
A Appendix

A.1 Derivation of the continuous-time representation of SGD

Consider the update step in mini-batch SGD
✓k+1 = ✓k � ↵⌘rfBk(✓k), (16)

where ↵⌘ is the step-size, in which ⌘ is the maximal allowed step-size, and ↵ is the adjustment
factor as was also done in [14], and rfBk(✓k) = 1

mk

Pm
i=1 rfi(✓k) is a mini-batch gradient of

size mk, with rfi i.i.d. uniformly sampled from the data points i 2 [1, . . . , n]. Let the empirical
covariance of rfi(✓) be denoted as ⌃(✓) = 1

n

Pn
i=1(rfi(✓) �rf(✓))(rfi(✓) �rf(✓))T , then

by the assumption above, the covariance of rfBk(✓) is cov(rfBk(✓)) = ⌃(✓)/mk.
The update step in Eq. (16) can now be rewritten in the following way:

✓k+1 = ✓k � ↵rf(✓k)⌘ + ↵⌘(rf(✓k)�rfBk(✓k)) (17)
The last term is normally distributed with zero-mean (because E[rfBk(✓k)] = rf(✓k)) and
cov[(rf(✓k)�rfBk(✓k))↵⌘] = cov[rfBk(✓k)]↵

2⌘2 = ⌃(✓k)
mk

↵2⌘2. Introducing the random vari-
able �Bk ⇠ N (0, ⌘), we can rewrite the update as

✓k+1 = ✓k � ↵rf(✓k)⌘ + ↵

s

⌘
⌃(✓k)

mk
·�Bk (18)

Taking the limit by identifying ⌘ ! dt and �Bk ! dB(t), From this, an SDE of the following form
can be derived:

d✓t = �↵rf(✓t)dt+ ↵

s
⌘⌃(✓t)

mt
dBt. (19)

The SDE derived in Eq. (19) is a continuous-time representation of the SGD in the sense that the
SGD update step in Eq. (18) is the Euler-Maruyama discretization of the SDE in Eq. (19). For a more
formal analysis, Li et al. also consider SGD as a discretization of an SDE in Theorem 1 within [14].
The weighting factor appears in Eq. (10) of [14]. Note, that the step-size to batch-size ratio ⌘

mt
does

not appear there, but can be found in Eq. (5) in [11] (but here the weighting factor ↵ doesn’t appear).

A.2 Average decoupled dynamics of SDE

Let the loss function be the multi-dimensional quadratic

f(✓) =
1

2
✓TA✓, (20)

where we assume that A is diagonalizable, i.e. A = V T⇤V . Under the assumption that ⌃(✓) = ⌃ is
constant, the continuous-time model of SGD is

d✓t = �↵A✓tdt+ ↵

s
⌘⌃

m(t)
dBt. (21)

Now we decouple the dimensions by transforming the SDE using Ito’s Lemma with Yt = V ✓t,

dYt = �↵V A✓tdt+ ↵V

s
⌘⌃

m(t)
dBt (22)

= �↵V V T⇤V ✓tdt+ ↵V

s
⌘⌃

m(t)
dBt (23)

= �↵⇤Ytdt+ ↵

r
⌘

m(t)
V
p
⌃dBt. (24)

8

With vi being the i-th row of V , we can write down an one-dimensional SDE for each dimension

dYi,t = �↵�iYi,tdt+ ↵

r
⌘

m(t)
vTi

p
⌃dBt. (25)

If we denote �i := vTi ⌃, we have

dYi,t = �↵�iYi,tdt+ ↵

r
⌘�i

m(t)
dBt for i = 1, . . . , d. (26)

Now we apply Ito’s Lemma once again to transform each SDE with Zi,t =
1
2�iY 2

i,t:

dZi,t =

�↵�2

iY
2
i,t +

1

2
�i

↵2⌘�i

m(t)

�
dt+ ↵�iYi,t

r
⌘�i

m(t)
vTi dBt (27)

=

�2↵�iZi,t +

1

2
�i

↵2⌘�i

m(t)

�
dt+ ↵�iYi,t

r
⌘�i

m(t)
vTi dBt (28)

Taking expectations on both sides and substituting E[Zi,t] = gi(t) we finally arrive at a system of
ODEs

E[dZi,t] =

✓
�2↵�iE[Zi,t] +

1

2
�i�i

↵2⌘

m(t)

◆
dt (29)

dgi(t)

dt
= �2↵�igi(t) +

1

2
�i�i

↵2⌘

m(t)
, for i = 1, . . . , d. (30)

A.3 Solving the HJB-equation

Recall the HJB-equation corresponding to the our control problem

@tJ(g, t) + min
m2[mmin,mmax]

(
(1� �)m� 2↵

dX

i=1

�igi@giJ(g, t) +
1

2

↵2⌘

m

dX

i=1

�i�i@giJ(g, t)

)
= 0.

