A Appendix

A.1 Derivation of the continuous-time representation of SGD

Consider the update step in mini-batch SGD
Ok+1 = 0k — anV f3, (0k), (16)

where an is the step-size, in which 7 is the maximal allowed step-size, and « is the adjustment
factor as was also done in [14], and V f5, (0;) = mik St Vfi(6y) is a mini-batch gradient of
size my, with V f; i.i.d. uniformly sampled from the data points ¢ € [1,...,n]. Let the empirical
covariance of V f;(0) be denoted as $(0) = L 3" | (V f;(6) — Vf(0))(V fi(8) — V f(6))T, then
by the assumption above, the covariance of V fz, (6) is cov(V [, (0)) = £(0)/my.
The update step in Eq. can now be rewritten in the following way:

Ok+1 =0k — oV f(0c)n + an(V f(0r) — V f5,(0k)) (17
The last term is normally distributed with zero-mean (because E[V f5, (0;)] = Vf(6;)) and
cov[(Vf(0k) — Vs, (0r))an] = cov|[V fz, (0k)]a?n? = 2(0’”) a?n?. Introducing the random vari-
able ABy, ~ N (0,n), we can rewrite the update as

(0
Ort1 = Ok — aV f(Or)n + CW??%:) - ABy (18)

Taking the limit by identifying » — dt and ABy — dB(t), From this, an SDE of the following form
can be derived:

db; = —aV f(0)dt + o ”Z(at)dBt. (19)

my

The SDE derived in Eq. is a continuous-time representation of the SGD in the sense that the
SGD update step in Eq. is the Euler-Maruyama discretization of the SDE in Eq. (19). For a more
formal analysis, Li et al. also consider SGD as a discretization of an SDE in Theorem 1 within [14].
The weighting factor appears in Eq. (10) of [14]. Note, that the step-size to batch-size ratio -~ does

not appear there, but can be found in Eq. (5) in [[11] (but here the weighting factor o doesn’t appear)

A.2 Average decoupled dynamics of SDE
Let the loss function be the multi-dimensional quadratic
Lr
£(0) = 56746, (20)

where we assume that A is diagonalizable, i.e. A = VT AV. Under the assumption that ¥(6) = X is
constant, the continuous-time model of SGD is

|/ m(®)

Now we decouple the dimensions by transforming the SDE using Ito’s Lemma with Y; = Vé,,

dY, = —aV Abdt + aV | %, 22)
m(t)

= —aVVTAVO,dt + oV ﬂdBt (23)
m(t)
= —aAYdt + a, | —VVSdB,. (24)
m(t)



With v; being the i-th row of V', we can write down an one-dimensional SDE for each dimension

dYiy = —a\Yidt + o, | ——vTVSdB,. (25)
’ ’ m(t)
If we denote o; := viT Y3, we have
dYiy = —a\Yidt + o, |——-dB, fori=1,...,d. (26)

m(t)

Now we apply Ito’s Lemma once again to transform each SDE with Z; ; = %)\int:

dZ;; = [ a7, } dt + a\Yis, |22 0T dB, (27)
( ) m( )

a*no; noi
2a)\; Z; Y
|: Oé)\ it + )\ (t) :| dt + Oé)\l it m(t)

Taking expectations on both sides and substituting E[Z; ;] = g;(t) we finally arrive at a system of
ODEs

vl dB; (28)

EldZi) = (~20ME[Zs] + ~ouhs 20 gy (29)
,t] — « i,t 201 zm(t)
dg;(t) 1 a’n .
= —2a\; fort=1,...,d.
dt aAlgl( )+ QUlAlm(t), orz: ’ )d (30)

A.3 Solving the HJB-equation

Recall the HIB-equation corresponding to the our control problem

d
. 1a%n
0¢J(g,t) + min ]{(17)771204 g AigiOg,J (g, )Jri— E aiXi0y, J (g, )} 0.

