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ABSTRACT

Several variations of adaptive first-order and second-order methods have been pro-
posed to accelerate and scale the training of large language models. The perfor-
mance of optimization routines is highly sensitive to the choice of hyperparam-
eters (HPs), which are computationally expensive to tune for large-scale models.
Maximal update parameterization (µP) is a set of scaling rules which aims to
make the optimal HPs independent of the model size, thereby allowing the HPs
tuned on a smaller (computationally cheaper) model to be transferred to train a
larger, target model. Despite promising results for SGD and Adam, deriving µP
for other optimizers is challenging because the underlying tensor programming
approach is difficult to grasp. Building on recent work that introduced spectral
conditions as an alternative to tensor programs, we propose a novel framework to
derive µP for a broader class of optimizers, including AdamW, ADOPT, LAMB,
Sophia and Shampoo. We validate our derivations on different benchmark mod-
els and demonstrate zero-shot learning rate transfer across increasing model width
for the above optimizers. Further, we provide empirical insights into depth-scaling
parameterization for these optimizers.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable progress in generative AI, yet their per-
formance and reproducibility depend on many interacting factors. A key aspect of training LLMs is
the optimization routine, which can become unstable as models grow in size and complexity. To im-
prove stability and efficiency, several modifications to existing optimizers have been proposed. For
example, LAMB (You et al. (2019)) proposes a layer-wise adaptive optimization routine to reduce
the computational time required for training deep neural networks over large mini-batches, while
Sophia (Liu et al. (2023)) is a light-weight second-order method which achieves faster convergence
than Adam while being more robust to non-convex landscapes. Muon is another recent optimizer
designed explicitly for scaling with model size (Jordan et al. (2024); Liu et al. (2025)).

Although these recent algorithms demonstrate strong performance, the computational overhead of
hyperparameter (HP) tuning poses a fundamental scalability bottleneck for training LLMs. To ad-
dress this challenge, practitioners have heuristically tuned HPs on smaller models to guide the search
for optimal configurations in larger models. Recent works (Yang et al. (2021); Yang & Hu (2020))
have formalized this approach by proposing a zero-shot HP transfer algorithm based on maximal
update parameterization (µP), which stabilizes feature learning across different model widths. µP is
implemented by carefully scaling the weights and HPs proportional to the model width, with scaling
factors tailored to the specific architecture and optimization algorithm. Under µP, feature learning
is stable throughout the training process and HPs are stable across increasing model width.

For the above reasons, several recent works have derived and incorporated µP for different models
(Zheng et al. (2025); Thérien et al.) and optimization algorithms (Blake et al. (2025b); Ishikawa
& Karakida). Fig. 1 demonstrates the increased training stability and predictability after µP is
incorporated in Muon. Fig. 1 (left) shows that the relative mean of different feature vectors remains
stable with increasing model width, thereby ensuring maximal (weights not decreasing to 0) and
stable (weights not diverging) feature learning under µP. Fig. 1 (middle) demonstrates zero-shot
learning rate transfer across increasing model width where the best validation loss is obtained at
learning rate 0.1 for all model widths. Finally, Fig. 1 (right) demonstrates the “wider is always
better” property where the training loss improves consistently with increasing model width under
µP.
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While µP delivers strong results, it is tedious to implement in existing large codebases and difficult
to understand in practice. To address this, authors in Yang et al. (2023a) proposed simpler spectral
scaling conditions on the weight matrices that lead to the same width-independent and maximal
feature learning properties of µP. This work focuses on using the more tractable spectral conditions
to derive µP for a wide range of optimizers. Despite being more intuitive, using spectral conditions
to derive µP is not trivial and the analysis for each adaptive optimizer is different and requires a
careful study of the order-of-magnitude of the coefficient terms that scale the gradients.

Our contributions are threefold: (1) we derive µP for adaptive first and second-order optimizers
(AdamW, ADOPT, LAMB, Sophia, Shampoo) via a novel spectral scaling approach; (2) we demon-
strate zero-shot HP transfer (specifically of the optimal learning rate) across model width on bench-
mark LLMs (NanoGPT (Karpathy (2022)); Llama2 (Touvron et al. (2023)) ); and (3) we provide an
empirical study of zero-shot HP transfer across model depth for these optimizers.

Figure 1: µP for Muon (trained on Llama2) - Coordinate check plots for the word embedding and
output logits layers (left); Zero-shot learning rate transfer across increasing model width (middle);

Decreasing training loss with increasing model width (right).

2 PRELIMINARIES

The lp−norm of a vector x ∈ Rn is defined as ||x||p := (
∑n

i=1 |xi|p)
1/p. For a matrix A ∈

Rn×n, Aα =
∑

i λ
α
eiuiu

T
i where (λei ,ui) are the i−th eigen pair. The spectral norm of a matrix

A ∈ Rm×n is defined as ||A||∗ := maxx∈Rn\{0}
||Ax||2
||x||2 , and the Frobenius norm is defined as

||A||F :=
√∑m

i=1

∑n
j=1 |Ai,j |2 (Strang (2012); Meyer (2023)). If r denotes the rank of matrix A,

then ||A||∗ ≤ ||A||F ≤
√
r||A||∗. If a matrix A ∈ Rm×n can be written as an outer product of

some vectors u ∈ Rm and v ∈ Rn, that is, A = uvT then matrix A is a rank one matrix and

||A||∗ = ||A||F = ||u||2 · ||v||2. (1)

For any symmetric matrix, the spectral norm is equal to the absolute value of the maximum eigen
value. Therefore, for p ∈ R, for a symmetric rank one matrix A = uuT ∈ Rn×n,

||Ap||∗ = ||A||p∗. (2)

A sequence of random vectors {xi ∈ Rn}∞i=1 is said to have Θ(nα)-sized coordinates if there exists

constants A,B such that Anα ≤
√

||xi||22
n ≤ Bnα for all i, and for sufficiently large n.

