
Under review as a conference paper at ICLR 2021

Algorithm 1 Meta-Learning in RKHS
Require: p(T): distribution over tasks, randomly initialized neural network parameters θ.

while not done do
Sample a batch of tasks {Tm}Bm=1 ∼ p(T)
for all Tm do

Sample a batch of data points Dm or Sample two batches of data points Dtrm, Dtestm .
end for
Evaluate the energy functional by equation 4 with {Dm}Bm=1 or Evaluate the energy functional
by equation 7 with {Dtrm,Dtestm }Bm=1. Minimize the energy functional w.r.t θ.

end while

A ALGORITHMS

Our proposed algorithms for meta-learning in the RKHS are summarized in Algorithm 1.

B PROOF OF THEOREM 1

Theorem 1 If fθ is a neural network with parameter θ ∈ RP and H is the Reproducing Kernel
Hilbert Space (RKHS) induced by Θ, where Θ is the Neural Tangent Kernel (NTK) of fθ, then
with initialization f0 = fθ0 , the gradient flow of E(f t) coincides with the function evolution of fθt

induced by the gradient flow of E(θt).

Proof Without loss of generality, we can rewrite E(f) = ETm{E(xm,ym) [C(f(xm),ym)]} with
some function C(·, ·).

For a neural network fθ with parameter θ ∈ RP , the gradient flow of E in RP is

dθt

dt
= −∇θtE(θt).

We have

dθt

dt
= −∇θt(E ◦ F)(θt)

= −ETm{E(xm,ym) [∇θtC(fθt(xm),ym)]}

= −ETm
{
E(xm,ym)

[
∂C(f tθ(xm),ym)

∂f tθ(xm)

∂f tθ(xm)

∂θt

]}
.

We know that the dynamics of fθt is

dfθt

dt
=

dθt

dt
∂fθt

∂θt

ᵀ

= −ETm
{
E(xm,ym)

[
∂C(fθt(xm),ym)

∂fθt(xm)

∂fθt(xm)

∂θt

]}
∂fθt

∂θt

ᵀ

= −ETm
{
E(xm,ym)

[
∂C(fθt(xm),ym)

∂fθt(xm)

∂fθt(x)

∂θt
∂fθt

∂θt

ᵀ]}
= −ETm

{
E(xm,ym)

[
∂C(fθt(xm),ym)

∂fθt(xm)
Θt(xm, ·)

]}
, (8)

where Θt is the Neural Tangent Kernel of neural network fθt (Jacot et al., 2018).

If Ht is the Reproducing Kernel Hilbert Space induced by a kernel Θt and Vxm : H → R is the
evaluation functional at xm, which is defined as

Vxm(f) = f(xm),

13

Under review as a conference paper at ICLR 2021

then for an arbitrary function g and a small perturbation ε, we have

〈∇fVxm(f), g〉 = lim
ε→0

Vxm
(f + εg)− Vxm

(f)

ε

〈∇fVxm(f), g〉 = lim
ε→0

f(xm) + εg(xm)− f(xm)

ε
〈∇fVxm(f), g〉 = g(xm)

〈∇fVxm(f), g〉 = 〈Θt(xm, ·), g〉
∇fVxm

(f) = Θt(xm, ·)
∇ff(xm) = Θt(xm, ·).

With an initial function f0 = fθ0 ∈ H, the gradient flow of E inH is

df t

dt
= −∇ftE(f t).

We have

df t

dt
= −ETm{E(xm,ym)

[
∇ftC(f t(xm),ym)

]
}

= −ETm
{
E(xm,ym)

[
∂C(f t(xm),ym)

∂f t(xm)
∇ftf t(xm)

]}
= −ETm

{
E(xm,ym)

[
∂C(f t(xm),ym)

∂f t(xm)
Θt(xm, ·)

]}
. (9)

We can complete the proof by comparing equation 8 and equation 9.

C PROOF OF THEOREM 2

Theorem 2 If fθ is a neural network with parameter θ and H is the Reproducing Kernel Hilbert
Space (RKHS) induced by Θ, where Θ is the Neural Tangent Kernel (NTK) of fθ, then

M1 = Ẽ(α, fθ), and β0 = α‖∇θLm(fθ)‖2 = α‖∇fθLm(fθ)‖2H.

Proof Without loss of generality, we rewrite Lm(fθ) = Exm,ym
[C(fθ(xm),ym)].

In regression task, we have

C(fθ(xm),ym) =
1

2

∥∥fθ(xm)− ym
∥∥2

. In classification task, we have

C(fθ(xm),ym) = ym log(fθ(xm))ᵀ,

where log is element-wise logarithm operation.

‖∇θLm(fθ)‖2

= ∇θLm(fθ)∇θLm(fθ)ᵀ

= ∇θExm,ym
[C(fθ(xm),ym)]∇θExm,ym

[C(fθ(xm),ym)]
ᵀ

= Exm,ym

[
∂C(fθ(xm),ym)

∂fθ(xm)

∂fθ(xm)

∂θ

]
Exm,ym

[
∂fθ(xm)

∂θ

ᵀ
∂C(fθ(xm),ym)

∂fθ(xm)

ᵀ]
= Exm,ym

{
Ex′m,y

′
m

[
∂C(fθ(xm),ym)

∂fθ(xm)

∂fθ(xm)

∂θ

∂fθ(x′m)

∂θ

ᵀ
∂C(fθ(x′m),y′m)

∂fθ(x′m)

ᵀ]}
= Exm,ym

{
Ex′m,y

′
m

[
∂C(fθ(xm),ym)

∂fθ(xm)
Θ(xm,x

′
m)
∂C(fθ(x′m),y′m)

∂fθ(x′m)

ᵀ]}

14

Under review as a conference paper at ICLR 2021

=

〈
Exm,ym

[
∂C(fθ(xm),ym)

∂fθ(xm)
Θ(xm, ·)

]
,Ex′m,y

′
m

[
∂C(fθ(x′m),y′m)

∂fθ(x′m)
Θ(x′m, ·)

]〉
H

=

〈
Exm,ym

[
∂C(fθ(xm),ym)

∂fθ(xm)
∇fθfθ(xm)

]
,Ex′m,y

′
m

[
∂C(fθ(x′m),y′m)

∂fθ(x′m)
∇fθfθ(x′m)

]〉
H

=
〈
∇fθLm(fθ),∇fθLm(fθ)

〉
H

= ‖∇fθLm(fθ)‖2H,
where 〈·, ·〉H is the inner product in Reproducing Kernel Hilbert Space (RKHS) H. In the above
equations, we use the definition of Neural Tangent Kernel (NTK), the property of inner product in
RKHS, the definition of evaluation functional and its gradient in RKHS.