ME[Mumin,Mmax i=1 =1
€1y

Since m takes only positive values, the 0pt1mal m* depends on the sign of ZZ 106N 891 J(g,t). If
it is positive, then the expression in Eq. (31) is convex for positive m and we find m* where the

1 _a?n
(1-7)
Otherwise the optimal m™ is just the smallest feasible batch-size my;,. Thus, we have

N {min (mmax,max <\/% (ff:’/) Z?zl aiXi0g, J (g, t)7mmm>) if Z —10iAi0g, J(g,1) > 0

gradient vanishes, that is m} = \/ ZZ 1 0iAi0g, J(g,t) (assuming that it is in [Mmin, Mmax))-

m; =

Mmin else.
(32)
Irrespective what batch-size is chosen, the resulting PDE can be solved via the ansatz
d
)= giki(t) +1(t), (33)
i=1
so we will have 9, J (g,t) = k;(t).
If m; = \/% (1%22) 2?21 0iXi0g,J (g, 1), then the resulting PDE reads
d d
0¢J(g,t) + | 2(1 = v)an Z oiXi0y, J(g,t) — 2a Z Aigi0g,J(g,t) =0 (34)
i=1 i=1



with the boundary condition J (g, T) = 3¢, giki(T) + U(T) = v 30, gi- This is k;(T) = 1 for
alli =0,...,dand [(T) = 0. Plugging in the ansatz we get

d d d
D gkl + V(1) + (| 200 = 7)a?n - > oidiki(t) —2a ) Nigiki(t) = 0 (35)
=1 =1 1=1
d
Zgl —2aXiki (1)) +1'() + [ 2(1 = 7)a®n > oiiki(t) = 0. (36)
i=1

Since the last two terms are independent of g;, the first term has to vanish, so we must have
Ei(t) — 2aMk;(t) =0 fori=0,...,d. (37)
With the boundary condition k;(7") = 1 we get the solution
ki(t) =~ - e 20MT=0 0 fori=1,....d, (38)

from which we can conclude Y%, 0308y, J (g, 1) = 7 o, oik; - =200 (T D),
Similarly, if m} = m = const. (that is Mmyin OF Mmay), the resulting PDE reads

d d
1 a2y
8 J(g,t) + (1 —y)m — 2 Z; Nigi0y,J (g, 1) + 35— Z; oiXi0y, J(g,t) =0,  (39)
with the boundary condition J(g,T') = v Zle g;. Similar to above, with the ansatz J(g,t) =
% giki(t) + I(t) the PDE simplifies to

d d
1a?p
Zgzk/ () + (1 — - 204; Aigiki(t) + 5 Z o0y, J(g,t) = 0 (40)
d
> gi(ki(t) = 20Niki(8)) + 1'(8) + (1 — + . ZUZA 0y, J(g,1) =0, (41
=1

from which we can conclude the same solution for k;(t) as in Eq. (38).

Thus we have the followmg batch-size schedule: In the convex case,i.e. A; > 0, Vi (concave case,
e A <0, Vi)y X0 gy - e 200 (T D) (>) 0 forall g, t.
o g

m min (mmax, max (mmm, \/QT?” (117) E?:l Ui/\ie_Q‘Mi(T_t)>> if f(0) is convex
t Mmin if f(6) is concave.
(42)

If the objective f(#) is non-convex, we can assume w.l.o.g. that the eigenvalues are ordered, such
that A\; < ... <A, <0< A, +1<...< Ag. From the previous calculations we have that

ZUzA 8glJ ga Zaz iY € —2adi(T1)

i=1

d
:ZaiAie—2aAz(T—t)+ Z o e~ 20N (=) 43)
=1 i=p+1

The first sum is strictly monotonic decreasing and the second sum is strictly monotonic increasing.
. t—s—
Further we have for the expression above 5% —c0 and "35> o0, This means that there must be
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some finite ¢*, for which

14 d
Z oihe 2N (Tt | — Z oidie 2N (Tt (44)
i=1 i=p+1

holds.

For t < t* the negative eigenvalues dominate and for ¢ > ¢* the positive eigenvalues dominate. Thus
the batch-size schedule reads

Mmin if¢ S a
2 d — (T — 1
\/a2n Ty 2oim Tidie20X(T=1) ift > 1"

*_
m; =

(45)

In the case where d = 2 and A; < 0 < A2 we can express ¢t* explicitly as

1 0'2)\2
t'=T— | . 46
20(()\2—)\1) n<—01A1> ( )

A.4 2D Saddle point with no running cost

We can also look at the case, in which we do not have a running cost in the cost-functional. Recall
that we are looking at a saddle point in two dimensions with the eigenvalues A; < 0 < A and the
dynamics driven by the ODEs

dg;(t) 1a%n
dt arig ( ) + 2 mye 7 ( )

for i = 1,2 with some initial condition ¢;(0) = g; 0.

