the upper bound of η. Therefore, we finish the proof by summing up over r from 0
to R− 1 and rearranging the inequality.

Theorem 19. Under Assumption 1 and 3, if we take g0 = 0, c0i = 1
B

∑B
b=1 ∇F (x0; ξbi ) with

{ξbi }Bb=1
iid∼ Di, c0 = 1

N

∑N
i=1 c

0
i and set

γ =
β

L
, β = min

c,
S

N2/3
,

√
L∆SK

σ2R
,

√
L∆S2

G0N

 ,

ηKL ≲ min

{
1

S1/2
,

1

βK1/4
,
S1/2

N

}
, B =

⌈
NK

SR

⌉
,

(9)
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then SCAFFOLD-M converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
√

L∆σ2

SKR
+

L∆

R

(
1 +

N2/3

S

)
.

Proof. By Lemma 16, sum over r from 0 to R− 1 and plug Lemma 17, Lemma 18 in,
R−1∑
r=0

Er ≤
(
1− 8β

9

) R−2∑
r=−1

Er +
16

β
(γL)2

R−2∑
r=0

E[∥∇f(xr)∥2]

+
4β2σ2

SK
R+ 10βL2

R−1∑
r=0

Ur + 6β2 N − S

S(N − 1)

R−1∑
r=0

Vr

≤
(
1− 8β

9
+ 80eβ(ηKL)2

) R−2∑
r=−1

Er + (
16

β
(γL)2 + 160eβ(ηKL)2)

R−2∑
r=0

E[∥∇f(xr)∥2]

+ β2σ2R

(
4

SK
+ 10(ηKL)2(K−1 + 2(βηKL)2)

)
+

+ β2

(
6

N − S

S(N − 1)
+ 80eβ(ηKL)2

)R−1∑
r=0

Vr

≤
(
1− 7β

9

) R−2∑
r=−1

Er +
(
16

β
(γL)2 +

β

9

)R−2∑
r=0

E[∥∇f(xr)∥2] + 80β2σ2

SK
R+

30β2N

S2
V0.

Here the coefficients in the last inequality are derived by the following bounds:
160eβ(ηKL)2 + 24(βγLN

S )2
(
6 N−S
S(N−1) + 80eβ(ηKL)2

)
≤ β

9 ,

10(ηKL)2(K−1 + 2(βηKL)2) + 960eβK−1(ηKL)2 ≤ 4
SK ,

80eβ(ηKL)2 ≤ 4
S ,

which can be guaranteed by  γL ≲ S3/2

β1/2N
,

ηKL ≲ 1
S1/2 .

Therefore,
R−1∑
r=0

Er ≤ 9

7β
E−1 +

2

7
E

[
R−2∑
r=−1

∥∇f(xr)∥2
]
+

270βN

7S2
V0 +

720βσ2

7SK
R.

Combining this inequality with Lemma 5, we obtain

1

γ
E[f(xR)− f(x0)] ≤ −1

7

R−1∑
r=0

E[∥∇f(xr)∥2] + 39

56β
E−1 +

585βN

28S2
V0 +

390βσ2

7SK
R.

Finally, noticing that g0 = 0 implies E−1 ≤ 2L∆ and ci =
1
B

∑
b ∇F (x0; ξbi ) implies V0 ≤ σ2

B ≤
SRσ2

NK , we reach

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲ L∆

γLR
+

E−1

βR
+

βN

S2R
V0 +

βσ2

SK

≲
L∆

βR
+

L∆

S3/2R
Nβ1/2 +

βσ2

SK

≲
L∆

R

(
1 +

N2/3

S

)
+

√
L∆σ2

SKR
.
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C.2 SCAFFOLD-M-VR

In this subsection, we present the proofs for the SCAFFOLD-M-VR algorithm, shown as in Algo-
rithm 4.

