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Figure 1: Generated image of size 1024×512 using the model trained on 21k natural images using a 148M-
parameters model.

ABSTRACT

We propose an effective denoising diffusion model for generating high-resolution
images (e.g., 1024×512), trained on small-size image patches (e.g., 64×64). We
name our algorithm Patch-DM, in which a new feature collage strategy is designed
to avoid the boundary artifact when synthesizing large-size images. Feature col-
lage systematically crops and combines partial features of the neighboring patches
to predict the features of a shifted image patch, allowing the seamless generation
of the entire image due to the overlap in the patch feature space. Patch-DM pro-
duces high-quality image synthesis results on our newly collected dataset of nature
images (1024×512), as well as on standard benchmarks of LHQ(1024× 1024),
FFHQ(1024× 1024) and on other datasets with smaller sizes (256×256), includ-
ing LSUN-Bedroom, LSUN-Church, and FFHQ. We compare our method with
previous patch-based generation methods and achieve state-of-the-art FID scores
on all six datasets. Further, Patch-DM also reduces memory complexity compared
to the classic diffusion models. Project page: https://patchdm.github.io.

1 INTRODUCTION

There have been explosive developments in generative adversarial learning (Tu, 2007; Goodfellow
et al., 2014; Radford et al., 2016; Arjovsky et al., 2017; Karras et al., 2019; Donahue et al., 2017),
though many GAN models remain hard to train. VAE models (Kingma & Welling, 2014) are easier
to train, but the resulting image quality is often blurry. Diffusion generative models have lately
gained tremendous popularity with generated images of superb quality (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song & Ermon, 2020; Song et al., 2020; Croitoru et al., 2023; Ramesh et al., 2022).
Despite the excellent modeling capability of generative diffusion models, the current models still
face challenges in both training and synthesis.

∗Equal Contribution.
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Due to direct optimization in the pixel space and multi-timestep training and inference, diffusion
models are hard to scale up to high-resolution image generation. Therefore, current state-of-the-art
models either use super-resolution methods to increase the generated images to higher resolutions
(Ramesh et al., 2022; Saharia et al., 2022a), or optimize the latent space instead of the pixel space
(Rombach et al., 2022). However, both types of approaches still consist of high-resolution image
generators that consume a large memory with a big model size.

To ameliorate the limitations in the current diffusion models, we propose a new method, Patch-
DM, to generate high-resolution images with a newly-introduced feature collage strategy. The basic
operating point for Patch-DM is a patch-level model that is relatively compact compared to those
modeling the entire image. Though it appears to have introduced compromises for a patch-based
representation, Patch-DM can perform seamless full-size high-resolution image synthesis without
artifacts of the boundary effects for pixels near the borders of the image patches. The effectiveness
of Patch-DM in directly generating high-resolution images is enabled by a novel feature collage
strategy. This strategy helps feature sharing by implementing a sliding-window based shifted im-
age patch generation process, ensuring consistency across neighboring image patches; this is a key
design in our proposed Patch-DM method to alleviate the boundary artifacts without requiring addi-
tional parameters. To summarize, the contributions of our work are listed as follows:

• We develop a new denoising diffusion model based on patches, Patch-DM, to generate
images of high-resolutions. Patch-DM can perform direct high-resolution image synthesis
without introducing boundary artifacts.

• We design a new feature collage strategy where each image patch to be synthesized obtains
features partially from its shifted input patch. Through systematic window sliding, the en-
tire image is being synthesized by forcing feature consistency across neighboring patches.
This strategy, named feature collage, gives rise to a compact model of Patch-DM that is
patch-based for high-resolution image generation.

Patch-DM points to a promising direction for generative diffusion modeling at a flexible patch-based
representation level, which allows high-resolution image synthesis with lightweight models.