3 BACKGROUND

In Sections 3 and 4, µP is derived for a linear MLP trained with a batch size of 1, similar to the
model used in Yang et al. (2023a). Let us consider an MLP with L layers. Let x ∈ Rn0 denote the
input vector and Wl ∈ Rnl×nl−1 denote the weight matrix for the l−th layer of the model. Then
the feature vector hl ∈ Rnl for the input x is given as

hl(x) = Wlhl−1(x), ∀l = 1, 2, . . . , L (3)

where h0(x) = x. Let L = g(hL(x),y) denote the loss, where g : Rn0 × RnL → R is a loss
function, y ∈ RnL is the target vector corresponding to the input x and hL(x) ∈ RnL is the output
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vector returned by the MLP. After one step of training, the change in the weight matrices is typically
a function, Ψ(·), of the history of the gradients. Then, the change in weights from time instant t to
t+ 1 can be written using the following generic update rule,

W
(t+1)
l = W

(t)
l − η(t)Ψ({∇

W
(i)
l

L}ti=1) (4)

where η(t) is the learning rate at time instant t. We specify the forms of Ψ(·) for different optimizers
in Table 1. To reduce cumbersome notation, we omit time indices in the remaining sections unless
their inclusion is necessary for clarity. This will not affect the derivation of µP as it is sufficient to
analyze a single step of rule (4) to determine the correct scaling laws (Yang et al. (2021); Blake et al.
(2025a)). Using eqs. (3) and (4) the change in weights and feature vectors for any layer l, after one
training step can be written as

∆Wl = −ηΨ({∇Wl
L}) and ∆hl(x) = ∆Wlhl−1(x) + ∆Wl∆hl−1(x) +Wl∆hl−1(x).

Optimizer Ψ(·)

AdamW / ADOPT
m̂(t)

√
v̂(t) + ϵ

+ λW
(t)
l

Sophia clip
(

m(t)

max{γh(t), ϵ}
, 1

)
+ λW

(t)
l

LAMB
ϕ(||W(t)

l ||F)
||r(t)l + λW

(t)
l ||F

(
r
(t)
l + λW

(t)
l

)
Shampoo (L(t))−1/4 ∇

W
(t)
l

L (R(t))−1/4

Table 1: Values of Ψ(·) for different optimizers. Auxiliary variables are defined in Section 4.

3.1 MAXIMAL UPDATE PARAMETRIZATION ( µP )

Authors in (Yang & Hu (2020); Yang et al. (2021)) proposed µP to ensure that overparameterized
models do not learn trivial features, or that the feature values do not blow up with increasing model
width. In practice, µP is implemented via the abc-parameterization (Yang & Hu (2020)) which en-
sures that the MLP weights, their initial variance and the learning rate are appropriately scaled with
respect to the width of the model. In Yang & Hu (2020), the abc-parameterization was introduced
for MLPs where the hidden layers have the same width, that is, nl−1 = nl = n for l = 2, . . . , L−1.
For simplicity, it was assumed that the inputs and outputs are scalars. Then, for each layer, the set
of parameters {al, bl}Ll=1 ∪ {c} comprise the abc-parameterization to

1. Initialize and scale weight matrices at every layer as Wl = n−al [w
(i,j)
l ], where w

(i,j)
l ∼

N (0, n−2blσ2)

2. Scale the learning rate such that ∆Wl = −η n−c Ψ({∇Wl
L})

where the scale of initial variance, σ2, and the learning rate, η, is assumed to be width-independent.
As emphasized in Section 1, the theoretical principles behind µP can be difficult to grasp. Recog-
nizing these challenges, Yang et al. (2023a) provided the following equivalent conditions for µP

||hl(x)||2 = Θ(
√
nl) and ||∆hl||2 = Θ(

√
nl), for l = 1, 2, . . . , L− 1. (C.1.)

The above conditions concisely represent the requirements of µP.

3.2 SPECTRAL CONDITIONS FOR FEATURE LEARNING

In Yang et al. (2023a), the authors futher argued that conditions (C.1.) can be ensured by the follow-
ing spectral scaling conditions on the weight matrices and their one step update,

||Wl||∗ = Θ

(√
nl

nl−1

)
and ||∆Wl||∗ = Θ

(√
nl

nl−1

)
, for l = 1, 2, . . . , L. (C.2.)

The above spectral scaling conditions hold for any optimizer, and in the next section we present a
framework to derive µP for any arbitrary optimizer using conditions (C.2.).

3
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4 DERIVING µP USING SPECTRAL SCALING CONDITIONS

As discussed in Section 3.1, deriving µP for a particular model and optimizer boils down to deter-
mining the scaling parameters in abc-parameterization, or an equivalent form. We propose a frame-
work which only utilizes the spectral scaling conditions (C.2.) to derive the abc-parameterization.
The typical approach to derive µP is to determine the proper scaling factors for a one step gradient
update, and then argue recursively that for stable input vectors under µP, the output vectors are also
stable, independent of the time.

4.1 GENERIC FRAMEWORK

Scaling of Model Weights and Initial Variance:

The scaling factors for the model weights and their initial variance, that is, akin to parameters
{al, bl}Ll=1 in the abc-parameterization, can be computed by satisfying the condition on ||Wl||∗
in (C.2.). More rigorously, let us define the model weights as Wl = σlW̃l ∈ Rnl×nl−1 where the
elements of W̃l are sampled from some initial distribution with scaled variance, n−2blσ2. For ease
of theoretical analysis, we fix bl = 0 for all layers. Then, ||Wl||∗ = σl||W̃l||∗. Since ||W̃l||∗
is a random matrix with unit variance, existing results in random matrix theory can be leveraged
to deduce the scaling of the spectral norm in terms of matrix dimensions (Rudelson & Vershynin
(2010) Vershynin (2018)). Then, σl can be computed by equating σl||W̃l||∗ = Θ

(√
nl/nl−1

)
.

Scaling of Learning Rate:

The scaling factor for the learning rate, akin to parameter c in abc-parameterization, is computed by
satisfying the condition on ||∆Wl||∗ in (C.2.). This implies that the generic update rule in eq. (4)
should be equated as,

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2 ||Ψ(∇Wl
L) ||∗ = Θ

(√
nl

nl−1

)
, (5)

where the scaling constants c1 and c2 are determined based on the exact nature of Ψ(·).