Algorithm 4 SCAFFOLD-M-VR: SCAFFOLD with variance-reduced momentum
Require: initial model x−1 = x0, gradient estimator g0, control variables {c0i }Ni=1 and c0, local

learning rate η, global learning rate γ, momentum β
for r = 0, · · · , R− 1 do

Uniformly sample clients Sr ⊆ {1, · · · , N} with |Sr| = S
for each client i ∈ Sr in parallel do

Initialize local model xr,0
i = xr

for k = 0, · · · ,K − 1 do
Compute gr,ki = ∇F (xr,k

i ; ξr,ki )− β(cri − cr) + (1− β)(gr −∇F (xr−1; ξr,ki ))

Update local model xr,k+1
i = xr,k

i − ηgr,ki
end for
Update control variable cr+1

i := 1
K

∑
k ∇F (xr,k

i ; ξr,ki ) (for i /∈ Sr, cr+1
i = cri )

end for
Aggregate local updates gr+1 = 1

ηSK

∑
i∈Sr

(
xr − xr,K

i

)
Update global model xr+1 = xr − γgr+1

Update control variable cr+1 = cr + 1
N

∑
i∈Sr

(cr+1
i − cri )

end for

Lemma 20. If γL ≤
√

βS
126 , then the following holds for r ≥ 1:

Er ≤ (1− 8β

9
)Er−1 +

14(γL)2

S
E[∥∇f(xr−1)∥2] + 8

β
L2Ur +

7β2σ2

SK
+

4(N − S)

S(N − 1)
β2Vr.

In addition,

E0 ≤ (1− β)E−1 +
8

β
L2U0 +

7β2σ2

SK
+

4(N − S)

S(N − 1)
β2V0.

Proof. By Lemma 6, we have

Er ≤ E


∥∥∥∥∥∥∇f(xr)− 1

NK

∑
i, k

[
∇F (xr,k

i ; ξr,ki ) + (1− β)(gr −∇F (xr−1; ξr,ki ))
]∥∥∥∥∥∥

2


︸ ︷︷ ︸
Λ1

+
N − S

S(N − 1)

1

N

N∑
i=1

E

∥∥∥∥∥ 1

K

∑
k

[
∇F (xr,k

i ; ξr,ki )− (1− β)∇F (xr−1; ξr,ki )
]
− βcri

∥∥∥∥∥
2


︸ ︷︷ ︸
Λ2

.

Applying the same derivation as Lemma 12, we can show that

Λ1 ≤ (1− β)Er−1 +
4

β
L2Ur + 3

β2σ2

NK
+ 3(1− β)2

L2

NK
E[∥xr − xr−1∥2].
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Additionally, by the AM-GM inequality,

Λ2 ≤ 1

N

N∑
i=1

4E

∥∥∥∥∥ 1

K

∑
k

∇F (xr,k
i ; ξr,ki )−∇F (xr; ξr,ki )

∥∥∥∥∥
2

+ β2

∥∥∥∥∥ 1

K

∑
k

∇F (xr; ξr,ki )−∇fi(x
r)

∥∥∥∥∥
2

+ β2∥∇fi(x
r−1)− cri ∥2

+

∥∥∥∥∥β(∇fi(x
r)−∇fi(x

r−1)) +
1− β

K

∑
k

∇F (xr; ξr,ki )−∇F (xr−1; ξr,ki )

∥∥∥∥∥
2


≤ 4

(
L2Ur +

β2σ2

K
+ β2Vr + L2E[∥xr − xr−1∥2]

)
.

Further notice that for r ≥ 1, E[∥xr − xr−1∥2 ≤ 2γ2(Er−1 + E[∥∇f(xr−1)∥2]) and

(γL)2(
8(N − S)

S(N − 1)
+

6(1− β)2

NK
) ≤ 14(γL)2

S
≤ β

9
.

Hence we obtain

Er ≤ (1− 8β

9
)Er−1 +

14(γL)2

S
E[∥∇f(xr−1)∥2 + 8

β
L2Ur +

7β2σ2

SK
+

4(N − S)

S(N − 1)
β2Vr.

The case for r = 0 can be established similarly.

Lemma 21. If ηKL ≤ 1
4e , ηK ≤ γN

10S , and γL ≤ 1
24 , then it holds that

R−1∑
r=0

Vr ≤ 3N

S

(
V0 +

4SR

NK
σ2 +

6N

S
(γL)2

R−2∑
r=−1

(Er + E[∥∇f(xr)∥2])

)
.

