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A APPENDIX

Lemma 1. The vector field f : RK+D → RK such that

f(v, u) = E
[(
R+ γmax

a′∈A
Qv,u(X

′, a′)− ξQv,u(X,A)
)
ϕu(X,A)

]
− ϵv

is Lipschitz-continuous.

Proof. We must show that

∥f(v, u)− f(w, z)∥ ≤ Lf ∥v − w∥+ Lf ∥u− z∥ .

For a fixed transition tuple (x, a, r, x′) ∈ X ×A× IR×X , we define fx,a,r,x′ : RK+D → RK such
that

fx,a,r,x′(v, u) =
(
r + γmax

a′∈A
Qv,u(x

′, a′)− ξQv,u(x, a)
)
ϕu(x, a) + ϵv.

We show that fx,a,r,x′ is Lipschitz-continuous with with a constant Lf that does not depend on
(x, a, r, x′). Consequently, f = E[fx,a,r,x′ ] is also Lipschitz-continuous with the same constant.

We assume (x, a, r, x′) is fixed and we use the notation:

• A(v, u) = r + γmaxa′∈AQv,u(x
′, a′);

• B(v, u) = ξQv,u(x, a);

• C(u) = ϕu(x, a);

• D(v) = ϵv.

Then we have that fx,a,r,x′(v, u) = A(v, u)C(u) − B(v, u)C(u). We move on using triangle in-
equalities.

∥fx,a,r,x′(v, u)− fx,a,r,x′(w, z)∥ =

= ∥A(v, u)C(u)−B(v, u)C(u)−A(w, z)C(z) +B(w, z)C(z) +D(v)−D(w)∥
≤ ∥A(v, u)C(u)−A(w, z)C(z)∥+ ∥B(v, u)C(u)−B(w, z)C(z)∥+

+ ∥D(v)−D(w)∥
≤

∥∥A(v, u)(C(u)− C(z)
)∥∥+

∥∥(A(v, u)−A(w, z)
)
C(z)

∥∥+
+
∥∥B(v, u)

(
C(u)− C(z)

)∥∥+
∥∥(B(v, u)−B(w, z)

)
C(z)

∥∥
+ ∥D(v)−D(w)∥ .

We observe that

∥A(v, u)∥ ≤ rmax + γmax
a′∈A

∥ϕu(x′, a′)∥ ∥Proj(v)∥ ≤ rmax + γρ

using Cauchy-Schwartz inequality, Assumption (ii) and the projection of v. Also,

∥C(u)− C(z)∥ ≤ ∥ϕu(x, a)− ϕz(x, a)∥
≤ Lϕ ∥u− z∥

from Assumption (ii). We also have that

∥A(v, u)−A(w, z)∥ ≤ γ ∥Proj(v)− Proj(w)∥+ ∥Proj(w)∥ ∥u− z∥
≤ γ ∥v − w∥+ ρ ∥u− z∥

for the same reasons. From assumption (iii),

∥C(u)∥ = 1.

Now,

∥B(v, u)∥ ≤ ξ ∥ϕu(x, a)∥ ∥Proj(v)∥ ≤ ξρ
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and

∥B(v, u)−B(w, z)∥ ≤
∥∥ξ(ϕu(x, a)− ϕz(x, a)

)
Proj(u)

∥∥+ ∥ξϕz(x, a)(Proj(v)− Proj(z))∥
≤ ξρLϕ ∥u− z∥+ ξ ∥v − w∥ .

Finally, we can see that

∥D(v)−D(w)∥ = ϵ ∥v − w∥ .

Putting everything together with the help of Cauchy-Schwartz inequalities, the conclusion follows.

Lemma 2. The sequence of random vectors {Mt}t≥0 such that

Mt+1 =
(
rt + γmax

a′∈A
Qvt,ut

(x′t, a
′
t)− ξQvt,ut

(xt, at)
)
ϕut

(xt, at)−

− E
[(
R+ γmax

a′∈A
Qv,u(X

′, a′)− ξQv,u(X,A)
)
ϕu(X,A)

]
is a martingale difference sequence verifying

E
[
∥Mt+1∥2 | Ft

]
≤ cM

(
1 + ∥vt∥2 + ∥ut∥2

)
.

