Under review as a conference paper at ICLR 2021

Algorithm 1 Meta-Learning in RKHS

Require: p(7): distribution over tasks, randomly initialized neural network parameters 6.
while not done do
Sample a batch of tasks {7, }2_, ~ p(T)
for all 7,, do
Sample a batch of data points D,,, or Sample two batches of data points Df”, Dicst,
end for
Evaluate the energy functional by equation with {D,, }2_, or Evaluate the energy functional
by equation [7|with {DI" Diest1B | Minimize the energy functional w.r.t 6.
end while

A ALGORITHMS

Our proposed algorithms for meta-learning in the RKHS are summarized in Algorithm|[T}

B PROOF OF THEOREMIII

Theorem |1 If fo is a neural network with parameter @ € RY and H is the Reproducing Kernel
Hilbert Space (RKHS) induced by ©, where © is the Neural Tangent Kernel (NTK) of fg, then
with initialization f° = fgo, the gradient flow of £(f!) coincides with the function evolution of fgt
induced by the gradient flow of E(6").

Proof Without loss of generality, we can rewrite £(f) = E7, {E(x,,.y,) [C(f(Xm),y)]} with
some function C (-, -).

For a neural network fg with parameter @ € R”, the gradient flow of F in R” is

det
= Vo E(0Y).
i Ve: E(0")

‘We have

WO e o F) O

det
=-Er, {E(xm,ym) [VB‘C(JCB‘ (Xm), Ym)]}

IC(fo(Xm)s Yom) Ofo(Xm
b [P 20|

We know that the dynamics of fg¢ is

N
dt ~ dt 06t

- _F E _80(.]09" (Xm)vym) afgt(Xm) afGtT
= T (Xm ¥ m) I Ofer (Xm) 00t 00t
_ —IE E _8C(f9t (XTYL)vyHL) 8f9t (X) 8f9t T

= T (Xm Y m) i O for (Xm) 90t 9ot

[OC(for (Xm), Yo
= —E'Tm {E(xm,ym) (gefg(t)(cxj,)y)G)t (Xm7):| }7

where ©' is the Neural Tangent Kernel of neural network fg: (Jacot et al., 2018).

If H? is the Reproducing Kernel Hilbert Space induced by a kernel ©f and Vi, : H — R is the
evaluation functional at x,,,, which is defined as

Vi, (f) = f(Xm)7

(®)

13

Under review as a conference paper at ICLR 2021

then for an arbitrary function g and a small perturbation €, we have

Ve (f +€9) = Vi, (f)

ViV, (f); g) = lim .
(V Vs, (f),9) = lim f(xm) + egfm) £ (Xm)
ViV, (f)s9) = 9(xm)
(ViVin(f):9) = <@t(xm’), 9)

ViV, (f) = ©"(xm,)

Vif(xm) = 0" (xm, ")

With an initial function 0 = fgo € H, the gradient flow of £ in H is

_— = = t t .
= Ve
We have
A Er. {E Vi C(f
ar - Tond (Xm>Ym) [7 O(f (Xm)vym):l}
OC(f*(%Xm), Y m) ,
= —E'Tm {]E(xm’ym) |:aft(x7n)vftff(xm)
IC(f (Xm)s ¥om
= —E'Tm{]E(xm’ym) |:(8f(t()(:.L))®t(Xm’):| } (9)
We can complete the proof by comparing equation [§| and equation [9] |

C PROOF OF THEOREM

Theorem 2| If fg is a neural network with parameter 0 and H is the Reproducing Kernel Hilbert
Space (RKHS) induced by ©, where © is the Neural Tangent Kernel (NTK) of fg, then

My = E(a, fo), and By = a||VeLu(fo)|> = ||V 1oL (fo)l3.

Proof Without loss of generality, we rewrite L,,,(fg) = Ex,, vy, [C(fo(Xm),¥.)]-

In regression task, we have

1 2
C(f@(xm>7ym) = iufe(xm) —Ym H
. In classification task, we have

C(fo(xm),¥m) = ¥m10g(fo(xm))T,
where log is element-wise logarithm operation.
VoL (fo)l*
=VeoLn(fo)VeLmn(fo)T
= vBExnuym, [C(fe (Xm)’ Y’rn)] vOEXnnym [C(fe (Xm)7 y7n)]T

. [3C(fe(xm)7ym) 3fe(Xm)] . [3fe(xm)T80(fe(Xm),ym)T}
T T XmsYm af@(xm) 80 XmHrYm 89 afg(Xm)
_ { , /{aafe(xm),ym)af9<xm>afe)(x;l)Taafe(x;n),y;n)T]}
T Y [T O fg (k) 00 08 9fo(x;,)
[OCUem) Y) g 8C(fe(X;1)7y;@)TH
XmsYm {Exm,ym |: afe (Xm) (9(ms m) af@ (le)

14

Under review as a conference paper at ICLR 2021

(o [00m | B [T a5 5000])
<

_ 0UoCn)) ¢] ., [0CUs() Yo

- Exm Ym |: 8f0(Xm) vfefe(m):| 7Exm,’ym, |: 8f6(m) vfsfe(m):| >H
:< f@ vfg 7rL(f9)>

= ||er m(fo)l3

where (-, -) is the inner product in Reproducing Kernel Hilbert Space (RKHS) H. In the above
equations, we use the definition of Neural Tangent Kernel (NTK), the property of inner product in
RKHS, the definition of evaluation functional and its gradient in RKHS.

