
Under review as a conference paper at ICLR 2024

A DISCUSSION ON THE DEFINITION OF (CAUSAL) FOUNDATION MODELS

In this paper, we focus on treatment effect estimation tasks (defined in Section 3.1). Our model is
then tailored for generalizable zero-shot estimating average treatment effects. That is, given unseen
datasets/contexts that contains observational records of covariates, treatments, and effects, we aim
to estimate the underlying treatment effects using a forward pass of the underlying model.

This approach is inline with the definition of foundation models discussed in Bommasani et al.
(2021): “any model that is trained on broad data (generally using self-supervision at scale) that can
be adapted (e.g., fine-tuned) to a wide range of downstream tasks”. Note that such task-universality
of foundation models does not necessarily imply adaptability across different machine learning
formulations (e.g., prediction, imputation, ATE, CATE, counterfactuals); instead, it can refer to
adaptability across different contexts for a given task. This perspective is widely embraced by recent
studies, such as those focusing on foundation models for tabular datasets (Zhang et al., 2023b),
time series (Garza & Mergenthaler-Canseco, 2023; Das et al., 2023), and knowledge graphs (Galkin
et al., 2023). These studies concentrate exclusively on a single type of task, but assess in-context
generalization across datasets.

B EXTENDED RELATED WORKS

As our work also intersects with the literature on neural causal estimation methods, we provide a
discussion in this section.

Neural Estimation Methods for Treatment Effects. Research in this direction employs deep learn-
ing methods to estimate treatment effects, typically relying on standard assumptions that ensure
identifiability, similar to our setting. A prominent approach focuses on learning a representation of
the covariates that is predictive of the outcome (Johansson et al., 2016; Shalit et al., 2017; Yao et al.,
2018). Following this, several methods have been proposed to combine outcome models learned
through neural networks with balanced propensity weights (Alaa et al., 2017; Schwab et al., 2018;
Du et al., 2021). Semi-parameteric estimation theory and doubly robust estimators have also been
applied in neural estimation methods, e.g., using regularization (Shi et al., 2019) or shared repre-
sentations (Chernozhukov et al., 2018). Another perspective of using neural network is to control
for complex relationships and covariates. Kallus (2020a) extends adversarial covariate balancing
(Kallus, 2020b) using flexible modeling with neural networks. Generative causal models have also
been proposed to leverage the expressivity of neural networks to approximate structural causal mod-
els (Louizos et al., 2017; Kocaoglu et al., 2017; Alaa & Van Der Schaar, 2017; Yoon et al., 2018;
Pawlowski et al., 2020; Xia et al., 2021; 2022), which then allows for the estimation of treatment
effects. In addition, Xia et al. (2021) also proved that their proposed method can be used to test
the identifiability of causal effect in terms of do-interventions (Pearl, 2009) in the general setting.
Xia et al. (2022) extended such testing for counterfactual outcomes (Bareinboim et al., 2022). In
(Melnychuk et al., 2022), the attention mechanism was employed to estimate treatment effect over
time for a given unit. Concurrent to our work, Nilforoshan et al. (2023) proposed a meta-learning
framework to learn causal effects of various structured treatments on the same population. Their
method leverages information across different treatments, which allows for zero-shot learning on an
unseen treatment. Our work can be viewed as orthogonal, as we focus on learning the causal effects
of the same treatment across different populations.

C OMITTED PROOFS

C.1 DERIVATIONS OF EQ. (1) AND EQ. (2)

We first establish the conditional bias decomposition:

E
(
τ̂ − τSATE | {Xi, Ti}Ni=1

)
= E

(
N∑
i=1

αiWiYi −
N∑
i=1

1

N

(
Yi(1)− Yi(0)

)
| {Xi, Ti}Ni=1

)

15

Under review as a conference paper at ICLR 2024

=

N∑
i=1

αiWiE (Yi(Ti) |Xi, Ti) +

N∑
i=1

1

N
E (Yi(1)− Yi(0) |Xi, Ti)

=

N∑
i=1

(αiWiE (Yi(0) |Xi) + αiTiE (Yi(1)− Yi(0) |Xi)) +

N∑
i=1

1

N
E (Yi(1)− Yi(0) |Xi)

=

N∑
i=1

(αiTi −
1

N
)E (Yi(1)− Yi(0) |Xi) +

N∑
i=1

αiWiE (Yi(0) |Xi) ,

where we use the assumption of consistency between observed and potential outcomes and non-
interference between unit (SUTVA, Rubin (1990)) in the second equation and unconfoundedness in
the third equation.

