Appendix

Notations for set of neurons. We extra define the following notations for the proof. For 0 < ¢ <
L —1,i € [dyg], we use }'Sm to denote the set of all the elements in the vector fs?” (Eq. (5)):

]:Si(z) = {f : f S fsy)}. (19)

And we use P® to denote the set of all neurons in ¢'-th layer i.e., f (*") defined in Eq. (4), with
o<y <e:

PO = {f:fe O <. (20)

Activation functions. In Assumption 3.2, we assume the Lipschitz continuity and smoothness for

all the activation functions. In the proof of lemmas, e.g., Lemma B.1 and B.2, we only use the fact

that they are Lipschitz continuous and smooth, as well as bounded by a constant 5 > 0 at point

0, hence we use o(+) to denote all the activation functions like what we do in Assumption 3.2 for
simplicity.

Notations for derivatives. Additionally, in the following we introduce notations of the derivatives,
mainly used in the proof of Lemma B.1 and Lemma B.2.

By definition of feedforward neural networks in Section 2, different from the standard neural networks
such as FCNs and CNNs in which the connection between neurons are generally only in adjacent
layers, the neurons in feedforward neural networks can be arbitrarily connected as long as there is no
loop.

To that end, we define Of ) /Of (*) to be a mask matrix for any ¢/ < ¢, € [dy] to indicate whether

the neurons f ) appear in .

(25) (), ")
7,k

And 0 fi(l) /0fgw and O fi(z) / GWEZ) are standard derivatives according to Eq. (5):

or0 1 OYPRONIT 0
afsfz) - (Z) (Wi ) (Ui )(fz )a
art? 1

——(fs0) @Y.

ow! [ ®

We give a table of notations that will be frequently used (See Table 1). The same notations will be
used for ResNets and CNNs with extra subscripts res and cnn respectively.

A Examples of feedforward neural networks

Here we show that many common neural networks are special examples of the feedforward neural
networks in Definition 2.2.

Fully-connected neural networks. Given an input € R?, an /(-layer fully-connected neural
network is defined as follows:

1O =a,

£ :g( Lo f<“>>, veelL -1, @)
my—1

FWsa) = fO = Ly pte-n),

Me—1
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Table 1: Table of notations

Symbol Meaning

f@© Vector of neurons in ¢-th layer
dy Number of neurons in ¢-th layer, i.e., length of f O
fs® Vector of in-coming neurons of fi(e)

(l)

Weight vector corresponding to in-coming edges of fi(é)
(l)

(l)

Number of in-coming neurons of fi(é), i.e., length of f S and wgl)

Activation function on fNZ.(Z)

w(l) Weight vector corresponding to all incoming edges toward neurons at layer £
Fsw Set of all the elements in the vector f s (Eq. (19))

77(Z Set of all neurons in f(f/) with 0 < ¢/ S ¢ (Eq. (20))

|d2 ; Index of fJ@) in the vector fg,)

where each (9 is a m,-dimensional vector-valued function, and W := (W(l), e W(Z)), W e
R™e+1Xme s the collection of all the weight matrices. Here o(-) is an element-wise activation
function, e.g., sigmoid function.

For FCNs, the inputs are the O-th layer neurons f(°) = z and the outputs are the /-th layer neurons
f©, which have zero in-degrees and zero out-degrees, respectively. For each non-input neuron, its
in-degree is the number of neurons in its previous layer, m,_;; the summation in Eq. (2) turns out
to be over all the neurons in the previous layer, which is manifested in the matrix multiplication of
w® f (=1 For this network, the activation functions are the same, except the ones on input and
output neurons, where identity functions are used in the definition above.

DenseNets [9]. Given an input © € R, an {-layer DenseNet is defined as follows:

f(O) ftemp

JO—o| Ly (23)

—1 temp
=0 "M

Fiemp = {(ft(fmé))T, (f<‘>)T]T, e (L 1],
1

[ —~L-1
=0 "

where W = (W(l), ey W(Z)) is the collection of all the weight matrices. Here o (+) is an element-

W oy (24)

temp >

fF(Wiz) = fO =

£—1
wise activation function and for each ¢ € [L], W) € R™¢* X0 ™'

The DenseNet shares much similarity with the fully-connected neural network, except that each
non-input neuron depends on all the neurons in previous layers. This difference makes the in-degree

—1
of the neuron be >, my.

Neural networks with randomly dropped edges. Given a network f built from a DAG, for any
neuron f, , where v € V\Vinput, according to Eq. (22) it is defined by

fv:Uv(.fu)v f~ T w(uu)fu
n ( ueg.n:(v)

If each edge (u,v) is randomly dropped with parameter p € (0, 1), then the above equation becomes

fv = Uv(fv), f’v - \/7 Z u,v)fu : ]I{&”u,UZp}a
UESin (v)
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where &, ,, is i.i.d. drawn from Bernoulli(p).

To interpret such an architecture, we can simply remove the edges (u, v) in the DAG where &, , < p.
Then it is not hard to see that the new DAG network corresponds to the network with randomly
dropped edges.

Similarly, for a neural network with randomly dropped edges in multiple layers, we can remove all
the edges whose corresponding ¢ is less than p. Then the resulting DAG can describe this network
architecture.

We note the similarity of this network with the popularly used dropout layer [20], both of which have
a mechanism of randomly dropping out neurons/edges. However, the major difference is that, neural
networks with dropout layers dynamically remove (or put mask on) neurons/edges during training,
while the networks we considered only here drop edges and are fixed during training.

B Proof of Theorem 3.6

We will first compute the Hessian matrix of the network function then show how to bound the spectral
norm of it.

We denote for each ¢ € [L],
m, = inf mgz), Ty := sup mge). (25)
i€[dy] i€[d]
By Assumption 3.5, it is not hard to infer that 777, and m , are also polynomial in m.

Fixing k € [d], to bound ||H, ||, we will first bound the spectral norm of the each Hessian block
H ](cil ’62), which takes the form

gl % fx

fe T e gt k€ ldds b € L]

Without lose of generality, we assume 1 < ¢; < {5 < L and we start with the simple case when
ly=1L.
Ifty=40=1L, H}kL’L) is simply a zero matrix since fj,(w) is linear in w(®).

If1 </ < ¥y = L, we will use the following Lemma:

Lemma B.1. Given ¢’ > 1, forany ' + 1 < { < L, w € B(wq, R), and j € [d], we have, with
probability at least 1 — exp(fC’g[, log? m),

8fs<p> m({) ) B m(f) /
% = max _(logm+R)" | =0 max ~——R" |, (26)
ow CH1Sp<t /T, Ut1<p<e (M,
Af g0
j _ /., (£) =1\ _ A (0) pe—1
F

where Cg‘l’ > 0 is a constant.

See the proof in Appendix H.
By Lemma B.1, with probability at least 1 — exp(—Q(log? m)),

afs(z) 1
—Fk =0 max
() Ow (1) 6+1<e<L /M,
k

g2 = H 1 (ogm + R ) = O(R" /v

m

For the rest of blocks that 1 < ¢; < {5 < L — 1, we will use the following lemma to bound their
spectral norms:
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Lemma B.2. Given1 < ¢y < {y < L—1,foranyly < { < L, w € B(wq, R), and j € [dy], we
have, with probability at least 1 — exp(—Q(log® m)),

9* ¥ 1 2\ - R”
——2——||=0| max (logm +R)* | =0 | max . (28)
Ow(f1) w(£2) G+1<p<t /T, Gi+1<p<t | /M,

See the proof in Appendix L.
Remark B.3. Note that the above results hold for any ¢ < L. When £ = L, f\” = f; which is what
we need to show the transition to linearity of f;. When ¢ < L, as discussed before, we can regard

fj@ as a function of its parameters. We note that fj@ with ¢ < L will also transition to linearity by
applying the same analysis for f;, which is the result of Theorem 3.8.