In this case the optimal control problem reads

min J™(g,t) (48)

me[mmimmmax] -
2
with J™(g,t) = Z Ut —T,g;) (49)
=1
2 2
st J(g,T)=> WMT = T,g:) =Y gi (50)

i=1 i=1

where 0 < Miyin < Mmax < 00 are some given constants, g = (g1, g2), and V7" (t — T, g;) refers to
the corresponding forward flow map following the respective ODE in Eq. with some batch-size
schedule m; and the initial condition g; := g;(t) and ending at g(T") =: U;(t — T, g;).

The corresponding HIB-equation reads

2
1 2
0=08,J(g.t)+ min {MZ Xigidy J(g,8) + 52101000, T (g 1) + 02200y, (9.1))

ME[Mumin,Mmax] i=1

61y}

Only the last term depends on m and is of the form ~ 1/m. Thus we have a "bang-bang"-type of
control with

0

my = {mmin if 10109, J(g,) + 02420, T (g, 1) i 0 62

Mmax ifO'l)\laglj( 7t) +02)\2592J(g, t)
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Independent of the value of m;, the above PDE can be solved via the ansatz J(g,t) = g1k (t) +

goko(t) + 1(t). With the boundary condition .J(g,T) = g1k1(T) + g2k2(T) + I(T) = Zle Ji» WE
eventually find that

ky (t) _ 672a)\1(T7t) (53)
k‘g(t) — 672a>\2(T7t). (54)
Since 9y, .J (g, t) = ki(t), we see that
MOy, J(gyt) + X2y, I (g, 1) = A 200 (T=0 4 ) =200 (T=1), (55)
Thus, there is a phase from ¢ = —oco until some time ¢*, in which the expression is negative followed

by a phase from ¢* until ¢ = oo, where the whole expression is positive. This transition time ¢* can
be found by setting k1 (t) = k2 (t) and solving for ¢, which leads to

=T

0'2)\2
20[()\2 — )\1)111 <01A1> ' (56)

Of course we are only interested in the case, when 0 < t* < T because otherwise either my;, or
Mmax Will be optimal for the entire optimization. This is only the case if |o2A\a| > |01 A1].

We can interpret ¢t* as the optimal transition time-point to get the minimal forward flow map
Ui(0—T,g0,1) +W¥2(0 =T, g0,2).

Now let us turn to the ODEs in Eq. to get another perspective on how to arrive at ¢*.

We already know from our analysis of the HIB-equation that there are two phases in the optimization,
in which two different constant batch-sizes are employed in each phase. Thus we can calculate the
forward flow map Z?Zl U0 —T,g0,) := Z?:l 9:(T') using some constant batch-size m; = m;
and the forward flow map Z?Zl (0 — T,g0) := Z?zl g5 (T) when using some batch-size
schedule

. {ml for0 <t < t* 57)

m =
¢ me fort*<t<T
for another constant mo > m; and some transition time ¢*. For any constant batch-size schedule

m; = m and initial condition g;(t') = g, the solution to the ODE in Eq. is

_ ano; —2a; (t—t') ( / 0”7‘%‘)
i(t) = —/—— ). 58
9:(t) 4m te 9i 4m (58)

Thus, running the ODE starting at g(0) = go ; with m; = m; in the interval [0, T'] simply leads to

ano; —2a\; ano;
g:(T) = S0 4 g=2onT <go,z-— d ) (59)

4my 4my

Instead, if we start at g(0) = go,; with m; = mq, but change the batch-size to m; = mg for
t € [t*,T], we will get

gi(T) = ano; (1 _ 67204/\1'(T7t*)) n M5 —2ax(T—t") 1 em2aNT o — anao; (60)
4dme 4my 4my

Now, if we calculate 2?21 g:(T) — Z?Zl g5 (T) we get

12



2 2
. ano (1 1 ( ( ,2aA(T4¢g) ( —2aA(TfF))>
() =S grm) =20 — - — 1 ! 1 2 :
G WAURE <m1 m2) oy (1-c con(1-e

We see that this expression is maximized for any msy > mq with

t* =T — 1 In 2)
o 20[()\2 — )\1) —0'1/\1 ’

A.5 Experiment setup

To empirically validate the results, the following experiment was conducted.

A loss function f(x) of the form

n

f(x) =) filx)

i=1

(61)

(62)

(63)

was chosen, with f(z) = 227 Az, A = diag(\1, A\2), and fi(z) = L(z + &)T A(z + &) with i.i.d.

& ~ N([0,0]7,%). Then we have

n

E[Vfia)] = - 3 Alx + &) = A = Vf(x),

i=1

and

cov(Vfi(x)) = E[(Ax — A(z + &) (Az — A(z + &))"
= E[A&¢T A7)
= AB[6elAT
= A AT,

We chose a diagonal covariance matrix for &, i.e. ¥ = diag(o1, 02). Then we have that
cov(Vfi(z)) = diag(Mio1, \ao).
Furthermore, we have
1 1 %
cov | — ; Vii(z) | = 3 ooV ; Vfi(x)

= %cov(Vfi(ac)).