Recall that
Ẽ(α, fθ) = ETm

[
Lm(fθ)− α‖∇fθLm(fθ)‖2H

]
and

Mk = ETm

[
Lm(fθ)−

k−1∑
i=0

βi

]
,

where βi = α∇θi
Lm(fθi

)∇θLm(fθ)ᵀ and θ0 = θ,θi+1 = θi − α∇θi
L(fθi

,Dtrm). The result is
straightforward now.

D PROOF OF THEOREM 3

The proof techniques we use are similar to some previous works such as (Arora et al., 2019; Allen-Zhu
et al., 2019). We summaries some of the differences. Different from previous works that typically
assume a neural network is Gaussian initialized, we do not have such an assumption as we are trying
to learn a good meta-initialization in the meta-learning setting. Previous works try to investigate the
behavior of models during training, while we focus on revealing the connection between different
meta-learning algorithms. Previous work focuses on single-task regression/classification problems,
while we focus on meta-learning problem.

Theorem 3 Let fθ be a fully-connected neural network with L hidden layers and ReLU activation
function, s1, ..., sL+1 be the spectral norm of the weight matrices, s = maxh sh, andα be the learning
rate of gradient descent. If α ≤ O(qr) with q = min(1/(LsL), L−1/(L+1)) and r = min(s−L, s),
then the following holds

|Ẽ(kα, fθ)−Mk| ≤ O
(1

L

)
.

Proof We first prove the case of k = 2, i.e. applying a two-step gradient descent adaptation in
MAML.

We need to prove the following theorem first.

Theorem 6 Let fθ be a fully-connected neural network with L hidden layers, and x be a data
sample. Represent the neural network by fθ(x) = σ(σ(...σ(xW 1)...WL−1)WL)WL+1, where
W 1, ...,WL+1 denote the weight matrices, and σ is the ReLU activation function. Let s1, ..., sL+1

be the spectral norm of weight matrices, and s = maxh sh. Let α be the learning rate of gradient
descent, and f θ̃(x) be the resulting value after one step of gradient descent, and ‖ · ‖F be the
Frobenius norm.

If α ≤ O(qs−L), where q = min(1/(LsL), L−1/(L+1)), then∥∥∥∂f θ̃(x)

∂θ̃
− ∂fθ(x)

∂θ

∥∥∥
F
≤ O(

1

s
√
L+ 1

).

Remark 1 Theorem 6 states that for a neural network with L hidden layers, if the learning rate of
gradient descent is bounded, then the norm of derivative w.r.t all the parameters will not change

15

Under review as a conference paper at ICLR 2021

too much, although there are O(Lm2) parameters, where m denotes the maximum width of hidden
layers. We use row vector instead of column vector for consistency, while it does not affect our results.

For simplicity, we will write gh(x) as gh. The bias terms in the neural network are introduced by
adding an additional coordinate thus omitted in Theorem 6. Without loss of generality, we can assume
‖x ‖ ≤ 1, which can be done by data normalization in pre-processing.

Let gh(x) = σ(σ(...σ(xW 1)...Wh−1)Wh) be the activation at hth hidden layer and g0(x) =
x, gL+1 = fθ(x). Define diagonal matrices Dh, where Dh

(i,i) = 1{gh−1Wh ≥ 0} and

bh =

{
Idy , if h = L+ 1
bh+1(Wh+1)ᵀDh, otherwise

where Idy is a dy × dy identity matrix. We first prove the following Lemma.

Lemma 7 Given a neural network as stated in Theorem 6, let ‖ · ‖2 denote the spectral norm,
4Wh = W̃h −Wh denote some perturbation on weight matrices, g̃h(x) denote the resulting value
after perturbation, and4gh(x) = g̃h(x)− gh(x). If s ≥ 1 and ‖4Wh‖2 ≤ O(s−L/L) for all h,
then

‖4gh‖ ≤ O(
1

LsL−h+1
);

If s < 1 and ‖4Wh‖2 ≤ O(q) for all h, where q = min(1/(LsL), L−1/(L+1)) and r = max(q, s),
then

‖4gh‖ ≤ O(rh−1q) =

{
O(

1

LsL−h+1
), if 1/(LsL) ≤ L−1/(L+1)

O(L−h/(L+1)), if 1/(LsL) > L−1/(L+1).

Proof Proof of Lemma 7 is based on induction.

We first prove the case of s ≥ 1. Note that g0 = x, thus4g0 = 0 ≤ O(
1

LsL−0+1
) always holds.

For4g1, we have

‖4g1‖ = ‖σ(x W̃ 1)− σ(xW 1)‖
≤ ‖x W̃ 1 − xW 1‖, due to the property of ReLU activation

≤ ‖x ‖‖4W 1‖2

≤ O(
1

LsL
).

Thus, the hypothesis holds for4g1.

Now, assume that the hypothesis holds for4gh, then we have

‖4gh+1‖ = ‖σ(g̃hW̃h+1)− σ(ghWh+1)‖
≤ ‖g̃hW̃h+1 − ghWh+1‖, due to the property of ReLU activation

≤ ‖g̃hWh+1 + g̃h4Wh+1 − ghWh+1‖
≤ ‖4gh‖‖Wh+1‖2 + ‖g̃h‖‖4Wh+1‖2
≤ O(s)‖4gh‖+ ‖gh +4gh‖‖4Wh+1‖2
≤ O(s)‖4gh‖+O(sh)‖4Wh+1‖2 + ‖4gh‖‖4Wh+1‖2

≤ O(s)O(
1

LsL−h+1
) +O(sh)O(

1

LsL
) +O(

1

LsL−h+1
)O(

1

LsL
)

≤ O(
1

LsL−h
).