By letting ¢ = L in Lemma B.2, for any 1 < ¢; < {5 < L — 1, with probability at least 1 —
exp(—Q(log2 m)),

HH(&,Q

_ (élrgggL F(logmw) ):0<<logm+R> [ i) = O(RY ) /im).

Finally by Lemma K.1, the spectral norm of H, can be bounded by the summation of the spectral

norm of all the Hessian blocks, i.e.,[|Hy, [ < >2, ,, ||H}i1’£2) ||. Applying the union bound over the
indices of layers /1, {2, we finish the proof.

C Feedforward neural networks with multiple output

In cases of multiple output neurons, the network function is vector-valued and its Hessian is a
three-order tensor. The spectral norm of Hessian is defined in a standard way, i.e.,

[ (w)]| = S (Hy(wW)), 0 vittj s
Ivl= HUH Isli=1; 7%

where s € R% and v, u have the same dimension with w. It is not hard to see that |H;(w)|| <
dg MaXke(d,] Hka (W) H

If the number of output neurons d; is bounded (as in most practical cases), the spectral norm of

the Hessian of f is also of the order O(1/,/m), with high probability, as a direct consequence of
Theorem 3.6.

Corollary C.1. Suppose Assumption 3.1, 3.2 and 3.5 hold. Given a fixed radius R > 0, for all
w € B(woq, R), with probability at least 1 — exp(—Q(log® m)) over the random initialization w, a
vector-valued feedforward neural network f satisfies

B (w)[| = O <§;> : (29)

D Feedforward neural networks with skip connections

In this section, we discuss the property of transition to linearity holds for networks with skip
connection.

We formally define the skip connection in the following. We add a skip connection to each neuron
then the neuron functions Eq. (5) become

- i - 1 T
fi(fr)es = O-z(é) (fz(l;)es) + fg?é?),)r)es’ fz(,l;)es = © (W'Ee)) fS.("),res’ (30)

where 1 < ¢ < L —1andi € [dg]. Here A(¢,i) € {0,---,¢ — 1} denotes the layer index of the

connected neuron by skip connection with respect to fl( r)eb and B((,1) € [da(q)-

17



And for the output layer £ = L, we define

1 T
fz ,res fz ,res 3 (WZ(L)) foL),res’
m;

where i € [d].
The following theorem shows the property of transition to linearity holds for networks with skip

connections. The proof of the theorem follows the almost identical idea with the proof of Theorem 3.6,
hence we present the proof sketch and focus on the arguments that are new for fi.os.

Theorem D.1 (Scaling of the Hessian norm for fi..s). Suppose Assumption 3.1, 3.2 and 3.5 hold.

Given a fixed radius R > 0, for all w € B(wyq, R), with probability at least 1 — exp(—Q(log® m))
over the random initliazation of W, each output neuron [y, ves satisfies

|Hy, ,..(w)|| = O (%) , LE[L], k€ [d]. 31

Proof sketch of Theorem D.1. For each output fy, ,es, Where k € [dy], similar to the proof of The-

2
O frres Without loss of

orem 3.6, we bound the spectral norm of each Hessian block, i.e., S i) iy -

generality, we assume 1 < /1 < /5 < L.

Similar to Eq.(13), we derive the expression of the Hessian block by definition:
L dy (f )

82fk,1res Z Z i,res afk res | XL: GL,E’
8W(€1)8W(62) 6W(€1 aw(gz) 3f = P k,res”
(=0

2, res

And again by chain rule of derivatives, each GEf can be written as

k res

il = WZ > () g (P Gt

’
r=t strese]: (L)

T

(L) (AL s)) Al ,s) .0
Z ( Wi )dL,k J/< B(Z’,s),res) GB(Z’,S),res

m r=t' st f‘s(rx)ese]: (L)

1 (L) (6 af(e) f(e) !
1 i,res i,res
M 2 (Wk )mwg 7 (f) ow@) (a (m)

'z
My Giff reﬁf (L)

Ic res

Ts
FA(L 1)) FA(L i
n 1 Z ( (L)) o (f-(A(Z’,i)) ) 8fB(// i),res 8fB(é’ L) res
\/m ) . idy; " B(#,1) res ow () Ow(£2)
©fi res €F 5(L)

lc res

Ty

where F o) = {f : f S f (L) } and idL"{C = {p : (f (L) ) = f»(e/) }

Shores ’ Sk res U TS res / vrestt
Note that the new terms which are induced by the skip connection in the above equation are

(L) (A(¢,5) Al 5),
\/T Z Z (Wk ) (fB(é/ s), res) GB(Z’,S),res’
r=0'
s:f.

grl)sqe]: (L)
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and

FA(L 1)) FIA(L 1))
T, = ! Z (W(L)> o (f(A(llai)) ) awavi),res afB(f’ﬂ'),reS
! © B Bt ires) " Guy(h) Ow(t2)
M " if{0€F 1) o

k,res

These two new terms take the same form with the original two terms i.e., 77 and T3, which are matrix
Gaussian series with respect to the random variables w,(f). Therefore, we can use the same method

as T and T3 to bound the spectral norm of 75 and 7.

As A(¢',1) < ¢’ by definition, the bound on 7% and Ty will be automatically included in our recursive
analysis. Then the rest of the proof is identical to the one for feedforward neural networks, i.e., the
proof of Theorem 3.6.

O

E Feedforward neural networks with shared weights, e.g., convolutional
neural networks

In this section, we consider the feedforward neural networks where weight parameters are shared, e.g.,
convolutional neural networks, as an extension to our result where we assume each weight parameter
we € W is initialized i.i.d. We will show that such feedforward neural networks in which the weight
parameters are shared constant times, i.e., independent of the width m, the property of transition to
linearity still holds.

We formally define the networks with shared weights in the following:

¢ 0 (¢ (¢ 1 o\T
fi(,j),cnn = 0—7§ ) (fi(,j),cnn) ) fi(,j),cnn - 0) (WZ( )) fS,“),Cnn’ (32)

1,3
where 1 < ¢ < L, i € [dg]. We introduce new index j € [D(4,4)] where D(¢,4) denotes the
Q)

number of times that weights w,; ’ are shared. Note that the element in f 5® enn is allowed to be 0,
2,5

corresponding to the zero padding which is commonly used in CNNs.

We similarly denote the output of the networks f '(,?,)cnn by fi j.cnn-

7

To see how CNN:ss fit into this definition, we consider a CNN with 1-D convolution as a simple
example.

Convolutional neural networks Given input € R9, an /-layer convolutional neural network is
defined as follows:

f(O) =z,
1
G N / rA ()N “—1))7 Vi e [L—1],
f "(m d Lot
1 .
F(Wi) = ——— (W, 560, vie ], )
Jmeaxd\ b

where W = (W, W ®) is the collection of all the weight matrices.