Formally, define a feature map ϕ : X → Hϕ, where X is the support of covariates and Hϕ is some
Hilbert space. The unit-ball RKHS is given by Fϕ = {f : X → R | ∃θ ∈ Hϕ, s.t. f(x) =
⟨θ, ϕ(x)⟩, ∀x ∈ X and ∥θ∥ ≤ 1}. Recall that ⟨·, ·⟩ denotes the inner product of Hilbert space Hϕ

and ∥ · ∥ denotes the associated norm. The adversarial upper bound of the square of the second term
in the conditional bias can be calculated via

sup
f∈Fϕ

(
N∑
i=1

αiWif(Xi)

)2

= sup
θ∈Hϕ,∥θ∥≤1

(
N∑
i=1

αiWi

〈
θ, ϕ(Xi)

〉)2

= sup
θ∈Hϕ,∥θ∥≤1

(〈
θ,

N∑
i=1

αiWiϕ(Xi)
〉)2

≤

∥∥∥∥∥
N∑
i=1

αiWiϕ(Xi)

∥∥∥∥∥
2

= α⊤Kϕα.

Recall that [Kϕ]ij = WiWj⟨ϕ(Xi), ϕ(Xj)⟩. Therefore minimizing this adversarial loss subject to
α ∈ A reduces to Eq. (1).

By evoking Theorem 1 in Tarr & Imai (2021), we have that Eq. (1) is equivalent to Eq. (2) for
some λ ≥ 0. However, the exact value of λ depends on Kϕ. For example, if Kϕ is such that the
minimum value of Eq. (1) is 0, then λ = 0. This is because the minimizer of Eq. (1) would also
be the minimizer under the unnormalized constraint (Eq. (2) with λ = 0), as α⊤Kϕα ≥ 0 for any
α ∈ RN .

Conversely, we can also show that λ > 0 if Kϕ is of full rank.

Lemma 1. If Kϕ if of full rank, then λ > 0.

Proof. From the proof of Theorem 1 in Tarr & Imai (2021), we know that λ = 0 only if q∗ =

minW⊤α=0,0⪯α⪯1,α ̸=0

√
α⊤Kϕα

1⊤α/2
is zero. However, since Kϕ is of full rank, it is positive definite.

Thus for any α ̸= 0, there is α⊤Kϕα > 0. Therefore q∗ > 0. Consequently, λ > 0.

C.2 DERIVATIONS OF EQ. (3) AND EQ. (4)

The dual form of Eq. (3) can be derived using its Lagrangian

L(β, β0, ξ,α, ᾱ) =
λ

2
∥β∥2 +

N∑
i=1

ξi +

N∑
i=1

αi

(
1− ξi −Wi

(〈
β, ϕ(Xi)

〉
+ β0

))
−

N∑
i=1

ᾱiξi,

where α ⪰ 0 and ᾱ ⪰ 0. The primal form in Eq. (3) can be obtained by
minβ,β0,ξi maxα⪰0,ᾱ⪰0 L(β, β0, ξ,α, ᾱ). If we exchange minmax with maxmin, solving

16

Under review as a conference paper at ICLR 2024

minβ,β0,ξi by setting the derivatives to zero leads to

∇βL(β, β0, ξ,α, ᾱ) = λβ −
N∑
i=1

αiWiϕ(Xi) = 0,

∇β0
L(β, β0, ξ,α, ᾱ) = −

N∑
i=1

αiWi = 0,

∇ξiL(β, β0, ξ,α, ᾱ) = 1− αi − ᾱi = 0, ∀ i ∈ [N].

Plugging these in L(β, β0, ξ,α, ᾱ), we can reduce maxα⪰0,ᾱ⪰0 minβ,β0,ξi L(β, β0, ξ,α, ᾱ) to
Eq. (2). Thus it is the dual form of Eq. (3).

In addition, we can also derive Eq. (4). It is easy to check that Slater’s condition holds for the primal
SVM problem in Eq. (3). Thus it satisfies strong duality. Therefore any optimal solutions to the
primal-dual problems must satisfy the KKT condition λβ∗ =

∑N
j=1 α

∗
jWjϕ(Xj).

C.3 DERIVATIONS OF EQ. (6)

From the Taylor expansion

exp(k⊤
i kj/

√
D) =

+∞∑
l=0

1

l!
(k⊤

i kj/
√
D)l

=

+∞∑
l=0

∑
N1+...+ND=l

(
[ki]

N1
1 ...[ki]

ND

D

)(
[kj]

N1
1 ...[kj]

ND

D

)
Dl/2N1!...ND!

,

we have that exp(k⊤
i kj/

√
D) = ⟨ϕ(Xi), ϕ(Xj)⟩ if

ϕ(x) =

(
[k]N1

1 ...[k]ND

D

Dl/2(N1!...ND!)1/2

)
N1+...+ND=l, l∈N

. (9)

Here k denotes the key embedding of x following the same transformation that ki is obtained from
Xi. Note that we allow the transformation to depend on X , which corresponds to a data-dependent
kernel.