The last three inequalities come from the fact that gh = σ(σ(...σ(xW 1)...Wh−1)Wh) ≤ O(sh)
and s ≥ 1. Thus, we have proved the Lemma in the case s ≥ 1.

Now, we prove the first part of the case of s < 1, i.e. ‖4gh‖ ≤ O(rh−1q). Because4g0 = 0, thus
the hypothesis for4g0 always holds.

16

Under review as a conference paper at ICLR 2021

For4g1, we have

‖4g1‖ = ‖σ(x W̃ 1)− σ(xW 1)‖
≤ ‖x W̃ 1 − xW 1‖
≤ ‖x ‖‖4W 1‖2
≤ O(q).

Thus, the hypothesis holds for4g1.

Now, we assume that the hypothesis holds for4gh. Then, we have

‖4gh+1‖ = ‖σ(g̃hW̃h+1)− σ(ghWh+1)‖
≤ ‖g̃hW̃h+1 − ghWh+1‖
≤ ‖g̃hWh+1 + g̃h4Wh+1 − ghWh+1‖
≤ ‖4gh‖‖Wh+1‖2 + ‖g̃h‖‖4Wh+1‖2
≤ O(s)‖4gh‖+ ‖gh +4gh‖‖4Wh+1‖2
≤ O(s)O(rh−1q) +O(sh)q + qO(rh−1q)

≤ O(rhq).

The last inequality comes from the fact that r = max(q, s) and sh < s < 1.

Next we consider the second part of the case of s < 1.

If 1/(LsL) ≤ L−1/(L+1), we know that q = 1/(LsL) and

1/(LsL) ≤ L−1/(L+1)

L1/(L+1) ≤ LsL

L−L/(L+1) ≤ sL

L−1 ≤ sL+1

L−1s−L ≤ s,

which means q ≤ s, thus r = s. Then, we have

‖4gh‖ = O(rh−1q) = O(sh−1q) = O(sh−1L−1s−L) = O(
1

LsL−h+1
).

If 1/(LsL) > L−1/(L+1), we know that q = L−1/(L+1) and q > s; then, r = q and

‖4gh‖ = O(rh−1q) = O(qh−1q) = O(qh) = O(L−h/(L+1)).

Thus, we can conclude that Lemma 7 also holds for the case of s < 1, which completes the proof.

We now prove a similar Lemma for4bh.

Lemma 8 Given a neural network as stated in Theorem 6, let ‖ · ‖2 denote the spectral norm,
4Wh = W̃h −Wh denote some perturbation on weight matrices, b̃h denote the resulting value
after perturbation, and4bh = b̃h − bh.

If s ≥ 1 and ‖4Wh‖2 ≤ O(s−L/L) for all h, then

‖4bh‖ ≤ O(
1

Lsh
);

If s < 1 and ‖4Wh‖2 ≤ O(q) for all h, where q = min(1/(LsL), L−1/(L+1)), then

‖4bh‖ ≤
{
O(L−1s−h), if 1/(LsL) ≤ L−1/(L+1)

O(L(h−L−1)/(L+1)), if 1/(LsL) > L−1/(L+1).

17

Under review as a conference paper at ICLR 2021

Proof Recall that

bh =

{
Idy , if h = L+ 1
bh+1(Wh+1)ᵀDh, otherwise

where Idy is a dy × dy identity matrix and Dh
(i,i) = 1{gh−1Wh ≥ 0}. It is easy to see that

‖bh‖ ≤ O(sL−h+1), because ‖Dh‖2 ≤ 1 and ‖Wh‖2 ≤ s.
We first prove the case of s ≥ 1. We know that4bL+1 = 0 ≤ O(s−L−1/L) always holds.

For h ≤ L, we can re-write bh as

bh = Idy (WL+1)ᵀDL(WL)ᵀDL−1...(Wh+1)ᵀDh.

Then, we have

bh(gh)ᵀ = Idy (WL+1)ᵀDL(WL)ᵀDL−1...(Wh+1)ᵀDh(gh)ᵀ. (10)

Because of the fact that

fθ = gL+1 = xW 1D1W 2D2...DLWL+1 = ghWh+1Dh+1...DLWL+1

and gh = ghDh, Dh = (Dh)ᵀ. We can re-write equation 10 as

bh(gh)ᵀ = fᵀθ .

Thus,

‖b̃h(g̃h)ᵀ − bh(gh)ᵀ‖ = ‖f θ̃ − fθ‖ = ‖4gL+1‖ ≤ O(
1

L
)

by Lemma 7. Consequently, we have

‖b̃h(g̃h)ᵀ − bh(gh)ᵀ‖ = ‖4bh(gh)ᵀ +4bh4(gh)ᵀ + b̃h4(gh)ᵀ‖ ≤ O(
1

L
).

Since ‖gh‖ ≤ O(sh), we know that

‖4bh‖ ≤ O(
1

Lsh
), ‖4bh‖ ≤ O(sL−h+1)

always hold. Since L ≥ 1, s ≥ 1, we simply have ‖4bh‖ ≤ O(
1

Lsh
).

Now, we prove the case of s < 1. Similarly, we have

‖b̃h(g̃h)ᵀ − bh(gh)ᵀ‖ = ‖f θ̃ − fθ‖ = ‖4gL+1‖ ≤ O(
1

L
).

Similarly, we must have

‖4bh‖ ≤ O(
1

Lsh
), ‖4bh‖ ≤ O(

1

Lrh−1q
),

where q = min(1/(LsL), L−1/(L+1)) and r = max(q, s) by Lemma 7.

If 1/(LsL) ≤ L−1/(L+1), then sL+1 ≥ 1/L. We thus have

O(
1

Lrh−1q
) = O(

LsL−h+1

L
) = O(

sL+1

sh
) ≥ O(

1

Lsh
).

Hence, we get ‖4bh‖ ≤ O(
1

Lsh
).

If 1/(LsL) > L−1/(L+1), then sL+1 < 1/L. We have

O(
1

Lrh−1q
) = O(L−1 · Lh/(L+1)) ≤ O(L−1 · s−h) = O(

1

Lsh
).

Thus, we get ‖4bh‖ ≤ O(L(h−L−1)/(L+1)).