2 RELATED WORK

Generative diffusion models. Generative diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2020) which learn to denoise noisy images into real images have gained
much attention lately due to its training stability and high image quality. Lots of progress has been
made in diffusion models such as faster sampling(Song et al., 2021), conditional generation(Nichol
& Dhariwal, 2021; Dhariwal & Nichol, 2021) or high-resolution image synthesis(Rombach et al.,
2022). The traits of diffusion models have been amplified particularly by the success of DALL·E 2
(Ramesh et al., 2022) and Imagen (Saharia et al., 2022a) which generate high quality images from
the given texts.
Patch-based image synthesis. The practice of employing image patches of relatively small sizes
to generate images of larger sizes has been a longstanding technique in computer vision and graphics,
particularly in the context of exemplar-based texture synthesis (Efros & Leung, 1999). While gen-
erative adversarial networks (GANs) have been utilized for expanding non-stationary textures(Zhou
et al., 2018), image synthesis is still considered more challenging due to the complex structures
present in images. To address this challenge, COCO-GAN(Lin et al., 2019) uses micro coordinates
and latent vectors to synthesize large images by generating small patches first. InfinityGAN(Lin
et al., 2022) further improves this by introducing Structure Synthesizer and Padding Free Generator
to disentangle global structures and local textures and also generate consistent pixel values at the
same spatial locations. ALIS(Skorokhodov et al., 2021) proposes an alignment mechanism on la-
tent and image space to generate larger images. Anyres-GAN(Chai et al., 2022), on the other hand,
adopts a two-stage training method by first learning the global information from low-resolution
downsampled images and then learning the detailed information from small patches. There are
also some works share similar directions on patch-based diffusion models. Luhman & Luhman
(2022) does a reshaping operation on the input image which pushes the dimensions of the height
and width to the channels. The model still takes the whole image as input just with the shape
changed. Wang et al. (2023) does a patch operation during the training stage by concatenating an-
other position embedding layer to the input while still requires full-resolution during the inference
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stage. There are also other works applying patch-based diffusion models to specific applications like
image restoration under weather conditions(Özdenizci & Legenstein, 2023) and anomaly detection
in brain MRI(Behrendt et al., 2024). Both of them utilize a conditional diffusion mechanism by
utilizing the weather-degraded images or images that miss some patches as conditions.

Our work, Patch-DM consists of a new design, feature collage, in which partial features of neighbor-
ing patches are cropped and combined for predicting a shifted patch. We borrow the term “collage”
from the picture collage task (Wang et al., 2006) for the ease of understanding of our method, though
our feature collage strategy only has a loose conceptual connection to picture collage (Wang et al.,
2006). Adopting positional embedding in Patch-DM also makes it easier to maintain spatial regu-
larity. Although Patch-DM employs a shifted window strategy, its motivation and implementation
are different from those of the widely-known Swin Transformers (Liu et al., 2021).

3 BACKGROUND

Denoising diffusion models generate real images from randomly sampled noise images by learning
a denoising function (Ho et al., 2020). Instead of directly denoising the random noise image to a real
image, denoising diffusion models learn to denoise the noise image through T steps. The forward
process adds noise to the image x0 gradually while the learned denoising function fθ tries to reverse
this process from the xT ∼ N (0, I). More formally, the forward process at time step t(t = 1...T )
can be defined as

xt ∼ N (xt−1;
√

1− βtxt−1, βtI), (1)
where βt are hyperparameters that control the noise, making the noise level of xt gradually larger
through the timesteps. Note that xt can be directly derived from the original image x0 since Eq. 1
can be rewritten as

xt ∼ N (x0;
√
αtx0, (1− αt)I), (2)

where αt =
∏t

s=1(1 − βs). In order to generate the images from the noise input, the denoising
model fθ learns to reverse from xt to xt−1, which is defined as

ϵ̂t = fθ(xt, t), (3)

xt−1 ∼ N (xt;
1√

1− βt
(xt −

βt√
1− αt

ϵ̂t), σtI), (4)

where σt are hyperparameters that control the variance of the denoising process. The objective of
the denoising model is ||ϵt − ϵ̂t||2. ϵt is ground truth noise added on image.

Therefore, after the denoising model is trained, the model can generate real images from random
noise using Eq. 4. As can be seen, the whole generation process depends fully on the denoising
process. Since the model denoises the image in the pixel space directly, the computation would be
very expensive once the resolution gets higher.

4 PATCHED DENOISING DIFFUSION MODEL

In this section, we describe our proposed Patched Denoising Diffusion Model (Patch-DM). Rather
than using entire complete images for training, our model only takes patches for training and infer-
ence, and uses our proposed feature collage mechanism to systematically combine partial features
of neighboring patches. Consequently, Patch-DM is capable of resolving the issue of high compu-
tational costs associated with generating high-resolution images, as it is resolution-agnostic.

