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A PROOFS

Theorem A.1 (Theorem 3.1). Letµ(−ui)
v = 1

Nv

∑Nv

k=1 svk if u 6= v; andµ(−ui)
u = 1

Nu−1
∑
j 6=i suj .

Then,

I(u; s) ≥ E
[ 1

N

M∑
u=1

Nu∑
i=1

[
− ‖sui − µ(−ui)

u ‖2 − e−1

N

M∑
v=1

[Nv exp(−‖sui − µ(−ui)
v ‖2)]

]]
. (12)

Proof of Theorem 3.1. By the condition in the Theorem, we have the given sample pairs
{(u, sui)}1≤u≤M,1≤i≤Nu . Not that each pair of speaker identity and style embedding, (u, sui), can
be regarded as a sample from the joint distribution p(u, s). To clearify the proof, we change the no-
tation of random variables u and s toU and S, which are distinct to samples {(u, sui)} ∼ p(U ,S).

For a sample pair (u, sui), by the NWJ lower bound, we have

I(U ;S) ≥Ep(U ,S)[f(U ,S)]− e−1Ep(U)p(S)[e
f(U ,S)]

=Ep(S)
[
Ep(U |S)[f(U ,S)]− e−1Ep(U)[e

f(U ,S)]
]

=Esui∼p(S)

[
Ep(U |S=sui)[f(U ,S = sui)]− e−1Ep(U)[e

f(U ,S=sui)]
]
, (13)

with a score function f(U ,S). Given S = sui, Ep(U |S=sui)[f(U ,S = sui)] has an unbiased
estimation f(U = u,S = sui); Ep(U)[e

f(U ,S=sui)] has an unbiased estimation by taking average
of all possible values v ∼ p(U) in samples {(u, sui)},

Ep(U)[e
f(U ,S=sui)] = E

[ M∑
v=1

Nv
N
ef(U=v,S=sui)

]
. (14)

With the two estimations, (13) becomes

I(U ;S) ≥ E
[
f(u, sui)− e−1

M∑
v=1

Nv
N
ef(v,sui)

]
. (15)

Specifically, we select score function f(U = v,S = s) = −‖s− µ(−ui)
v ‖2, then (15) becomes

I(U ;S) ≥ E[Îui] = E
[
− ‖sui − µ−(ui)u ‖2 − e−1

M∑
v=1

Nv
N
e−‖sui−µ(−ui)

v ‖2
]
. (16)

Since the selection of index ui is arbitrary, we take an average on all Îui,

I(U ;S) ≥ 1

N

M∑
u=1

Nu∑
i=1

E(u,sui)∼p(U ,S)[Îui] = E[
1

N

M∑
u=1

Nu∑
i=1

Îui]

=E
[ 1

N

M∑
u=1

Nu∑
i=1

[
− ‖sui − µ(−ui)

u ‖2 − e−1

N

M∑
v=1

[Nv exp(−‖sui − µ(−ui)
v ‖2)]

]]
, (17)

where the right-hand side of equation (7) is derived.

Theorem A.2 (Theorem 3.2). Assume that given s = su, samples {(xui, cui)}Nu
i=1 are observed.

With a variational distribution qφ(x|s, c), we have I(x; c|s) ≥ E[Î], where

Î =
1

N

M∑
u=1

Nu∑
i=1

[
log qφ(xui|cui, su)− log(

1

Nu

Nu∑
j=1

qφ(xuj |cui, su))
]
. (18)

Proof of Theorem 3.2 . Given s = su, we observe sample pair {xui, cui}Nu
i=1. By the InfoNCE

lower bound (Oord et al., 2018), with a score function f , we have

I(x; c|s = su) ≥ E
[ 1

Nu

Nu∑
i=1

[
f(xui, cui)− log

 1

Nu

Nu∑
j=1

ef(xuj ,cui)

]]. (19)
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We select f(x, c) = log qφ(x|c, s = su), then

I(x; c|s = su) ≥ E
[ 1

Nu

Nu∑
i=1

[
log qφ(xui|cui, su)− log

 1

Nu

Nu∑
j=1

qφ(xuj |cui, su)

]]. (20)

Taking expectation of s on both sides, we derive

I(x; c|s) ≥ E
[ 1

N

M∑
u=1

Nu∑
i=1

[
log qφ(xui|cui, su)− log

 1

Nu

Nu∑
j=1

qφ(xuj |cui, su)

]]. (21)