We denote the size of the window by p x 1, hence W (©) € R™¢*m~1xP for { € [L — 1]. We assume
the stride is 1 for simplicity, and we do the standard zero-padding to each f(©) such that for each
(e [L—1], fO € Rmexd, Atthe last layer, as f(‘=1) € R™¢-1%d and W) ¢ Rmexme-1xd e
do the matrix inner product for each i € [dy].

Now we show how Eq. (33) fits into Eq. (32). For ¢ € [L — 1], in Eq. (33), each component of
fO e R™e*4 is computed as

o ; () (£-1)
fig =0 (m <W“v~:1’f [:J—WWJ*W”» '
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Therefore, mz(_z)’ WZ(Z) and fsu) o in Eq. (32) correspond to my_1 X p, W[(,e_),] and

»J
f(z 1) (L )

[ [252]4 (252 ] respectively. For ¢ = L, m, > corresponds to mp_1 X d and fS(L) , corre-

sponds to f(=1_ Then we can see our deﬁmtlon of networks with shared weights, i.e., Eq. (32)
includes standard CNN as an special example.

Similar to Theorem 3.6, we will show that the spectral norm of its Hessian can be controlled, hence
the property of transition to linearity will hold for féﬁll The proof of the following theorem follows
the almost identical idea with the proof of Theorem 3.6, hence we present the proof sketch and focus

on the arguments that are new for f.p;.

Theorem E.1. Suppose Assumption 3.1, 3.2 and 3.5 hold. Given a fixed radius R > 0, for all
w € B(wo, R), with probability at least 1 — exp(—Q(log® m)) over the random initliazation of w,
each output neuron f; j cnn (W) satisfies

Hf, o (W) = O (ogm + R)” /v/im) = O (R /v/m) , ¢ €L, i€[dl], je DG o)
(34)

Proof sketch of Theorem E.1. Similar to the proof of Theorem 3.6, by Lemma K.1, the spectral
norm of Hy, . . can be bounded by the summation of the spectral norm of all the Hessian blocks,

. (€1,£2) (b1,02) . 02 .
Lew |Hy onll < 220 00 ||Hf111 27l where Hfi,lj,ctzm = W&v@z)' Therefore, it suffices to
bound the spectral norm of each block. Without lose of generality, we consider the block with

1<, <ty <L

By the chain rule of derivatives, we can write the Hessian block into:

O2f, ; L dy Dk 52 Igft) of; L ,

%,7,cnn cnn %.j,enn _L,' ’

aw(fl)aw 62 Z Z Z aw(el aw Ez 6]@(@') : Z Gl)]vcnn. (35)
B2 t=1 k,t,cnn =Ly

For each GZ ,cnno SINCE Z.(f;./’)cnn =0 ( ;(,t;'/,)cnn} again by the chain rule of derivatives, we have

dyr D(k,") 52 70

Ly _ z : k,t,cnn 8fz]cnn

ijyenn = 0 @)
Ow (41) Qw (L2 3]0 tcnn

k=1 t=1
L)
+ ! E : (W(L)) o (f(gl) ) afk bonn afkvt,cnn
(I % dgL/ ;71 k,t,cnn 8W(€1) 8W(€2)
Vg ket £ e €F 5(1)
Si jenn
E E (L) 1 F(r) e
(Wi igLoid g k,t,cnn Gk,t,cnn
” okt
\/TZ T k) cn€F (1)

z ,j,cnn

7(

+ 1 Z (W(L)) 0_// (JZ(@/) ) 8fk,iﬁ,cnn 8fk,if,cnn

Jm® ¢ it O \Tkbenn) T @) | Tgw@) |
iJ ’”fmm,ﬁf (L)

53 ,j,cnn

where Fony :={f:f€ fgu) }and |d51kjt ={p: (fg_(l’_).cnn) = Igt,)mn}.
1 ,j,cnn i,j,cnn 37 P

Compared to the derivation for standard feedforward neural networks, i.e., Eq. (14), there is an extra
summation over the index ¢, whose carnality is at most D(k, ¢'). Recall that D(k, ¢') denotes the
number of times that the weight parameters w,(f ) is shared. Therefore, as we assume D (k, ¢') is
independent of the width m the norm bound will have the same order of m. Consequently, the

spectral norm of each GL can be recursively bounded then Eq. (34) holds.

i ] cnn

O
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F Feedforward neural networks with bottleneck neurons

In this section, we show that constant number of bottleneck neurons which serve as incoming neurons
will not break the linearity.

We justify this claim based on the recursive relation in Eq. (13), which is used to prove the small
spectral norm of the Hessian of the network function, hence proving the transition to linearity.

Recall that each Hessian block can be written into:

9 i N ) N
Ow @) gwt2) — Z Ow (@) gw (L2) afi(g/) = Z G, - (36)

=05 i=1

=Ly

LY .
For each G" , we have a recursive form

dgr 2 F(¢) (0 N\ T
' 0 f; 0 fk 1 L )\ Of; af;
L, i (L) " (£ i i
G = Zl oW ow(E) o) AR > (Wk )idf,”: 7 (fi ) ow@ | sw

m . ()
k l.fi E]“slgL)

e DU UL
k

SR E

1 (L) n (7 o) (oj") '
S (), I (2w

/. (L)
L
my, . e (2
ko if; EfS](CL)

where ]:S](CL) = {f : f S fS]iL)} and Idéjf = {p : (fS}EL)) = fz-([)}.
v p

As mentioned in Section 3.1, to prove the spectral norm of Gf’z is small, we need to bound the
matrix variance, which suffices to bound the spectral norm of

1 i 1 oi" (of\"
7 Z G;" and T Z owm) \ ow@ | -
m( ) (r) m( ) (")
koouf; EJ:S,EL) kooiof; GFS](CL)

For the first quantity, if all fi(r) are neurons with large in-degree, which is the case of our analysis
by Assumption 3.5, then each fi(r) will transition to linearity by Theorem 3.8. This is manifested
as small spectral norm of Gz’é for all 7. If some of fi(r) are neurons with small in-degree, their
corresponding G;’Z can be of a larger order, i.e., O(1). However, note that the cardinally of the set
F (L)

S k
the summation will be not affected. Therefore, the desired bound for the matrix variance will be the
same hence the recursive argument can still apply.

(L) 18 m,iL). As long as the number of such neurons is not too large, i.e., o (m ), the order of
k

The same analysis works for the second quantity as well. Neurons with small in-degree can make the

N
ow(f1) Ow(£2)

not too large, the bound still holds.

be of a larger order. However, as long as the number of such neurons is

For example, for the bottleneck neural network which has a narrow hidden layer (i.e., bottleneck
layer) while the rest of hidden layers are wide, all neurons in the next layer to the bottleneck layer
are bottleneck neurons. Such bottleneck neural networks were shown to break transition to linearity
in [14]. However, we observe that for such bottleneck neural networks, the number of bottleneck
neurons is large, a fixed fraction of all neurons. With our analysis, if we add trainable connections to
the bottleneck neurons such that almost all (except a small number of) bottleneck neurons become
neurons with sufficiently large in-degrees, then the resulting network can have the property of
transition to linearity.
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G Proof of Proposition 4.4

Note that for any k € [dy],

[Vw fr(wo)ll > IV fr(wo

1 1
= I|Wfs,ge> T 50|
my my

2
Since f S® contains neurons from P ®) (defined in Eq. (20)), in the following we prove Ex v, fi(é) ‘
k

is uniformly bounded from 0 for any £ € {0,1,...,L — 1}, ¢ € [dg].
Specifically, we will prove by induction thatV £ € {0,1, ..., L — 1}, Vi € [dy],

G P>
B 177 2 min { 1. iy, ¢F5" |

When ¢ = 0, E, [|2;|?] = 1foralli € [do] by Assumption 4.1.

