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A Deblending by denoising versus deblending by inversion478

Deblending by denoising Deblending by denoising can be justified by noting that BH is a right-479

inverse of B. Therefore, making the substitution dc = BHz leads to480

Bdc = BBHz = Dz,

where D is a diagonal matrix. The structure of D depends on the blending strategy. For continuous481

blending, the diagonal elements dii count the number of overlapping shots in each time-space sample482

of the blended data, which usually ranges from two to three. We can therefore approximate D = I ,483

based on the argument that D is a simple amplitude correction. The solution is then given by484

z = db =) dc = BHdb.

By doing so, the clean data, dc, is approximated by the pseudo-deblended data, db, which however485

still contains the blending noise. Therefore, we can solve the following denoising problem to fully486

deblend the data:487

min
dc

kdc �BHdbk1 +R(dc), (6)

where R(·) is any chosen regularization. Because the distribution of the blending noise is far from488

being Gaussian, a typical choice for the data fidelity norm is k · k1. However, the `1-norm in the data489

fidelity renders the solution non-trivial. Note that while in principle we could choose to denoise z, in490

this domain we do not have an appropriate regularization term, making it impossible to denoise.491

Deblending by inversion Alternatively, one could retrieve the clean data by solving the (heavily)492

underdetermined inverse problem,493

min
dc

1

2
kBdc � dbk22 +R(dc). (7)

As the incoherent noise is fully explained by the blending operator, the `2-norm for the data fidelity494

is an appropriate choice. From the above equation, it is not obvious how the noise appears in495

the data since we are not dealing directly with the pseudo-deblended data. The noise is however496

introduced into the solution through the gradient of the data term, BH(Bdc �db). In sparse inversion,497

the objective is minimized iteratively by thresholding the gradient at every iteration, which can be498

interpreted as a noise removal step. The literature has shown that deblending by inversion is superior499

in comparison to deblending by denoising in terms of the overall quality of reconstruction.500

Deblending by inversion with FISTA In this work, deblending by inversion utilizes a patched501

Fourier transform as sparsifying operator for the FISTA algorithm. Figure 6a displays the relative502

error as function of the FISTA iterations. One of the patches into which the pseudo-deblended data503

has been decomposed alongside its Fourier spectrum are shown in figure 6d and 6b, respectively.504

The presence of burst-like noise translates into a non-sparse Fourier spectrum. On the other hand,505

the noise is removed in the deblending results in 6e as a result of a much sparser Fourier spectrum506

obtained during the inversion process as shown figure 6c.507

B The Plug-and-Play framework508

PnP solution progression To show how the solution progresses as a function of outer iterations, we509

select a receiver gather and show xk in figure 7. We clearly see the noise level drop, which explains510

the need to keep training the network as shown in the paper. Lastly, we show a denoised receiver511

gather after every epoch of training, for outer iterations 1, 10, 20 and 30 in figures 8 9, 10 and 11.512

PnP on ocean-bottom cable scenario In this section we show that our algorithm generalizes well513

to other acquisition geometries. More specifically, we mimic here an ocean-bottom cable acquisition514

scenario where both CSGs and CRGs contain hyperbolic events. Despite the denoising process is515

here applied on data that presents a different structure when it comes to the coherent signal, our516

PnP algorithm is still very successful and achieves an overall error of 6.7%. We choose 3 inner517

iterations, ⇢ = 1, and 20 denoiser epochs and let the algorithm run for a total of 40 outer iterations.518

The reconstructions are shown in figure 12.519
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Figure 6: a) Error for the patched Fourier inversion. b) Extracted patch in the Fourier domain for the
pseudo-deblended data. c) Extracted patch in the Fourier domain for the deblended data. d) Extracted
patch of the pseudo-deblended data. e) Extracted patch of the deblended data.

C Additional ablation studies520

The x-update As previously explained, the x-update requires the solution of the linear system521

min
x

1

2

����


Bp
⇢I

�
x�


dp

⇢(yk � uk)