Input Weights Output Weights Hidden Weights

Init. Var. 1 ( 1
nl−1

) 1 ( 1
n2
l−1

) 1 ( 1
nl−1

)

Multiplier 1√
nl−1

(1) 1
nl−1

(1) 1√
nl−1

(1)

AdamW / ADOPT / Sophia LR 1 (1) 1
nl−1

( 1
nl−1

) 1
nl−1

( 1
nl−1

)

LAMB LR 1 (−) 1 (−) 1 (−)

Shampoo LR
√
nl (−) 1√

nl−1
(−)

√
nl

nl−1
(−)

Table 2: Comparison of µP from spectral conditions (black) vs. tensor programs ((Yang et al.,
2021, Table 3)) (red).

Discussion: Observe that the scaling of model weights and initial variance is only dependent on
the model architecture, not the optimization routine. Therefore, in the rest of this work we use the
linear MLP described in Section 3 as our fixed model architecture and assume that the weights are
initialized using standard normal distribution. Since the spectral norm of a random matrix with
unit variance scales ≈ (

√
nl +

√
nl−1), the appropriate scaling factor is computed to be σl =

Θ

(
1√
nl−1

min

{
1,
√

nl

nl−1

})
(Yang et al. (2023a)). Note that the initial variance is fixed as 1 for

the ease of theoretical analysis. In practice, to increase numerical stability, the variance can be set
to σ2

l while the weight multiplier can be fixed to 1 for normal distribution.

Further, observe that eq. (5) computes separate scaling factors for the input and output dimensions
of the weight matrices, that is, using spectral scaling conditions to derive µP allows us to collectively
analyze the different types of layers (input, output and hidden layers). We recommend first deter-
mining the scaling factors c1 and c2 by removing additional HPs, such as weight-decay, epsilon for
numerical stability etc., from the update rule because they typically do not have a comparable order

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

of magnitude to other terms. In case of low-precision training (Blake et al. (2025a)), these HPs can
be scaled after c1 and c2 have been computed, as demonstrated at the end of Section 4.2.

Finally, we want to highlight that while there is no difference in the correctness and rigor of using
either a tensor programming approach or the proposed spectral scaling approach, the latter is more
intuitive and therefore, makes it easier to adopt and reason about µP for a wide class of optimizers.
Additionally, the rich literature on spectral norms and their properties which can be leveraged to
analyze different adaptive optimization routines, as will be demonstrated in the following sections.

In Section 4.2, we first demonstrate how to utilize the above framework by deriving µP for AdamW,
and corroborate our results with the µP scalings reported in literature (Yang et al. (2021)). We then
derive µP for optimizers - ADOPT, LAMB, Sophia and Shampoo, which have shown promising
results for training LLMs. Our results are summarized in Table 2 and in Result 4.1. Figs. 2 and
3 demonstrate zero-shot learning rate transfer across model widths for different optimizers, under
the derived µP scalings. Note that we do not need additional assumptions for deriving µP for the
model described in Section 3. However, to extend µP to more realistic models, we make the same
assumptions as in (Yang et al. (2023a)), which are listed in Appendix A.

Figure 2: (NanoGPT) Mean
validation loss for increas-
ing model width and different
learning rates across four op-
timizers: ADOPT (top left),
LAMB (top right), Sophia
(bottom left), and Shampoo
(bottom right). The plots
demonstrate zero-shot learn-
ing rate transfer under µP (Ta-
ble 2).

Result: Under standing assumptions, for a linear MLP with L layers, if the
weight matrices Wl = σlW̃l, l = 1, 2, . . . L are initialized as W̃ i,j ∼
N (0, 1), then the spectral conditions (C.2.) are satisfied for AdamW, ADOPT
and Sophia if

σl = Θ

(
1

√
nl−1

min

{
1,

√
nl

nl−1

})
; η = Θ

(
1

nl−1

)
,

for LAMB if
σl = Θ

(
1

√
nl−1

min

{
1,

√
nl

nl−1

})
; η = Θ(1) ,

and for Shampoo if

σl = Θ

(
1

√
nl−1

min

{
1,

√
nl

nl−1

})
; η = Θ

(√
nl

nl−1

)
,

where nl−1 = 1 for input weights and nl = 1 for output weights.

Remark 1 For a linear MLP trained with a batch size of 1, the gradient matrix is a rank one matrix
because it can be written as an outer product of two vectors, ∇Wl

L = ∇hl
L · hT

l−1. Therefore,
||∇Wl

L||∗ = ||∇Wl
L||F from property (1). (See discussion in (Yang et al., 2023a, p. 9))

Remark 2 For a linear MLP trained with a batch size of 1, it can be shown using first order Taylor
series expansion that ||∇Wl

L||∗ = Θ(
√

nl−1

nl
) (Yang et al., 2023a, p. 9). Further, since ∇Wl

L is

5
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a rank one matrix, ||∇Wl
L||∗ = ||∇hl

L||2||hl−1||2 = ||∇hl
L||2Θ(

√
nl−1), using property (1) and

condition (C.1.). Then, ||∇hl
L||2 = Θ(1/

√
nl).

Figure 3: (Llama2) Valida-
tion loss for increasing model
width and different learning
rates across four optimizers:
AdamW (top left), ADOPT
(top right), LAMB (bottom
left), and Sophia (bottom
right). The plots demonstrate
zero-shot learning rate trans-
fer under µP (Table 2).

4.2 µP FOR ADAMW

Recall the update rule for AdamW (Loshchilov & Hutter (2017)),

W
(t+1)
l = W

(t)
l − η(t)

(
m̂(t)

√
v̂(t) + ϵ

+ λW
(t)
l

)
(AdamW)

where m̂(t) =
m(t)

(1− βt
1)

=
1

(1− βt
1)

[
β1m

(t−1) + (1− β1)∇W
(t)
l

L
]

; m(0) = 0

v̂(t) =
v(t)

(1− βt
2)

=
1

(1− βt
2)

[
β2v

(t−1) + (1− β2)(∇W
(t)
l

L)2
]

; v(0) = 0

From the spectral scaling condition in eq. (5), we need to find c1, c2 ∈ R such that

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2

∥∥∥∥ m̂√
v̂ + ϵ

+ λWl

∥∥∥∥
∗
= Θ

(√
nl

nl−1

)
. (6)

Similar to previous works, we first analyze AdamW for β1 = β2 = ϵ = 0. Then, the above
update rule reduces to signSGD (Bernstein et al. (2018)). Additionally, since the gradient term
dominates the weight decay term, we ignore the latter because we are only concerned with an order-
of-magnitude calculation. Therefore, (6) reduces to

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2 ||sign(∇Wl
L)||∗ ≈ η(nl)

−c1(nl−1)
−c2 ||sign(∇Wl

L)||F
where the last equation follows from Remark 1. From the definition of the Frobenius norm, we have
||1nl×nl−1

||2F =
∑nl

i=1

∑nl−1

j=i 1 = nlnl−1. This gives

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2Θ
(√

nlnl−1

)
= Θ

(
n
1/2−c1
l n

1/2−c2
l−1

)
.