Jj—1

Tel
Suppose forall £ < g — 1, EXIEWU[\fi(E)F] > min (17min1<j<q CUZ":O ) When ¢ = g,

2
1 1f sl
]EXEWoni(q)‘Z] = Ew, UZ@ 7(W§q))Tfs,<q> = ExEw,E.n0,1) 02@ —z
ml(-e) ’ mz(_q)

By Assumption 4.2,

2
Fsol g2\ "
EXEWOEZNN(O,U qu) = z = II:?‘Zf\f./\/((),l) [|Uz(q) (Z) |2]EXEW0 #
(q) mi
TN
ml(_q)

(Hfsfq)?)"] o (BB V0 ]

> CO’ IEx]Ewo

We use Jensen’s inequality,

CaEwao

m@

| 0

Then according to inductive assumption, we have
”
]Ewao |:Hf5i(‘1) ||2:| . . Z][—j T‘l/ r
C, > Cy ( min | 1, min C5¢=°
m9 1<j<q

. ’
. St
> min C&Y=" .
1<j<g+1

-1

Tg/
Hence for all [ < ¢, ExEy, [|fi(z) 2] > min (1, ming <j<g+1 C,,E”:O ), which finishes the induc-
tive step hence the proof.

Therefore,

i1 e
Ex wo [ Voo fe (Wo)ll] = Exoory | —e Hfs,i“H > \/rnin (1,1mm =i ) — (1)
m

<G<L
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H Proof of Lemma B.1

We prove the result by induction.

For the base case when £ = ¢/ 4+ 1,

3fs§z) af(é—l) 3fs§z)
w1 || ~ |[aw(@D gFE-1)
1 Z(0—1)
< max B ’f~( )’ Hf (e-1)
’i:f7;(£71>€.7: (g) m(_‘€71) Si
< 1
- (eIEl)anf © [y (@ 1) Hfs(y :
and
3fS(/z> af'(efl)
owl—D || Iw(—1)
F i f(e 1>€.7: (z)
m' 1 U,(fj(e—n)’ Hf .
= ./ f(g 1)6]: m([_l) (2 Si 4

K3
(¢-1)
e 1) Hfs

By Lemma K.3, with probability at least 1 — m(e 2 exp(—CF | log® m), Hfs.(i—l)
0 ((logm + R)ZQ\/m§€_1)> =0 (Re2 my_l)).

/ \/’I’IF , we apply union bound over the indices ¢ such

= m( ). Hence with probability at

f(e 1)6]__ (ﬁ)

For the maximum norm max;

f‘g(l*l)
that fi(efl) e F SO the cardinality of which is at most ‘]-" S
J

least 1 — mgz_l)mgz)

exp(—CJ , log® m),

/\m{Y = 0 ((logm + R)*2) = O(R*?).

w5

(e=1)

Since m; )

< my_1 and m; < my, where my_1,my are polynomial in m, we can find a constant
Cg,é—l > 0 such that exp(ngl_l log?m) > exp(—C¥ ,log®m) - exp(log(f_1 - 7). As a

result, with probability at least 1 — exp(—le’ —1 log2 m),

Ofs® —1 51
8f5;2) G -1 A () pe—1
FwlD =0 (y/m; (logm + R) =0|y\m;"R .
F

Supposing ¢ < k, Eq. (26) and (27) hold with probability at least 1 — exp( —C,f’ p log? m).

For { =k + 1, since elements of fgcx+1) are from P*) where only F, L w possibly depend on
J

wt ), we have

8f5<k+1> Z Z (r“)fsgq) afi(fI) 8f55k+1) .
() (@) °
=0 e r . owl) df s o f
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With simple computation, we know that for any 7 s.t. fi(q) € Fouern:
i

(@) Of gmen) 1 _
8fz SJ _ O’I(f(q))w(q

s
- J
afSW) 8fi(q) m@) v g afi(Q)

° %

b

af ¢ (k+1)
where W is a mask matrix defined in Eq. (21).

Supposing 9 f g() /aw([), i € [dg] in Eq. (38) is fixed, for each ¢, we apply Lemma K.6 to bound the

spectral norm. Choosing t = {/m (k+ ) log m, with probability at least 1 — 2 exp(—m (kH) log? m),
for some absolute constant C' > 0

afsgq) afKQ) 8f5<_k+1>
Z ow) afs(q*U afi(CI)

iV EF (et
J

1 af () ]_ af (9)

v (a) |[Ow () " (q ow(®)
m; \Vm F
(39

To bound the Frobenious norm of Eq. (38) for each ¢, we apply Lemma K.7 and choose
t = H@fsgq) /OW(ZI)H logm. By union bound over indices 7 such that fi(q) € Fswetn), then with

probability at least 1 — 2m§.k+1) exp(—c/ log2 m), where ¢’ > 0 is a constant, we have

Of s 9@ Ofgrn
Z aw(fl) afsv(q) afZ(Q)

i:fl.(")efs(kH)
J

F

3f3<q> af@
B ()Z 8W(€ af (LI)

i fd e]’s<k+1)
J
af (a) 1 T
(k+1) S ( (Q)) 1 £(@)
< \fmy T max 8w(f) — w, a (f;Y)
8f (a) 8f (q)
(k+1) S; S;
<y m; max (H (w (logm + R) + T . (40)
F

To bound the maximurm of [[0f (o /0| //m(® and 0w /0w //m(® that
0 bound the maximum o fs§’/ w /\/;an fsﬁ)/ w F/ m," that appear

in Eq. (39) and (40), with the induction hypothesis, we apply union bound over indices 7 such that

fi(q) € Fgi+1). Therefore, with probability at least 1 — mg-kﬂ) exp(—C; o log? m),
¢ ,

1 || 9fsw 1 N - R’

max ——— % =0 max (logm+R)" | =0 max )
e || OW ¢'+1<p<q /M, ¢ +1<p<q /M,
1 afs?‘” ~
i _ q—1\ __ qg—1

max /(@ ow) - =0 ((logm +R) ) =0 (R ) ’
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Putting them in Eq. (39) and (40), we have

8fs_(q) afKQ) 8f5(_k+1) _ m;k+1)
Z - : . = O | max max —— |,1 ,
owl ofsw @ U+l<p<q /My

iV EF (ot
J

8f8('1) 8f(q) afs(k+1) ~
i i J _ [, (k+1)

’iiffq)EfS(ul)
J

F
with probability at least 1 — 2 exp(fm§k+1) log?m) — mE-kH) exp(ngﬁé, log?m) —
2m§-k+1) exp(—c log® m).
As the current result is for fixed ¢, applying the union bound over indices ¢ € {¢' + 1, ..., k}, we
have with probability at least 1 — 2(k — ¢/) exp(fmg.kﬂ)) -2 m§k+1) exp(fC,fe/ log? m) —
2m§-k+1) exp(—c log® m),
k 8]"8({1) af((I) 5fsgk+1) m;
Z Z L C - = O | max max ————,
ow) (“)fS(q) 5f'(Q) O+1<p<k /M,

g=t'+1 iifi(Q)EJ:s(,kH)
J
[ (1)
~ ] ’
= O max 7RZ

7
C+1<p<k+l /M,

b

J J

k 8f (q) (Q) 8f (k+1) B
Z Z 87‘, afz 3_7 _ O ( m(‘k+1) (logm + R)k) — O ( m(-kJrl)Rk

() (@)
q=t'+1 z‘:ff)efs(wrl) o afSi((I) of;
j F
(k+1)
J
0 such that for each j, the result holds with probability at least 1 —exp(—C ,{ 1 log? m) for ¢ < k+1.
Then we finish the inductive step which completes the proof.