Using this expression, the i-th output of the self-attention layer when Q = K can be equivalently
written as

N∑
j=1

exp
(
k⊤
i kj/

√
D
)∑N

j′=1 exp
(
k⊤
i kj′/

√
D
)vj = N∑

j=1

⟨ϕ(Xi), ϕ(Xj)⟩
h(Xi)

vi =

N∑
j=1

vj
h(Xj)

⟨ϕ(Xj), ϕ(Xi)⟩.

C.4 PROOF OF THEOREM 1

We first state its formal version:

Theorem 1. If the covariates X satisfy that ϕ(X1), ..., ϕ(XN) are linearly independent, then Al-
gorithm 1 recovers the optimal balancing weight at the global minimum of the penalized hinge loss
in Eq. (7).

In particular, the optimal solution α∗ to Eq. (1), in which the feature function ϕ is defined using the
optimal neural network parameters via Eq. (9), can be obtained using the optimal neural network
parameters that minimize Eq. (7) via α∗

j = λvj/h(Xj)Wj .

Proof. Denote β =
∑N

j=1
vj

h(Xj)
ϕ(Xj), then using Eq. (6), we can rewrite the loss function in

Eq. (7) as

Lθ(D) =
λ

2
∥β∥2 +

N∑
i=1

[
1−Wi

(
⟨β, ϕ(Xi)⟩+ β0

)]
+
.

17

Under review as a conference paper at ICLR 2024

Denote ξi =
[
1−Wi

(
⟨β, ϕ(Xi)⟩+ β0

)]
+

, then minimizing Lθ(D) can be equivalently written as

min
θ

λ

2
∥β∥2 +

N∑
i=1

ξi,

s.t. Wi

(〈
β, ϕ(Xi)

〉
+ β0

)
≥ 1− ξi, ξi ≥ 0, ∀i ∈ [N].

Thus at the optimal θ, the corresponding β is also the optimal solution to

min
β,β0,ξ

λ

2
∥β∥2 +

N∑
i=1

ξi,

s.t. Wi

(〈
β, ϕ(Xi)

〉
+ β0

)
≥ 1− ξi, ξi ≥ 0, ∀i ∈ [N],

where ϕ is defined using the optimal θ. This recovers the primal SVM problem. By the primal-dual
connection proven in Appendix C.2, if we denote the optimal solution to the dual problem (which is
Eq. (2)) as α∗, we have

λβ =

N∑
j=1

α∗
jWjϕ(Xj).

Consequently, by the definition of β, we have

N∑
j=1

λvj
h(Xj)

ϕ(Xj) =

N∑
j=1

α∗
jWjϕ(Xj).

By the assumption that ϕ(X1), ..., ϕ(XN) are linearly independent, we must have λvj

h(Xj)
= α∗

jWj

for all j ∈ [N]. Therefore α∗
j = λvj/h(Xj)Wj .

Remark 1. Note that when ϕ(X1), ..., ϕ(XN) are linearly independent, the matrix Kϕ =
[W1ϕ(X1), ...,WNϕ(XN)]⊤[W1ϕ(X1), ...,WNϕ(XN)] is of full rank. Thus by Lemma 1,
there is λ > 0. Conversely, using a similar decomposition, we know that if K̂ϕ =
[ϕ(X1), ..., ϕ(XN)]⊤[ϕ(X1), ..., ϕ(XN)] is of full rank, then ϕ(X1), ..., ϕ(XN) are linearly in-
dependent. Since K̂ϕ = exp(KK⊤/

√
D), we have ϕ(X1), ..., ϕ(XN) linearly independent if K

is of row rank N . Thus the assumption on X in Theorem 1 is satisfied when K is of row rank N .

D ALTERNATIVE OBJECTIVES

Consider minimizing the square of both terms in the conditional bias, which we decompose into the
following form

(
E
(
τ̂ − τSATE | {Xi, Ti}Ni=1

))2
=

(
N∑
i=1

αiWiE
(
Yi(Ti)|Xi, Ti

)
− 1

N

N∑
i=1

(
E
(
Yi(1)|Xi

)
− E

(
Yi(0)|Xi

)))2

.
(10)

Denote the outcome models E(Yi(1)|Xi) = f1(Xi) and E(Yi(0)|Xi) = f0(Xi). We choose to
minimize the above term in worst case over all possible potential outcome models (f0, f1) ∈ F2

ϕ.
Here the space F2

ϕ is defined as F2
ϕ = {(f0, f1) | f0 ∈ Fϕ, f1 ∈ Fϕ}.

