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A APPENDIX

Lemma 1. The vector field f : RE+P — RE such that
F,u) = B[ (B +7max Quu(X', @) = €Quu(X, A)) 6 (X, 4)| — ev

is Lipschitz-continuous.

Proof. We must show that
1f (0, u) = f(w, 2)|| < Ly llv —wll + Ly lu— =[]

For a fixed transition tuple (z,a,7,2') € X x Ax Ir x X, we define fy 4.0 : RETP — RE such
that

fo.ame (v,u) = (r+ 7 max Quu(2',d) = £Quu(z,a))du(z,a) + ev.

We show that f; o, is Lipschitz-continuous with with a constant L that does not depend on
(x,a,r,x"). Consequently, f = E[fy .r2] is also Lipschitz-continuous with the same constant.

We assume (z, a,r, ') is fixed and we use the notation:

* A(v,u) =r+ymaxeea Quu(’,a);

° (U,’LL) :ng u(a:,a);
¢ C(u) = ¢u( )
* D(v) =

Then we have that f; 4. (v,u) = A(v,u)C(u) — B(v,u)C(u). We move on using triangle in-
equalities.

[ fo.a,m0 (v, 1) = fo,ame (W, 2)|| =
= [[A(v,u)C(u) = B(v,u)C(u) = A(w, 2)C(2) + B(w, 2)C(2) + D(v) — D(w)]
< [[A(v,u)C(u) = A(w, 2)C(2) || + [| B(v, u)C(u) — B(w, 2)C(z)|| +
+ I1D(v) = D(w)]|
< |JA(v, u)(C(w) = C(2)) || + || (A(v,u) — A(w, 2))C(2)]| +
+ || B(v,u)(C(u) —
+ D) - D).

We observe that
1A, W < Tmaz +vmax||u (@, ) | Proj(u)|l < rmaz +7p

using Cauchy-Schwartz inequality, Assumption (fi)) and the projection of v. Also,
1C(u) = C)| < [¢ul,a) = ¢-(z,a)]|
< L |lu—z]|
from Assumption (ii). We also have that
[A(v, u) = A(w, 2)|| < v [|Proj(v) — Proj(w)|| + [[Proj(w)]|[lu — =[]
<vllo—wll+pllu -z
for the same reasons. From assumption (iii),
[Cu)]l =

Now,

[1B(v, u)|| < & [dulz; a)|[ [|Proj(v)|| < &p
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and

1B(v,u) = B(w, 2)|| < [[§(dulz, a) = ¢:(w,a)) Proj(u)|| + €¢(z, a)(Proj(v) — Proj(z))]|
<EpLy llu—z|| + & v —wl.

Finally, we can see that
I1D(v) = D(w)| = €lv—wl|.

Putting everything together with the help of Cauchy-Schwartz inequalities, the conclusion follows.
O

Lemma 2. The sequence of random vectors { M },>o such that
My = (Tt + nggﬁ Quy u, (xia ag) — EQuy u, (T4, (It))¢ut (w4, a)—
—E[(R+7max Quu(X,0') = €Quu(X, 4))6u(X, 4)]
is a martingale difference sequence verifying

2 2 2
B[ [[Mesa ™ | 7] < enr (14 [Joell” + [lue”).
Proof. For {M;},>0 to be a martingale difference sequence, we must have that

1. E[Mt_;,_l | ft] = 0, YVt > O,
2. E[|My|] < o0, Vit > 0.

From Assumption (i), we directly conclude property
E[Miy1 | Fi] = E[My14] = 0.

To establish property 2} we observe that every term appearing on the definition of A/, is bounded by
some constant. The same observation is sufficient to conclude the second moment is also bounded
by some constant. O

Lemma 3. For each u € RP| the o.d.e.
0 = f(vg,u)

has a unique and globally asymptotically stable equilibrium v*(u), where v* : RP — RE js
Lipschitz-continuous.

Proof. We start by establishing the existence and uniqueness of an equilibrium, v*(u), for each u €
RP, by making use of Banach’s fixed point theorem. We then show that v* is Lipschitz-continuous.
Finally, we show that v*(u) is globally asymptotically stable using a Lyapunov argument.

Any solution to the o.d.e. must verify
r[)t = f(Ut, U) =0.

Equivalently, and ignoring for a moment the projection of Proj(v) of v in @, any solution is time-
invariant and we can, therefore, drop the dependency on ¢ and, writing in the form of a fixed-point
equation, we must have that

1
EzﬁlE {(R + v gleaﬁ Quu(X', a/))¢u(X, A)} - 22;11}.

We used assumption (iv) to invert the matrix 3,,. Let us refer to the right-hand side as T : RE —
RE. As RX is a Banach space, contractiveness of 7" will allow us to conclude the existence and

v =
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uniqueness of solution to the fixed point equation above. We observe that

1T (v) = T(w)]| <

1
‘gZ;l,y]E[( (rlr}eaﬁ Qmu(X’, a’) _ ?334{ Qw’u(X/’ A/))¢u(X, A)} H +
gz

< £ Bl maxlou(X'a) v = 9u(X', ) - wl 6u(X, )] |+

+ v —wl]
— ||V — W
o

<
T
yte

o
v* € RE for each u € RP. Importantly, we can also obtain that ||v* (u)|| < E;—_e(rmaz +7p) < p.