Since m is upper bounded by M+, which is polynomial in m, we can find a constant C’,f L1 >

I Proof of Lemma B.2

Before the proof, by Assumption 3.5, we have the following proposition which is critical in the
tail bound of the norm of the matrix Gaussian series, i.e., Lemma K.8. In the bound, there will
be a dimension factor which is the number of parameters (see Eq. (50)). Note that the number of
parameters at each layer can be exponentially large w.r.t. the width m. If we naively apply the bound,
the bound will be useless. However, each neuron in fact only depends on polynomial in m number of
parameters, which is the dimension factor we should use.

Proposition L1. Fixed (' € [L], we denote the maximum number of elements in w'*") that fi(é)
depends on for all £ € [L],i € [d¢] by m},, which is polynomial in m.

The proof the proposition can be found in Appendix J.

Now we start the proof of the lemma. In fact, we will prove a more general result which includes
the neurons in output layer, i.e. ¢-th layer. And we will use the result of Lemma B.1 in the proof.
Specifically, we will prove the following lemma:

Lemma L.2. Given1 < {1 < {3y < L, forany ly < { < L, w € B(wg, R), and j € [d¢], we have,
with probability at least 1 — exp(—Q(log® m)),

52 (&) ) 5 02
J; (logm + R)* ) =0 ( max r ) . 41)

Ow(f1) w (£2) bLi+1<p<t |/,

1
=0 max
lLitlsp<t  /m,
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We will prove the results by induction.

For the base case that £ = {5,

2 7(£2)
0 fj 2
Ow (1) Jw(f2)

H afs(b)

/ (52) 3w(£1)

By Lemma B.1, we can find a constant Me(fzz)z > 0 such that with probability at least
1 —exp (—Méffe)j log? m),

Of gte2)
H 5 =0 < max

. 8w<"1> GiF1<p<ts /T,

Suppose for o < ¢/ < £, with probability at least 1 — exp ( Me(f)é; log? m) for some constant
MY} > 0,Eq. (28) holds.
When ¢/ = ¢ + 1, we have

(logm + R)el> .

Ow (1) gw(£2) == Ow(£1) Ow(£2) 6fi(m = = ow () 6W (£2) af(é'

(42)

We will bound every term in the above summation. For each term, by definition,

dr agf(e') afj(éﬂ) dys 82f.(e') a]{.](f-{-l)

— owow() @)~ L gwlt)gw(t) 5 )

)
_ (+1) _ ) OF (o]
+\/W X g )awwl) ow(e)
J

ifEF o)
J
(43)

92 f)

Sw(D) 5wty » hence

For the first term in Eq. (43), we use Lemma K.10. Specifically, we view U; =

with probability at least 1 — >>6_4 ** k(mj, +mj, ) exp(—log? m/2),

dys an(g/) 8}’;@“)

927
0 i
— ow(low(t) g ) e mnax

Sl et ||(ogm + B) T

(’+1)

Here we’d like to note that from Lemma K.8, the tail bound depends on the dimension of w (‘1)
and w(%2) which are ZZ Y m(z) and Zl | m( ) respectively. By Assumption 3.5, for any £, mz(-é) is
polynomial in m. Therefore, the number of elements in w(*) that f;“l) depends on is polynomial
in m by Proposition I.1. And the matrix variance 7) in Lemma K.10 is equivalent to the matrix
variance that we only consider the elements in w(‘*) and w(¢2) that f;“l) depends on, in which case

the dimension is polynomial in m. Therefore we can use mj here. It is the same in the following
when we apply matrix Gaussian series tail bound.

Then we apply union bound over indices ¢ such that fi(“ e F S+ whose cardinality is
J

(e+1) (041 )

at most m; " ~". By the inductive hypothesis, with probability at least 1 — >, (m}f1 +
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my,) exp(— log? m/2) — m§e+1) ( Me(f)é log? m) ,

dgr 62f~.(£1) 8.];]([-}-1)
— dwow®) 5O || T

max

1
£ +1<p<¥’ /mp

(logm + R)(Z/)2+£_€/+1> .

For the second term in Eq. (43), we view it as a matrix Gaussian series with respect to w(Hl) The
matrix variance takes the form

NOEN.
Viye, = m(£+1) max

J

~ ’ 2 ~ ’ ~ ’ T
> (d) off) | o) (o
’ ow) || wlt2) \ ow(t2) ’

’
i:fi(z )G]:S<[+1)
J

~ ’ 2 ~ ’ ~ ’ T
> () off " of (o
v 8w(z2) 8w(51) aw(él)

’
i:fi(Z )E}-S(.Hl)
J

We use Lemma K.9. By the definition in Eq. (51), here v (Z %’J = max { u% )42 , ug )& } Hence with

probability at least at feast [ = exp (7051 zj log” m) - &xp (—Céf ;71] log” m) for some constant
C&j» Céfgf > 0, we have

v 1) =0 (max <1/m§£+1)’zlf11$§<e 1/mp> (logm + R)44/‘2> .

Using Lemma K.8 again and choosing ¢t = logm l/éé z we have with probability at least 1 —

(m}, +mj,) exp(—log” m/2),

~(€/) "’(é/) T
1 (+1) w7 5fi afi [ (&),5
\/W Z (Wj )idﬁfl’j 7 (fl ) ow) | gwt2) < (logm + R) Vor s -
m; it EF o4
B ¢

Combined the bound on uézz we have with probability at least 1 — exp (—Céf%j log® m) -

£, *
exp (—Céz’%f log? m) — (mj, +mj ) exp(— log? m/2),

P04 ¢
(W(€+1)> p (f([’)) 8fl( ) afz( )
) (e+1) J id ' ow) | gw(t2)
i >€]: s+ "
£2+1 max 1/,/m | (logm + R)?
T F1<p<t

Z2+1 20
( aX( WD, e 1 )R )

20’
(zl+1<%}<(z+1R /V”>
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Now we have bound both terms in Eq. (43). Combining the bounds, we have with proba-
e - . “ ¢ 0),j

bility at least 1 — 2:21 i k(my + my,)exp(— log?m/2) — m(- U exp (_Mz(l,)zg log? m) -

exp (—Céf:g’j log? m) - eXp( C’é ;1 log? m) —2(mj, +mj, ) exp(— log? m/2)

dy

o Fle+1)
R <

1/ /m_(1 R)WHD =)
— Ow ) ow(£2) afi(z/) max / mp(ongr )

01 +1<p<l+1

With the above results, to bound Eq. (42), we apply the union bound over the layer indices I’ = /o, ..., L.
We have with probability at least 1 — Zé,:b ijl + k(mp, + mz;)exp(flog;2 m/2) —
¢ — 6+ omf e (Mg m) i, e (<00 g m)