Recall that _
E(a, fo) = 1, [Lu(fo) — all VoL fo)l3]

k—1
My, =Er, [ﬁm(fo) - Zﬁz] ;
i=0

where 3; = aVg, L (fo,)VoLm(fo)T and 8y = 0,0,.1 = 0; — aVg,L(fe,, DL"). The result is
straightforward now.

and

D PROOF OF THEOREM [3]

The proof techniques we use are similar to some previous works such as (Arora et al.,[2019;|Allen-Zhu
et al.| 2019). We summaries some of the differences. Different from previous works that typically
assume a neural network is Gaussian initialized, we do not have such an assumption as we are trying
to learn a good meta-initialization in the meta-learning setting. Previous works try to investigate the
behavior of models during training, while we focus on revealing the connection between different
meta-learning algorithms. Previous work focuses on single-task regression/classification problems,
while we focus on meta-learning problem.

Theorem[3] Let fg be a fully-connected neural network with L hidden layers and ReLU activation
function, s1, ..., Spy1 be the spectral norm of the weight matrices, s = maxy, sy, and « be the learning
rate of gradient descent. If a < O(qr) with ¢ = min(1/(Ls"™), L=+ and r = min(s L, s),
then the following holds

1 (ka, fo) — My| < o(%).

Proof We first prove the case of £ = 2, i.e. applying a two-step gradient descent adaptation in
MAML.

We need to prove the following theorem first.

Theorem 6 Let fg be a fully-connected neural network with L hidden layers, and x be a data
sample. Represent the neural network by fo(x) = o(o(...o(x W) . .WEHWEYWEHL where
W1, ..., WEt! denote the weight matrices, and o is the ReLU activation function. Let sy, ..., Sp 41
be the spectral norm of weight matrices, and s = maxy, sp. Let « be the learning rate of gradient
descent, and f 5(x) be the resulting value after one step of gradient descent, and || - || 7 be the
Frobenius norm.

Ifa < O(gs™L), where ¢ = min(l/(LsL) LY+ then

[- 2567 <
06

sL—i—)

Remark 1 Theorem|[@]states that for a neural network with L hidden layers, if the learning rate of
gradient descent is bounded, then the norm of derivative w.r.t all the parameters will not change

15

Under review as a conference paper at ICLR 2021

too much, although there are O(Lm?) parameters, where m denotes the maximum width of hidden
layers. We use row vector instead of column vector for consistency, while it does not affect our results.

For simplicity, we will write g” (x) as g". The bias terms in the neural network are introduced by
adding an additional coordinate thus omitted in Theorem[6} Without loss of generality, we can assume
||x || < 1, which can be done by data normalization in pre-processing.

Let g"(x) = o(o(..o(xW?")..W"=1)W") be the activation at h*" hidden layer and ¢°(x) =
1 = fo(x). Define diagonal matrices D", where Df;, ;) = 1{g"~'W" > 0} and

pr— Ta ifh=L+1
pht1 (Whth)TDh - otherwise

where 14, is a d, X d,, identity matrix. We first prove the following Lemma.

Lemma 7 Given a neural network as stated in Theorem|[6| let || - ||2 denote the spectral norm,

AWh = Wh — Wh denote some perturbation on weight matrices, §"(x) denote the resulting value
after perturbation, and A\g"(x) = §"(x) — ¢"(x). If s > 1 and || AW"||s < O(s=L /L) for all h,

then
1

Toiht)
If s < Land ||AW" |5 < O(q) for all h, where ¢ = min(1/(Ls"), L=/ +1) and r = max(q, s),
then

1

: L —1/(L+1
186 < 0(—tq) = § Olggrr) FY/(LaT) < LTWEH
O(L=ME+DY if1/(Ls™) > L=Y(E+1),

1ag™] < O(

Proof Proof of Lemmal7lis based on induction.

We first prove the case of s > 1. Note that ¢° = x, thus Ag® = 0 < O(always holds.

LSL—O—H)
For Ag!, we have
181 = oGV = o (e W)
< || xW! —xW!|, due to the property of ReLU activation
< x[lAW:
1
Lst)
Thus, the hypothesis holds for Ag*.

<O(+—+

Now, assume that the hypothesis holds for Ag", then we have
[AGMHY = ||lo(§"WhHY) — o (g" Wt
< ||g"Wht — ghW | due to the property of ReLU activation
< ||GWhH 4 gh AW — ghi |
< A IMW o + g AW,
< O()|Ag" | + 16" + Agh AW,
O Ag" | + O [AWz + | Ag" [AW

< O($)0(7py) + OO) + Oy 077
< O().