Before we dive into our model’s training details, we first give an overview of the image generation
process of our method. The training image from the dataset is x0 ∈ RC×H×W , we split x0 into
x
(i,j)
0 where i, j is the row and column number of the patch, x(i,j)

0 ∈ RC×h×w. Instead of di-
rectly generating x0 like most of methods do, our model only generates x(i,j)

0 and concatenate them
together to form a complete image.

A very basic way to do this is what we show in Figure 2(a) where the denoising model takes the
noised image patch x

(i,j)
t as input and output the corresponding noise ϵ̂t

(i,j). However, since the
patches do not interact with each other, there will be severe borderline artifacts.
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(a) No Collage on Patches (b) Patch Collage in Pixel Space (c) Patch Collage in Feature Space (Ours)

Figure 2: Patch Generation For Image Synthesis. (a) shows a very basic method of patch-wise image
synthesis by simply splitting the images and generating patches independently. This method brings severe
border artifacts. (b) alleviates the border artifacts by using shifted windows while generating images and doing
patch collage in pixel space. (c) is our proposed method which collages the patches in the feature space. The
features for neighboring features will be split and collaged for a new patch synthesis. We will show this method
is a key design for us to generate high-quality images without border artifacts.

A further way to do this is to shift image patches during each time step depicted in Figure 2(b). At
different time steps, the model will take either the original split patch x

(i,j)
t or the shifted split patch

x′
t
(i,j) so that the border artifacts can be alleviated which we call “Patch Collage in Pixel Space”.

However, in Section 6 we show that the border artifacts still exist.

To further improve this method, we propose a novel feature collage mechanism depicted in Figure
2(c). Instead of performing patch collage in the pixel space, we perform it in the feature space. The
patch collage in the feature space is more in-depth and supports multi-level interaction. This allows
the patches to be more cognizant of the adjacent features and prevent border artifacts from appearing
while generating the complete images. More formally,

[z
(i,j)
1 , z

(i,j)
2 , ..., z(i,j)n ] = fE

θ (x
(i,j)
t , t), (5)

where fE
θ is the UNet encoder and z

(i,j)
1 , z

(i,j)
2 , ..., z

(i,j)
n are the internal feature maps. We then split

the feature maps and collage the split feature maps to generate shift patches

ẑ
′(i,j)
k = [P1(z

(i,j)
k ), P2(z

(i,j+1)
k ),

P3(z
(i+1,j)
k ), P4(z

(i+1,j+1)
k )],

(6)

where P1, P2, P3, P4 are split functions as shown in Figure 2(c). Then we send these collaged
shift features ẑ′(i,j)k to the UNet decoder to get the predicted shift patch noise:

ε
′(i,j)
t = fD

θ ([z
′(i,j)
1 , z

′(i,j)
2 , ..., z′(i,j)n ], t). (7)

In order to make the model generate more semantically consistent images, we also add position
embedding and semantic embedding to the model so that fθ will take another two inputs which are
P(i, j) and E(x0).

!"#$%&#'%()*+

!! !!"#
,-,&.'%()*+&/0%)&

#'110"2

3$%#$%&1*"40+*1&
#'%()*+

5*'%$6*&
7488'2*

5*'%$6*&9'#+

:"(41*&#'%() ;*(41*&+)0<%*1&
#'%()

Figure 3: Detailed Inference process at each time step.

During inference time, we take a 3x3 example
as illustrated in Figure 3, in order to generate
the border patches, we first pad the images so
that the feature collage can be done for each
patch without information loss. At each time
step t, image xt is decomposed into patches
which are fed into the subsequent encoder. Be-
fore a feature map goes through the decoder,
a split and collage operation is applied to it.
Thus, the decoder outputs the predicted noise
of the shifted patch. According to Eq. 4, we are
able to obtain xt−1 and thus generate the final
complete images.
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Table 1: Quantitative comparison with previous patch-based image generation methods. All models are trained
on the natural images dataset (1024×512), standard benchmarks LHQ(1024×1024) and FFHQ(1024×1024).
We use FID to measure the overall quality of generated images and sFID for the quality of high-level structures.