(31)

Since m takes only positive values, the optimal m⇤ depends on the sign of
Pd

i=1 �i�i@giJ(g, t). If
it is positive, then the expression in Eq. (31) is convex for positive m and we find m⇤ where the
gradient vanishes, that is m⇤

t =
q

1
2

↵2⌘
(1��)

Pd
i=1 �i�i@giJ(g, t) (assuming that it is in [mmin,mmax]).

Otherwise the optimal m⇤ is just the smallest feasible batch-size mmin. Thus, we have

m⇤
t =

(
min

⇣
mmax,max

⇣q
1
2

↵2⌘
(1��)

Pd
i=1 �i�i@giJ(g, t),mmin

⌘⌘
if
Pd

i=1 �i�i@giJ(g, t) > 0

mmin else.
(32)

Irrespective what batch-size is chosen, the resulting PDE can be solved via the ansatz

J(g, t) =
dX

i=1

giki(t) + l(t), (33)

so we will have @giJ(g, t) = ki(t).

If m⇤
t =

q
1
2

↵2⌘
(1��)

Pd
i=1 �i�i@giJ(g, t), then the resulting PDE reads

@tJ(g, t) +

vuut2(1� �)↵2⌘
dX

i=1

�i�i@giJ(g, t)� 2↵
dX

i=1

�igi@giJ(g, t) = 0 (34)

9

with the boundary condition J(g, T) =
Pd

i=1 giki(T) + l(T) = �
Pd

i=1 gi. This is ki(T) = 1 for
all i = 0, . . . , d and l(T) = 0. Plugging in the ansatz we get

dX

i=1

gik
0
i(t) + l0(t) +

vuut2(1� �)↵2⌘ ·
dX

i=1

�i�iki(t)� 2↵
dX

i=1

�igiki(t) = 0 (35)

dX

i=1

gi(k
0
i(t)� 2↵�iki(t)) + l0(t) +

vuut2(1� �)↵2⌘
dX

i=1

�i�iki(t) = 0. (36)

Since the last two terms are independent of gi, the first term has to vanish, so we must have

k0i(t)� 2↵�iki(t) = 0 for i = 0, . . . , d. (37)

With the boundary condition ki(T) = 1 we get the solution

ki(t) = � · e�2↵�i(T�t), for i = 1, . . . , d, (38)

from which we can conclude
Pd

i=1 �i�i@giJ(g, t) = �
Pd

i=1 �i�i · e�2↵�i(T�t).
Similarly, if m⇤

t = m = const. (that is mmin or mmax), the resulting PDE reads

@tJ(g, t) + (1� �)m� 2↵
dX

i=1

�igi@giJ(g, t) +
1

2

↵2⌘

m

dX

i=1

�i�i@giJ(g, t) = 0, (39)

with the boundary condition J(g, T) = �
Pd

i=1 gi. Similar to above, with the ansatz J(g, t) =
Pd

i=1 giki(t) + l(t) the PDE simplifies to

dX

i=1

gik
0
i(t) + l0(t) + (1� �)m� 2↵

dX

i=1

�igiki(t) +
1

2

↵2⌘

m

dX

i=1

�i�i@giJ(g, t) = 0 (40)

dX

i=1

gi(k
0
i(t)� 2↵�iki(t)) + l0(t) + (1� �)m+

1

2

↵2⌘

m

dX

i=1

�i�i@giJ(g, t) = 0, (41)

from which we can conclude the same solution for ki(t) as in Eq. (38).