�����
2

2

, (8)

which can be efficiently accomplished via LSQR. The convergence rate of LSQR depends on the522

spectrum of the blending operator B, specifically on its condition number [40, section 6.11.3]. As the523

singular values of B are the number of overlapping shots at each time step in the blended data, in524

our experiment the condition number is 3. Nevertheless, the number of inner iterations represents525

a hyperparameter that should be assessed. In order to do so, ⇢ and the number of epochs used to526

train the denoiser are fixed whilst the number of inner iterations for our PnP algorithm is varied527

between 1, 3, and 5. In all cases, the relative error as a function of outer iterations is computed528

and shown in figure 13a. As expected, increasing the number of inner iterations does not improve529

the overall solution. Somewhat surprisingly, the number of inner iterations exhibits a regularizing530

behaviour, in the sense that there seems to be an optimal number (here 3) above and below which the531

solution is poorer. When using fewer iterations, the overall error decreases slower in the first few532

outer iterations and quickly plateaus at around 20%. On the other hand, when using more iterations,533

the initial convergence is as fast as that of the optimal value, however the overall solution is of534

poorer quality. Another important hyperparameter is the augmented Lagrangian scalar ⇢. For our535

algorithm, ⇢ takes the role of a regularization parameter that controls the discrepancy between xk+1536

and yk + uk. We test three values, ⇢ = 0.1, 1 and 10, and choose the number of denoiser epochs537

that gives the lowest error. Again, we compare the relative error as a function of outer iterations538

(figure 13b). In the very first x-update, yk and uk are 0. Therefore, the linear system in equation 8539

amounts to solving a Tikhonov regularized problem with regularization parameter ⇢. For ⇢ = 10,540

the solution shrinks to values close to zero because �max(B) ⌧ ⇢. Therefore, to obtain a meaningful541

result, we set ⇢ = 0 in the first outer iteration and then switch to ⇢ = 10. Nevertheless, looking542

at the error curve, it is clear that ⇢ = 10 is too large: this is not unexpected because �max(B) ⌧ ⇢543

and the regularization terms dominates the inversion at each outer step. Clearly, ⇢ = 1 is the best544

choice, which is interesting because it is also the value that lies in the same order of magnitude545

of the singular values of B. This implies that there is a perfect balance between data misfit and546

regularization, which seems to be beneficial to the PnP algorithm. As stated before, the parameter ⇢547

also controls the discrepancy between x and y. Theoretically, if the PnP algorithm were to converge,548

u ! u? as k ! 1, then xk = yk as k ! 1. Therefore, the difference between xk and yk is a good549

measure of the convergence of the algorithm. Figure 14 shows the progression of xk and yk over the550

number of outer iterations. In the scenario where ⇢ is small, xk and yk are not close, indicating that551

the algorithm does not converge. Interestingly, xk has a lower error than its denoised counterpart552
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Figure 7: Progression of xk for one receiver gather.

yk. On the other hand, the choice ⇢ = 10 is clearly too large, which is to be expected from the553

fact that �max = 3. In this case, whilst after a few iterations xk and yk become similar, the overall554

reconstruction error remains very high. For ⇢ = 1, the iterates xk and yk do seem to converge to a555

satisfactory solution. Although the blending operator depends on the firing times during acquisition,556

its sensitivity to ⇢ is dictated by its spectrum. Moreover, the noise level of the blending noise is likely557

to be similar for different blending scenarios: the noise will always be of the same order of magnitude558

as that of the signal. As the spectrum of different blending operators will also be similar, it seems safe559

to conclude that ⇢ = 1 is a choice that is likely to work for our algorithm in general. Additionally,560

although not applied in our numerical examples, the difference between xk and yk would represent a561

good stopping criterion for our algorithm.562

Different initialization of the network Finally, in order to assess the influence of network initial-563

ization on the final deblending results, we run our algorithm for 10 different random initializations of564

the network weights and biases. We show the resulting error curves as function of outer iterations in565

figure 15a. Moreover, figure 15b displays a box plot of the final relative errors compared to that of566

the conventional patched Fourier approach. We can observe that apart from one seed, all the others567

tend to produce a final deblending result of superior quality to the benchmark algorithm.568
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Figure 8: Progression of the denoiser for outer iteration 1.
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Figure 9: Progression of the denoiser for outer iteration 10.
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Figure 10: Progression of the denoiser for outer iteration 20.
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Figure 11: Progression of the denoiser for outer iteration 30.
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Figure 12: Deblending results for one CRG (top) and CSG (bottom) in ocean-bottom configuration.

Figure 13: a) The error for fixed ⇢ and denoiser epochs as a function of the inner iterations. b) Error
for fixed number of inner iterations and denoiser epochs and variable ⇢.

Figure 14: RMSE of xk and yk for different ⇢.
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Figure 15: a) The average relative error plus and minus one standard deviation as function of outer
iterations. Min and max error curves are also displayed based on the error after 30 iterations. b) Box
plot of the relative error after 30 outer iterations for 10 different seeds. A horizontal red line indicates
the error by the conventional patched Fourier approach.
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