By fixing c1 = 0 and c2 = 1, the spectral scaling condition in eq.(5) is satisfied. Therefore,
the learning rate for AdamW should be scaled by a factor of 1/nl−1. Observe that this scaling is
consistent with the µP derived using the tensor programming approach (Yang et al., 2021, Table
3), and this equivalence is highlighted in Table 2. Fig. 4 further validates our derivation via the
coordinate check plots and the “wider is better” phenomenon observed in the plot on the right.

Scaling the Weight Decay Parameter:

Observe that for the derived µP scaling to hold for (AdamW), the spectral norm of the weight decay
term, ||λWl||∗, must have the same order of magnitude as the spectral norm of the gradient term,
which is Θ(

√
nlnl−1). Since, ||λWl||∗ = λ||Wl||∗ = λΘ(

√
nl/nl−1), where the last equality

follows from condition (C.2.), then λ should be scaled by a factor of nl−1. This result is consistent
with Table 1 in Dey et al. (2025).

6
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4.3 µP FOR ADOPT

Recall that the update rule for ADOPT is the same as AdamW. The key difference lies in the se-
quence in which the terms m̂(t) and v̂(t) are updated (Taniguchi et al. (2024)). From a theoretical
perspective, this does not change the order of magnitude of the gradient function Ψ({∇Wl

L}) from
that of AdamW, and hence, the parameterization derived for AdamW also holds for ADOPT.

4.4 µP FOR LAMB
Recall the update rule for LAMB (You et al. (2019)),

W
(t+1)
l = W

(t)
l − η(t)

ϕ(||W(t)
l ||F)

||r(t)l + λW
(t)
l ||F

(
r
(t)
l + λW

(t)
l

)
(LAMB)

where r
(t)
l = m̂(t)

√
v̂(t)+ϵ

. In (LAMB), the gradient in each layer of the model is scaled by terms of

orders ||Wl||F
||r+λW||F . From condition (C.1.), we know

||Wl||F ≈ ||Wl||∗ = Θ

(√
nl

nl−1

)
and ||rl + λWl||F = Θ

(√
nlnl−1

)
if we ignore the weight decay term and set β1 = β2 = ϵ = 0. Then, from the spectral scaling
condition in eq. (5), we need to find c1, c2 ∈ R such that

||∆W||∗ ≈ η(nl)
−c1(nl−1)

−c2Θ

(
1

nl−1

)
||rl + λWl||F

= η(nl)
−c1(nl−1)

−c2Θ

(
1

nl−1

)
Θ
(√

nlnl−1

)
= η(nl)

−c1(nl−1)
−c2Θ

(√
nl

nl−1

)
where the second equality follows using the same reasoning as for AdamW. Then condition (5) holds
if c1 = c2 = 0.
Insight 1 The above derivation suggests that the update rule for LAMB is implicitly independent of
width scaling. Intuitively, this result holds because the layerwise gradient scaling in (LAMB) causes
the effective learning rate to be different for each layer.

Figure 4: (Llama2 model) AdamW optimizer - Coordinate check plots under standard parame-
terization (top left) and under µP (bottom left) for the word embedding and output logits layers;
Decreasing training loss with increasing model width under µP (right).

4.5 SOPHIA

Recall the update rule for Sophia (Liu et al. (2023)),

W
(t+1)
l = W

(t)
l − η(t) clip

(
m(t)

max {γh(t), ϵ}
, 1

)
− η(t)λW

(t)
l (Sophia)

where h(t) is a momentum-based estimate of the diagonal vector of the Hessian at time t. From the
spectral scaling condition in (5), we need to find c1, c2 ∈ R such that

7
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||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2

∥∥∥∥ clip
(

m(t)

max {γh(t), ϵ}
, 1

)
− λW

(t)
l

∥∥∥∥
∗
= Θ

(√
nl

nl−1

)
.

For analysis, we consider β1 = β2 = ϵ = 0, and since the weight decay term is usually very small,
the above weight update simplifies to

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2

∥∥∥∥∥ clip

(
∇Wl

L
γ∇2

Wl
L
, 1

)∥∥∥∥∥
∗

= η(nl)
−c1(nl−1)

−c2

∥∥∥∥ clip
(

1

γ|∇Wl
L|

, 1

)∥∥∥∥
∗

≈ η(nl)
−c1(nl−1)

−c2

∥∥∥∥ clip
(

1

γ|∇Wl
L|

, 1

)∥∥∥∥
F

where in the second equality we take the modulus of the gradient term in the denominator be-
cause Sophia avoids negative diagonal terms in the Hessian (thereby avoiding convergence to a
saddle point; see discussion in (Liu et al., 2023, pg. 6)). Observe that the clip(·, 1) bounds the
coordinate-wise weight updates as, |[∆Wl]i, j| ≤ 1. Therefore, we can compute an upper bound for
the Frobenius norm and get

||∆Wl||∗ ≤ η(nl)
−c1(nl−1)

−c2
1

γ
Θ(

√
nlnl−1).

Then, eq. (5) is satisfied by fixing c1 = 0 and c2 = 1, resulting in the same µP scaling as AdamW.
Insight 2 Intuitively, it is easy to see why this result holds. Sophia uses signSGD as the default
method to handle negative Hessian terms (to avoid convergence to a saddle point), thereby mirroring
the analysis for AdamW for such cases. Additionally, when γ = 1, all the elements in the weight
update are clipped to 1, and the upper bound holds exactly. Thus, we get the same scaling as
AdamW.