Nature-21K(1024×512) LHQ(1024×1024) FFHQ(1024×1024)

Method Patch Size FID sFID FID sFID FID sFID

COCO-GAN(Lin et al., 2019) 64×64 70.980 74.208 35.693 88.988 80.059 209.683
InfinityGAN(Lin et al., 2022) 101×101 46.550 70.041 50.646 92.577 174.789 270.699
Anyres-GAN(Chai et al., 2022) 64×64 44.173 34.430 130.591 100.041 67.076 170.911

Patch-DM (Ours) 64×64 20.369 34.405 23.777 37.217 19.696 36.512

Figure 4: Generated 2048×1024 image. We double the number of patches so that the model can generate
images with 2x resolution from 1024×512. The left image is a 2048×1024 image, and the right image is a
zoom-in of the red bounding box, with a resolution of 256×256.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Architecture. For the model architecture, we base our denoising U-Net model from (Dhariwal &
Nichol, 2021) with changes of taking global conditions and positional embeddings. We use two
methods to obtain the global conditions. The first is to use a pretrained model to obtain the image
features and use the image features as the global conditions, while optimizing the features directly
during training. In this case, we do not have to increase the model parameters and can scale to
high-resolution images. However, when the number of images in the training dataset is too large,
optimizing the pre-obtained image features requires more effort. We use this approach for global
conditioning when training on datasets of 1024×512 images. The pretrained model we use for
obtaining the image embeddings is CLIP(Radford et al., 2021). We resize the images to 224×224
and send them to ViT-B/16 to obtain the features as global conditions; we then optimize these global
conditions directly.

The second is jointly training an image encoder and using its output as the global conditions. Here,
the jointly training image encoder may borrow the same architecture as in the denoising U-Net’s
encoder. It works particularly well when the training dataset is large. However, it requires another
model, which would be a bottleneck in training on high-resolution datasets, since the computation
would increase significantly as the resolution increases. We use this approach when training on large
datasets of 256×256 images. We utilize global conditions with a dimension of 512 in both methods.

Classifier-free guidance. We also use the classifier-free guidance (Ho & Salimans, 2022) to im-
prove the training speed and quality. We use classifier-free guidance on both the global conditions
and position embeddings. The dropout rate is 0.1 for the global conditions and 0.5 for position
embeddings.

Patch size. We use a patch size of 64×64 in all our experiments. The denoising U-Net model’s
architecture is the same across all the datasets, as it is only related to the patch size regardless of the
training images’ resolution.
Inference. Once the denoising U-Net model has been trained, we train another latent diffusion
model for unconditional image synthesis. The latent diffusion model’s architecture is based on the
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FFHQ LSUN-Bedroom LSUN-Church

Figure 5: Generated images on FFHQ, LSUN-Bedroom, and LSUN-Church datasets using our pro-
posed method. All the resolutions are 256×256.

one described in (Preechakul et al., 2022). The data we use for training the latent diffusion model is
either from the output of the trained image encoder or the directly optimized image embeddings. To
synthesize an image, we will first sample a latent code from the latent diffusion model and then use
this latent code to serve as the global conditions for sampling an image. During the sampling stage,
we use the inference process proposed by DDIM (Song et al., 2021) and set the sampling step to 50.

Evaluation. We conduct both qualitative and quantitative evaluations on four datasets. For quan-
titative evaluation, we use FID, a popular metric in generative modeling(Heusel et al., 2017) and
sFID(Nash et al., 2021) for the quality of high-level structures. To compute FID, we follow the set-
ting of (Heusel et al., 2017) and generate 50K images to compute the metrics over the full dataset.
We apply the same setting for sFID.

5.2 RESULTS ON 1K-RESOLUTION IMAGES

Setup. To show our model’s capability on direct high-resolution image synthesis, we show our
model’s performance on three datasets: LHQ(1024× 1024), FFHQ(1024×1024) and a self-collected
21443 natural images from Wallpaperscraft (2013-2023)(1024×512). We use a patch size of 64×64
across all datasets. Therefore, each image is split into 16×16 for 1024×1024-resolution and 16×8
for 1024×512-resolution.

We use the CLIP ViT-B/16 pretrained image visual encoder to obtain the image embeddings first.
While downsampling to fit the CLIP model may result in the loss of some detailed image informa-
tion in the embeddings, these details can still be “recovered” during the embedding optimization
in the training process, aided by the supervision of the original high-resolution image. Each image
patch can be trained and sampled independently with feature collage assisting to be aware of the
surrounding information. Since every image is segmented into smaller patches, the total number of
model parameters is much smaller than other large diffusion models.