18

Under review as a conference paper at ICLR 2021

Lemma 9 Given a neural network as stated in Theorem 6, let ‖ · ‖F be the Frobenius norm,
W 1, ...,WL+1 be the weight matrices in the neural network,4Wh = W̃h−Wh be the perturbation
on weight matrices, θh be the parameter vector containing all the elements in Wh,4θh = θ̃h − θh
be the perturbation on parameter vectors, and f θ̃(x) be the resulting value after perturbation.

If s ≥ 1 and ‖4Wh‖2 ≤ O(s−L/L) for all h, for any weight matrices the following holds∥∥∥∂f θ̃(x)

∂θ̃h
− ∂fθ(x)

∂θh

∥∥∥
F
≤ O(

1

sL
);

If s < 1 and ‖4Wh‖2 ≤ O(q) for all h, where q = min(1/(LsL), L−1/(L+1)), for any weight
matrices the following holds ∥∥∥∂f θ̃(x)

∂θ̃h
− ∂fθ(x)

∂θh

∥∥∥
F
≤ O(

1

sL
).

Proof We first prove the case of dy = 1, i.e. the output of neural network is 1-dimensional.

In this case, we know that∥∥∥∂f θ̃(x)

∂θ̃h
− ∂fθ(x)

∂θh

∥∥∥
F

=
∥∥∥∂f θ̃(x)

∂W̃h
− ∂fθ(x)

∂Wh

∥∥∥
F

=
∥∥∥4∂fθ(x)

∂Wh

∥∥∥
F

and the derivative to Wh is
∂fθ(x)

∂Wh
= (bh)ᵀgh−1.

Then, we have ∥∥∥4∂fθ(x)

∂Wh

∥∥∥
F

= ‖(b̃h)ᵀg̃h−1 − (bh)ᵀgh−1‖F

= ‖(b̃h)ᵀgh−1 − (bh)ᵀgh−1 + (b̃h)ᵀ4gh−1‖F
≤ ‖(4bh)ᵀgh−1‖F + ‖(bh +4bh)ᵀ4gh−1‖F .

Recall the fact that gh ≤ O(sh) and bh ≤ O(sL+1−h).

When s ≥ 1, from Lemma 7 and Lemma 8 we know that

‖4gh‖ ≤ O(
1

LsL−h+1
), ‖4bh‖ ≤ O(

1

Lsh
).

Then, we have∥∥∥4∂fθ(x)

∂Wh

∥∥∥
F
≤ O(sh−1)O(

1

Lsh
) +O(sL+1−h)O(

1

LsL−h+2
) +O(

1

LsL−h+2
)O(

1

Lsh
)

≤ O(
1

sL
).

When s < 1, from Lemma 7 and Lemma 8 we know that

‖4gh‖ ≤

{
O(

1

LsL−h+1
), if 1/(LsL) ≤ L−1/(L+1)

O(L−h/(L+1)), if 1/(LsL) > L−1/(L+1)

and

‖4bh‖ ≤
{
O(L−1s−h), if 1/(LsL) ≤ L−1/(L+1)

O(L(h−L−1)/(L+1)), if 1/(LsL) > L−1/(L+1).

If 1/(LsL) ≤ L−1/(L+1), we have∥∥∥4∂fθ(x)

∂Wh

∥∥∥
F
≤ O(sh−1)O(

1

Lsh
) +O(sL−h+1)O(

1

LsL−h+2
) +O(

1

LsL−h+2
)O(

1

Lsh
).

19

Under review as a conference paper at ICLR 2021

Since 1/(LsL) ≤ L−1/(L+1) implies L−1 ≤ sL+1 (from proof of Lemma 7), we have

1

Lsh
≤ sL−h+1.

Then we can conclude that ∥∥∥4∂fθ(x)

∂Wh

∥∥∥
F
≤ O(

1

sL
).

If 1/(LsL) > L−1/(L+1), we have∥∥∥4∂fθ(x)

∂Wh

∥∥∥
F
≤ O(sh−1)O(L(h−L−1)/(L+1)) +O(sL+1−h)O(L−(h−1)/(L+1))

+O(L−(h−1)/(L+1))O(L(h−L−1)/(L+1)).

Since 1/(LsL) > L−1/(L+1) implies L−1 > sL+1 (from proof of Lemma 7), we have

L(h−L−1)/(L+1) > sL−h+1,
1

L(h−1)/(L+1)
> sh−1.

Then we have ∥∥∥4∂fθ(x)

∂Wh

∥∥∥
F
≤ O(

1

L
) ≤ O(

1

sL
), because s < 1.

We have proved the Lemma for the case of dy = 1.

For the case of dy > 1, we know that

∥∥∥∂f θ̃(x)

∂θ̃h
− ∂fθ(x)

∂θh

∥∥∥2
F

=

dy∑
i=1

∥∥∥∂f θ̃,i(x)

∂θ̃h
− ∂fθ,i(x)

∂θh

∥∥∥2
F
≤ O(

dy
s2L2

),

where fθ,i(x) is the ith dimension of fθ(x). The last inequality directly comes from the 1-
dimensional case.

Since dy is a constant, we ignore it. Then, we have∥∥∥∂f θ̃(x)

∂θ̃h
− ∂fθ(x)

∂θh

∥∥∥
F
≤ O(

1

sL
),

which completes the proof.

Now we can prove Theorem 6, if W̃h is obtained by one step gradient descent starting from Wh, θ̃ is
obtained by one step gradient descent starting from θ, and learning rate is α. Then, for any weight
matrix we have

‖4Wh‖2 = ‖α∇WhL(θ)‖2
≤ ‖α∇WhL(θ)‖F
= ‖α∇θhL(θ)‖F

= α
∥∥∥∑n

i=1

n
[fθ(xi)− yi]

∂fθ(xi)

∂θh

ᵀ∥∥∥
F

≤
α
∑n
i=1

n
ci

 dy∑
j

∥∥∥∂fθ,j(xi)
∂Wh

∥∥∥2
F

1/2

≤
α
∑n
i=1

n
ci
√
dyO(sL−h+1)O(sh−1)

≤ αO(sL),

where ci = ‖fθ(xi)− yi ‖ are some constants.

20

Under review as a conference paper at ICLR 2021

If α ≤ O(s−2L/L) when s ≥ 1, then for any weight matrix we have

‖4Wh‖2 ≤ αO(sL) ≤ O(s−L/L).