In practice, the authors suggest to choose γ such that 10%−50% of the parameters are not clipped.
Therefore, for each term which is not clipped, the above bound incurs an error of less than 1.
However, as demonstrated in our simulations (Fig. 2), for the typical values of γ used in practice,
the µP scaling derived based on the above calculation works well.

Fig. 5 further validates the µP derivation for Sophia via stable coordinate check plots (Fig. 5 (left))
and a consistently improving training loss across model widths (Fig. 5(right)).

Figure 5: (Llama2 model) Sophia optimizer - Coordinate check plots under standard parameteriza-
tion (top left) and under µP (bottom left) for the word embedding and output logits layers; Decreas-
ing training loss with increasing model width under µP (right).

4.6 µP FOR SHAMPOO

Recall the update rule for Shampoo (Gupta et al. (2018)),

W
(t+1)
l = W

(t)
l − η

(
L
(t)
l

)−1/4

∇Wl
L
(
R

(t)
l

)−1/4

(Shampoo)

where for some δ > 0, L
(t)
l = L

(t−1)
l +∇Wl

L · ∇Wl
LT ; L

(0)
l = δI ∈ Rnl×nl

R
(t)
l = R

(t−1)
l +∇Wl

LT · ∇Wl
L ; R

(0)
l = δI ∈ Rnl−1×nl−1
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From the spectral scaling condition in (5), we need to find c1, c2 ∈ R such that

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2

∥∥∥∥(L(t)
l

)−1/4

∇Wl
L
(
R

(t)
l

)−1/4
∥∥∥∥
∗
= Θ

(√
nl

nl−1

)
.

For one-step analysis, let δ = 0. Then the above condition reduces to

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2
∥∥∥(∇Wl

L · ∇Wl
LT)−1/4 ∇Wl

L
(
∇Wl

LT · ∇Wl
L
)−1/4

∥∥∥
∗

(1)
≤ η(nl)

−c1(nl−1)
−c2

∥∥∥(∇Wl
L · ∇Wl

LT)−1/4
∥∥∥
∗
∥∇Wl

L∥∗
∥∥∥(∇Wl

LT · ∇Wl
L
)−1/4

∥∥∥
∗

(2)
= η(nl)

−c1(nl−1)
−c2Θ

(√
nl−1

nl

)∥∥∥(∇Wl
L · ∇Wl

LT)−1/4
∥∥∥
∗

∥∥∥(∇Wl
LT · ∇Wl

L
)−1/4

∥∥∥
∗

= ηΘ
(
(nl)

−c1− 1
2 (nl−1)

−c2+
1
2

)∥∥∥(∇hl
L · hT

l−1hl−1 · ∇hl
LT)−1/4

∥∥∥
∗

∥∥∥(hl−1 · ∇hl
LT∇hl

L · hT
l−1

)−1/4
∥∥∥
∗

= ηΘ
(
(nl)

−c1− 1
2 (nl−1)

−c2+
1
2

)∥∥∥(||hl−1||22 ∇hl
L · ∇hl

LT)−1/4
∥∥∥
∗

∥∥∥(||∇hl
L||22 hl−1 · hT

l−1

)−1/4
∥∥∥
∗

= ηΘ
(
(nl)

−c1− 1
2 (nl−1)

−c2+
1
2

)
||hl−1||−1/2

2

∥∥∥(∇hl
L · ∇hl

LT)−1/4
∥∥∥
∗
||∇hl

L||−1/2
2

∥∥∥(hl−1 · hT
l−1

)−1/4
∥∥∥
∗

(3)
= ηΘ

(
(nl)

−c1− 1
2 (nl−1)

−c2+
1
2

)
Θ(n

−1/4
l−1 )

∥∥∥(∇hl
L · ∇hl

LT)−1/4
∥∥∥
∗
Θ(n

1/4
l )

∥∥∥(hl−1 · hT
l−1

)−1/4
∥∥∥
∗

= ηΘ
(
(nl)

−c1− 1
4 (nl−1)

−c2+
1
4

)∥∥∥(∇hl
L · ∇hl

LT)−1/4
∥∥∥
∗

∥∥∥(hl−1 · hT
l−1

)−1/4
∥∥∥
∗

(4)
= ηΘ

(
(nl)

−c1− 1
4 (nl−1)

−c2+
1
4

)
||∇hl

L||−1/2
2 ||hl−1||−1/2

2

(5)
= ηΘ

(
(nl)

−c1− 1
4 (nl−1)

−c2+
1
4

)
Θ(n

1/4
l )Θ(n

−1/4
l−1 )

= ηΘ
(
(nl)

−c1(nl−1)
−c2
)

where (1) follows from sub-multiplicative property of matrix norms, (2) follows from Remark 2, (3)
and (5) follow from condition (C.1.) and Remark 2, (4) follows from property (1) and property (2).
Therefore, condition (5) is satisfied by fixing c1 = −1/2 and c2 = 1/2.

5 NUMERICAL RESULTS

We test and validate our derivations on the NanoGPT model (Karpathy (2022)) and the Llama2
model (Touvron et al. (2023)). As demonstrated in Figs. 2 and 3, our simulation results validate
the µP derivations in Table 2 across the different optimizers. Extensive numerical results, including
training settings, HP values, depth scaling studies, and validation loss values for the different opti-
mizers and model sizes can be found in Appendix B. The simulations on NanoGPT were performed
using four A100 GPUs of the Argonne Leadership Computing Facility’s Polaris supercomputer
(Leadership Computing Facility (b)), while the simulations on Llama2 were performed using 12
Intel Data Center GPU Max Series on the Aurora supercomputer (Leadership Computing Facility
(a)).

6 CONCLUSION

We have proposed a novel framework to derive µP using spectral scaling conditions, which are
more intuitive and easier to work with than the prevalent tensor programs. Using the proposed
framework, we have derived µP for a wide range of adaptive, first and second-order optimizers
including, AdamW, ADOPT, LAMB, Sophia, and Shampoo. We have validated our derivations in
simulation and by demonstrating zero-shot learning rate transfer on NanoGPT and Llama2 models.
Motivated by our depth-scaling simulations (Appendix B), we aim to develop a sound theoretical
framework for depth-scaling parameterization in the future.
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A ASSUMPTIONS

To extend the derivations in Section 4 to more practical models, we use the following assumptions.