The last three inequalities come from the fact that g" = o(o(...o(x W)..WI=HIWh) < O(s")
and s > 1. Thus, we have proved the Lemma in the case s > 1.

Now, we prove the first part of the case of s < 1,i.e. || Ag"|| < O(r"~1q). Because Ag® = 0, thus
the hypothesis for Ag® always holds.

16

Under review as a conference paper at ICLR 2021

For Ag', we have
12gH] = llo(x W) —o(xWH)]|
< xWh—xW!
< Ix 1AW
< 0(q).
Thus, the hypothesis holds for Ag?.
Now, we assume that the hypothesis holds for Ag". Then, we have
1Ag"] = llo(@" W) —a(g" W]
< thwhﬂ — ghwhH|
< WL 1 gh AW+ _ ghyhrl
< [1Ag"[IIW" 1z + g 1AW+l
< OB)AG" |+ 1lg" + Ag™ AW 1|
< 0(5)0(r"1q) + O(s")q + qO(r"~'q)
< O(rq).
The last inequality comes from the fact that r = max(q, s) and s" < s < 1.
Next we consider the second part of the case of s < 1.
If1/(Ls™) < L=+ we know that ¢ = 1/(Ls") and
1/(Ls¥) < =1/ @+D
LY+ < pgl
LL/(L+1) < L
1 < gL+l
L1s7t < s,
which means ¢ < s, thus r = s. Then, we have

_ -~ I 1

[Ag"| = 0" 1q) = O(s"q) = O(s" ' L™ 1s™F) = O(m)

If 1/(Ls") > L=+ we know that ¢ = L~'/(5+1) and ¢ > s; then, r = ¢ and
IAg" = 0" 1q) = O(¢"'q) = O(¢") = O(L~ /D).

Thus, we can conclude that Lemma([7]also holds for the case of s < 1, which completes the proof. B

We now prove a similar Lemma for Ab".

Lemma 8 Given a neural network as stated in Theorem [] let || - ||2 denote the spectral norm,
AW = Wh — Wh denote some perturbation on weight matrices, b" denote the resulting value
after perturbation, and Ab" = b — b*.

Ifs > 1and |AW"||y < O(s~L /L) for all h, then
1
A h < .
) < O

If s < Land |AW" |y < O(q) for all h, where ¢ = min(1/(Ls™), L='/(Z4D), then

il < { O s, if1/(Lsk) < L1/ (4D
[| < O(L(h—L—l)/(L+1))’ ifl/(LSL) S [-1/(L+1)

17

Under review as a conference paper at ICLR 2021

Proof Recall that
bh:{ldy, ith=L+1
WAL W) TDR otherwise
where I, is a d, x d, identity matrix and D{, ,; = 1{g"7'"W" > 0}. It is easy to see that
|67 < O(s%~"*1), because || D"|| < 1 and |[W"||; < s.
We first prove the case of s > 1. We know that AbY*+! = 0 < O(s~ L1 /L) always holds.
For h < L, we can re-write b" as
b = Ly, (WE)TDE(WE)T DI (WhH)T Db,
Then, we have
P (g")T = L, (WEH)TDE(WE)TDEL L (WHH)T D (gh)T. (10)
Because of the fact that
fo=g"t =xW'D'W2D?> . D*WHTT = gt DL DR R
and g" = g"D", D" = (D")T. We can re-write equationas
b (g")T = f§.
Thus,
16" (3")T = 6" (g")TIl = 1 Fg — foll = g™ < 0(%)
by Lemmal(7] Consequently, we have
167 (3" = 0" (g")TI = 186" (g")T + AV Ag")T + B AT < O(%)
Since |g"|| < O(s"), we know that

IA6"] < O(IAb*] < O(s"~)

1
)
1

always hold. Since L > 1, s > 1, we simply have || Ab"|| < O(L -
S

).

Now, we prove the case of s < 1. Similarly, we have

6" (g")T = 6" (g")TI = I1f5 — foll = 129"+ < O(%)

Similarly, we must have
)
Lrh=1q”
where ¢ = min(1/(Ls™), L=/(“*+1Y) and 7 = max(q, s) by Lemma
If 1/(Ls") < L=+ then s“*+! > 1/L. We thus have
1 LgL—h+1 sL+1 1

m) = O<T) =O0(—~

A" < O(| Ab™| < O(

1
o)

o(

1
Hence, we get | Ab"|| < O(ﬁ)

If1/(Ls™) > L=+ then s“! < 1/L. We have
1

Oy

Thus, we get ||Ab"|| < O(Lth—L-D/(E+1), m

=o' - LMEA)) < O(L7 s = O(—

18

Under review as a conference paper at ICLR 2021

Lemma 9 Given a neural network as stated in Theorem [6] let || - ||z be the Frobenius norm,
W1, ..., WEHL be the weight matrices in the neural network, AW = W — W™ be the perturbation

on welght matrices, O" be the parameter vector containing all the elements in W", A@" = " — @"
be the perturbation on parameter vectors, and f 5(x) be the resulting value after perturbation.