Proof. For {Mt}t≥0 to be a martingale difference sequence, we must have that

1. E[Mt+1 | Ft] = 0, ∀t > 0;

2. E[∥Mt∥] <∞, ∀t > 0.

From Assumption (i), we directly conclude property 1:

E[Mt+1 | Ft] = E[Mt+1] = 0.

To establish property 2, we observe that every term appearing on the definition of Mt is bounded by
some constant. The same observation is sufficient to conclude the second moment is also bounded
by some constant.

Lemma 3. For each u ∈ RD, the o.d.e.

v̇t = f(vt, u)

has a unique and globally asymptotically stable equilibrium v∗(u), where v∗ : RD → RK is
Lipschitz-continuous.

Proof. We start by establishing the existence and uniqueness of an equilibrium, v∗(u), for each u ∈
RD, by making use of Banach’s fixed point theorem. We then show that v∗ is Lipschitz-continuous.
Finally, we show that v∗(u) is globally asymptotically stable using a Lyapunov argument.

Any solution to the o.d.e. must verify

v̇t = f(vt, u) = 0.

Equivalently, and ignoring for a moment the projection of Proj(v) of v in Q, any solution is time-
invariant and we can, therefore, drop the dependency on t and, writing in the form of a fixed-point
equation, we must have that

v =
1

ξ
Σ−1

u E
[(
R+ γmax

a′∈A
Qv,u(X

′, a′)
)
ϕu(X,A)

]
− ϵ

ξ
Σ−1

u v.

We used assumption (iv) to invert the matrix Σu. Let us refer to the right-hand side as T : RK →
RK . As RK is a Banach space, contractiveness of T will allow us to conclude the existence and
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uniqueness of solution to the fixed point equation above. We observe that

∥T (v)− T (w)∥ ≤
∥∥∥∥1ξΣ−1

u γE
[(

max
a′∈A

Qv,u(X
′, a′)−max

a′∈A
Qw,u(X

′, A′)
)
ϕu(X,A)

]∥∥∥∥+
+

∥∥∥∥ ϵξΣ−1
u (v − w)

∥∥∥∥
≤ γ

ξσ
E
[
max
a′∈A

|ϕu(X ′, a′) · v − ϕu(X
′, a′) · w| ∥ϕu(X,A)∥

]
+

+
ϵ

ξσ
∥v − w∥

≤ γ + ϵ

ξσ
∥v − w∥

From assumption (iv), γ+ϵ
ξσ < 1 and contractiveness holds. Therefore, there exists a unique solution

v∗ ∈ RK for each u ∈ RD. Importantly, we can also obtain that ∥v∗(u)∥ ≤ 1
ξσ−ϵ (rmax + γρ) < ρ.

Therefore, the solution of the o.d.e. is inside the ball Bρ.

Now, we show that the solution v∗ : RD → RK obtained is Lipshitz-continuous on u ∈ RK . The
proof is very similar to the one of conctrativeness of T . For that, we write

∥v∗(u)− v∗(w)∥ ≤ γ

ξσ
E
[
max
a′∈A

|ϕu(X ′, a′) · v∗(u)− ϕw(X
′, a′) · v∗(w)| ∥ϕu(X,A)∥

]
≤ γρ

ξσ
Lϕ ∥u− w∥ .

Finally, having established uniqueness and existence of a Lipschitz-solution of the o.d.e., v∗(u), we
prove it is globally asymptotically stable. We consider the Lyapunov function lu : RK → R such
that lu(v) = 1

2 ∥v − v∗(u)∥2. We have that lu(v) = 0 if and only if v = v∗(u). We also have that
lu(v) > 0 if and only if v ̸= v∗(u). To establish globally asymptotic stability, it remains only show
that l̇u(v) < 0 whenever v ̸= v∗(u) and l̇u(v) = 0 otherwise. We start by writing

l̇u(v) = ∇vlu(v) · v̇
=

(
v − v∗(u)

)
· f(v, u)

=
(
v − v∗(u)

)
· E

[(
R+ γmax

a′∈A
Qv,u(X

′, a′)− ξQv,u(X,A)
)
ϕu(X,A) + ϵv

]
=

(
v − v∗(u)

)
· E

[(
R+ γmax

a′∈A
Qv,u(X

′, a′)
)
ϕu(X,A) + ϵv

]
− ξ

(
v − v∗(u)

)
Σuv.