Assumption 1 The weight updates do not cancel initial quantities.

||Wl +∆Wl||∗ = Θ(||Wl||∗ + ||∆Wl||∗)
||hl(x) + ∆hl(x)||∗ = Θ(||hl(x)||∗ + ||∆hl(x)||∗).

Assumption 1 is used to deal with additional gradient steps.

Assumption 2 If a nonlinear activation function ϕ(·) is added to each layer of the MLP, then

||ϕ(hl(x))||2 = Θ(||hl(x)||2).

In other words, assumption 2 ensures that the order of magnitude of the inputs and outputs of an
activation function are the same.

So far in our derivations, we assume that the batch size is 1. In practice, if a batch size of B ∈ R
is used then for our calculations to hold, we need the following two assumptions. Observe that
assumption 3 plays the same role as assumption 1.
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Assumption 3

∥∆Wlhl(xi)∥2 = Θ

(∥∥∥∥ 1

B
∆W

(i)
l hl(xi)

∥∥∥∥
2

)
.

Assumption 4 The batch size is independent of the width, that is B = Θ(1).

B SIMULATIONS

Consistent with existing literature, we first verify µP for ADOPT, Sophia, LAMB and Shampoo
optimizers by implementing the derived parameterization scheme (Table 2) in the NanoGPT code-
base Karpathy (2022). Although prior works have already implemented µP for AdamW, we present
the results again for completeness. Table 3 lists some of the settings for our experimental setup to
test µP on NanoGPT. Further, we demonstrate the effectiveness for AdamW, ADOPT, LAMB and
Sophia on the Llama2 model, the experimental setup for which is listed in Table 15.

We also present simulation results for depth-scaling parameterization for the above optimizers on
NanoGPT, using the implementation suggested in Yang et al. (2023b) and dey2025don. Note that
deriving proper depth-scaling parameterization for different optimizers is an ongoing work, and
we only present preliminary results on the NanoGPT codebase in Section B.2 to motivate further
theoretical analysis. Table 4 lists some of the settings for our experimental setup to test the depth-
scaling parameterization.

The remainder of this section documents the simulation results for AdamW (Subsection B.2.1 and
Subsection B.3.1), ADOPT (Subsection B.2.2 and Subsection B.3.2), Sophia (Subsection B.2.3
and Subsection B.3.4), LAMB (Subsection B.2.4 and Subsection B.3.3) and Shampoo (Subsection
B.2.5) optimizers. For each optimizer we first present the coordinate check plots under standard pa-
rameterization, µP and depth-scaling parameterization. These plots serve as a quick implementation
check to monitor whether the weights blow-up, diminish to zero or remain stable with increasing
model size (see discussion in (Yang et al., 2021, Section D.1, pg. 27)). We then provide tables and
plots listing the validation loss for different learning rates, and increasing model width and model
depth. The values in the tables for NanoGPT are the average loss values observed over multiple runs.
While we do not document the standard deviations in the tables, they are highlighted in the plots.
Note that since we are using an early stopping criterion for simulations performed on NanoGPT,
we rely more on the observations gained from the validation loss data than the training loss data.
Similar validation loss tables are documented for simulations performed on Llama2.

B.1 DISCUSSIONS

Overall, it is observed that the implementation of µP following Table 2 is quite stable with increasing
model width. This is evident from the coordinate check plots for all the optimizers (Figs. 6 - 10
and Figs. 14 - 17 ). Under standard parameterization, the top row of the coordinate check plots
shows that the relative mean of the feature vectors blow-up with increasing model width. With the
incorporation of µP in the codebase, the relative mean values of the feature vectors stabilize with
increasing model width (middle row of coordinate check plots).

It is interesting to note that since the theoretical underpinnings for µP hold in infinite width (Yang
& Hu (2020)), the model width has to be “large enough” for the coordinate check plots to stabilize.
This is especially observed in the coordinate check plots for LAMB (Fig. 9 and Fig. 16) where the
mean values of the feature vectors initially increase, but gradually stabilize with increasing model
width. This phenomenon is also observed in Fig. 2 which demonstrate the zero-shot learning rate
transfer across model width on the NanoGPT model. In the minimum validation loss tables for
ADOPT (Table 7) and LAMB (Table 11) the optimal value of the learning rate gradually stabilizes
after a width of 256, whereas for AdamW (Table 5) and Sophia (Table 9) the optimal learning rate
stabilizes after a width of 128. These inconsistencies across optimizers also suggest that introducing
a “base model width” for µP scalings will introduce another HP. Therefore, we fix the value of the
base model width to 1 in our implementation. In comparison to NanoGPT, the width scaling plots
(Fig. 3) for Llama2 show that the model is “large enough” for the optimal learning rate to stabilize
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from the smallest model width of 128. This is perhaps because for width of 128, the total number of
parameters in Llama2 is significantly higher than the total number of parameters in NanoGPT.

The second set of simulations empirically evaluate the performance of the depth-scaling parameteri-
zation in existing works (Yang et al. (2023b); Dey et al. (2025)). The coordinate check plots (bottom
row) for depth-scaling demonstrate that the feature vectors are stable with increasing model depth.
In the coordinate check plots for ADOPT and LAMB (Figs. 7 and 9) the feature vectors stabilize
after a depth of 16, while for AdamW, Sophia and Shampoo (Figs. 6, 8 and 10) the feature vectors
are stable for shallow depths too. This phenomenon is similar to our observations for µP, because
the depth-scaling parameterization is also derived for an infinite depth limit (Yang et al. (2023b)).
Therefore, to prevent tuning an additional “base model depth” HP, we fix its value to 1 in our simula-
tion setup. However, the loss plots in Figs. 11, 12 and 13 do not consistently demonstrate zero-shot
learning rate transfer across increasing model depths. While the validation loss tables for AdamW
(Table 6) and Sophia (Table 10) demonstrate that the optimal value of the learning rate stabilizes
for deep models, the same is not observed for ADOPT (Table 8), LAMB (Table 12) and Shampoo
(Table 14), where the value of the optimal learning rate oscillates as the depth is increased. These
results suggest that deriving depth-scaling parameterization for different optimizers needs a more
thorough theoretical analysis. Additionally, performing simulations on a finer grid of learning rates
can also give further insights into the depth-scaling behavior.