18

Under review as a conference paper at ICLR 2024

Suppose f0(x) = ⟨ϕ(x), θ0⟩ and f1(x) = ⟨ϕ(x), θ1⟩ for θ0, θ1 ∈ Hϕ, ∥θ0∥ ≤ 1, ∥θ1∥ ≤ 1. We can
bound Eq. (10) with respect to all outcome models in F2

ϕ as(
N∑
i=1

αiWifTi
(Xi)−

1

N

N∑
i=1

(
f1(Xi)− f0(Xi)

))2

=

〈∑
i∈T

αiWiϕ(Xi)−
1

N

∑
i∈[N]

ϕ(Xi), θ1

〉
+

〈∑
i∈C

αiWiϕ(Xi) +
1

N

∑
i∈[N]

ϕ(Xi), θ0

〉2

≤ 2

∑
i∈T

αiWiϕ(Xi)−
1

N

∑
i∈[N]

ϕ(Xi)

2

+ 2

∑
i∈C

αiWiϕ(Xi) +
1

N

∑
i∈[N]

ϕ(Xi)

2

where the inequality uses Cauchy-Schwartz inequality. Minimizing this upper bound subject to
α ∈ A is equivalent to solving

min
α

α⊤Gϕα+α⊤gϕ,

s.t.
∑
i∈T

αi =
∑
i∈C

αi = 1, 0 ⪯ α ⪯ 1.
(11)

Here

[Gϕ]i,j = δWi=Wj ⟨ϕ(Xi), ϕ(Xj)⟩,

[gϕ]i = −
2

N

N∑
j=1

⟨ϕ(Xi), ϕ(Xi)⟩.

It is easy to show that Gϕ ⪰ 0 as it can be decomposed into two submatrixes which are positive
semi-definite. In addition, as ⟨ϕ(Xi), ϕ(Xj)⟩ = exp(k⊤

i kj/
√
D) > 0, we know that gϕ ≺ 0.

To come up with a consistent gradient-based solver, notice first that Eq. (11) is equivalent to the
following unnormalized problem for some λ, µ ≥ 0

min
α

α⊤Gϕα+ 2µ · g⊤
ϕ α− 2λ · 1⊤α,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1.
(12)

This can be shown similarly to the proof of Theorem 1 in Tarr & Imai (2021). We escape the details
but provide the following main steps:

1. We first show that for some ϵλ, ϵµ ≥ 0, Eq. (12) is equivalent to

min
α

α⊤Gϕα,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1, −g⊤
ϕ α ≥ ϵµ, 1⊤α ≥ ϵλ.

2. Next, we show that the above problem is equivalent to

min
α

√
α⊤Gϕα,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1, −g⊤
ϕ α ≥ ϵµ, 1⊤α ≥ ϵλ,

which is equivalent to

min
α

√
α⊤Gϕα+ νµ · g⊤

ϕ α− νλ1
⊤α,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1.

for some νλ, νµ ≥ 0.

19

Under review as a conference paper at ICLR 2024

3. For some λ ≥ 0, the above problem is equivalent to

min
α

√
α⊤Gϕα+ νµ · g⊤

ϕ α

1⊤α
,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1.

Since this problem is scale-free, it is equivalent to

min
α

√
α⊤Gϕα+ νµ · g⊤

ϕ α

1⊤α
,

s.t.
∑
i∈T

αi =
∑
i∈C

αi = 1, 0 ⪯ α ⪯ 1,

i.e.,

min
α

√
α⊤Gϕα+ νµ · g⊤

ϕ α,

s.t.
∑
i∈T

αi =
∑
i∈C

αi = 1, 0 ⪯ α ⪯ 1,

4. Using similar arguments as above, one can show the above problem is equivalent to

min
α

α⊤Gϕα+ g⊤
ϕ α,

s.t.
∑
i∈T

αi =
∑
i∈C

αi = 1, 0 ⪯ α ⪯ 1,

for some µ ≥ 0.

The primal form of Eq. (12) can be written as

min
β1,β2,β0,ξ

1

2
∥β1∥2 +

1

2
∥β2∥2 +

N∑
i=1

ξi,

s.t.
(〈
β1, ϕ(Xi)

〉
+ β0

)
≥ λ− µ[gϕ]i − ξi, ∀i ∈ T(〈

β2, ϕ(Xi)
〉
− β0

)
≥ λ− µ[gϕ]i − ξi, ∀i ∈ C

ξi ≥ 0, ∀i ∈ [N].

Following similar derivations in Appendix C, we can write out an unconstrained loss function

Lθ(D) =
1

2

∥∥∥∥∥∥
∑
j∈T

vj
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

+
1

2

∥∥∥∥∥∥
∑
j∈C

vj
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

+
[
λ− µ[gϕ]T −

(
softmax(KTK

⊤
T /
√
D)VT + β0

)]
+

+
[
λ− µ[gϕ]C −

(
softmax(KCK

⊤
C /
√
D)VC − β0

)]
+
,

where the optimal α∗ solving Eq. (11) can be read off as αi =
vi

h(Xi)
.

For the conditional mean square error, under regularity constraints in Bennett & Kallus (2019), we
can also use the same upper bound as above (up to an additive O(1/N) gap). Therefore the same
derivation holds. However, as this loss function separates the treated group from the control group
aside from sharing the constant intercept β0, it might not be preferable than the objective proposed
in the main text.