Thus, in the experiment we are looking at the following SGD update step

Tpy1 = x — on - V fi(p)
=z —an- A(zg + &),

13
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values of eigenvalues A; sorted by value
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Figure 3: 40 Eigenvalue in the range of [—0.04, 1.96] with two negative eigenvalues and 38 positive
eigenvalues.

where &, is due to the stochasticity of the data samples.
For the experiment, 100.000 samples were generated, s.t. E[Vf;] = Vf and cov(Vf;) =
diag(100, 1000). The parameters were chosen to be

n=1a=03 (74)
v = 0.99999
zo = [0,5]7

A.6 More experiments
A.6.1 Optimizing non-convex function in higher dimensions

We also conducted another experiment for a loss function in higher dimensions. Specifically we
chose d = 40, with p = 2 negative eigenvalues and d — p = 38 positive eigenvalues. The
negative eigenvalues were uniformly sampled from [—0.0001, —0.05] and the positive eigenvalue
were uniformly sampled from [0.1, 2]. The exact distribution of eigenvalues for the experiment can
be found in Fig. 3| The loss function was chosen to be f(6) = 67 A0 with A = diag(\1, ..., \a).
The covariance matrix X of £ was chosen to be a diagonal matrix with the diagonal entries being i.i.d.
uniformly distributed from [100, 1000]. A number of 100.000 samples were generated, distributed as
~ N(0, ). The experiment was repeated for 1000 runs of each 500 iterations.

Other parameters, which were chosen are:

xo ~ U([-5,5]) (75)
n=1
a=0.1
v = 0.9999

t* was found numerically to be approx. 368.87. The non-constant schedules diverge first, but
converge to a loss five orders of magnitudes lower compared to using the maximal batch-size from
the beginning. Both non-constant schedules have almost the exact terminal loss, but the adaptive
batch-size schedule evaluates only 48.3 % as many samples.

A.6.2 Optimizing convex function in higher dimensions

For the sake of completeness we also looked at applying the batch-size schedule on a convex noisy
quadratic model.

14



Average loss E[f(xk)]
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Figure 4: Average loss over 1000 runs, initialized with f(xq) = 187.56. With a constant batch-size
(either my, = 1 (blue) or My = 1000 (red)) SGD is not able to find the descent direction. Whereas
with an adaptive batch-size both schedules are able to find the descent direction. Using the maximal
batch-size leads to a faster convergence (green), but the terminal value is approximately the same
with both schedules.

Average batch size used E[m(xk)]
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Figure 5: Average batch-size per iteration averaged over 1000 runs
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Average cumulative batch size used S = [ Zm(x,-)]
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Figure 6: Average cumulative batch-sizes over 1000 runs. Note that while the terminal loss in Fig. E|
is approximately the same, the adaptive schedule evaluates only 48.3 % as many samples compared
to the schedule jumping to my,.x directly.
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Figure 7: Average loss over 1000 runs. With a constant batch-size (either m,;, = 1 (blue) or
mmax = 1000 (red)) SGD is not able to find the descent direction. Whereas with an adaptive batch-
size both schedules are able to find the descent direction. Using the maximal batch-size leads to a
faster convergence (green), but the terminal value is approximately the same with both schedules.

We chose d = 40 and uniformly sampled the eigenvalues \;, i = 1, ..., d in the range of [1, 10]. The
loss function was chosen to be () = 07 A9 with A = diag(\y,..., \q).

As above, the covariance matrix ¥ of £ was chosen to be a diagonal matrix with the diagonal
entries being i.i.d. uniformly distributed from [1, 10]. A number of 100.000 samples were generated,
distributed as ~ N(0, ). The experiment was repeated for 1000 runs of each 500 iterations. Other
parameters were chosen the same as in Eq. (75).
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Average batch size used E[m(xy)]
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Figure 8: Average batch-size per iteration averaged over 1000 runs. The adaptive batch-size schedule
increases exponentially only towards the end, but achieves almost the same terminal loss.
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Figure 9: Average cumulative batch-sizes over 1000 runs. Note that while the terminal loss in Fig.
is approximately the same, the adaptive schedule evaluates only 0.8 % as many samples compared to

using a batch-size of m,;,4, from the beginning.
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