Thus we have the following batch-size schedule: In the convex case,i.e. �i > 0, 8i (concave case,
i.e. �i < 0, 8i) �

Pd
i=1 �i�i · e�2↵�i(T�t) >

(<)
0 for all g, t.

m⇤
t =

(
min

⇣
mmax,max

⇣
mmin,

q
↵2⌘
2

�
(1��)

Pd
i=1 �i�ie�2↵�i(T�t)

⌘⌘
if f(✓) is convex

mmin if f(✓) is concave.
(42)

If the objective f(✓) is non-convex, we can assume w.l.o.g. that the eigenvalues are ordered, such
that �1 < . . . < �p 0 < �p + 1 < . . . < �d. From the previous calculations we have that

dX

i=1

�i�i@giJ(g, t) =
dX

i=1

�i�i� · e�2↵�i(T�t)

=
pX

i=1

�i�ie
�2↵�i(T�t) +

dX

i=p+1

�i�ie
�2↵�i(T�t) (43)

The first sum is strictly monotonic decreasing and the second sum is strictly monotonic increasing.
Further we have for the expression above t!�1! �1 and t!+1! +1. This means that there must be

10

some finite t⇤, for which
�����

pX

i=1

�i�ie
�2↵�i(T�t⇤)

����� =

������

dX

i=p+1

�i�ie
�2↵�i(T�t⇤)

������
(44)

holds.

For t < t⇤ the negative eigenvalues dominate and for t > t⇤ the positive eigenvalues dominate. Thus
the batch-size schedule reads

m⇤
t =

(
mmin if t t⇤q

↵2⌘
2

�
(1��)

Pd
i=1 �i�ie�2↵�i(T�t) if t > t⇤

(45)

In the case where d = 2 and �1 < 0 < �2 we can express t⇤ explicitly as

t⇤ = T � 1

2↵(�2 � �1)
ln
✓

�2�2

��1�1

◆
. (46)

A.4 2D Saddle point with no running cost

We can also look at the case, in which we do not have a running cost in the cost-functional. Recall
that we are looking at a saddle point in two dimensions with the eigenvalues �1 < 0 < �2 and the
dynamics driven by the ODEs

dgi(t)

dt
= �2↵�igi(t) +

1

2

↵2⌘

mt
�i�i (47)

for i = 1, 2 with some initial condition gi(0) = gi,0.

In this case the optimal control problem reads

min
m2[mmin,mmax]

Jm(g, t) (48)

with Jm(g, t) =
2X

i=1

 m
i (t ! T, gi) (49)

s.t. J(g, T) =
2X

i=1

 m
i (T ! T, gi) =

2X

i=1

gi (50)

where 0 < mmin < mmax < 1 are some given constants, g = (g1, g2), and m
i (t ! T, gi) refers to

the corresponding forward flow map following the respective ODE in Eq. (47) with some batch-size
schedule mt and the initial condition gi := gi(t) and ending at g(T) =: i(t ! T, gi).

The corresponding HJB-equation reads

0 = @tJ(g, t) + min
m2[mmin,mmax]

(
�2↵

2X

i=1

�igi@giJ(g, t) +
1

2

↵2⌘

m
(�1�1@g1J(g, t) + �2�2@g2J(g, t))

)

(51)

Only the last term depends on m and is of the form ⇠ 1/m. Thus we have a "bang-bang"-type of
control with

mt =

⇢
mmin if �1�1@g1J(g, t) + �2�2@g2J(g, t) < 0
mmax if �1�1@g1J(g, t) + �2�2@g2J(g, t) > 0

(52)

11

Independent of the value of mt, the above PDE can be solved via the ansatz J(g, t) = g1k1(t) +

g2k2(t) + l(t). With the boundary condition J(g, T) = g1k1(T) + g2k2(T) + l(T)
!
=
P2

i=1 gi, we
eventually find that

k1(t) = e�2↵�1(T�t) (53)

k2(t) = e�2↵�2(T�t). (54)

Since @giJ(g, t) = ki(t), we see that

�1@g1J(g, t) + �2@g2J(g, t) = �1e
�2↵�1(T�t) + �2e

�2↵�2(T�t). (55)

Thus, there is a phase from t = �1 until some time t⇤, in which the expression is negative followed
by a phase from t⇤ until t = 1, where the whole expression is positive. This transition time t⇤ can
be found by setting k1(t) = k2(t) and solving for t, which leads to

t⇤ = T � 1

2↵(�2 � �1)
ln
✓

�2�2

��1�1

◆
. (56)

Of course we are only interested in the case, when 0 < t⇤ < T because otherwise either mmin or
mmax will be optimal for the entire optimization. This is only the case if |�2�2| > |�1�1|.
We can interpret t⇤ as the optimal transition time-point to get the minimal forward flow map
 1(0 ! T, g0,1) + 2(0 ! T, g0,2).