If s > 1and |AW"||y < O(s~% /L) for all h, for any weight matrices the following holds

[2o - 20 <
00" oo

Ifs < 1land ||[AW"|s < O(q) for all h, where q = min(l/(LsL),Lfl/(LJrl)), Sfor any weight
matrices the following holds

o0 o0h llr = " sL”
Proof We first prove the case of d, = 1, i.e. the output of neural network is 1-dimensional.

In this case, we know that

0fg(x) Ofe(x)| _(10Fe(x) 9fe(x)) _ |l 9fe(x)
|2 - = |~ el = |

.

and the derivative to W is ()
6 Jo(X —
- (l h)Tgh 1

Then, we have

afe 7 ~h— L L —
|20 aryrgit - @yrg
= ETg -)T+ ()T A
< AV + (8 + AT A

Recall the fact that g < O(s") and b < O(sEt1-M),
When s > 1, from Lemma([7]and Lemma|[8] we know that

1
h h
A" < O(W)’ A" < 0(ﬁ)~
Then, we have
Jfe(x) h— 1 L+1—h 1 1 1
|2 = 06" 0GR + Ol 0) + Ol s Ot)

1

< —).

- O(SL)

When s < 1, from Lemma[7]and Lemma 8 we know that

1 : L —1/(L+1
agh < § Olggrmr) if1/(Ls) < LU
O(L=M A0y if 1/(Lst) > L=/ T+

and
O(L~ts™h) if 1/(Ls") < L=1/+D

)

h
A6 S{ O(Lt-L-D/(L4D) if1/(Lsb) > L-1/E+D),

If1/(Ls™) < L=+ we have

o2

1 1 1

) + O(L= h+1)O(LsL—h+2) + O(LSL_’H'Q)O(E).

1
’]—' <Ol)O(L h

19

Under review as a conference paper at ICLR 2021

Since 1/(Ls™) < L=+ implies L~! < s“*1 (from proof of Lemma, we have

1 < LD+l
Lsh —

Then we can conclude that

|2l < o6

If 1/(Ls*) > L=/ (41D we have
HA%@Z)H < O(sh—l)O(L(h,—L—l)/(L+1)) n O(SL+1—h)O(L—(h—1)/(L+1))
+ O(L~ =D/ LD ([(h=L=D/(L+1)),
Since 1/(Ls™) > L=YF+1 implies L~ > s+ (from proof of Lemma, we have

1
(h—L—1)/(L+1) L—h+1 h—1
L > s ' LD > s

Then we have

H p0fo(x) 1

1
J— < _ .
OWh H]: = (L) = O(SL)’ because s < 1

We have proved the Lemma for the case of d, = 1.

For the case of d,, > 1, we know that

OSSR & H ZHafggh - 25l <o

where fg ;(x) is the i*" dimension of fg(x). The last inequality directly comes from the 1-
dimensional case.
Since d,, is a constant, we ignore it. Then, we have

a0 o0h llFg— " “sL”’
which completes the proof. |

Now we can prove Theorem @ if W is obtained by one step gradient descent starting from ", 0 is
obtained by one step gradient descent starting from 6, and learning rate is . Then, for any weight
matrix we have
AW 2 = [|aVwnL(6)]|2
< aVwnL£(8)] 7
= [[aVer L(8) 7

o e

Xi) - ia@eh H

1/2

<, [3

Ot Jd,0(s 0
< a0(sh),

.

IA

where ¢; = || fo(x;) — ¥y, || are some constants.

20

Under review as a conference paper at ICLR 2021

If « < O(s72L'/L) when s > 1, then for any weight matrix we have
|AW > < a0(s") < O(s /L)

If a < O(gs~%) where ¢ = min(1/(Ls"), L~Y/(2+1)) when s < 1, then for any weight matrix we
have
JAW" 5 < a0(s) < Oa).

By Lemma[9] we can conclude that

H fs(x) 0fe(x)

1
aWh OWh H]—‘ -

sL

O(—).

Then, we have

Hafg 8f9

L+1
LRI

)-

2, -

IN

O(s\/L +1

sL <1< [E/I+D),

When s > 1, we know that

Then, we have
N e V(2]

Lst — L —
Thus, we know 1/(Ls") = min(1/(Ls"), L=*/(“+1)) when s > 1.
For the case of s > 1, we can rewritt a < O(s72f/L) = O(gs™ %), where ¢ =

min(1/(Ls"), L=+, which completes the proof of Theorem|6}
Now, we prove Theorem [3|with k£ = 2, i.e. two-step gradient descent adaptation. We know that
B = aVgLom(fg)VoLm(fo) IV ro Lm(fo) 3 = Vo Lom(fo)l*
Thus, we have
|B1 = allV o Lin(fo)l13]
=|aVsLm(f5)VoLm(fo)T — aVeLm(fo)VoLm(fo)T|
=al|VgLm(fg) = VeLm(fo)lll[VeLm(fo)l