If α ≤ O(qs−L) where q = min(1/(LsL), L−1/(L+1)) when s < 1, then for any weight matrix we
have

‖4Wh‖2 ≤ αO(sL) ≤ O(q).

By Lemma 9, we can conclude that∥∥∥∂f θ̃(x)

∂W̃h
− ∂fθ(x)

∂Wh

∥∥∥
F
≤ O(

1

sL
).

Then, we have ∥∥∥∂f θ̃(x)

∂θ̃
− ∂fθ(x)

∂θ

∥∥∥
F

=

[
L+1∑
h=1

∥∥∥∂f θ̃(x)

∂θ̃h
− ∂fθ(x)

∂θh

∥∥∥2
F

]1/2
≤ O(

1

s
√
L+ 1

).

When s ≥ 1, we know that
s−L ≤ 1 ≤ LL/(L+1).

Then, we have
1

LsL
≤ 1

L
≤ L−1/(L+1).

Thus, we know 1/(LsL) = min(1/(LsL), L−1/(L+1)) when s ≥ 1.

For the case of s ≥ 1, we can rewrite α ≤ O(s−2L/L) = O(qs−L), where q =
min(1/(LsL), L−1/(L+1)), which completes the proof of Theorem 6.

Now, we prove Theorem 3 with k = 2, i.e. two-step gradient descent adaptation. We know that

β1 = α∇θ̃Lm(fθ̃)∇θLm(fθ)ᵀ, ‖∇fθLm(fθ)‖2H = ‖∇θLm(fθ)‖2.
Thus, we have∣∣β1 − α‖∇fθLm(fθ)‖2H

∣∣
=
∣∣α∇θ̃Lm(fθ̃)∇θLm(fθ)ᵀ − α∇θLm(fθ)∇θLm(fθ)ᵀ

∣∣
=α‖∇θ̃Lm(fθ̃)−∇θLm(fθ)‖‖∇θLm(fθ)‖

=α
∥∥∥E(xm,ym)

{ [
fθ̃(xm)− ym

] ∂fθ̃(xm)

∂θ̃

ᵀ

− [fθ(xm)− ym]
∂fθ(xm)

∂θ

ᵀ}∥∥∥∥∥∇θLm(fθ)
∥∥

=α
∥∥∥E(xm,ym)

{
[fθ(xm)− ym +4fθ(xm)]

[
∂fθ̃(xm)

∂θ̃
+4∂fθ(xm)

∂θ

]ᵀ
− [fθ(xm)− ym]

∂fθ(xm)

∂θ

ᵀ}∥∥∥∥∥∇θLm(fθ)
∥∥

=α
∥∥∥E(xm,ym)

{
4fθ(xm)

[
∂fθ̃(xm)

∂θ̃
+4∂fθ(xm)

∂θ

]ᵀ
+ [fθ(xm)− ym]4∂fθ(xm)

∂θ

ᵀ}∥∥∥∥∥∇θLm(fθ)
∥∥

≤α
[
O(

1

L
)O(sL

√
L) +O(

1

L
)O(

1

s
√
L

) +O(
1

s
√
L

)

] ∥∥∇θLm(fθ)
∥∥

≤α
[
O(

sL√
L

) +O(
1

s
√
L

)

] ∥∥∇θLm(fθ)
∥∥, because L ≥ 1

≤
[
O(
qrsL√
L

) +O(
qr

s
√
L

)

] ∥∥∇θLm(fθ)
∥∥, where q = min(1/(LsL), L−1/(L+1)), r = min(s−L, s)

≤O(
q√
L

)
∥∥∇θLm(fθ)

∥∥.
21

Under review as a conference paper at ICLR 2021

In the case of dy = 1, we have ∥∥∥∂fθ(x)

∂Wh

∥∥∥
F

= (bh)ᵀgh−1 ≤ O(sL),

which has already been shown in the proof of Lemma 9. Then, we have

∥∥∇θLm(fθ)
∥∥ = O

(√√√√L+1∑
h=1

∥∥∥∂fθ(x)

∂θh

∥∥∥2) = O

(√√√√L+1∑
h=1

∥∥∥∂fθ(x)

∂Wh

∥∥∥2
F

)
≤ O(sL

√
L+ 1).

In the case of dy ≥ 1, the bound is simply scaled by a constant of
√
dy .

Thus we have∣∣β1 − α‖∇fθLm(fθ)‖2H
∣∣ ≤ O(

q√
L

)
∥∥∇θLm(fθ)

∥∥ ≤ O(qsL) ≤ O(
1

L
)

because q = min(1/(LsL), L−1/(L+1)), which completes the proof for the case of k = 2.

For the case of k > 2, we only need to make sure that the bound on learning rate always holds.
Fortunately, since k is a finite constant, according to what we have already showed in the proof of
previous lemmas, every step of gradient descent will not change the spectral norm of the weight
matrix too much: ‖4Wh‖2 ≤ O(s−L/L) for all h if s ≥ 1, and ‖4Wh‖2 ≤ O(q) for all h if s < 1,
where q = min(1/(LsL), L−1/(L+1)). Thus, we may assume that the bound on learning rate always
holds during the adaptation. Using triangle inequality to generalize the results from k = 2 to k > 2,
i.e. for all 1 ≤ i ≤ k − 1, we have∣∣βi − α‖∇fθLm(fθ)‖2H

∣∣ ≤ O(1

L

)
.

Recall that
Ẽ(α, fθ) = ETm

[
Lm(fθ)− α‖∇fθLm(fθ)‖2H

]
and

Mk = ETm

[
Lm(fθ)−

k−1∑
i=0

βi

]
,

where βi = α∇θiLm(fθi)∇θLm(fθ)ᵀ and θ0 = θ,θi+1 = θi − α∇θiL(fθi ,Dtrm). The result is
straightforward now.