As most existing diffusion models merely can directly generate images of 1k resolution, and the
general strategy for high-resolution synthesis is to sample hierarchically (generate relatively low-
resolution images first and then perform super-resolution), our Patch-DM simplifies sample proce-
dure using much more lightweight models, which is one of the main advantages.

Results. We compare our model with previous patch-based image generation methods in Table 1.
From the table, we can see our method delivers the best overall quality of the generated images
on both FID and sFID scores. Apart from the quantitative evaluation, we also present an image
generated by our model in Figure 1. For more generated images, please refer to our supplementary
material.

5.3 RESULTS ON 256×256 IMAGES

Setup. To compare with other existing generative models, we also train our Patch-DM on three
standard public datasets: FFHQ, LSUN-Bedroom, and LSUN-Church, and evaluate its sampling
performance. All the resolution is 256×256. Thus, the number of patches is 4×4. Notice that the
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model architecture keeps the same; the only change here is the number of patches during training
and inference. We use the same training setting across the three datasets.

Results. We report the quantitative results in Table 2 and qualitative results in Figure 5, respectively.
In Table 2, we can see our model achieves competitive results while still outperforms previous
patch-based methods. Figure 5 illustrates that despite producing small image patches, our denoising
model exhibits minimal boundary artifacts and offers good visual quality. This demonstrates the
effectiveness of our feature collage mechanism.

Table 2: Evaluation Metrics of unconditional image synthesis on three 256×256 datasets: FFHQ, LSUN-
Bedroom, and LSUN-Church. For a fair comparison, results are reproduced in the same sampling steps as ours
i.e. 50, using provided pretrained checkpoints of other diffusion models. We adopt a patch size of 64×64 for
Patch-DM, Anyres-GAN, COCO-GAN and 101×101 for InfinityGAN. We bold the numbers to denote the best
numbers in the same category (top: non-patch-based methods, bottom:patch-based methods).

FFHQ LSUN-Bedroom LSUN-Church

Method FID sFID FID sFID FID sFID

LDM Rombach et al. (2022) 8.76 7.09 3.40 7.53 4.23 11.44
UDM Kim et al. (2022) 5.54 - 4.57 - - -
DiffAE Preechakul et al. (2022) 9.71 10.24 - - - -
PGGAN Karras et al. (2018) - - 8.34 9.21 6.42 10.48
StyleGAN Karras et al. (2018) - - 2.35 6.62 4.21 -

COCO-GANLin et al. (2019) 34.02 37.44 41.84 62.69 17.91 73.94
InfinityGAN Lin et al. (2022) 28.87 127.92 10.71 19.28 7.08 33.58
Anyres-GAN Chai et al. (2022) 24.48 55.77 15.65 56.24 17.09 80.66
Patch-DM (Ours) 10.02 10.58 6.04 9.93 5.49 14.80

Model size comparison. Compared with other widely used diffusion models, our proposed
method could achieve competitive performance using a smaller model with above mentioned in-
dispensable components. Patch-DM is fully built upon the network on 64×64 patches regardless
of the target image resolution and uses optimized global conditions to avoid the increase of model
parameter amounts brought by higher input resolution. Comparison of model parameters with other
classic diffusion models on 256×256 resolution is shown in Table 3. Notice that we use the same
diffusion model architecture for the 1024×1024 and the 1024×512 resolutions.

Table 3: Number of parameters comparison between different diffusion models on 256×256 resolution. SE
means semantic encoder to extract global information. The size of our previously trained 1024×1024 and
1024×512 models is 70M+[size of optimized semantic embeddings] during training and [63M latent DPM] in
inference.

Method Model Size ↓
Base model + Super-resolution
SR3 Saharia et al. (2022b) B[64]+625M

Direct generation
ADM Dhariwal & Nichol (2021) 552M
DiffAE Preechakul et al. (2022) 232M
LDM Rombach et al. (2022) 274M

Patch-DM (Ours, full model) 154M
Patch-DM (Ours, w/ SE, w/o latent DPM) 91M
Patch-DM (Ours, w/o SE, w/o latent DPM) 70M

5.4 APPLICATIONS

We now demonstrate several applications of our Patch-DM. All of them are conducted without post-
training.
Beyond patch generation. Since our method samples images using patches, we have the option
to incorporate more patches during testing. This enables the model to produce images with higher
resolutions compared to the ones in the training set without requiring further training. We adopt two
ways to achieve this.