Now let us turn to the ODEs in Eq. (47) to get another perspective on how to arrive at t⇤.
We already know from our analysis of the HJB-equation that there are two phases in the optimization,
in which two different constant batch-sizes are employed in each phase. Thus we can calculate the
forward flow map

P2
i=1

m
i (0 ! T, g0,i) :=

P2
i=1 gi(T) using some constant batch-size mt = m1

and the forward flow map
P2

i=1
m⇤

i (0 ! T, g0,i) :=
P2

i=1 g
⇤
i (T) when using some batch-size

schedule

m⇤
t =

⇢
m1 for 0 t < t⇤

m2 for t⇤ t < T
(57)

for another constant m2 > m1 and some transition time t⇤. For any constant batch-size schedule
mt = m and initial condition gi(t0) = g0i, the solution to the ODE in Eq. (47) is

gi(t) =
↵⌘�i

4m
+ e�2↵�i(t�t0)

⇣
g0i �

↵⌘�i

4m

⌘
. (58)

Thus, running the ODE starting at g(0) = g0,i with mt = m1 in the interval [0, T] simply leads to

gi(T) =
↵⌘�i

4m1
+ e�2↵�iT

✓
g0,i �

↵⌘�i

4m1

◆
. (59)

Instead, if we start at g(0) = g0,i with mt = m1, but change the batch-size to mt = m2 for
t 2 [t⇤, T], we will get

g⇤i (T) =
↵⌘�i

4m2

⇣
1� e�2↵�i(T�t⇤)

⌘
+

↵⌘�i

4m1
e�2↵�i(T�t⇤) + e�2↵�iT

✓
g0,i �

↵⌘�i

4m1

◆
(60)

Now, if we calculate
P2

i=1 gi(T)�
P2

i=1 g
⇤
i (T) we get

12

2X

i=1

gi(T)�
2X

i=1

g⇤i (T) =
↵⌘�

4

✓
1

m1
� 1

m2

◆⇣
�1

⇣
1� e�2↵�1(T�t⇤)

⌘
+ �2

⇣
1� e�2↵�2(T�t⇤)

⌘⌘
.

(61)

We see that this expression is maximized for any m2 > m1 with

t⇤ = T � 1

2↵(�2 � �1)
ln
✓

�2�2

��1�1

◆
. (62)

A.5 Experiment setup

To empirically validate the results, the following experiment was conducted.

A loss function f(x) of the form

f(x) =
nX

i=1

fi(x) (63)

was chosen, with f(x) = 1
2x

TAx, A = diag(�1,�2), and fi(x) =
1
2 (x+ ⇠i)TA(x+ ⇠i) with i.i.d.

⇠i ⇠ N ([0, 0]T ,⌃). Then we have

E[rfi(x)] =
1

n

nX

i=1

A(x+ ⇠i) = Ax = rf(x), (64)

and

cov(rfi(x)) = E[(Ax�A(x+ ⇠i))(Ax�A(x+ ⇠i))
T] (65)

= E[A⇠i⇠
T
i A

T] (66)

= AE[⇠i⇠
T
i]A

T (67)

= A⌃AT . (68)

We chose a diagonal covariance matrix for ⇠, i.e. ⌃ = diag(�1,�2). Then we have that

cov(rfi(x)) = diag(�2
1�1,�2�

2
2). (69)

Furthermore, we have

cov

1

m

mX

i=1

rfi(x)

!
=

1

m2
cov

mX

i=1

rfi(x)

!
(70)

=
1

m
cov(rfi(x)). (71)

Thus, in the experiment we are looking at the following SGD update step

xk+1 = xk � ↵⌘ ·rfi(xk) (72)
= xk � ↵⌘ ·A(xk + ⇠k), (73)

13

Figure 3: 40 Eigenvalue in the range of [�0.04, 1.96] with two negative eigenvalues and 38 positive
eigenvalues.