E PROOF OF THEOREM 4

Theorem 4 Let fθ be a convolutional neural network with L− l convolutional layers and l fully-
connected layers and with ReLU activation function, and dx be the input dimension. Denote by Wh

the parameter vector of the convolutional layer for h ≤ L− l, and the weight matrices of the fully
connected layers for L− l + 1 < h ≤ L+ 1. ‖ · ‖2 means both the spectral norm of a matrix and
the Euclidean norm of a vector. Define

sh =

{ √
dx‖Wh‖2, if h = 1, ..., L− l
‖Wh‖2, if L− l + 1 < h ≤ L+ 1

and let s = maxh sh and α be the learning rate of gradient descent. If α ≤ O(qr) with q =
min(1/(LsL), L−1/(L+1)) and r = min(s−L, s), the following holds

|Mk − Ẽ(kα, fθ)| ≤ O
(1

L

)
.

Proof We prove Theorem 4 by first transforming the convolutional neural network into an equivalent
fully connected neural network and then applying Theorem 3.

22

Under review as a conference paper at ICLR 2021

First of all, we assume that there are ch channels in hth convolutional layer’s output
gh(x), where h = 0, ..., L− l. For fully-connected layers, define cL−l = ... = cL+1 = 1. We may
represent the dimensionality of input data by x ∈ Rdxc0 . Instead of using matrices, we represent
the output of every convolutional layer by a dxch length vector gh =

[
gh1 , g

h
2 , ..., g

h
dx

]
, where every

ghi =
[
ghi,1, g

h
i,2, ..., g

h
i,ch

]
is a ch length vector contains value of different channels at the same

position.

We assume that for every element ghi,j of ghi , its value is completely determined by elements of set
Qh−1i , where Qh−1i contains kch−1 elements with fixed positions in gh−1 for a given i. In other
words, every element of the output of a convolutional layer is determined by some elements with
fixed positions from output of the previous layer. This is exactly how convolutional layer works in
deep learning.

If we use gh−1
Qh−1

i

to represent the concatenation of gh−1a,b ∈ Q
h−1
i , then gh−1

Qh−1
i

is a kch−1 length vector,

where k is the kernel size. Then we have

ghi = σ(gh−1
Qh−1

i

Uhi)

where Uhi,j ∈ Rkch−1×ch is a kch−1 × ch matrix.

For notation simplicity, one can define a matrix Uh ∈ Rdxch−1×dxch , where every column of Uh
only has kch−1 non-zero elements, and it satisfies

gh = σ(gh−1Uh)

By the property of convolutional layer, we know the following facts:

• One can represent Uh by Uh =
[
V h1 , V

h
2 , ..., V

h
dx

]
where V hi ∈ Rdxch−1×ch is sub-matrix

of Uh;

• Every V hi contains the same set of elements as Wh, while these elements are located at
different positions;

• Every V hi can be obtained by any other V hj by swapping rows;

Let’s define UL−l = WL−l, ..., UL+1 = WL+1 for the fully-connected layer and out-
put layer. Then we can represent the neural network just as in Theorem 3 by fθ(x) =
σ(σ(...σ(xU1)...UL−1)UL)UL+1, and x ∈ Rdxc0 .

Now let th be the spectral norm of Uh, and t = maxh th. By Theorem 3, we know that we want
α ≤ O(qr), where q = min(1/(LsL), L−1/(L+1)), r = min(s−L, s).

Because every V hi contains the same set of elements, we know that every V hi has the same Frobenius
norm. Because every V hi can be obtained by any other V hj by swapping rows, we know that every
V hi has the same rank.

We know that

1√
r
‖V h1 ‖F ≤ ‖V h1 ‖2 ≤ ‖Uh‖2 ≤ ‖Uh‖F =

√
dx‖V h1 ‖F =

√
dx‖Wh‖2

where ‖ · ‖F denotes Frobenius norm, r denotes the rank of V h1 . The last equality holds because
matrix V h1 and vector Wh have the same set of elements.

Let’s define

sh =

{ √
dx‖Wh‖2, if h = 1, ..., L− l
‖Wh‖2, if L− l + 1 < h ≤ L+ 1

and s = maxh sh.

From above we know that th = Θ(sh), because sh/
√
dxr ≤ th ≤ sh. So we also have t = Θ(s).

Then the conclusion is straightforward.

23

Under review as a conference paper at ICLR 2021

F REVISION OF THEOREM 3 AND THEOREM 4 IN CLASSIFICATION CASE

We now show how to obtain similar results of Theorem 3 and Theorem 4 in classification problem,
where cross-entropy loss is used instead of squared loss. We need two more restrictions in the
classification case:

1. There exist matrix A and B such that gLA ≤ softmax(gLWL+1) ≤ gLB for all data points,
where softmax is the softmax operation at the last layer.

2. For any data point x whose belongs to cth class, there exists a constant ε > 0 such that
fθ,c(x) ≥ ε, i.e. the output of neural network has a lower bound on the true class position.

The proof is actually similar to the proof in regression case. We briefly talk about the differences
here.

Firstly, in the classification case, softmax function is used at the last layer. By the first restriction,
we can get rid of softmax function by introducing new matrices, which further leads to bound of the
learning rate as in regression case.

Secondly, if the loss function is the cross-entropy loss, we have:

∇θLm(fθ) = E(xm,ym)

[
1

fθ,cm(xm)

∂fθ,cm(xm)

∂θ

]
where cm denotes the class of xm, e.g. if xm belongs to the third class, then cm = 3. fθ,cm(xm)
denotes the cthm dimensional element of fθ(xm). We want a lower bound of fθ,c(x) exists, so that
the gradient ∇θLm(fθ) can be further bounded.

Then we can prove similar theorems just follow the steps in regression case.

G PROOF OF THEOREM 5

Theorem 5 Let fθ be a neural network with L hidden layers, with each layer being either fully-
connected or convolutional. Assume that ‖L‖∞ <∞. Then, error(T) = |Ẽ(T, fθ)− E(T, fθ)| is a
non-decreasing function of T . Furthermore, for arbitrary T > 0 we have:

error(T) ≤ O
(
T 2L+3

)
.

Proof Recall that E(t, fθ) is defined based on f tm,θ , which is the resulting function whose parameters

evolve according to the gradient flow
dθtm
dt

= −∇θt
m
L(f tm,θ,Dtrm).

We actually have the following (Santambrogio, 2016):

‖4θ‖ = ‖θ0 − θt‖ ≤ O(
√
t).

For simplicity and clearness, we use4 to denote the change of any vectors and matrices. Thus, we
know that

‖4Wh‖2 ≤ ‖4Wh‖F ≤ ‖4θ‖ ≤ O(
√
t).