:O‘HE(xmym){ [fé(xm) - Ym] afga(;(m)T — [fo(xm) = ¥l af%(;(m }HHVG‘CW fO)H
:aHE(xm,ym){ [f@(xm) —Ym —|—Af9(xm)] [8f%(gM) + Aafea(;m)}

~ o) —) 2NN 12,50
:aH]E(xm,ym){Afe(Xm) [afea(gm) + Aafea(;m)r

+ [fo(xm) — ¥l Aaf%;m }H| VBE (fo) H

1 1
< |0()0GHVE) *O(z)%ﬁ +0(2| 9ot (fol]
<a [(\/i) +0(—= \/» } HVgllm(fg)H, because L > 1
L
< {O(q\E)+ O(f } Vo Lm(fo)]|, where g = min(1/(Ls™), L=/ E+D) r = min(s~%, s)
O(ﬁ)HVG‘Cm fo)|l

21

Under review as a conference paper at ICLR 2021

In the case of d, = 1, we have

Ofe(x
H OW™h H}'

which has already been shown in the proof of LemmaE} Then, we have

L+1

> |25 =0
89h

h=1

In the case of d,, > 1, the bound is simply scaled by a constant of /d,,.

= (")Tg" T <O(sh),

Hveﬁm(fe)H =0

N

\]) O(s' VI T 1).

Thus we have

VoLom(fo)|| < O(as™) < O(L)

|81 = |V 5o L (fo) I3 < O 17

(L)
because ¢ = min(1/(Ls™), L=/(“+1)), which completes the proof for the case of k = 2.

For the case of k£ > 2, we only need to make sure that the bound on learning rate always holds.
Fortunately, since k is a finite constant, according to what we have already showed in the proof of

previous lemmas, every step of gradient descent will not change the spectral norm of the weight
matrix too much: |AW"||; < O(s~E/L) forallhif s > 1, and || AW"||3 < O(q) forallhif s < 1,
where ¢ = min(1/(Ls"), L=/(2+1)), Thus, we may assume that the bound on learning rate always
holds during the adaptation. Using triangle inequality to generalize the results from k = 2to k& > 2,
ie. foralll <i <k —1, we have

1
18; = allV o Lm(fo) 3] < O(7)-

Recall that _
E(a, fo) = Er,, [Lin(fo) — allV sp Lin(fo)l3]

and -
My =Er, lﬁm(fe) - Zﬁz} :
i=0

where 3; = aVg, L (fo,)VoLm(fo)T and 8y = 0,0;,.1 = 0; — aVg,L(fe,, DI"). The result is
straightforward now. |

E PROOF OF THEOREM [4]

Theorem[d] Let fo be a convolutional neural network with L — | convolutional layers and 1 fully-
connected layers and with ReLU activation function, and dy, be the input dimension. Denote by W
the parameter vector of the convolutional layer for h < L — 1, and the weight matrices of the fully
connected layers for L — 1+ 1 < h < L+ 1. || - || means both the spectral norm of a matrix and
the Euclidean norm of a vector. Define

o = { VlWhl2, ifh=1,. L1
T IWs ifL—1+1<h<L+1

and let s = maxy, s and o be the learning rate of gradient descent. If a < O(qr) with q =
min(1/(Ls"), L=Y&+D) and r = min(s~%, 5), the following holds

My, — E(ka, fe)|<0()

Proof We prove Theorem by first transforming the convolutional neural network into an equivalent
fully connected neural network and then applying Theorem 3]

22

Under review as a conference paper at ICLR 2021

First of all, we assume that there are c; channels in A" convolutional layer’s output
g"(x), where h = 0, ..., L — [. For fully-connected layers, define c;,_; = ... = ¢ 41 = 1. We may
represent the dimensionality of input data by x € R%0. Instead of using matrices, we represent
the output of every convolutional layer by a d,cp, length vector g" = [}, g%, ..., g} |, where every

gh = [gffl, gy, . gffch] is a ¢p, length vector contains value of different channels at the same
position.
We assume that for every element glh ; of gl, its value is completely determined by elements of set

Q?il, where Q?* contains kc,_, elements with fixed positions in g"~! for a given . In other
words, every element of the output of a convolutional layer is determined by some elements with
fixed positions from output of the previous layer. This is exactly how convolutional layer works in
deep learning.

h—1

If we use ggﬁl to represent the concatenation of gZ;l € Q?fl, then g Qn-1

is a kcp—1 length vector,

where £k is tﬂe kernel size. Then we have
gzh = U(QZZLUZI)

h

where U'. € Rken—1%¢h s a ke, 1 X c¢j, matrix.