Proof. Note that ζr,ki = −η(∇fi(x
r,k
i ) + (1 − β)(gr −∇fi(x

r−1)) − β(cri − cr)), with the same
procedures in Lemma 13, we have

Ur ≤ 4eK2Ξr + 8(ηK)2(2(ηKL)2 +K−1)
(
β2σ2 + 2L2E[∥xr − xr−1∥2]

)
.

Additionally, by the AM-GM inequality,

Ξr =
η2

N

∑
i

E[∥∇fi(x
r) + (1− β)(gr −∇fi(x

r−1)− β(cri − cr)∥2]

=
η2

N

∑
i

E
[∥∥(∇fi(x

r)−∇fi(x
r−1)) + (1− β)(gr −∇f(xr−1))

−β
(
cri − cr −∇fi(x

r−1) +∇f(xr−1)
)
+∇f(xr−1)

∥∥2]
≤ 4η2E

[
L2∥xr − xr−1∥2 + (1− β)2Er−1 + β2Vr + ∥∇f(xr−1)∥2

]
≤ 8η2(Er−1 + E[∥∇f(xr−1)∥2] + β2Vr).

Hence, by applying 32(2(ηKL)2 +K−1)(γL)2 ≤ 96(γL)2 ≤ 2, we obtain
Ur ≤ 32e(ηK)2(Er−1 + E[∥∇f(xr−1)∥2] + β2Vr)

+ 8(ηK)2(2(ηKL)2 +K−1)
(
β2σ2 + 2L2E[∥xr − xr−1∥2]

)
≤ 90(ηK)2(Er−1 + E[∥∇f(xr−1)∥2] + β2Vr) + 8(βηK)2(2(ηKL)2 +K−1)σ2.

(10)

Also, similar to Lemma 18, it still holds that

Vr+1 ≤
(
1− S

2N

)
Vr +

2N

S
L2E[∥xr − xr−1∥2 + 2Sσ2

NK
+

2S

N
L2Ur.
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Combine this with the upper bound of Ur,
Vr+1

≤
(
1− S

2N
+

180(βηKL)2S

N

)
Vr +

(
4N(γL)2

S
+

180(ηKL)2S

N

)
(Er−1 + E[∥∇f(xr−1)∥2])

+ σ2

(
2S

NK
+ 8(βηKL)2(2(ηKL)2 +K−1)

)
≤
(
1− S

3N

)
Vr +

6N(γL)2

S
(Er−1 + E[∥∇f(xr−1)∥2]) + 4Sσ2

NK
,

where we apply the upper bound of η in the last inequality. Iterating the above inequality completes
the proof.

Theorem 22. Under Assumption 2 and 3, if we take c0i = 1
B

∑B
b=1 ∇F (x0; ξbi ) with {ξbi }Bb=1

iid∼ Di,
g0 = c0 = 1

N

∑N
i=1 c

0
i and set

γ = min

{
1

L
,

√
βS

L

}
, β = min

{
S

N
,

(
KL∆

σ2R

)2/3

S1/3

}
,

ηKL ≲ min

{(
β

S

)1/2

,

(
β

SK

)1/4
}
, B =

⌈
max

{
SK

NRβ2
,
NK

SR

}⌉
,

(11)

SCAFFOLD-M-VR converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
(

L∆σ

S
√
KR

)2/3

+
L∆

R

(
1 +

N1/2

S

)
.

Alternatively, if R ≳ N
S and β = min

{
1
R ,
(
KL∆
σ2R

)2/3
S1/3

}
, B = Θ(SKR

N ), SCAFFOLD-M-VR
converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
(

L∆σ

S
√
KR

)2/3

+
L∆

R

(
1 +

N1/2

S
+

σ2

SKR

)
.