Theorem A.3 (Theorem 3.3). If p(s|c) provides the conditional distribution between variables s
and c, then

I(s; c) ≤ E
[ 1

N

M∑
u=1

Nu∑
i=1

[
log p(sui|cui)−

1

N

M∑
v=1

Nv∑
j=1

log p(sui|cvj)
]]
. (22)

Proof of Theorem 3.3. By the upper bound in Cheng et al. (Cheng et al., 2020b), we have

I(s; c) ≤ Ep(s,c)[log p(s|c)]− Ep(s)p(c)[log p(s|c)]. (23)

With embedding samples {sui, cui}1≤u≤M,1≤i≤Nu
, the right-hand side of (23) can be estimated by

I(s; c) ≤ E
[ 1

N

M∑
u=1

Nu∑
i=1

[
log p(sui|cui)−

1

N

M∑
v=1

Nv∑
j=1

log p(sui|cvj)
]]
. (24)

Discussion on variational approximation As mentioned in Section 3.3, we approximate p(s|c)
with a variational distribution qθ(s|c) in equation (10), since the closed form of p(s|c) is unknown.
We claim that with qθ(s|c) as a good approximation of p(s|c), equation (10) remains a MI upper
bound. We calculate the difference between I(s; c) and the approximated version of (23):

∆ :=I(s; c)− [Ep(s,c)[log qθ(s|c)]− Ep(s)p(c)[log qθ(s|c)]]
=Ep(s,c)[log p(s|c)− log p(s)]− Ep(s,c)[log qθ(s|c)] + Ep(s)p(c)

[
log qθ(s|c)

]
=
[
Ep(s,c)[log p(s|c)]− Ep(s,c)[log qθ(s|c)]

]
−
[
Ep(s)[log p(s)]− Ep(s)p(c)[log qθ(s|c)]

]
=Ep(s,c)[log

p(s|c)
qθ(s|c)

]− Ep(s)p(c)[log
p(s)

qθ(s|c)
]

=KL(p(s|c)‖qθ(s|c))− KL(p(s)‖qθ(s|c)).
When qθ(s|c) is a good approximation to p(s|c), the divergence KL(p(s|c)‖qθ(s|c)) can be
smaller than KL(p(s)‖qθ(s|c)). Then ∆ remains negative, which indicates [Ep(s,c)[log qθ(s|c)] −
Ep(s)p(c)[log qθ(s|c)]] still be an MI upper bound.

B EXPERIEMENTS

Table 5: Ablation study with bottleneck
design for zero-shot VST. We set sam-
pling rate as 4. Performance is mea-
sured by objective metrics.

Distance Verification[%]

AUTOVC 6.59 41
IDE-VC 6.24 80

More ablation study on bottleneck design We kept the
same bottleneck design as AUTOVC to have a fair com-
parison for the effectiveness of the proposed disentangled
learning scheme. To further provide evidence of effective-
ness of IDE-VC , we also conducted an ablation study in
which the bottleneck is widened in Table 5. Specifically,
we use set sampling rate as 4 and conduct experiments un-
der the zero-shot setup. The results demonstrated that the
bottleneck design has little impact on the disentanglement
ability of the proposed model.
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More ablation study on visualization We further provide t-SNE visualization for content em-
bedding from IDE-VC and AUTOVC in Figure 3 and Figure 4 under same hyperparameter setups.
Comparing between the two t-SNE plottings, the content embeddings generated with IDE-VC are
more indistinguishable for different speakers than the ones from AUTOVC, which proves that the
proposed model has stronger ability to eliminate speaker-related information in content embedding.

Figure 3: t-SNE visualization for content embedding from IDE-VC . The embeddings are extracted
from the voice samples of 3 different speakers.

Figure 4: t-SNE visualization for content embedding from AUTOVC. The embeddings are extracted
from the voice samples of 3 different speakers.

Speaker encoder pretraining Our speaker encoder is pretrained with GE2E loss on a combination
of VoxCeleb1 (Nagrani et al., 2017) and Librispeech (Panayotov et al., 2015) datasets, in total of
3549 speakers.

Implementation details In our experiments, we use official implementation of AdaIN-VC4, AU-
TOVC5 and Blow6. Specifically, same pretrained speaker encoder is used in AUTOVC (Qian et al.,
2019) and our model for fair comparison. Blow model is trained with 100 epochs and suggested
hyperparameters, the training takes over 10 GPU days on Nvidia V100 in comparison with 1 GPU
day on Nvidia Xp for our model. For StarGAN-VC, we use an open source implementation7, which
achieves better performance according to multiple previous works (Qian et al., 2019; Serrà et al.,
2019). All above models are trained on all 109 speakers in VCTK dataset, and same splits are used
for testing and validation.