E NON-BINARY TREATMENTS

Consider a generalization to the setting in Section 3.1, where the dataset D = {(Xi,Ti, Yi)}i∈[N]

in which Ti is a S-dimensional vector of multiple binary treatments. Let Y s
i (t) be the potential

outcome of assigning treatment [Ti]s = t.

20

Under review as a conference paper at ICLR 2024

Assuming SUTVA (Yi = Y s
i ([Ti]s)) and unconfoundedness. Denote Ts = {i ∈ [N] : [Ti]s = 1}

and Cs = {i ∈ [N] : [Ti]s = 0}. We consider weighted estimators in the form of

τ̂s =
∑
i∈Ts

αiY
s
i (1)−

∑
i∈Cs

αiY
s
i (0)

for the sample average treatment of the s-th treatment

τsSATE =
1

N

N∑
i=1

(
Y s
i (1)− Y s

i (0)
)
.

Following the same derivations in Section 3 and Appendix C, we can obtain a dual-SVM formulation
to optimize α in the adversarial case. This dual-SVM formulation can then be transformed into its
primal problem. As self-attention is implicitly implementing the predictor in the primal problem, we
can then read off the optimal α∗ by training this self-attention-based neural network with a penalized
hinge loss.

However, as we would like to evaluate the sample average treatment for multiple treatments, we can
actually aggregate S SVM problems together using the flexibility of self-attention layers. Namely,
instead of consider a one-dimensional value vector V in Section 3.2, we use V ∈ RN×S , where the
s-th dimension corresponds to the s-th treatment. By minimizing the following loss function

Lθ(D) =
λ

2

S∑
s=1

∥∥∥∥∥∥
N∑
j=1

[V]js
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

+

S∑
s=1

[
1−W:,s

(
softmax(KK⊤/

√
D)V:,s + β0

)]
+
,

we can read off the optimal balancing weight α for the s-th treatment via λ · V:,s/h(X)W:,s

F INDIVIDUAL TREATMENT EFFECT ESTIMATION

In this section, we further consider the problem of estimating individual treatment effect (ITE) in
the binary treatment setup of Section 3. Here we present one possible algorithmic approach to
approximate ITEs with CInA. Without loss of generality, suppose T1 = 1 and we would like to
estimate ITE on the first unit E(Y1(1)− Y1(0) |X1).

Denote the “counterfactual dataset” by replacing the first sample with (X1, 0, Ŷ1(0)) as D̂, where
Ŷ1(0) is a realization of Y1(0). Note that we do not have access to the value of Ŷ1(0). However,
we do have access to the covariates and treatments of D̂. As these are all the required inputs to
Algorithm 1, we can compute the optimal balancing weight for this counterfactual dataset D, which
we denote as α̂.

Notice that the sample average treatments of D are D̂ should be the same, as they are defined for
the same set of units. Therefore the two weighted estimators are approximating the same τSATE (or
ATE when N increases) and thus∑

i∈T
αiE(Yi(1) |Xi)−

∑
i∈C

αiE(Yi(0) |Xi)

≈
∑

i∈T\{1}

α̂iE(Yi(1) |Xi)−
∑
i∈C

α̂iE(Yi(0) |Xi)− α̂0E(Ŷ1(0) |X1).

Therefore we have the following approximation

α̂1E(Ŷ1(0) |X1) ≈ −α1Y1(1) +
∑

i∈T\{1}

(α̂i − αi)Yi(1)−
∑
i∈C

(α̂i − αi)Yi(0).

As we have access to all individual terms on the right, we can compute an approximation of
E(Y1(0) |X1), using this formula as long as α̂0 ̸= 0.2

2Once we have these estimands, policy evaluation can done via plug-in estimations.

21

Under review as a conference paper at ICLR 2024

To enhance the robustness of this estimation, we can also compute this for units with covariates
closed to X1, e.g., using KNNs (Devroye et al., 1994; Li & Tran, 2009), which would give con-
sistent estimations for conditional expectations. Algorithm 4 summarizes this procedure, where
Algorithm 3 can be used instead of Algoritm 1 to estimate ITE in a zero-shot fashion.

Algorithm 4 CInA for ITE.

1: Input: Covariates X and treatments W .
2: Output: Estimation of E(Y1(1)− Y1(0) |X1).
3: Hyper-parameter: penalty weight λ > 0.
4: Initialize τ = ∅.
5: for unit i with Xi ≈X1 do
6: Run Algorithm 1 on X,W to obtain α.
7: Set Ŵ to be W except Ŵi = −Wi.
8: Run Algorithm 1 on X, Ŵ to obtain α̂.
9: Let α̂iE(Ŷi(1 − Ti) | Xi) = −αiYi(Ti) +

∑
j ̸=i,Tj=Ti

(α̂j − αj)Yj(Tj) −
∑

Tj ̸=Ti
(α̂j −

αj)Yj(Tj).
10: Append Wi · (E(Ŷi(1− Ti) |Xi)− Yi(Ti)) to τ if α̂i ̸= 0.
11: return Average of τ .