The first one is to add more patches internally. We test this on our Nature-21K dataset. To generate
512×1024 images which has the same resolution as the training dataset, we need 8×16 patches
(random gaussian noise maps) to start with. To generate a 2× resolution images, we can add another
8×16 patches internally so that the total patch number will become 16×32 that can generate images
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COCO-GAN InfinityGAN Patch-DM(Ours)

Figure 6: Synthesized 384×384 images on LSUN-Bedroom (256×256) and LSUN-Church
(256×256).The left half of each group is LSUN-Bedroom and the right half of each group is LSUN-Church.
Despite only being trained on 256×256 images, our model can generate 384×384 images by adding more
patches (outside the red bounding box). Extended images generated by our models are compared with COCO-
GAN and InfinityGAN, which also have the ability to extend fields without further training.

Figure 7: Image outpainting on LSUN-Church and LSUN-Bedroom. The image inside the red bounding
box is the input image from the validation dataset. We pad the image patches from 4×4 to 6×6 to enable the
image outpainting. The image parts outside the red bounding box are the outpainting results.

with a resolution of 1024×2048. The global conditions we use for these patches is the same as
the original, while we interpolate the position embeddings in this setting. We provide a generated
2048×1024 image in Figure 4. As can be seen, our model can still generate consistent patches even
though the newly added patches have never been used in the training process.
The second one is to add patches outside the original image. This way is similar to beyond-boundary
generation in COCO-GAN(Lin et al., 2019) with a key difference that it needs a post-training pro-
cess to improve the continuity among patches. We conduct an experiment on LSUN-Bedroom
and LSUN-Church by adding more patches. The original resolution in the training data we use
is 256×256, which is divided by 4×4 patches. We add more patches to the existing 4×4 patches
so that the number grows to 6×6. Therefore, the model can generate an image with a resolution of
384×384. For the original 4×4 patches, we use the condition generated from the latent diffusion
model and the position embeddings as pre-defined. For the additional patches, we use the same se-
mantic condition, while we don’t use position embeddings for these added ones as in this case we’re
adding patches outside which the position embeddings could not be interpolated. Thus the model
needs to synthesize the additional patches only according to the global conditions and the neighbor-
ing context information. We present our results in Figure 6 and compare it with COCO-GAN(Lin
et al., 2019) without post-training and InfinityGAN(Lin et al., 2022) under the same setting.
Image outpainting. Another practical application would be image outpainting that only draws the
outer part of the image while keeping the input image the same. To do this, we experiment using
the model trained on LSUN-Church and LSUN-Bedroom. First, we send images from the LSUN-
Church validation dataset and LSUN-Bedroom validation dataset to the image encoder to obtain the
global conditions. Then, to keep the original image the same, we replace the inner predicted noised
image patches with the ground truth noised images patches (adding corresponding noise to the input
images) during each timestep while sampling. We present our results in Figure 7. It can be seen
from the results that our model can “imagine” the surrounding areas reasonably and generate rather
consistent outer parts of the image without obvious border effects.
Image inpainting. In this task, we infill the corrupted images with random masks, which requires
the restored results to be consistent in context. We experiment on the LSUN-Church validation
set using already trained models without further tailored training. The original images are masked
by different numbers of blocks ranging from 1 to 6, and the sampling process is only conditioned
on local position embeddings w/o global conditions. The results are presented in Figure 8. From
the figure, we can see that our model can infill the blocks consistently using surrounding patches,
demonstrating that feature collage facilitates the model with the capability to be aware of adjacent
information, enabling it to be naturally applied to inpainting tasks.

6 ABLATION STUDY

Three indispensable components: semantic code, position embeddings and shift window strategy on
feature levels, considerably eliminate border artifacts and improve our model performance. Here,
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Figure 8: Image Inpainting on LSUN-Church. Six pairs of images are presented here. For each pair, the
left side is the masked image; the right one is the inpainted result by our model without further training on this
task. The number of masked patches increasing from left to right.

we conduct ablation study to investigate the effects of these modules. We provide both qualitative
results and quantitative results in Figure 9 and Table 4 respectively.