J
For notation simplicity, one can define a matrix U" € Rd=¢r-1*d=cr here every column of U"
only has kcj,—1 non-zero elements, and it satisfies

gh _ o.(gh—lU}L)

By the property of convolutional layer, we know the following facts:

e One can represent U" by U" = [V{* V', ..., V' | where V" € R=¢h=1%¢n is sub-matrix
of U";

e Every Vih contains the same set of elements as WW", while these elements are located at
different positions;

e Every V" can be obtained by any other th by swapping rows;

Let’s define ULt = Wit UMY = WZELF! for the fully-connected layer and out-
put layer. Then we can represent the neural network just as in Theorem [3| by fo(x) =
o(o(..o(xUY). . ULHUL) U, and x € R0,

Now let t;, be the spectral norm of U", and t = maxy, t5. By Theorem [3} we know that we want
o < O(qr), where ¢ = min(1/(Ls™), L=YT4D) 1 = min(s~L, s).

Because every V" contains the same set of elements, we know that every V" has the same Frobenius
norm. Because every V" can be obtained by any other th by swapping rows, we know that every

V" has the same rank.

We know that

1
WHVth}- <V ll2 < UMz < U7 = VeIV F = VoW
where || - || 7 denotes Frobenius norm, 7 denotes the rank of V/. The last equality holds because
matrix V;* and vector W" have the same set of elements.

Let’s define
. = Vi |Whe, ifh=1,..,L—1
P IWR., ifL—1+1<h<L+1

and s = maxy, S,.

From above we know that ¢, = ©(sy,), because sp,/v/d,r < t;, < sp. So we also have t = O(s).
Then the conclusion is straightforward.]

23

Under review as a conference paper at ICLR 2021

F REVISION OF THEOREM [3] AND THEOREM 4] IN CLASSIFICATION CASE

We now show how to obtain similar results of Theorem [3]and Theorem4]in classification problem,
where cross-entropy loss is used instead of squared loss. We need two more restrictions in the
classification case:

1. There exist matrix A and B such that g*' A < softmax(gZWL*1) < gL B for all data points,
where softmax is the softmax operation at the last layer.

2. For any data point x whose belongs to c'* class, there exists a constant ¢ > 0 such that
fo,c(x) > €, i.e. the output of neural network has a lower bound on the true class position.

The proof is actually similar to the proof in regression case. We briefly talk about the differences
here.

Firstly, in the classification case, softmax function is used at the last layer. By the first restriction,
we can get rid of softmax function by introducing new matrices, which further leads to bound of the
learning rate as in regression case.

Secondly, if the loss function is the cross-entropy loss, we have:

1 3f9,cm (Xm>
" Jownxm) 00

VGEm(fB) =]E(xm,ym

where c,,, denotes the class of x,,, e.g. if x,,, belongs to the third class, then ¢,,, = 3. fo.c,, (Xm)
denotes the ¢! dimensional element of fg(x,,). We want a lower bound of fg .(x) exists, so that
the gradient VgL, (fg) can be further bounded.

Then we can prove similar theorems just follow the steps in regression case.

G PROOF OF THEOREM

Theorem (5| Let fo be a neural network with L hidden layers, with each layer being either fully-

connected or convolutional. Assume that || L||oe < 0. Then, error(T) = |E(T, fo) — E(T, fo)| isa
non-decreasing function of T'. Furthermore, for arbitrary T' > 0 we have:

error(T) < O(T?*F13).

Proof Recall that £(t, fg) is defined based on ffm o> Which is the resulting function whose parameters
t

d
evolve according to the gradient flow d;tn =~V L(f} 0:Dh)-

We actually have the following (Santambrogio, 2016):
166]| = [16° - 6°|| < O(V1).

For simplicity and clearness, we use A to denote the change of any vectors and matrices. Thus, we
know that

AW s < [AW"|5 < 128] < O(VA).

Just like the proofs of Lemma[7] Lemma(§/and Lemmal9] we show that

IAG"]| < O@E"2), | A6 < O E="+172),

dfo(x) (L+1)/2
A <0 L
00 H]—' (t 1

by mathematical inductions; we skip the details here. Note that different from some previous theorem,
here we focus on time t, and thus hide the effect of the spectral norms by treating them as constants.

24

Under review as a conference paper at ICLR 2021

Then, we have

A(Veﬁm(fg)) H
=Ve: Ln(frm.0) = VoL (fo)ll
s { oloom) — 5] 2205,y 2olen) Ty
= E(xm,ym){ﬂfe(xm) [W;,GSZ)(XWL) + Aaf%(;{m) T + [fo(xm) = ¥l Aaf"a(;‘m)T
<O(t"*'WIL +1).
Recall that:

?(Ta fG) = ETm [‘Cm(fg;ﬁ)}
I T

=E7, [Ln(fo) + Vtﬁm(f:n,e)dt]
0

i T gt
—Er, | Lalfo) + [G VorLn(f o)
0

[t - / o Lntrto| @

and
E(T, fo) = Er,, [Lm(fo) = TNV toLm(fo)lI3] = B, [Lm(fo) = TIIVeLm(fo)l] -

Because
E(T, fo) — E(T, fo)

T 2
= [[Vt sino)| at = TIVoL Ao
OT)
= [|[Vocatto) + &(Votutso)) | @t~ TIVoLso) P

_ /O ' 2o Ln(fo)A(VoLm(fe)) ' + |2 (Volm(ro) | ar

we have

= = L+1
€TTOT(T) = |5(T, fg) — E(T, fe)l < O(mT2L+3) = O(T2L+3)
by simple calculation.