B.2 µP ON NANOGPT

Table 3: Hyperparameter values and training settings to test µP on NanoGPT model.

Architecture NanoGPT Karpathy (2022)
Width 128 (scaled to 2048)
Depth 8

Number of heads 2
Total parameters 1.59 M (scaled to 403 M)

Dataset Tiny Shakespeare
Vocab size 65

Tokens per iteration 8192
Batch size 2

Stopping criteria Early stopping if validation loss doesnot improve in last 150 iterations
Optimizers AdamW / ADOPT / LAMB / Sophia / Shampoo

Hyperparameter search range η ∈ [2× 10−1, 2× 10−5]

Table 4: Hyperparameter values and training settings to test depth-scaling parameterization on
NanoGPT model.

Architecture NanoGPT Karpathy (2022)
Width 256
Depth 2 (scaled to 64)

Total parameters 1.6 M (scaled to 50.56 M)
Dataset Tiny Shakespeare

Vocab size 65
Tokens per iteration 8192

Batch size 2
Stopping criteria Early stopping if validation loss doesnot improve in last 150 iterations

Optimizers AdamW / ADOPT / LAMB / Sophia / Shampoo
Hyperparameter search range η ∈ [2× 10−1, 2× 10−5]

B.2.1 ADAMW OPTIMIZER
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Figure 6: Coordinate check plots for AdamW under standard parameterization (top row), µP (middle
row); depth scaling (bottom row) for NanoGPT model.

Table 5: Mean validation loss for increasing model width and different learning rates for AdamW
on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
2× 10−1 2.54111195 2.54770319 2.50132585 2.53559383 2.45719266
2× 10−2 2.57009896 2.56583707 2.57900651 2.53385917 2.51431378
2× 10−3 2.63474766 2.6022807 2.64679337 2.63449661 2.55710355
2× 10−4 3.38827054 3.5544157 3.38896998 3.44941664 3.44561863
2× 10−5 4.09221347 4.08871428 4.05257797 4.08837303 4.08405908

Table 6: Mean validation loss for increasing model depth and different learning rates for AdamW
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64
2× 10−1 2.53525917 2.55192765 2.53510944 2.50357556 2.51294963 2.53008548
5× 10−2 2.52700798 2.49422677 2.50334986 2.29428236 2.45176029 2.36860998
2× 10−2 2.55682977 2.52176666 2.56583563 2.30422862 2.45500112 2.5650301
2× 10−3 2.59745781 2.63078475 2.60228316 2.61588136 2.64065663 2.65051214
2× 10−4 3.41396125 3.41677833 3.55441554 3.45801504 3.43285489 3.47577778
2× 10−5 4.09297959 4.05970796 4.08871428 4.08113146 4.06712834 4.10902596
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B.2.2 ADOPT OPTIMIZER

Figure 7: Coordinate check plots for ADOPT optimizer under SP (top row); µP (middle row); depth
scaling (bottom row) for NanoGPT model.

Table 7: Mean validation loss for increasing model width and different learning rates for ADOPT
on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
2× 10−1 2.55120134 2.54616404 2.54178079 2.5524296 2.54457998
7× 10−2 2.48560476 2.44316975 2.37087123 2.50733534 2.50883015
2× 10−2 2.43175697 2.58847451 2.57006375 2.54323697 2.53191725
2× 10−3 2.63016931 2.6073552 2.65681744 2.66118956 2.55337548
2× 10−4 3.528404 3.49065232 3.49065232 3.42789133 3.43255997
2× 10−5 4.09183598 4.08832375 4.0521698 4.08806594 4.08391444

Table 8: Mean validation loss for increasing model depth and different learning rates for ADOPT
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64
2× 10−1 2.56129368 2.51452438 2.54788987 2.51456078 2.52271922 2.55469418
9× 10−2 2.48695572 2.47477563 2.53124801 2.48145302 2.50687472 2.54724765
2× 10−2 2.56718413 2.50419029 2.58847276 2.44447954 2.54996069 2.52524622
2× 10−3 2.67992798 2.62949713 2.6073552 2.60433618 2.61753988 2.6286815
2× 10−4 3.41052596 3.46538957 3.56757394 3.47856442 3.43608022 3.56190586
2× 10−5 4.09267759 4.05929391 4.08832375 4.08074443 4.06675259 4.10877307

B.2.3 SOPHIA OPTIMIZER
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Figure 8: Coordinate check plots for Sophia optimizer under SP (top row); µP (middle row); depth
scaling (bottom row) for NanoGPT model.

Table 9: Mean validation loss for increasing model width and different learning rates for Sophia on
NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
2× 10−1 3.0969398 2.57144117 2.56875261 2.62573036 2.57240287
2× 10−2 2.27450609 2.27830847 2.31632638 2.53347905 1.98427689
2× 10−3 2.5456597 2.61430057 2.5594302 2.54869485 2.65462987
2× 10−4 3.35409013 3.54614369 3.36089802 3.35862382 3.36431138
2× 10−5 4.08766381 4.08859126 4.06069756 4.08811712 4.08371623

Table 10: Mean validation loss for increasing model depth and different learning rates for Sophia
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64
2× 10−1 2.5213503 3.01081316 3.22649105 3.34855215 3.24310446 3.12229093
2× 10−2 2.4717048 2.27232289 2.24736114 2.47475751 2.46061246 1.93401444
2× 10−3 2.54103192 2.58136233 2.61035593 2.610612 2.45068415 2.55488427
2× 10−4 3.40887721 3.52765425 3.54587563 3.40669481 3.33997742 3.47574107
2× 10−5 4.09267314 4.06576761 4.08859126 4.08140405 4.066552 4.10874732
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B.2.4 LAMB OPTIMIZER

Figure 9: Coordinate check plots for LAMB optimizer under SP (top row); µP (middle row); depth
scaling (bottom row) for NanoGPT model.