Global conditions. We study the problem without global conditions; thus, the generation process
will fully rely on the positional embedding and neighboring context information. We present our
images in Figure 9 (a). It’s interesting to see how the model generates when no global conditions
are given, which is a strong constraint for the model to generate semantic-related patches. From
the given image, we can see that the model can still generate locally-consistent images; the image
quality is however relatively low.
Position embeddings. The last section shows that global conditions are necessary for our model
to generate high-quality images. We then condition the model only on those to investigate the role of
positional embeddings. The results are shown in Figure 9 (b). Without the position information, the
model would generate distorted images with patchTheelonging to where they should be, although
the whole image may follow a certain style. Hence, the positional embeddings are vital to our model.

Collage in the pixel space. A straightforward idea is to perform collage in the pixel space as
present in Figure 2(b); the images are decomposed by window-shifted patches from their original
positions. To maintain patch size consistency, we add zero padding around the image. For the
sampling procedure: In an odd-number step, original patches are generated independently, while in
an even-number step, patches with shifted positions are sampled.

Under this scheme, we experiment in two different settings. The first is to take a fixed shift step (half
patch size) along the height and width direction. The sample result is shown in Figure 9(c). There
are still apparent artifacts along the border. This proves that even though the shift window on the
image level could enable patches to be aware of surroundings during sampling, the awareness level
is quite limited, and the final generation is similar to breaking the image into smaller patches.

The second setting is to shift the patch position with a randomly sampled step ranging from zero
to patch size. The inference result is shown in Figure 9(d). The sample quality is much improved
compared to the previous situation. However, the result is still not as photo-realistic as Patch-DM.
The reason is that although the random shift enables finer surrounding awareness, it lacks in-depth
feature interaction as our model does. Therefore, the feature-level window shift and collage can
significantly eliminate border artifacts and improve final inference quality.
Table 4: FID evaluation on 1,000 images of different ablation settings to investigate the importance of semantic
condition, position embedding, and feature-level window shift.

Method FID (1k) ↓
No global semantic condition 79.33
No position embedding 48.82
Pixel space fixed shift 49.80
Pixel space random shift 52.11

Patch-DM (Ours) 37.99

(a) No global conditions (b) No position embeddings (c) Pixel space fixed shift (d) Pixel space random shift (e) Ours

Figure 9: Ablation study on global conditions (a), position embeddings (b), and feature level shift (c, d).

7 CONCLUSION

We have presented a new algorithm, Patch-DM, a patch-based denoising diffusion model for gen-
erating high-resolution images. We introduce a feature collage strategy to combat the boundary
effect for patch-based image synthesis. Patch-DM achieves a significant reduction in model size and
training complexity compared to the standard diffusion models trained on the original size images.
Competitive quantitative and qualitative results are obtained for Patch-DM when trained on several
image datasets.
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Ozan Özdenizci and Robert Legenstein. Restoring vision in adverse weather conditions with patch-
based denoising diffusion models. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2023.

Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Dif-
fusion autoencoders: Toward a meaningful and decodable representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10619–10629, 2022.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In ICLR, 2016.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pp. 8748–8763. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022a.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. In ICLR Worshop Track, 2022b.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In ACM SIGGRAPH 2022 conference proceedings, pp. 1–10, 2022.

Ivan Skorokhodov, Grigorii Sotnikov, and Mohamed Elhoseiny. Aligning latent and image spaces
to connect the unconnectable. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 14144–14153, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

11



Published as a conference paper at ICLR 2024

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2020.

Zhuowen Tu. Learning generative models via discriminative approaches. In CVPR, 2007.

Wallpaperscraft. Wallpaperscraft. https://wallpaperscraft.com/, 2013-2023.

Jingdong Wang, Long Quan, Jian Sun, Xiaoou Tang, and Heung-Yeung Shum. Picture collage. In
CVPR, pp. 347–354, 2006.

Zhendong Wang, Yifan Jiang, Huangjie Zheng, Peihao Wang, Pengcheng He, Zhangyang Wang,
Weizhu Chen, Mingyuan Zhou, et al. Patch diffusion: Faster and more data-efficient training of
diffusion models. Advances in Neural Information Processing Systems, 36, 2023.

Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, and Hui Huang. Non-
stationary texture synthesis by adversarial expansion. ACM Transactions on Graphics (TOG),
37(4):1–13, 2018.