On the other hand, observe that

E(T, fo) =E7,

Lotto) - | ' Hvetcmu;,e)(\idt] ,

E(T, fo) =B, [Lim(fo) — THVeﬁm(fe)Hi}

6(r) = [|[Vortnlrio e

and assume that Vg« L,,,(ff, 5) is continuous at ¢ = 0. Then, we have G'(7) = ||Vg: L., (f5) |-

We let

[10) - &7 10)|| =|[Er.

T 2 2
[[woentsuola-rlsocal||

~||Er.. (G(1) - T G'(0))

)

25

Under review as a conference paper at ICLR 2021

where TG'(0) = G(0) + T'G’'(0) (note that G(0) = 0) is a first order approximation to G(T') at
7=0. When T = 1, G(T) — TG'(0) can be taken as a local truncation error (i.e., the error that
occurs in one step of a numerical approximation). When 7" increases, the difference is no better than
the global truncation error (in 7" steps):

2
K

[M]=

|ar) -

(i - (1=)G = 5 / Vet [Tolmriz)
i=0""

3

I
=

)

T i+1)
A 2 il VEn (o)
i=0""

where A{Ly (fmo) = VeorLm(fl o) = Vi Lm(f}, o) as shown previously , i is the i-th time
step, and G’(7) is the gradient of G at time step i. Now we can see that HE(T, fo) — E(T, fg)H

highly relates to the difference between Vg Lo, (f}, o) at different time steps (i.e. AL (fm.60))s
Vot L f:n,e) and T . The first two terms relate to how flat or sharp the hyperplane of L, (fm) is
near ¢ = 0. We can wrap it as a constant Co (L, t = 0). Then, the error is at least Co(L,t = 0) - O(T).
For the hyperplane smooth enough, we can further get a first order approximation of ALL,, (fy,.¢) and
yield C'(L,t = 0)O(T?), where C(L, t = 0) can be analogized as the second order derivative of £. l

H SOME EXPERIMENTAL DETAILS

H.1 IMPLEMENTATION OF CLASSIFICATION FOR META-RKHS-II

As we mentioned earlier, our proposed energy functional with closed form adaptation can not be
directly applied to classification problem. We handle this challenge following |Arora et al.| (2019).
For a d,, class classification problem, every data x is associated with a R% one-hot vector y as its
label. For C classes classification problem, its encoding is C' dimensional vector and we use —1/C
and (C' — 1)/C as its correct and incorrect entries encoding. In the prediction, Y''" is replaced by the
encoding of training data. fg(x) is replaced by fg(x)T[1, ..., 1] € R™*% for dimension consistency.
During the testing time, we compute the encoding of the test data point, and choose the position with
largest value as its predicted class.

I EXTRA EXPERIMENTAL RESULTS

1.1 COMPARISON WITH RBF KERNEL

One interesting question is, without introducing extra model components or networks, what will the
results of other kernel be? We provide the results of using RBF (Gaussian) kernel here: 42.1 1.9
(5-way 1-shot) and 54.9 & 1.1 (5-way 5-shot) on Mini-ImageNet, 32.4 £ 2.0 (5-way 1-shot) and
38.2 £ 0.9 (5-way 5-shot) on FC-100, which are worse than the NTK based Meta-RKHS-II, showing
the superiority of using NTK.

1.2 MORE RESULTS ON OUT-OF-DISTRIBUTION GENERALIZATION

We provide some more results on out-of-distribution generalization experiments here. From the
results we can find that the proposed methods is more robust and can generalize to different datasets
better.

26

Under review as a conference paper at ICLR 2021

Table 5: Meta testing on different out-of-distribution datasets with model trained on FC-100.

ALGORITHM

5 WAY 1 SHOT

5 WAY 5 SHOT

CUB

VGG FLOWER

CUB

VGG FLOWER

MAML
FOMAML
REPTILE
IMAML

BAYESIAN TAML(SOTA)

META-RKHS-I

META-RKHS-II

31.58 £ 1.89%
32.34 £1.57%
33.56 £ 1.40%
32.49 £+ 1.52%
31.82 4+ 0.49%
34.12 £+ 1.34%

36.35 + 1.07%

50.82 + 1.94%
49.90 + 1.78%
46.77 +£ 1.81%
49.96 + 1.98%
49.58 + 0.55%
48.81 + 1.89%
59.75 +1.23%

41.72 £ 1.29%
41.96 £+ 1.53%
42.79 + 1.38%
38.92 £ 1.62%
43.97 £ 0.57%
43.31 £ 1.43%
49.92 + 0.68%

65.19 + 1.36%
66.87 £ 1.45%
67.97 +0.71%
59.80 + 1.82%
67.36 &+ 0.53%
69.02 + 0.62%
76.32+0.58%

27

Under review as a conference paper at ICLR 2021

1.3 MORE RESULTS ON ADVERSARIAL ATTACK

We now show some more extra results on adversarial attack in the following figures. Consistent to
the results in main text, we can find that our proposed methods are more robust to adversarial attacks.