G DATASET DETAILS

The details of the datasets for simulation A are provided in Section 5.1. We now provide the details
of ER-5000 and the real-world datasets. Code for downloading and pre-processing these datasets
will be provided upon publication.

ER-5000. Each of the ER-5000 datasets is generated following the structural causal model (SCM)
framework. The detailed procedure is as follows. First, we sample a random directed acyclic graph
(DAG) from the Erdős-Rényi random graph model (Erdős & Rényi, 1960) with edge probability
sampled from 0.25 to 0.5. Then, Based on the sampled DAG, we sample the corresponding func-
tional relationships using a linear weight sampler, with random weights sampled from a uniform
distribution between 0 and 3. Next, a treatment node and effect node is randomly chosen. For each
non-treatment node, we use additive gaussian random noise with standard deviation randomly sam-
pled uniformly between 0.2 and 2. For treatment node, we specify a Bernoulli distribution with logit
equal to the functional output of the corresponding node. Finally, we simulate each variable (in X ,
T and Y) using the sampled DAG, functional relationships, and noises.

IHDP and IHDP-resampled. The Infant Health and Development Program (IHDP) dataset is a
semi-dataset complied by Hill (2011). We use the existing versions from Chernozhukov et al. (2022),
which are sampled using the outcome model implemented as setting A in (Dorie, 2016). Each dataset
comprises of 747 units and 25 covaraites measuring the aspects of children and their mothers. For
IHDP, the treatment group (139 out of 747 units) has been made imbalanced by removing a biased
subset of the treated population. A total of 1000 datasets are used (following Shi et al. (2019)),
where different datasets only differ in terms of outcome values. For IHDP-resampled, 100 datasets
are used where the treatments are resampled by setting the propensity score to “True” in the (Dorie,
2016).

Twins. Introduced by Louizos et al. (2017), this is a semi-synthetic dataset based on the real data
on twin births and twin mortality rates in the US from 1989 to 1991 (Almond et al., 2005). The
treatment is “born the heavier twin”, which is simulated as a function of the GESTAT10 covariates.
Therefore this dataset is confounded. After assigning the treatment for each pair of twins, the dataset
is constructed by hiding the other twin. We downloaded the dataset and processed it following Neal
et al. (2020).

LaLonde CPS and PSID. We also use the datasets from LaLonde (1986), in which the treatment
is job training and the outcomes are income and employment status after training. The ground-truth
average treatment effect is computed using a randomized study, where we use the observational data
to estimate it. The observational data has multiple versions. We use both the PSID-1 and CPS-1
versions for our experiments (Dehejia & Wahba, 1999).

22

Under review as a conference paper at ICLR 2024

ACIC. The data for the 2018 Atlantic Causal Inference Conference competition (ACIC) (Shimoni
et al., 2018) comprises of serveral semi-synthetic datasets derived from the linked birth and infant
death (LBIDD) data (MacDorman & Atkinson, 1998). The data-generating process is described in
(Shimoni et al., 2018). In our experiment, we use datasets containing 1k or 10k samples.3 In the
experiments in Section 5, a total of 293 datasets (each of size 1k) were used, where 93 were left out
for testing. In Appendix I, we extend this to datasets of size 10k, where a total of 288 datasets were
used and 88 among these were left out for testing. We use datasets with polynomial link function for
training and validation. For testing, we use datasets with exponential link functions thus creating a
harder task for evaluating our methods.

H IMPLEMENTATION DETAILS

Code for our method will be released on GitHub upon publication. Below we describe the archi-
tecture, hyper-parameters, training procedures and other details of our method. We also provide the
implementation details of the baselines. Finally, we discuss a new data augmentation technique that
we observe to be helpful on certain datasets.

H.1 CINA

Pre-processing and Padding. For Algorithm 2, we might encounter multiple datasets with different
number of samples. We wish them to share the same transformation from W ,K to V ∈ RN×1,
where N is the number of units in the corresponding dataset. For this, we adopt similar pre-
processing steps as in natural language. We pad all datasets to the same size (i.e., adding dumy
units to smaller datasets) and save the masks that indicate these paddings. During back-propagation,
we use this mask to make sure that the loss function is only computed using actual units.

Model Configurations. We describe the architecture used in Algorithm 2, as the single-dataset
version uses the same components aside from parametrizing the values V directly as learnable
parameters. An illustration of the forward pass is provided in Figure 2.

For the transformation from covariates X to keys K, we implemented two versions: (1) an identical
mapping followed by a batch-norm layer K = bn(X), (2) a projected mapping followed by a batch-
norm layer ki = bn ◦ relu ◦ linear(Xi). In our first simulation study in Section 5.1, we observe that
the projection to be marginally helpful and thus report all the results based on the identical mapping.