Table 11: Mean validation loss for increasing model width and different learning rates for LAMB
on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
2× 10−1 3.3306915 2.91992474 2.75658234 2.84724092 2.84511503
2× 10−2 2.27427769 2.55330944 2.53250345 2.50694895 2.51612274
2× 10−3 2.46762419 2.42723028 2.47571055 2.49152549 2.46575729
2× 10−4 3.69672974 3.70961714 3.66877778 3.2370429 3.37923479
2× 10−5 4.16929531 4.1694754 4.1684103 4.1674579 4.16771809

Table 12: Mean validation loss for increasing model depth and different learning rates for LAMB
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64
2× 10−1 2.76534136 2.85949779 2.88115621 3.26932732 3.24093787 3.097018
2× 10−2 2.50858307 2.51164389 2.55355501 2.33967662 2.48308444 2.11406271
7× 10−3 2.45117172 2.46691815 2.50231234 2.45691435 2.48629936 2.45780365
2× 10−3 2.50483624 2.54284684 2.42723123 2.43291903 2.43262172 2.42000318
2× 10−4 3.6441706 3.79367606 3.70963343 3.57373738 3.61402575 3.42223287
2× 10−5 4.16981506 4.1691486 4.1694754 4.16932933 4.16817395 4.16773876

B.2.5 SHAMPOO OPTIMIZER
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Figure 10: Coordinate check plots for Shampoo optimizer under SP (top row); µP (middle row);
depth scaling (bottom row) for NanoGPT model.

Table 13: Mean validation loss for increasing model width and different learning rates for Shampoo
on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
1× 10−2 2.64432065 3.00841006 3.26729711 3.39512682 4.17380921
9× 10−3 2.6650331 2.89549454 3.20741065 3.45321918 3.41602135
5× 10−3 2.63122805 2.67693043 3.30215279 3.32265353 3.36052688
3× 10−3 2.67303157 2.85103401 3.37194387 3.46975843 3.49201838
1× 10−3 2.90583165 2.97975628 3.61035117 3.57224735 3.72281067

Table 14: Mean validation loss for increasing model depth and different learning rates for Shampoo
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64
3× 10−2 2.83468819 2.94637481 3.3811605 3.27378623 3.32534583 3.31375853
1× 10−2 2.63917089 2.6383814 2.66823014 3.2278808 3.24864435 3.20088768
7× 10−3 2.64190022 2.61007253 2.73991227 3.12863938 3.20985778 3.37485345
5× 10−3 2.77703945 2.72295157 2.72794461 2.93629122 3.25431808 3.37258538
3× 10−3 2.7143542 2.97368789 2.85365486 3.32030662 3.27988537 3.40830247
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Figure 11: Mean validation loss for increasing model depth and different learning rates for AdamW
(left) and ADOPT (right) on NanoGPT model.

Figure 12: Mean validation loss for increasing model depth and different learning rates for LAMB
(left) and Sophia (right) on NanoGPT model.

Figure 13: Mean validation loss for increasing model depth and different learning rates for
Shampoo on NanoGPT model.
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B.3 µP ON LLAMA2

Table 15: Hyperparameter values and training settings to test µP on Llama2 model.

Architecture Llama 2
Width 256 (scaled to 2048)
Depth 16

Number of attention heads 32
Total parameters 154M (scaled to 1.38 B)

Dataset Wikitext-103
Sequence length 4096

Vocab size 32000
Training set tokens 100M

Batch size 192
Training steps 1026
LR decay style cosine rule, 51 steps warm-up

Optimizer AdamW / ADOPT / LAMB / Sophia
Weight decay 0.1

Dropout 0.0
µP HP search range η ∈ [5× 10−1, 5× 10−4]

B.3.1 ADAMW

Figure 14: Coordinate check plots for AdamW optimizer under SP (top row); µP (middle row);
depth scaling (bottom row) for Llama2 model.
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Table 16: Validation loss for increasing model width and different learning rates for AdamW on
Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
5× 10−1 4.55491 4.02676 3.81251 3.73573 3.79477
3× 10−1 4.24978 3.90242 3.83252 3.89484 3.75046
1× 10−1 4.48696 4.21314 4.05265 4.02101 3.95419
5× 10−2 4.70421 4.4353 4.39753 4.34169 4.31635
1× 10−1 5.57795 5.56284 5.56173 5.55771 5.55774

B.3.2 ADOPT

Figure 15: Coordinate check plots for ADOPT optimizer under SP (top row); µP (middle row);
depth scaling (bottom row) for Llama2 model.

Table 17: Validation loss for increasing model width and different learning rates for ADOPT on
Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
5× 10−1 4.39033 4.02007 3.83932 3.77732 3.76814
3× 10−1 4.11789 3.85536 3.72552 3.67802 3.66973
2× 10−1 4.23765 3.87949 3.78242 3.80016 3.78846
1× 10−1 4.32335 4.07597 3.9912 3.91654 3.95519
7× 10−2 4.43819 4.22574 4.13565 4.06852 4.0683
5× 10−2 4.64121 4.38096 4.31582 4.22186 4.21248

B.3.3 LAMB
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Figure 16: Coordinate check plots for LAMB optimizer under SP (top row); µP (middle row); depth
scaling (bottom row) for Llama2 model.

Table 18: Validation loss for increasing model width and different learning rates for LAMB on
Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
3× 10−2 7.18452 6.35059 6.0384 6.52966 6.13429
1× 10−2 5.58878 5.5638 5.56049 5.79174 6.01439
5× 10−3 6.57476 6.60454 6.66398 6.98093 7.0471
1× 10−3 10.25112 10.23998 10.22575 10.21199 10.19599
5× 10−4 10.32997 10.32776 10.32398 10.32062 10.31677

B.3.4 SOPHIA
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Figure 17: Coordinate check plots for Sophia optimizer under SP (top row); µP (middle row); depth
scaling (bottom row) for Llama2 model.

Table 19: Validation loss for increasing model width and different learning rates for Sophia on
Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
5× 10−1 7.19403 6.99576 6.68992 6.60376 6.31375
3× 10−1 6.17604 5.90826 5.80694 5.6738 5.71962
1× 10−1 4.14122 3.83654 3.75926 3.67419 3.62891
7× 10−2 4.42758 4.31702 4.05756 3.93561 3.94189
5× 10−2 4.76632 4.51022 4.41358 4.34452 4.30914
3× 10−2 4.82305 4.79592 4.73067 4.67473 4.74689
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