Proof. By Lemma 20, sum over r from 0 to R− 1 and plug (10), Lemma 21 in,
R−1∑
r=0

Er ≤ (1− 8β

9
)

R−2∑
r=−1

Er +
14(γL)2

S

R−2∑
r=0

E[∥∇f(xr)∥2] + 7β2σ2

SK
R

+
8

β
L2

R−1∑
r=0

Ur + 4β2 N − S

S(N − 1)

R−1∑
r=0

Vr

≤ (1− 8β

9
+ 720

(ηKL)2

β
)

R−2∑
r=−1

Er + (
14(γL)2

S
+ 720

(ηKL)2

β
)

R−2∑
r=0

E[∥∇f(xr)∥2]

+ β2σ2R

(
7

SK
+

64(ηKL)2

β
(K−1 + 2(ηKL)2)

)
+ β2

(
4(N − S)

S(N − 1)
+ 720

(ηKL)2

β

)R−1∑
r=0

Vr

≤ (1− 7β

9
)

R−2∑
r=−1

Er + (
14(γL)2

S
+

β

9
)

R−2∑
r=0

E[∥∇f(xr)∥2] + 60
β2σ2

SK
R+ 15

β2N

S2
V0.
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Here the coefficients in the last inequality are derived by the following bounds:

720 (ηKL)2

β + 18(βγLN
S )2

(
4 N−S
S(N−1) + 720 (ηKL)2

β

)
≤ β

9 ,

64 (ηKL)2

β (K−1 + 2(ηKL)2) + 8640 (ηKL)2

βK ≤ 5
SK ,

720 (ηKL)2

β ≤ 1
S ,

which can be guaranteed by 
γL ≲ S3/2

β1/2N
,

ηKL ≲ min{
√

β
S , (

β
SK )1/4}.

Therefore, it holds that
R−1∑
r=0

Er ≤ 9

7β
E−1 +

2

7
E

[
R−2∑
r=−1

∥∇f(xr)∥2
]
+

135βN

7S2
V0 +

540βσ2

7SK
R.

Combine this inequality with Lemma 5 and we get

1

γ
E[f(xR)− f(x0)] ≤ −1

7

R−1∑
r=0

E[∥∇f(xr)∥2] + 39

56β
E−1 +

585βN

56S2
V0 +

585βσ2

14SK
R.

Finally, for B =
⌈
max

{
SK

NRβ2 ,
NK
SR

}⌉
, noticing that g0 = 1

NB

∑
i,b ∇F (x0; ξbi ) implies E−1 ≤

σ2

NB ≤ β2σ2R
SK and ci =

1
B

∑
b ∇F (x0; ξbi ) implies V0 ≤ σ2

B ≤ SRσ2

NK , we reach

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲ L∆

γLR
+

E−1

βR
+

βN

S2R
V0 +

βσ2

SK

≲
L∆

R
+

L∆

(βS)1/2R
+

L∆

S3/2R
Nβ1/2 +

βσ2

SK

≲
L∆

R

(
1 +

N1/2

S

)
+

(
L∆σ

S
√
KR

)2/3

.

Similarly, for B = SKR
N and R ≳ N

S , E−1 ≤ σ2

NB ≤ σ2

SKR , V0 ≤ σ2

B ≤ Nσ2

SKR and thus we have

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲ L∆

γLR
+

E−1

βR
+

βN

S2R
V0 +

βσ2

SK

≲
L∆

R
+

L∆

(βS)1/2R
+

L∆

S3/2R
Nβ1/2 +

σ2

βSKR2
+

βσ2

SK

≲
L∆

R

(
1 +

N1/2

S

)
+

(
L∆σ

S
√
KR

)2/3

+
σ2

SKR
.
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D IMPLEMENTATION DETAILS & MORE EXPERIMENTS

D.1 TRAINING SETUP OF MLP

We generate non-iid data for the clients, we sample label ratios from the Dirichlet distribution (Hsu
et al., 2019) with a parameter of 0.5 for the full participation setting and 0.2 for the partial participa-
tion setting. Our experimental setup involves N = 10 clients and K = 32 local updates. The weight
decay is set as 10−4. The global learning rate is fixed as γ = ηK for all the algorithms, and we
perform a grid search for the local learning rate η in values {0.005, 0.01, 0.05, 0.1, 0.5}. Similarly,
we search for the momentum parameter β in values {0.1, 0.2, 0.5, 0.8}.