Zé,:b exp ( C’é 21 log? m) —2(0 — Ly + 1)(mj, +mj, ) exp(— log® m,/2)
F(e+1) 14

Ow(l1) Hw(t2)
= 1/ /i, (1 (e+1)?
0] <€1+1n2p><<é+1 / (logm + R)

_0 (e+1)? )
© (41+1H§1%)§<4+1R / mp) '

By Proposition I.1, mj , my, are also polynomial in m. Hence, we can find a constant }/, é(le)’j >0
such that

exp ( M 10g2 m)

dyr 82]5(@/) af([-‘rl)
8w(f1)8w(52) 8f(€/

01,02
¢ 4441

> Z Z k(my, —|—7n2‘2)exp(—10g2 m/2) — (0 — {3+ 1)m§g+ ) ( Mé )Zi log? m)
e'—éz k=1

¢
— Z exp ( éﬁ ()5’2] log® m) — Z exp (—Céf}’f log? m) —2(0 — Ly +1)(my, + m;fl)exp(—log2 m/2)
o=t

+ exp (—Méf}ég 1og2 m) .

Then Eq. (43) holds with probability at least 1 — exp (—M(”j) I log? m) forany bo < ¢ +1< L,
j € [dg+1], which finishes the induction step hence completes the proof.

J Proof of Proposition 1.1

Fixing ¢ € [L], forany ¢ € {{', ..., L}, i € [d,], we first show fi(e) depends on polynomial number
of elements in w(*"). We prove the result by induction.

If ¢ = ¢, then the number of elements in w(®) that fi ® depend on is m(é)

Suppose ¢ < ¢ < k that fi( ) depends on polynomial number of elements in w() Thenat ¢ = k+1,
we know

1
fi(k+1) _ 0§k+1) - <w§k+1), fs.("+1)>

/m§k+1)

k+1 . .
(k+1) heurons where each one depends on polynomial number of elements in

As fgw+1) contains m,

w() ‘by the induction hypothesis. The composition of two polynomial functions is still polynomial,
hence fi(kﬂ) also depends on polynomial number of elements in w(),
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The maximum number of elements in w(*") that fi(z) depends on among all layers £ is polynomial since
itis the maximum of a finite sequence. By Assumption 3.5 that Supse (o 1—1}.ic(dy] ml(.z) = O(m®),
it is not hard to see that the maximum among all ¢ € [d,] is also polynomial.

K Useful Lemmas and their proofs

Lemma K.1. Spectral norm of a matrix H is upper bounded by the sum of the spectral norm of its

blocks.
Proof.
HLD o ... 0 0 H®2 0 0 0 0
0 0O --- 0 0 0 0 0 0 0
IH| = : + SRR R :
0 0 --- 0 0 0 e 0 o0 --- H©LD
<> ).
£1,L2
O

Lemma K.2. For { = 0,1, .., L, with probability at least 1 — exp(—C7 log® m) for some constant
CF > 0, the absolute value of all neurons in P) Eq. (20) is of the order O(1) in the ball B(w, R).
Proof. We prove the result by induction.

When £ = 0, PO = (O = {2, ..., x4, } therefore for all i, fi(0)| < Cy surely by Assumption 3.1.

Suppose when ¢ = k, with probability at least 1 — exp(—C] log® m), the absolute value of each
neuron in P is of the order O ((log m + R)*) where C} > 0 is a constant. Then when ¢ = k + 1,

there will be new neurons f*+1) added to P(*), where each fi(kﬂ) can be bounded by

1 T
= o [ ——— (W) fgon
i (E+D) i

%

T
< N (W§k+1)) fs"““) + 0(0).
mk+D) '

?

By the union bound over all the elements in fg+1) which are in P*) and the induction hypothesis,

(jc+1)

with probability at least 1 — m; exp(—C7 log® m),

(kD)

k3

IFgwenll = 3 (fsem), =o( mﬁ“”aogmw)’“).

j=1

, with probability at least

By Lemma K.4, supposing fse+1) is fixed, choosing ¢ = logm Hfs(kJrl)
1 — 2exp(—log®m/2), in the ball B(wy, R),

) g

< (logm + R) ”fsgk+1)

Combined with the bound on || fgx+1 ||, with probability at least 1 — 2exp(—log?m/2) —

mEkH) exp(—CF log® m),

+7 = O ((logm + R)*™) = O(R**1).

fi(k“)’ < (logm + R) Hf3<k-+1>
(K1)

%
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(k+1)

Since m, < Tg41 which is polynomial in m, we can find a constant C]; > 0 such that for all

2,
P 2 2 P12 __ P12
exp(—Cigq log”m) > 2exp(—log” m/2) 4 exp(—Cy log”(m) + log(Mik+1)) + exp(—C}; log™m).

Hence the above results hold with probability 1 — exp(—C,fJrl log2 m), which completes the proof.

O
Lemma K.3. For ¢ € [L],i € [dy], with probability at least 1 — my) exp(—CJ log? m), in the ball
B(wo, R),
Hfsw =0 ( mgz)(logm + R)€_1> =0 (\/ mEZ)RZ_1>
Proof. By Lemma K.2, each neuron is of order O(l) Then we apply union bound over my) neurons
and we get the result. O

Lemma K.4. Given a fixed vector b € R™ and a random vector ag ~ N (0, I,,), for any a in the ball
B(ag, R), we have with probability at least 1 — 2 exp(—t2/(2||b]|?)),

laTb| <t + ||b||R. (44)
Proof. We can write a’b = (ag + Aa)Tb = al'b + AaTb. Since ag ~ N(0,1), we have

alb ~ /;/(O, Hb||22) By Proposition 2.5.2 in [23], for any ¢ > 0, with probability at least 1 —
2exp(—t7/(2([6])),

lald| < t.
Therefore, with the same probability
|a"b| < |ajb| +|Aa"b| < t+|b||R.
O

Lemma K.5. For a random m x n matrix W = [Byay, Baaa, ..., Bpay,| where A = a1, as, ..., ay)
is an N; x n random matrix whose entries i.i.d. follow N'(0,1) and By, B, ..., By, is a sequence of
m X N; non-random matrices, we have for some absolute constant C > 0, for any t > 0

IWIl < © (max |[Bil| (it + ) + max | Bil| ) (45)
with probability at least 1 — 2 exp(—t?).
Proof. We prove the result using an e-net argument. Choosing € = 1/4, by Corollary 4.2.13 in [23],
we can find an e-net V' of the sphere S™~! with cardinalities |A/| < 9™.
By Lemma 4.4.1in [23], |W|| < 2supgecp [|[We|.
Fix « € N, it is nor hard to see that

Wax = ixiBiai ~ ./\/ (0, zn:.ﬁ?BszT> )

i=1 i=1

which can be viewed as B’z where B’ = /> | 22B; Bl and z ~ N(0, I,5,).
By Theorem 6.3.2 in [23], we have
Bz = 1B'll#ll,, < CK*|B'],

where K = max; |||y, and || - ||y, is the sub-guassian norm (see Definition 2.5.6 in [23]) and C'is
an absolute constant.