Just like the proofs of Lemma 7, Lemma 8 and Lemma 9, we show that

‖4gh‖ ≤ O(th/2), ‖4bh‖ ≤ O(t(L−h+1)/2),
∥∥∥4∂fθ(x)

∂θ

∥∥∥
F
≤ O(t(L+1)/2

√
L+ 1)

by mathematical inductions; we skip the details here. Note that different from some previous theorem,
here we focus on time t, and thus hide the effect of the spectral norms by treating them as constants.

24

Under review as a conference paper at ICLR 2021

Then, we have∥∥∥4(∇θLm(fθ)
)∥∥∥

=‖∇θtLm(f tm,θ)−∇θLm(fθ)‖

=
∥∥∥E(xm,ym)

{ [
f tm,θ(xm)− ym

] ∂f tm,θ(xm)

∂θt

ᵀ

− [fθ(xm)− ym]
∂fθ(xm)

∂θ

ᵀ}∥∥∥
=
∥∥∥E(xm,ym)

{
4fθ(xm)

[
∂f tm,θ(xm)(xm)

∂θt
+4∂fθ(xm)

∂θ

]ᵀ
+ [fθ(xm)− ym]4∂fθ(xm)

∂θ

ᵀ}∥∥∥
≤O(tL+1

√
L+ 1).

Recall that:
E(T, fθ) = ETm

[
Lm(fTm,θ)

]
= ETm

[
Lm(fθ) +

∫ T

0

∇tLm(f tm,θ)dt

]

= ETm

[
Lm(fθ) +

∫ T

0

dθt

dt
∇θtLm(f tm,θ)dt

]

= ETm

[
Lm(fθ)−

∫ T

0

∥∥∥∇θtLm(f tm,θ)
∥∥∥2dt

]
and

Ẽ(T, fθ) = ETm
[
Lm(fθ)− T‖∇fθLm(fθ)‖2H

]
= ETm

[
Lm(fθ)− T‖∇θLm(fθ)‖2

]
.

Because
Ẽ(T, fθ)− E(T, fθ)

=

∫ T

0

∥∥∥∇θtLm(f tm,θ)
∥∥∥2dt− T‖∇θLm(fθ)‖2

=

∫ T

0

∥∥∥∇θLm(fθ) +4
(
∇θLm(fθ)

)∥∥∥2dt− T‖∇θLm(fθ)‖2

=

∫ T

0

2∇θLm(fθ)4
(
∇θLm(fθ)

)ᵀ
+
∥∥∥4(∇θLm(fθ)

)∥∥∥2dt,

we have
error(T) = |Ẽ(T, fθ)− E(T, fθ)| ≤ O

(L+ 1

2L+ 3
T 2L+3

)
= O

(
T 2L+3

)
by simple calculation.

On the other hand, observe that

Ē(T, fθ) = ETm

[
Lm(fθ)−

∫ T

0

∥∥∥∇θtLm(f tm,θ)
∥∥∥2
H
dt

]
,

Ẽ(T, fθ) = ETm [Lm(fθ)− T
∥∥∥∇θLm(fθ)

∥∥∥2
H

].

We let

G(τ) =

∫ τ

0

∥∥∥∇θtLm(f tm,θ)
∥∥∥2dt,

and assume that∇θtLm(f tm,θ) is continuous at t = 0. Then, we have G′(τ) = ‖∇θtLm(f tθ)‖2.∥∥∥E(T, fθ)− Ẽ(T, fθ)
∥∥∥ =

∥∥∥ETm
[∫ T

0

∥∥∥∇θtLm(f tm,θ)
∥∥∥2dt− T∥∥∥∇θLm(fθ)

∥∥∥2
H

]∥∥∥
=
∥∥∥ETm(G(T)− T ·G′(0))

∥∥∥,
25

Under review as a conference paper at ICLR 2021

where TG′(0) = G(0) + TG′(0) (note that G(0) = 0) is a first order approximation to G(T) at
τ = 0. When T = 1, G(T) − TG′(0) can be taken as a local truncation error (i.e., the error that
occurs in one step of a numerical approximation). When T increases, the difference is no better than
the global truncation error (in T steps):

∥∥∥G(T)−
T∑
i=0

(i− (i− 1))G′(i)
∥∥∥ =

∥∥∥ T∑
i=0

∫ i+1

i

∥∥∥∇θtLm(f tm,θ)
∥∥∥2 − ∥∥∥∇θiLm(f t=im,θ)

∥∥∥2dt∥∥∥
≈
∥∥∥ T∑
i=0

∫ i+1

i

2 · 4itLm(fm,θ) · ∇Lm(f tm,θ)dt
∥∥∥,

where 4itLm(fm,θ) = ∇θtLm(f tm,θ) − ∇θiLm(f tm,θ) as shown previously , i is the i-th time

step, and G′(i) is the gradient of G at time step i. Now we can see that
∥∥∥E(T, fθ) − Ẽ(T, fθ)

∥∥∥
highly relates to the difference between ∇θtLm(f tm,θ) at different time steps (i.e. 4itLm(fm,θ)),
∇θtLm(f tm,θ) and T . The first two terms relate to how flat or sharp the hyperplane of Lm(fm,θ) is
near t = 0. We can wrap it as a constant C0(L, t = 0). Then, the error is at least C0(L, t = 0) ·O(T).
For the hyperplane smooth enough, we can further get a first order approximation of4itLm(fm,θ) and
yieldC(L, t = 0)O(T 2), whereC(L, t = 0) can be analogized as the second order derivative of L.

H SOME EXPERIMENTAL DETAILS

H.1 IMPLEMENTATION OF CLASSIFICATION FOR META-RKHS-II

As we mentioned earlier, our proposed energy functional with closed form adaptation can not be
directly applied to classification problem. We handle this challenge following Arora et al. (2019).
For a dy class classification problem, every data x is associated with a Rdy one-hot vector y as its
label. For C classes classification problem, its encoding is C dimensional vector and we use −1/C
and (C − 1)/C as its correct and incorrect entries encoding. In the prediction, Y tr is replaced by the
encoding of training data. fθ(x) is replaced by fθ(x)ᵀ[1, ..., 1] ∈ Rn×dy for dimension consistency.
During the testing time, we compute the encoding of the test data point, and choose the position with
largest value as its predicted class.