where ⇠k is due to the stochasticity of the data samples.
For the experiment, 100.000 samples were generated, s.t. E[rfi] = rf and cov(rfi) =
diag(100, 1000). The parameters were chosen to be

⌘ = 1,↵ = 0.3 (74)
� = 0.99999

x0 = [0, 5]T

A.6 More experiments

A.6.1 Optimizing non-convex function in higher dimensions

We also conducted another experiment for a loss function in higher dimensions. Specifically we
chose d = 40, with p = 2 negative eigenvalues and d � p = 38 positive eigenvalues. The
negative eigenvalues were uniformly sampled from [�0.0001,�0.05] and the positive eigenvalue
were uniformly sampled from [0.1, 2]. The exact distribution of eigenvalues for the experiment can
be found in Fig. 3. The loss function was chosen to be f(✓) = ✓TA✓ with A = diag(�1, . . . ,�d).
The covariance matrix ⌃ of ⇠ was chosen to be a diagonal matrix with the diagonal entries being i.i.d.
uniformly distributed from [100, 1000]. A number of 100.000 samples were generated, distributed as
⇠ N (0,⌃). The experiment was repeated for 1000 runs of each 500 iterations.
Other parameters, which were chosen are:

x0 ⇠ U([�5, 5]) (75)
⌘ = 1

↵ = 0.1

� = 0.9999

t⇤ was found numerically to be approx. 368.87. The non-constant schedules diverge first, but
converge to a loss five orders of magnitudes lower compared to using the maximal batch-size from
the beginning. Both non-constant schedules have almost the exact terminal loss, but the adaptive
batch-size schedule evaluates only 48.3 % as many samples.

A.6.2 Optimizing convex function in higher dimensions

For the sake of completeness we also looked at applying the batch-size schedule on a convex noisy
quadratic model.

14

Figure 4: Average loss over 1000 runs, initialized with f(x0) = 187.56. With a constant batch-size
(either mmin = 1 (blue) or mmax = 1000 (red)) SGD is not able to find the descent direction. Whereas
with an adaptive batch-size both schedules are able to find the descent direction. Using the maximal
batch-size leads to a faster convergence (green), but the terminal value is approximately the same
with both schedules.

Figure 5: Average batch-size per iteration averaged over 1000 runs

15

Figure 6: Average cumulative batch-sizes over 1000 runs. Note that while the terminal loss in Fig. 4
is approximately the same, the adaptive schedule evaluates only 48.3 % as many samples compared
to the schedule jumping to mmax directly.

Figure 7: Average loss over 1000 runs. With a constant batch-size (either mmin = 1 (blue) or
mmax = 1000 (red)) SGD is not able to find the descent direction. Whereas with an adaptive batch-
size both schedules are able to find the descent direction. Using the maximal batch-size leads to a
faster convergence (green), but the terminal value is approximately the same with both schedules.

We chose d = 40 and uniformly sampled the eigenvalues �i, i = 1, . . . , d in the range of [1, 10]. The
loss function was chosen to be f(✓) = ✓TA✓ with A = diag(�1, . . . ,�d).
As above, the covariance matrix ⌃ of ⇠ was chosen to be a diagonal matrix with the diagonal
entries being i.i.d. uniformly distributed from [1, 10]. A number of 100.000 samples were generated,
distributed as ⇠ N (0,⌃). The experiment was repeated for 1000 runs of each 500 iterations. Other
parameters were chosen the same as in Eq. (75).

16

Figure 8: Average batch-size per iteration averaged over 1000 runs. The adaptive batch-size schedule
increases exponentially only towards the end, but achieves almost the same terminal loss.

Figure 9: Average cumulative batch-sizes over 1000 runs. Note that while the terminal loss in Fig. 7
is approximately the same, the adaptive schedule evaluates only 0.8 % as many samples compared to
using a batch-size of mmax from the beginning.

17

	Introduction
	Continuous-time models for SGD
	Optimal control
	Method
	Experimental results
	Discussion
	Appendix
	Derivation of the continuous-time representation of SGD
	Average decoupled dynamics of SDE
	Solving the HJB-equation
	2D Saddle point with no running cost
	Experiment setup
	More experiments
	Optimizing non-convex function in higher dimensions
	Optimizing convex function in higher dimensions