For the transformation from W ,K to V , we first embed Wi,ki into a 32-dimensional space using
one layer of relu ◦ linear(·). These two 32-dimensional vectors are then concatenated into a 64-
dimensional vector following by a batch-norm layer. Denote these 64-dimensional embedding for
each unit as E = [e1, ..., eN]⊤. We encode them into N × 1-dimensional outputs O using a scaled
product attention with value, key, query being linear transformations of E. Notice that we read
off the balancing weights via V /h(X)W and h(X) ≻ 0. As the optimal weights α∗ ⪰ 0, the
values V should have the same sign as W in an element-wise fashion. Therefore to enforce this,
we include another multiplier layer to obtain V from the outputs O, namely, V = relu(OW).

Normalization. As the optimal balancing weights is in A = {0 ⪯ α ⪯ 1,
∑

i∈T αi =
∑

i∈C αi =
1}, we normalize the read-off balancing weights during inference. In particular, in Algorithm 1 and
Algorithm 3, after setting α∗ = λ · V /h(X)W , we project it into A by taking max(α∗,0) and
normalizing the treated and control group to sum up to 1.

Hyper-parameters. For both Algorithm 1 and Algorithm 2, we search for the optimal penalty λ > 0
from range [λmin, λmax] by exponentially increasing it from λmin to λmax. On the same dataset, this
range remains the same for both algorithms (and all variations, if applicable). The following table
summarizes the values of λmin to λmax for different datasets.

Training and Evaluations. For all the experiments, we use a cosine annealing schedule for the
learning rate from lmax to lmin during the first half of the training epochs. Then the learning rate
is fixed to lmin for the second half of the training epochs. The exact values of lmax and lmin for

3In datasets with large sample sizes, techniques for efficient transformers (Child et al., 2019; Kitaev et al.,
2020; Katharopoulos et al., 2020; Sun et al., 2023) can be applied to accelerate our method.

23

Under review as a conference paper at ICLR 2024

Dataset λmin λmax

Simulation A 1e-6 1e-2
Simulation B 1e-6 1e-2

IHDP 1 1000
IHDP-resmapled 1e-5 1000

Twins 1e-8 1e-2
LaLonde CPS 1e-10 5e-6

LaLonde PSID 1e-10 5e-6
ACIC 1e-6 100

Table 1: Search range for λ in different datasets.

different datasets can be found in the codebase. For Algorithm 1, we train for 20, 000 epochs on all
datasets. For Algorithm 2, we train for 4, 000 epochs on all datasets.

For evaluating the results of Algorithm 2, we choose the best hyper-parameters based on the mean
absolute error on the validation sets of datasets and report the results on the testing sets of datasets.
For evaluating the results of Algorithm 1, if the setting contains multiple datasets (Simulation A,
Simulation B, IHDP-resampled, ACIC), we choose the best hyper-parameters based on the mean
absolute error on the validation sets of datasets and report the results on the testing sets of datasets.
Note that even though IHDP contains multiple datasets, they all share the same sets of covariates
and treatments. Therefore we treat it the same as settings with one dataset for Algorithm 1. On these
datasets (IHDP, Twins, LaLonde CPS, LaLonde PSID), we choose the best hyper-parameters based
on the reported results.

H.2 BASELINES

IPW and Self-Normalized IPW. For both IPW and self-normalized IPW, we first standardized the
covariates X . Then we fit a random forest classifier on the data to predict propensity scores. The
depth of the random forest classifier is chosen in the same way as the hyper-parameter λ is chosen
in CInA, which we described above.

DML. For DML, we use the implementation of Battocchi et al. (2019). In particular, we consider
three models: LinearDML, CausalForestDML, KernelDML. Similar as above, when a valida-
tion set of datasets is present, we report the results based on the best of these three models in terms
of validation MAE. Otherwise we report based on the best performance on the reported dataset.
However, in simulation A, we only use LinearDML as the outcome model is linear.

SVM. For this baseline, we first standardized the covariates X . Then we solve the dual SVM
problem in Eq. (2), where the kernel is defined using ϕ given in Eq. (9) on the standardized data. We
use the support vector classifier (Pedregosa et al., 2011) with a precomputed kernel. The maximum
number of iterations is capped with a hard limit of 50, 000. The reported results are based on λ
choosen in the same way as CInA described above.

H.3 DATASET AUGMENTATION

In our experiments in Section 5.1 and certain datasets in Section 5.3 using the multi-dataset ver-
sion of CInA, we implemented a new type of data augmentation. As we observe that the network
can learn how to balance on a set of datasets using very few training steps, we propose to reshuffle
amongst different datasets in every epoch. This essentially creates a “new” set of datasets by com-
bining units from different datasets. Intuitively, this augments the number of covariate balancing
problems that the model has to learn to solve without actually needing to acquire more data. How-
ever, we note that this technique is only applied if different datasets from the same experiment share
the same causal graph. If different datasets contain very different causal structures such as ER-5000
in Section 5.2 and ACIC in Section 5.3, this shuffling is not used as it would create covariate bal-
ancing problem that does not aid learning. The main intuition is that if we reshuffle units among
these datasets, units in a reshuffled dataset could follow different causal graphs, which means there
is potentially no underlying causal structure that can explain the data.