By the definition of sub-gaussian norm, we can use the tail bound. For some positive absolute constant
c and for any p > 0,

P{||B'z|| — 1B’ r > u} < 2exp(—cu®/(K*||B']|*)).
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Then we unfix & using a union bound. With probability at least 1 — 9”2 exp(—cu?/(K*||B’||?))
sup || B'z|| — || B'l|lr < p.
zeN

Choose u = CK?||B'||(y/n +1t). If the constant C'is chosen sufficiently large, we can let cu? /K* >
3n + t2. Thus,

P { sup ||B'z|| — | B'||lr > u} < 9"2exp (—3n —t?) < 2exp(—t?).
zeN
Combined with |[WW|| < 2supgen [|[Wa||, we conclude that
P{||W| > 2CK?||B'||(Vn +t) + 2||B'| p } < 2exp(—t?).

Noticing that || B’|| < max; ||B;|| and || B’||r < max; || B;|| r, we have

P{IIW]| = 2CK? max | Bil|(vn + 1) + 2max | Byl } < 2exp(~t2).
We absorb K into C as K is a constant. With abuse of notation of C' which is absolute, we have

P{IW] = C(max||Bill(v + 1) + max | Bl r) } < 2exp(~£2).
O

Lemma K.6. For a random m x n matrix W = [Byay, Baaa, ..., Bpay,| where A = a1, as, ..., ay)
and By, Bs, ..., B, is a sequence of m X N non-random matrices. Here A = Ay + AA where
Ag is an N x n random matrix whose entries i.i.d. follow N(0,1) and AA is a fixed matrix with
IAA|lF < R given constant R > 0. We have for some absolute constant C' > 0, for any t > 0

IW] < C (max | Bil| (Vi + R + 1) + max | By r (46)
with probability at least 1 — 2 exp(—t?).

Proof. Comparing to Lemma K.5, we only need to bound the norm of AW
AW = [BlAal, BQAGQ, g oeey BnAan],
where AA = [Aaq, Aas, ..., Aay).

By the definition that || Ao ||F = />, [|Aa;||?, we have

> _lIBidai|? < max || Bil|| AA|lp < max||B; | R.

i=1

AW < [[AW][F =

Therefore, for any ¢ > 0, with probability at least 1 — 2 exp(—t?),
IWI < W~ AW+ [AW] < © (mae [ B (Vi + R+ 1) + max | By )
O

Lemma K.7. Consider a fixed matrix B € R™*"™ and a random vector ag ~ N (0, I,). For any
a € R"™ in the ball B(ay, R) given constant R > 0, for any t > 0, we have with probability at least
1 — 2exp(—ct?/|| B||?),where c is an absolute constant,

|Bal| <t +|Bllr+ |BlR. 47

Proof. By Theorem 6.3.2 in [23], for any ¢ > 0,
P{|||[Bag|| — || Bl r| > t} < 2exp(—ct*/||B?),
where ¢ > 0 is an absolute constant.

Note that ||[Ba| < ||Bagl|| + ||B(a — ap)
2exp(—ct?/||B||?), we have

| < ||Bag| + ||B||R. With probability at least 1 —

|Bal| <t +[|Bl[r + || B| R.
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Lemma K.8 (Matrix Gaussian series). For a sequence of fixed matrices { By, }}'_, with dimension
di x dy and a sequence of independent standard normal variables {~;, }, we define Z = ;' (v +
Avy) By, where { Ay} _, is a fixed sequence with Y, _, Av? < R? given constant R > 0. Then
we have for any t > 0, with probability at least 1 — (dy + dg) exp(—t2/(2v)),

|Z]| <t+ Rv, (48)
where
v = max{ > BB\ .| B{B: } ) (49)
k k
Proof. By Theorem 4.1.1 in [22], for all ¢ > 0,
n 42
P( ’;%Bk > t) < (di + da) exp (2V> : (50)
Since
Z = wBk| =Y AvBy
k=1 k=1
< D (A2 || BRBE
k=1 k=1
< Rv.

Then for Z, we have

—¢2
P(|Z]| > t + Rv7) < (d + do) exp (2> ,
O

Lemma K.9 (Bound on matrix variance). Forany { € [L],{1,¢5 € [{],j € [de+1], with probability

at least 1 — exp(—C’éf?lZZ log? m) for some constant Céf?g > 0, we have
Lo (af\"
ow(2) \ gw(t2)

(e+1) 40-2
= 1/m; 1 1
0 (max ( /m; 7min(Z1,IZISi{1§p§Z /mp> (logm + R) )

=0 (max (1/m§-€+1), max l/mp> RM_Q) . (51)

min(£y,02)+1<p<¢l

af
ow(f)

@i _ 1 #0))?
Hey oy "= m(.ﬂ-i-l) Z (UN (fz ))

J i:fi(g)efs([_'_l)
J

Proof. Without lose of generality, we assume ¢1 < {5 < /.
We consider two scenarios, (a) {1 < fo = £ and (b) 1 < {5 < /.
In the scenario (a), we analyze {1 = {5 = £ and {1 < {5 = { respectively.
When ¢; = {5 = /, by definition,
aft 1

8W(£1) = m(z), fsgl) .

By Lemma K.3, with probability at least 1 — mgz) exp(—C’Z’ 1og2 m), Hme

i

O ( m(e)(logm + R)e—l) =0 ( my)). Applying union bound over the indices ¢ such
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(£+1)

that fi(e) € [fge+n), the carnality of which is at most m; ", we have with probability at least
g

0 (¢t
1-— mg )mg +1) exp(fC’f log? m),

of" |70 A
;o () o (£1) - . (e)max =0 ((logm + R)é 1) = O(RZ 1)-
i f; G]:S(_z+1) w i f; G.FS([Jrl) m(f)
i j i

It is not hard to see that

of” (0f\"
2 w0 | awo
i:fi(2)6f5£g+1)
. . o . 1 T (0)
is a block diagonal matrix with i-th block in the form Wfs,-“) (f5§z>) -1 {fi € fSJ(_EJrl) }
Therefore, ,u%] can be bounded by

2

. fs®
(OF] 2 H Si
Foe < W’b ) (ﬁ)max 1 ¢ X (z)maX
m; if (V€T (e41) /mZ( ) if{VE€F (o4
J J

=0 ((logm + R)“"‘/mgé*l)) -0 (R“*‘*/mg.‘g“)) 7

%fss“ (fs;@)T

m;

with probability at least 1 — 2m§e)m§-”1) exp(—CF log? m), where we apply the union bound on

|10

once again.

By definition Eq. (25), mge) < ™y and m§-£+1) < Tg41. By Assumption 3.5, g, Mgy are
polynomial in m. If m is large enough, we can find a constant Cﬁ) > 0 such that

exp(—C’éQ’j log? m) > me)mgzﬂ) exp(—C7 log? m),

thus the bound holds with probability 1 — exp (—Cfg’j log? m).

s

When ¢, < 5 = ¢, By Eq. (5), we compute the derivative:

af" 1 s
owl) 0) ow() Vi
m:

3

(52)

By Lemma B.1, with probability at least 1 — exp (—CZEI log? m), H(')fsm/f)w(@l)

0) <Inaxe1+1<p<g \/mge)/m> and Hafsm /3w(41)

‘8fs_(e)/8w(zl) ’, then with probability at least 1 — 2 exp(—¢ log? m) —

=0 ( mge)>. We use Lemma K.7
F

and choose ¢t = logm

exXp 70" lo 2 m ) for some absolute constant ¢’ > 0,
g
0,64

af® _ 1 9f s W 53)
owt) 0 |[owt)
m;
1 3f5§2) afsf“
m; F
_ 0O _ A pt
=0 ((logm + R)") = O(R"). (55)
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Similar to the case when £1 = {5 =/,

~ ~ T
8fi(5) 8fi(€)
Z ow®) \ ow(®)
i:fifl)e}'s(g+1)
J

is a block matrix.