D.2 TRAINING SETUP OF RESNET18

We generate non-iid data by setting the parameter of Dirichlet distribution as 0.1, which implies
higher heterogeneity. The experiment involves N = 10 clients and K = 16 local updates. We
set S = 2 in the partial participation setting. The local learning is fixed as η̂ = 0.001 and global
learning rate is γ̂ = η̂K. The momentum parameter is β = 0.1 and batchsize is 128.

Reparameterizing momentum. The update rule of FEDAVG-M in (1) is equivalent to, with a
transformation of hyperparameters ĝr,ki := gr,ki /β, ĝr := gr/β, η̂ := βη, γ̂ := βγ,

ĝr,ki = ∇F (xr,k
i ; ξr,ki ) + (1− β)ĝr,

xr,k+1
i = xr,k

i − η̂ ĝr,ki , xr+1 = xr − γ̂ĝr+1.

This is typically used in the current Pytorch implementation of momentum-based methods. When
β = 1, it still reduces to vanilla FEDAVG. Similarly, in SCAFFOLD-M, the update rule (3) is
equivalent to

ĝr,ki = (∇F (xr,k
i ; ξr,ki )− cri + cr) + (1− β)ĝr

In all the experiments on ResNet18, we implement our proposed FEDAVG-M and SCAFFOLD-M
with this reparameterization.

D.3 MORE EXPERIMENTS OF RESNET18

We conduct more algorithms under mild heterogeneity with the parameter of Dirichlet distribu-
tion being 0.5. We set S = 5 in the partial participation setting. Other hyperparameters are the
same as described in Section D.2. We plot the evolution of test loss in Figures 3(a) and 3(b), re-
spectively. Again, we observe that our proposed FEDAVG-M and SCAFFOLD-M outperform the
vanilla FEDAVG and SCAFFOLD with evident margins. We also evaluate VR methods in terms of
test accuracy in the context of full client participation. The results are presented in Figure 4, which
demonstrates the advantage of our proposed VR methods over the prior methods.
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1.00
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(a) Full participation
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0.75
1.00
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Scaffold-M

(b) Partial participation

Figure 3: Test loss of ResNet18 versus the number of communication rounds
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Figure 4: Comparing the test accuracy of VR methods with ResNet-18

D.4 EXPERIMENTS WITH MORE CLIENTS
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(c) Partial participation, S = 5

Figure 5: Test loss of MNIST versus the number of communication rounds
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Figure 6: Test accuracy of MNIST versus the number of communication rounds

We further conduct experiments with N = 100 on the MNIST dataset and two-layer fully connected
ReLU neural network. The parameter of Dirichlet distribution is 0.2 and the batchsize is 32. We
set the number of local steps K = 16. For FEDAVG-M and SCAFFOLD-M, we set β = 0.2. We
plot the test loss and test accuracy of our proposed algorithms in the regime of full participation
(S = N ) and partial participation (S = 10 and S = 5). The results are shown in Figure 5 and
6. Compared to former experiments where N , we observe that our proposed momentum-based
algorithms scale well to FL setups with large N . Moreover, we observe that the advantage of our
momentum-based variants over the vanilla FEDAVG and SCAFFOLD becomes more evident when
fewer clients participate in training, suggesting a great utility of our algorithms in practical FL
setups.
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D.5 IMPACT OF MOMENTUM VALUE β

To further illustrate the effect of momentum, we examine different choices of β in both FEDAVG-
M and SCAFFOLD-M under partial participation setting with S = 5 and N = 100. We again
simulate with the MNIST dataset and two-layer fully connected ReLU neural networks. The results
are shown in Figure 7 and 8. It is worth noting that when β → 1, the momentum will anneal
down to off, recovering the vanilla FEDAVG and SCAFFOLD. We observe that the stronger the
momentum used, the better performance we eventually obtain. This directly demonstrates the benefit
of momentum.
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Figure 7: Test loss versus communication rounds with different momentum values
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Figure 8: Test accuracy versus communication rounds with different momentum values
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