12

https://wallpaperscraft.com/


Published as a conference paper at ICLR 2024

A MODEL HYPERPARAMETERS

For model architecture, we base our diffusion model from Dhariwal & Nichol (2021) with changes
of taking global semantic condition and positional embedding. The hyperparameters for the main
denoising U-Net model are specified in Table 5. Since the model is resolution agnostic, the main
architectures for all datasets keep the same. We adopt two methods to obtain global semantic con-
ditions: for relatively low-resolution images, an encoder is trained with architecture borrowed from
the first half of the U-Net model, and the architecture details of the encoder are shown in Table 6.
For high-resolution images such as 1024×512, a pretrained image encoder is used to avoid scaling
up the overall model size. We use ViT-B/16 in CLIP to obtain the image embeddings and optimize
them during training. For position embeddings, we use sinusoidal positional embeddings. Time
embedding and positional embedding are concatenated and modulated into ResBlocks together with
the global code.

For realizing unconditional image synthesis, a latent diffusion model is trained on semantic embed-
dings. The implementation is based on the one proposed in Preechakul et al. (2022) with MLP +
skip connections architecture. The parameter details are specified in Table 7.

B MORE QUALITATIVE RESULTS

We provide more unconditional sampling results with the models trained on our self-collected
nature images (1024×512) in Figure 10-12. We also provide results on LHQ(1024×1024) and
FFHQ(1024×1024) in Figures 14 and 13 respectively as well as three other standard benchmarks
with a resolution of 256×256: LSUN-Bedroom (Figure 15), LSUN-Church (Figure 16), and FFHQ
(Figure 17).
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Parameter Patch-DM

Patch input size 3×64×64
Channel multiplier [1, 2, 4, 8]
Net channel 64
ResBlock number 2
Attention resolution 16
Batch size 16
Diffusion steps 1000
Noise scheduler Linear
Learning rate 0.0001
Optimizer Adam

Table 5: Model Architecture for diffusion model.

Parameter Semantic Encoder

Input size 3×256×256
Channel multiplier [1, 2, 4, 8, 8]
Net channel 64
ResBlock number 2
Attention resolution 16
Global condition dimension 512
Batch size 16
Learning rate 0.0001
Optimizer Adam

Table 6: Model Architecture for image semantic encoder.

Parameter Latent Diffusion

Input size 512
MLP layers 10
MLP hidden size 2048
Noise scheduler Constant 0.008
Batch size 256
Learning rate 0.0001
Optimizer Adam (weight decay 0.01)

Table 7: Model Architecture for latent diffusion model.
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Figure 10: Additional qualitative results on self-collected nature dataset (1024×512).
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Figure 11: Additional qualitative results on self-collected nature dataset (1024×512).
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Figure 12: Additional qualitative results on self-collected nature dataset (1024×512).
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Figure 13: Additional qualitative results on high resolution FFHQ dataset (1024×1024).
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Figure 14: Additional qualitative results on high resolution LHQ dataset (1024×1024).
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Figure 15: Additional qualitative results on LSUN-Bedroom (256×256).
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Figure 16: Additional qualitative results on LSUN-Church (256×256).
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Figure 17: Additional qualitative results on FFHQ (256×256).
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C FAILED CASES COMPARISON ON FFHQ1024

To provide a more thorough understanding of the limitations of our proposed method, we compare
our FFHQ1024 results with other non-patch-based methods. We use FFHQ1024 as it’s a more
structural dataset while other landscape datasets are not that structural, thus FFHQ1024 could better
show how well the models learn the structural information. As there lacks results for FFHQ1024
using diffusion models, we compare our results with two state-of-the-art GAN-based methods on
FFHQ1024: StyleGAN3(Karras et al., 2021) and StyleGAN-XL(Sauer et al., 2022) in Figure 18. It
can be seen that non-patch GAN-based methods generally perform well on global consistency while
ours may not perform well in such cases. For example, in the first row of our results, the wrinkles
around the mouth are asymmetrical. And in the second row of our results, the eyes/eyeglasses are
asymmetrical. As our method uses a patch size of 64×64 and there are a total of 16×16=256
patches, the global consistency sometimes may not perform well. We think one can further improve
this by utilizing a larger patch size or introducing better global-consistency-enforcing mechanisms
which we leave for future work.

StyleGAN3-T StyleGAN-XL Our Failed Cases

Figure 18: Comparison on FFHQ1024 with StyleGAN3-T, StyleGAN-XL and our failed cases.
Ours might fail on global consistency such as the wrinkles around the mouth in the first row and the
eyes/glasses in the second row.
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