24

Under review as a conference paper at ICLR 2024

I ADDITIONAL EMPIRICAL RESULTS

I.1 COMPARISON TO DRAGONNET AND RIESZNET

Method Simulation-A ER-5000 IHDP
Naive 0.172 ± 0.03 50.27 ± 5.97 0.259 ± 0.01
IPW 0.304 ± 0.03 27.42 ± 3.19 0.766 ± 0.02
Self-normalized IPW 0.158 ± 0.03 49.99 ± 5.88 0.141 ± 0.00
DML 0.094 ± 0.01 11.13 ± 3.17 0.585 ± 0.03
DragonNet 0.386 ± 0.01 11.21 ± 3.17 0.146 ± 0.01
RieszNet 0.045 ± 0.01 12.90 ± 4.54 0.110 ± 0.01
SVM 0.015 ± 0.00 11.09 ± 3.13 1.202 ± 0.05
Ours 0.126 ± 0.02 N/A 0.114 ± 0.01
Ours (ZS) 0.147 ± 0.01 11.50 ± 1.85 N/A
Ours (ZS-S) N/A 2.66 ± 0.33 N/A
Mean N/A 17.88 ± 1.83 N/A

Table 2: ATE MAE comparison of different methods on the ”Simulation-A”, ”ER-5000”, and
”IHDP” datasets.

In this section, we further compare two additional baselines, DragonNet (Shi et al., 2019) and
RieszNet (Chernozhukov et al., 2022), both of which were considered strong neural estimation
methods for per-dataset causal inference. Results for IHDP dataset were directly cited from (Shi
et al., 2019; Chernozhukov et al., 2022), following their best performing models. Furthermore, we
also compare to Simulation-A-Multi+OOD+diff size, and ER-5000, both are the most general
synthetic settings in Section 5. On Simulation-A-Multi+OOD+diff size, CINA (ZS) outperforms
DragonNet, while RieszNet outperforms both DragonNet and CINA (ZS) method. On both ER-5000
and IHDP, CINA (ZS) is on par with or outperforms DragonNet and RieszNet, while CINA (ZS-S)
massively outperforms the other methods on ER-5000.

I.2 LARGER SCALE EXPERIMENTS ON 10K ACIC 2018, WITH CROSS-DATASET
GENERALIZATION

Method ATE MAE Inference time on new data (s) Pretraining time (s)
Naive 13.07 ± 8.25 0.005 N/A
IPW 10.29 ± 5.94 48.927 N/A
Self-normalized IPW 10.30 ± 5.90 49.322 N/A
DML 8.572 ± 8.96 7391.743 N/A
RieszNet 69.39 ± 31.9 8157.498 N/A
Ours (ZS) 1.460 ± 0.48 78.503 1800
Ours (ZS-S) 1.361 ± 0.42 77.546 1800
Ours (ZS-ER) 1.718 ± 0.74 78.085 1800
Ours (ZS-S-ER) 1.702 ± 0.74 77.947 1800

Table 3: Comparison of different methods on the 10k ACIC 2018 dataset.

To demonstrate the performance of our method on larger version of ACIC 2018, we produce addi-
tional experiment using the 10k-size datasets of ACIC (Shimoni et al., 2018), which is a commonly
used scale considered in the literature (Shi et al., 2019; Mahajan et al., 2022). Note that instead of
only selecting a subset of datasets in ACIC 2018 as in (Shi et al., 2019; Mahajan et al., 2022), we
make use of all datasets of size 10k generated by (Shimoni et al., 2018) that has polynomial link
functions as training datasets, and all datasets of size 10k with exponential link functions as test
datasets.

In this setting, we also compare two new variants of our method, CINA (ZS-ER) and CINA (ZS-S-
ER), that are fully trained on a larger-scale, 200-dimensional ER-5000 dataset Section 5.2 under
both unsupervised and supervised settings, respectively. After pre-training, CINA (ZS-ER) and

25

Under review as a conference paper at ICLR 2024

CINA (ZS-S-ER) are applied directly to all ACIC 2018 test sets. This will help us to demonstrate
whether the model can show generalization ability across datasets. All CINA-related methods are
trained for a fixed time budget (1800 seconds), which is significantly shorter than the full training
time of DML and RieszNet. As shown in Table 2, both CINA (ZS) and CINA (ZS-S) significantly
outperforms all baselines. The CINA (ZS-ER) and CINA (ZS-S-ER) methods give marginally worse
performance than CINA (ZS) and CINA (ZS-S), but still out-performs the other baselines by a clear
margin.

26