Therefore,
2
()
(0. 2 af; (
My " <~ 2 X max ——=feo | f <2>
§€+1) ’L‘:f,i(z)e]:s(.[+1) ow(h) zfme]: (e+1) (6) S S

0 ((logm +R)Y2 ”1)) 0 (R“—Z/mg””) ,

with probability at least 1 — 2m§.2+1)

(& (€+1)

exp(—c'log?m) — m§_£+1) exp (—CZ,Z1 log? m) -

2m; exp (fCZJ log? m) where we apply the union bound over the indices ¢ for the maxi-

mum

Similarly, we can find a constant C{';/ > 0 such that the bound holds with probability 1 —
exp (—ng)’j log? m).

For scenario (b) that £; < {5 < £, we apply Lemma K.6 to bound /L( ) I Specifically, we view
_ 1 ) 9f s
Bi= %) (6 ‘ H w(l’l ow(t2)’ (56)
mg
ar w0 -

Choosing t = log m and supposing B; is fixed, then with probability at least 1 — 2 exp(— log m),
for some constant K,’ & 0, >0,

? 3f(e> af“)
w(e2) awu’z)

afl
ow(t)

> ()

iifi([')efsgum
J

afi(e) 3fsi(z) 6fi(€) 8fsi(e)

< (1207 () (o -+ togim + ) + |, ||F
S (Kf,j 2 2 1

[ (e+1 1
Zl,lg) 72 miaX W ( ( ) + logm + R) + mzaX \/W
m; m;

By Eq. (55), with probability at least 1—2 exp(—c’ log® m)—exp (—Céc 0 log? m) for some absolute

ow() || || ow(€2) ow(€)

ow =)
F

constant ¢’ > 0,

-y = O(RY). (58)

|| f(@

By Lemma B.1, with probability at least 1 — exp(—C’efJ82 log® m), Hﬁfsge)/aw(fz)

A /10y () 2 -0 )
o (man2+1Sp§£ m; /\/TTTP> and HafsiU /aw(z ) » =0 ( m; >

Combined them together, with probability at least 1 — my)m@H)
o+1 o+1 041
mg + )exp(fc’ log? m) — mg + )exp <7C£él log? m) — m§- 1) exp (fcef,éz log? m),

exp (—Cf log? m) —
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bt 1 H1<p<t

=0 (maX <1/m§e+1), max l/mp> RM_Q) .

£1+1<p<e

M(z),j -0 <max <1/m§e+1)’ max 1/mp) (logm + R)4£2>

Similarly we can find a constant Céf)é > 0 such that with probability at least 1 —
exp (—CX)@Z log? m) the above bound holds.

For ¢1 > {5, we similarly have

Méi)ejl =0 (max (1/m§-l+1)7 max 1/mp) RM_Z) ,

la+1<p<t
with probability at least 1 — exp(—C{.;’ log?m). O
Lemma K.10. Forany 0 < (' < { < L — 1, given fixed matrices Uy, ...,Uq,, € R*"7"2, with

probability at least 1 — ij{“ E(uy 4 ug) exp(—log® m/2)

dy af(€+1)

§ :U _ =0 max  ||U;||(logm + R)*~¢+1
(e o
Z.fi 6]:5(.@/+1)
J

=0  max 1Tl
iif )Efs(e’+1>
i

Proof. We prove the result by induction.
For the base case that £ = ¢/,
d[/ 8f f -‘rl) d@’ 8f3(é/+1) af:([’_l'_l)

(f) J
ZU ZU ( ) afi(z/) 3f;§£,+1)

1 D) (¢'+1)
- Y ud(JO) (W) .
(+1) , o \J; Vi i, £
VY if{EF i1 ’
J

. . . . . . 0 +1 . .
We view the above equation as a matrix Gaussian series with respect to wg Y Yts matrix variance

v¥) can be bounded by
2

/ 1 iy
) .- - § : o FU)
T miE+Y Uio (f’ )

; o
J ’Llfi( )E]:S“/Jrl)
J

< max AU

/Lfb( )E}-S(_furl)
J

Using Lemma K.8 and choosing ¢t = logmVv (), we have with probability at least 1 — (u1 +
us) exp(—log® m/2),

dz/ 6 (E,Jrl)
> U f~<,,/ < (logm + R)Wo® < max(logm + Ry |Ui]| = O((logm + Rymax |Ui]).
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Suppose with probability at least 1 — ij{“ E(u1 + ug) exp(—log? m/2), forall ¢/ < k < £,

dyr f(k) o
ZU = max  ||U;]|(logm + R)

!
if >efs<£/+1)
J

Then when k& = ¢ + 1, we have

dys 6f(13+1) £ dy af(r) afS(ZJrl) af (e+1)

ZU ~(£/ ZZ (1”) 8f(’”) Of g ()

r={¢" i=1
Z Z Z af(’r‘) afs(£+1) af(/""l)
r=¢ s=1i=1 af(él afs(r) 8f3](?+1)
d,. dg 8f3(e+1> af(e-u)

afs J J
_ZZZU 5o (1) 077 s

r=¢ s=1i=1

L dys 7(r)
Ofs ~ 1
-y ¥ zUiisz, o (F) e (WD)
— — g [ D) idf
r={ S:fs(.')efs<z+1) i=1 7 o
J

/ : dy pr 0F N s (Fr) 1 (£+1)
Foreachr € {', ..., {}, we view Zssz@ef o (Zi_l U; o ) o (S T w; .y
3 § s

£+1
as a matrix Gaussian series with respect to w( ),

By the inductive hypothesis, for all r, its matrix variance can be bounded by

2
(r) 1 & (T) 1 Fr)
VRS T Z ZU g (fs )
m; () i=1
s:fs €f$£z+1)
—0 max  [|U;]*(logm + R)* 2

. I3
z:fi( )GFS(2’+1)
J

Then we use Lemma K.8 and choose ¢t = logmVv("). With probability at least 1 — (u; +
ug) exp(—log? m/2),

dyr 811(7") . 1 e
2 ;in 7 (f,S )) /@D (Wj h >idff£*"

Sifér)efs(wrl) J
J

(logm + R)V v

_max (logm + R)1 ||Us||
()
7"fi E.FS(Z/+1)
J

=0 ,max |U;||(log m + R)™—¢+1
if )Efsf’*”
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We apply union bound over indices r = ¢’ ..., £ and add the probability from the induction hypothesis.

With probability at least 1 — ijl T k(uy 4 ug) exp(—log? m/2),

dyr af(f-i-l) 1 dyr af ) 1
s 1 F(r) (e+1)
Z Ui ~(fz' < Z Z Z Ui @y ~(tz g (fs ) \/W (Wj )idf:f;l,j
r=tt+1sfVerF s+ m; '
- nax |U;|| (log m + R)Ziéurl
(8 f( eF (2/+1)
=0  max |U: | R4+
Ver s+
Then we finish the induction step which completes the proof. O
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