For our model, we use loss on validation set to conduct grid search on hyperparameter β, and we
use β = 5 in final experiment. The other hyperparameters are set as the same as in AUTOVC (Qian
et al., 2019).

Sample speeches We also provide several sample conversed speeches on https://idevc.github.io/.
4https://github.com/jjery2243542/adaptive voice conversion
5https://github.com/auspicious3000/autovc
6https://github.com/joansj/blow
7https://github.com/liusongxiang/StarGAN-Voice-Conversion
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Figure 5: Left: (a) The naive Euclidean distance matching between two time series might miss the
important voice patterns because of the time shift and different speakers’ speaking speeds; (b) DTW
automatically find the optimal matching that captures important voice pattens. Right: DTW converts
the time sequence matching problem into the minimal cost path searching on the distance matrix.

C EVALUATION DETAILS

Verification score In details, in Resemblyzer, a pre-trained speaker encoder is provided s =

Esr(x). The voice profile for each speaker u is first computed as su = 1
Nt

∑Nt

n Esr(xun), in
which Nt represents the number of speeches each speaker has in testing set, xun represents the n-th
speech of speaker u in testing set. For each speech conversed from i-th speech of speaker u to j-th
speech of speaker v, represented as x̂ui→vj , the speaker embedding is computed with Resemblyzer:
ŝui→vj = Esr(x̂ui→vj ). Dot product is used to compute similarity between the speaker embedding
and the voice profile. If among all speakers in testing set, the speaker embedding of the conversed
speech has highest similarity score with the target speaker’s profile sv , we view it as a success con-
version. The portion of success conversion among all conversion trials is reported as verification
score.

Details in evaluation for zero-shot VST Based on setting in AdaIN-VC (Chou & Lee, 2019),
subjective evaluation is performed on converted voice between male to male, male to female, fe-
male to male and female to female speakers. To reduce variance, 3 speakers are selected for each
gender, thus, in total 36 pairs of speakers. The speakers of these pairs were unseen during train-
ing. Following the setting in AdaIN-VC (Chou & Lee, 2019), the converted result of each pair was
transfered from our proposed model with only one source utterance and one target utterance.

Dynamic Time Wrapping When evaluating the voices generated by neural networks from latent
embeddings, the mismatching problem in time alignment occurs due to the time shift and different
speaking speeds in the generation. Important voice patterns may be neglected when directly cal-
culating the Euclidean distance between the generated voice and the ground-truth. One effective
solution to the sequential time-alignment problem is the Dynamic Time Wrapping (DTW) algo-
rithm (Berndt & Clifford, 1994), which has been widely applied in speech recognition and match-
ing (Muda et al., 2010; Chapaneri, 2012; Dhingra et al., 2013). The DTW algorithm seeks the
optimal matching path P ∗ ∈ P(T, S) that minimizes the sequential matching cost between two
time series x = (x1, x2, . . . , xT ) and y = (y1, y2, . . . , yS) (e.g., the purple path in the right
of Figure 5). A consecutive matching path P ∈ P(T, S) denotes a sequence of index pairs
P = (p1,p2, . . . ,pL), in which each pair pl = (tl, sl) matches xtl and ysl following the time
order (i.e., p1 = (1, 1), pL = (T, S), 0 ≤ tl+1 − tl ≤ 1, and 0 ≤ sl+1 − sl ≤ 1). The DTW
score is SDTW(x,y) = minP∈P(T,S)

∑L
l=1 d(xtl , ysl), where d(·, ·) is a ground distance measuring

the dissimilarity of any two points in time series. The optimization needed for calculating the DTW
score can be solved efficiently by dynamic programming.

Human Evaluation Following Wester et al. (Wester et al., 2016), we use the naturalness of the
speech and the similarity of the transferred speech to target identity as subjective metrics. Figure 6
and Figure 7 shows the contents of the two human evaluation webpage layouts respectively.
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Figure 6: Human evaluation: similarity

Figure 7: Human evaluation: naturalness

D DATA PROCESSING INEQUALITY

Theorem D.1. If three variables x→ y → z follow a markov chain, then I(x;y) ≥ I(x; z).
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