Black-box attack

accuracy

- Reptile
Meta-RKHS-I
—— IMAML
—— Meta-RKHS-II
Meta-RKHS-II_t100_PQ1
— = Meta-RKHS-II_t100_PQ2
~ MAML
FOMAML

accuracy

Linf PGD Attack

0.175 —— MAML
—&— FOMAML

—— IMAML

—4— Reptile

—4— Meta-RKHS-|

—&— Meta-RKHS-II

—8— Meta-RKHS-II_t100_PQ1
—¥— Meta-RKHS-II_t100_PQ2

0.150 +

0.125

o
-
o
=3

o
o
)
o

0.050

0.025

0.000

20 30 40

Queries

70

T T T T T v T T
1255 2/255 3/255 4/255 5/255 /255 7/255 8/255 9/255 10/255
attack magnitude epsilon

Figure 6: FC-100 5-way 5-shot Black-box attacks (left) and 5-way 1-shot PGD ¢, norm attack
(right).

1.4 IMPACT OF GRADIENT NORM IN META-RKHS-I

In this experiment, we compare between our proposed Meta-RKHS-I and Reptile. We evaluate the
trained models with different adaptation steps in testing-time. The comparison is shown in Figure[7]
As we can see, our Meta-RKHS-I always gets better results than Reptile, which supports our idea
that the learned function should be close to task-specific optimal and have large functional gradient
norm. These two conditions together lead to the ability of fast adaptation.

0.512

0510

0.508

0.506

0.504

0.502

0.500

0.4981 ~~

0.496

0.662
0.660
0.658
0.656
0.654

0.6521 /

0.389

0.388

0.387

0.386

0.385

0.384

0515

0510

0.505

0.500

0.495

0.490{ Y\ /

0.485

Reptile
Meta-RKHS-I

(a) Mini-ImageNet,

Way 1 Shots

5 (b) Mini-ImageNet,
Way 5 Shots

2 a

6 8 10

5 (c) FC-100, 5 Way 1(d) FC-100, 5 Way 5

Shots

Shots

Figure 7: Reptile (dashed) vs. Meta-RKHS-I (solid) with different testing adaptation steps (x-axis).

1.5 IMPACT OF NETWORK ARCHITECTURE FOR DIFFERENT META-LEARNING MODELS

In this section, we compare different meta-learning models with feature channels of 100 and 200 of
the CNN network structure with 4 or 5 CNN layers respectively.

28

Under review as a conference paper at ICLR 2021

Table 6: Few-shot classification results on Mini-ImageNet with different number of feature
channels of 4 convolution layers.

100 200
ALGORITHM 5 WAY 1 SHOT 5 WAY 5 SHOTS 5 WAY 1 SHOT 5 WAY 5 SHOTS
MAML 49.50 + 1.58% 64.31 +1.07% 48.91 4+ 1.69% 63.96 & 0.82%
FOMAML 48.69 4+ 1.62% 63.73 £ 0.76% 48.55 + 1.86% 63.18 = 0.96%
IMAML 49.30 + 1.94% 62.89 + 0.95% 48.23 +1.58% 62.25 & 0.83%
REPTILE 50.20 £+ 1.69% 64.12 4+ 0.92% 48.72 £ 1.97% 63.67 & 0.79%
META-RKHS-I 51.23 £ 1.79% 66.69 +0.73% 51.54+1.64% 65.92 4+ 0.92%

META-RKHS-II

51.37 £ 2.31%

66.97 £ 0.98%

50.96 £+ 2.15%

65.21 + 0.87%

Table 7: Few-shot classification results on Mini-ImageNet with different number of feature
channels of 5 convolution layers.

100 200
ALGORITHM 5 WAY 1 SHOT 5 WAY 5 SHOTS 5 WAY 1 SHOT 5 WAY 5 SHOTS
MAML 49.87 +1.65% 65.78 £ 1.18% 48.62 £ 1.82% 63.25 + 0.75%
FOMAML 48.93 +1.71% 64.37 £ 0.80% 48.27 £ 1.74% 62.95 £+ 0.83%
IMAML 48.03 + 1.76% 62.15+0.83% 47.52+1.73% 61.77 + 0.89%
REPTILE 50.62 + 1.83% 64.53+0.97% 49.33 £1.89% 63.26 &+ 0.70%
META-RKHS-I 52.45 + 1.88% 66.07 +0.69% 51.37 +1.92% 65.39 + 0.98%

META-RKHS-II

50.92 + 2.16%

66.45 + 0.91%

50.43 £+ 2.42%

64.17 + 1.06%

29