Therefore, the solution of the o.d.e. is inside the ball B,,.

lo = w]

From assumption (iv),

< 1 and contractiveness holds. Therefore, there exists a unique solution

Now, we show that the solution v* : RP — R obtained is Lipshitz-continuous on u € R*. The
proof is very similar to the one of conctrativeness of 7'. For that, we write

[[0"(u) — o™ (w)| < glJJE max [§, (X', @) - 0" (u) = ¢u (X', d) - 0" (w)] [|Pu (X, A)|

< g{wu—wu.

Finally, having established uniqueness and existence of a Lipschitz-solution of the o.d.e., v*(u), we
prove it is globally asymptotically stable. We consider the Lyapunov function [,, : RX — R such
that I, (v) = 1 [lv — v*(u)||*. We have that I,,(v) = 0 if and only if v = v*(u). We also have that
I, (v) > 0if and only if v # v*(u). To establish globally asymptotic stability, it remains only show
that [,,(v) < 0 whenever v # v*(u) and [, (v) = 0 otherwise. We start by writing

(V) = Vyly(v) -0
= (v—v"(u)) - f(v,u)
= (v —v*(w) E [(R +ymax Quu(X,0') = €Quu(X, 4))9u(X, 4) + ev]

= (v—12v"(u)) IE[(R + 7 max Quu(X',a"))pu(X, A) + ev] —&(v—v"(u)Syv.

Now, we subtract the quantity E[(R + ymaxeed Qur(u)u(X',d))du(X, A) + ev*(u)} -

&3, v*(u), which we know equals 0, multiplied by (v — v*(u)). We can rearrange the resulting
expression and obtain

(v—v"(u)E [(R +ymax Quu (X', a') = ymax Que ) u (X', @) fu (X, A) + (v - v*(U))} -

—&(v—v"(w) Sy (v — v*(u)).

Since ¢ > 0 is sufficiently large, we can conclude that [, (v) < 0if (v —v*(u)) S, (v —v*(u)) > 0.
Such is the case since we have positive-definiteness of 3, from assumption (iv). This concludes the

result. O
Lemma 4. For every u € R, the sequence of vector fields {he,u}e>1 such that he ,, RE — RKE
and he ., (v) = M,for some continuous h ., verifies

hew = oo u-

uniformly on compacts. Additionally, the o.d.e.

Uy = hoo,u(vt)

has the origin has its unique and globally asymptotically stable equilibrium.
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Proof. We can expand the definition and observe

B[ (R +ymaxyea Qo (X',0') = €Qeu,u(X, 4)6u(X, A)| - ecv

hc u =
W) :

We recall that () projects v back into B, once v > p. Therefore, as ¢ — oo,
hew(v) = —ev

uniformly on compacts. With A ,,(v) = —ev, we have that o, = ho ,,(v;) has the origin as unique
and globally asymptotically stable equilibrium. O

Lemma 5. Let V* = {((v*(u),u),u € RP}. If sup;s [Jue|| < oo, then (v, us) = V*  w.p.1.

Proof. Having established Lemmas 1 to 5, we can use Theorem 2 from |Borkar| (2008, Chapter 6).
O

Lemma 6. The finite composition of Lipschitz-continuous and Lipschitz-smooth function is
Lipschitz-continuous and Lipschitz-smooth.

Proof. Let f,g : X — Y such that f and g are Lipschitz-continuous with constants Ly and L, and
Lipschitz-smooth with constants L ; and L, respectively. Notice that the derivatives of f and g are
therefore bounded by C'y nd C,.

We show that f o g is Lipschitz-continuous.
[(fog)@) = (fog)2)| = [f(9(x) — f(9(v))]

< Ly lg(z) — g(y)ll
< LyLyg lz —yll.

We can also show f o g is Lipschitz-smooth. We present the proof for the one-dimensional case.

[(Fo9) @) = (1o9) )| = I (9(2))g' @) = ' (9))' W)
=l (9()g' =) = f'(9)g' () + f (9(x))g' (v) — f' (9(2))d' (W)]]
< || (9())g'( ( @)d W + I (9)d' @) — £ (9))d' W)|
<|[If (9(= )Hllg W+ lg DI (9(@) = £ (9w) |

< CrLy e —yll + CgLf lg(x) —g(w)ll
< CpLglle —yll + CgLng [z —yll
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