Now, we subtract the quantity E
[(
R + γmaxa′∈AQv∗(u),u(X

′, a′)
)
ϕu(X,A) + ϵv∗(u)

]
−

ξΣuv
∗(u), which we know equals 0, multiplied by (v − v∗(u)). We can rearrange the resulting

expression and obtain(
v − v∗(u)

)
·E
[(
R+ γmax

a′∈A
Qv,u(X

′, a′)− γmax
a′∈A

Qv∗(u),u(X
′, a′)

)
ϕu(X,A) + ϵ

(
v − v∗(u)

)]
−

− ξ
(
v − v∗(u)

)
Σu

(
v − v∗(u)

)
.

Since ξ > 0 is sufficiently large, we can conclude that l̇u(v) < 0 if
(
v− v∗(u)

)
Σu

(
v− v∗(u)

)
> 0.

Such is the case since we have positive-definiteness of Σu from assumption (iv). This concludes the
result.

Lemma 4. For every u ∈ RK , the sequence of vector fields {hc,u}c≥1 such that hc,u : RK → RK

and hc,u(v) =
f(cv,u)

c , for some continuous h∞,u, verifies

hc,u → h∞,u.

uniformly on compacts. Additionally, the o.d.e.

v̇t = h∞,u(vt)

has the origin has its unique and globally asymptotically stable equilibrium.
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Proof. We can expand the definition and observe

hc,u(v) =
E
[(
R+ γmaxa′∈AQcv,u(X

′, a′)− ξQcv,u(X,A)
)
ϕu(X,A)

]
− ϵcv

c
.

We recall that Q projects v back into Bρ once v > ρ. Therefore, as c→ ∞,

hc,u(v) → −ϵv

uniformly on compacts. With h∞,u(v) = −ϵv, we have that v̇t = h∞,u(vt) has the origin as unique
and globally asymptotically stable equilibrium.

Lemma 5. Let V ∗ = {
(
(v∗(u), u

)
, u ∈ RD}. If supt≥0 ∥ut∥ <∞, then (vt, ut) → V ∗ w.p.1.

Proof. Having established Lemmas 1 to 5, we can use Theorem 2 from Borkar (2008, Chapter 6).

Lemma 6. The finite composition of Lipschitz-continuous and Lipschitz-smooth function is
Lipschitz-continuous and Lipschitz-smooth.

Proof. Let f, g : X → Y such that f and g are Lipschitz-continuous with constants Lf and Lg and
Lipschitz-smooth with constants Lḟ and Lġ respectively. Notice that the derivatives of f and g are
therefore bounded by Cf nd Cg .

We show that f ◦ g is Lipschitz-continuous.∥∥(f ◦ g
)
(x)−

(
f ◦ g

)
(z)

∥∥ =
∥∥f(g(x))− f

(
g(y)

)∥∥
≤ Lf ∥g(x)− g(y)∥
≤ LfLg ∥x− y∥ .

We can also show f ◦ g is Lipschitz-smooth. We present the proof for the one-dimensional case.∥∥∥(f ◦ g
)′
(x)−

(
f ◦ g

)′
(z)

∥∥∥ =
∥∥f ′(g(x))g′(x)− f ′

(
g(y)

)
g′(y)

∥∥
=

∥∥f ′(g(x))g′(x)− f ′
(
g(y)

)
g′(y) + f ′

(
g(x)

)
g′(y)− f ′

(
g(x)

)
g′(y)

∥∥
≤

∥∥f ′(g(x))g′(x)− f ′
(
g(x)

)
g′(y)

∥∥+
∥∥f ′(g(x))g′(y)− f ′

(
g(y)

)
g′(y)

∥∥
≤

∥∥f ′(g(x))∥∥ ∥g′(x)− g′(y)∥+ ∥g′(y)∥
∥∥f ′(g(x))− f ′

(
g(y)

)∥∥
≤ Cf L̇g ∥x− y∥+ CgLḟ ∥g(x)− g(y)∥

≤ Cf L̇g ∥x− y∥+ CgLḟLg ∥x− y∥
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