I EXTRA EXPERIMENTAL RESULTS

I.1 COMPARISON WITH RBF KERNEL

One interesting question is, without introducing extra model components or networks, what will the
results of other kernel be? We provide the results of using RBF (Gaussian) kernel here: 42.1± 1.9
(5-way 1-shot) and 54.9 ± 1.1 (5-way 5-shot) on Mini-ImageNet, 32.4 ± 2.0 (5-way 1-shot) and
38.2± 0.9 (5-way 5-shot) on FC-100, which are worse than the NTK based Meta-RKHS-II, showing
the superiority of using NTK.

I.2 MORE RESULTS ON OUT-OF-DISTRIBUTION GENERALIZATION

We provide some more results on out-of-distribution generalization experiments here. From the
results we can find that the proposed methods is more robust and can generalize to different datasets
better.

26

Under review as a conference paper at ICLR 2021

Table 5: Meta testing on different out-of-distribution datasets with model trained on FC-100.

5 WAY 1 SHOT 5 WAY 5 SHOT
ALGORITHM CUB VGG FLOWER CUB VGG FLOWER

MAML 31.58± 1.89% 50.82± 1.94% 41.72± 1.29% 65.19± 1.36%
FOMAML 32.34± 1.57% 49.90± 1.78% 41.96± 1.53% 66.87± 1.45%
REPTILE 33.56± 1.40% 46.77± 1.81% 42.79± 1.38% 67.97± 0.71%
IMAML 32.49± 1.52% 49.96± 1.98% 38.92± 1.62% 59.80± 1.82%
BAYESIAN TAML(SOTA) 31.82± 0.49% 49.58± 0.55% 43.97± 0.57% 67.36± 0.53%
META-RKHS-I 34.12± 1.34% 48.81± 1.89% 43.31± 1.43% 69.02± 0.62%
META-RKHS-II 36.35± 1.07% 59.75± 1.23% 49.92± 0.68% 76.32± 0.58%

27

Under review as a conference paper at ICLR 2021

I.3 MORE RESULTS ON ADVERSARIAL ATTACK

We now show some more extra results on adversarial attack in the following figures. Consistent to
the results in main text, we can find that our proposed methods are more robust to adversarial attacks.

1 10 20 30 40 50 60 70
Queries

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ac
cu

ra
cy

Black-box attack
Reptile
Meta-RKHS-I
IMAML
Meta-RKHS-II
Meta-RKHS-II_t100_PQ1
Meta-RKHS-II_t100_PQ2
MAML
FOMAML

Figure 6: FC-100 5-way 5-shot Black-box attacks (left) and 5-way 1-shot PGD `∞ norm attack
(right).

I.4 IMPACT OF GRADIENT NORM IN META-RKHS-I

In this experiment, we compare between our proposed Meta-RKHS-I and Reptile. We evaluate the
trained models with different adaptation steps in testing-time. The comparison is shown in Figure 7.
As we can see, our Meta-RKHS-I always gets better results than Reptile, which supports our idea
that the learned function should be close to task-specific optimal and have large functional gradient
norm. These two conditions together lead to the ability of fast adaptation.

2 4 6 8 10
0.496

0.498

0.500

0.502

0.504

0.506

0.508

0.510

0.512

(a) Mini-ImageNet, 5
Way 1 Shots

2 4 6 8 10

0.652

0.654

0.656

0.658

0.660

0.662

(b) Mini-ImageNet, 5
Way 5 Shots

2 4 6 8 10
0.384

0.385

0.386

0.387

0.388

0.389

(c) FC-100, 5 Way 1
Shots

2 4 6 8 10

0.485

0.490

0.495

0.500

0.505

0.510

0.515

Reptile
Meta-RKHS-I

(d) FC-100, 5 Way 5
Shots

Figure 7: Reptile (dashed) vs. Meta-RKHS-I (solid) with different testing adaptation steps (x-axis).

I.5 IMPACT OF NETWORK ARCHITECTURE FOR DIFFERENT META-LEARNING MODELS

In this section, we compare different meta-learning models with feature channels of 100 and 200 of
the CNN network structure with 4 or 5 CNN layers respectively.

28

Under review as a conference paper at ICLR 2021

Table 6: Few-shot classification results on Mini-ImageNet with different number of feature
channels of 4 convolution layers.

100 200
ALGORITHM 5 WAY 1 SHOT 5 WAY 5 SHOTS 5 WAY 1 SHOT 5 WAY 5 SHOTS

MAML 49.50± 1.58% 64.31± 1.07% 48.91± 1.69% 63.96± 0.82%
FOMAML 48.69± 1.62% 63.73± 0.76% 48.55± 1.86% 63.18± 0.96%
IMAML 49.30± 1.94% 62.89± 0.95% 48.23± 1.58% 62.25± 0.83%
REPTILE 50.20± 1.69% 64.12± 0.92% 48.72± 1.97% 63.67± 0.79%

META-RKHS-I 51.23± 1.79% 66.69± 0.73% 51.54± 1.64% 65.92± 0.92%
META-RKHS-II 51.37± 2.31% 66.97± 0.98% 50.96± 2.15% 65.21± 0.87%

Table 7: Few-shot classification results on Mini-ImageNet with different number of feature
channels of 5 convolution layers.

100 200
ALGORITHM 5 WAY 1 SHOT 5 WAY 5 SHOTS 5 WAY 1 SHOT 5 WAY 5 SHOTS

MAML 49.87± 1.65% 65.78± 1.18% 48.62± 1.82% 63.25± 0.75%
FOMAML 48.93± 1.71% 64.37± 0.80% 48.27± 1.74% 62.95± 0.83%
IMAML 48.03± 1.76% 62.15± 0.83% 47.52± 1.73% 61.77± 0.89%
REPTILE 50.62± 1.83% 64.53± 0.97% 49.33± 1.89% 63.26± 0.70%

META-RKHS-I 52.45± 1.88% 66.07± 0.69% 51.37± 1.92% 65.39± 0.98%
META-RKHS-II 50.92± 2.16% 66.45± 0.91% 50.43± 2.42% 64.17± 1.06%

29

