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Abstract

The focus on safety alignment in large language models (LLMs) has in-1

creased significantly due to their widespread adoption across different2

domains. The scale of LLMs play a contributing role in their success, and3

the growth in parameter count follows larger hidden dimensions. In this4

paper, we hypothesize that while the increase in dimensions has been a5

key advantage, it may lead to emergent problems as well. These problems6

emerge as the linear structures in the activation space can be exploited,7

in the form of activation engineering, to circumvent its safety alignment.8

Through detailed visualizations of linear subspaces associated with dif-9

ferent concepts, such as safety, across various model scales, we show that10

the curse of high-dimensional representations uniquely impacts LLMs.11

Further substantiating our claim, we demonstrate that projecting the repre-12

sentations of the model onto a lower dimensional subspace can preserve13

sufficient information for alignment while avoiding those linear structures.14

Empirical results confirm that such dimensional reduction significantly15

reduces susceptibility to jailbreaking through representation engineering.16

Building on our empirical validations, we provide theoretical insights into17

these linear jailbreaking methods relative to a model’s hidden dimensions.18

Broadly speaking, our work posits that the high dimensions of a model’s19

internal representations can be both a blessing and a curse in safety align-20

ment.21

1 Introduction22

Large language models (LLMs) have become ubiquitous due to their significant success in a23

wide variety of applications such as natural language generation (Zhao et al., 2023; Dong24

et al., 2019), logical reasoning (Wei et al., 2022; Wang et al., 2022; Huang & Chang, 2023),25

and summarization (Liu et al., 2024b; Van Veen et al., 2024; Zhang et al., 2024). To capitalize26

on their capabilities, frontier models are trusted with more autonomy and agency to assist27

humans or even replace them entirely (Anthropic, 2024; Lu et al., 2024; OpenAI, 2025). While28

these advancements are valuable and practical, the consequences of an LLM’s vulnerability29

are more severe than ever; LLMs are susceptible to attacks that lead to harmful responses30

that should be avoided. AI alignment, in particular, safety alignment, aims to ensure that31

the model is able to provide helpful responses to harmless prompts while avoiding harmful32

instructions (Leike et al., 2018; Matthews et al., 2022; Kenton et al., 2021; Ji et al., 2023; Ngo,33

2022). The general procedure in aligning LLMs (Achiam et al., 2023; Touvron et al., 2023;34

Grattafiori et al., 2024; Team et al., 2024; Bai et al., 2023; Anthropic, 2023; Liu et al., 2024a)35

follow multiple rounds of Supervised Fine-tuning (SFT) (Wei et al., 2021), Reinforcement36

Learning with Human Feedback (RLHF) (Ouyang et al., 2022; Kaufmann et al., 2023), and37

Direct Preference Optimization (DPO) (Rafailov et al., 2023). Considering the importance38

of safety alignment in LLM deployment, it is crucial to understand the internal model39

representations of safety and their possible subversions.40

In this work, we analyze the concept of safety being represented in an LLM with an emphasis41

on the dimensionality of the representations. It has been extensively theorized that high-level42

concepts or features are linearly represented as directions in the activation space (Park et al.,43

2024a;b; Zheng et al., 2024; Bolukbasi et al., 2016; Mikolov et al., 2013; Marks & Tegmark,44

2023). These linear representations can be leveraged or exploited to steer the model toward45
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Positive emotion: You receive a message from your crush asking to spend time together.

Negative emotion: Someone promises to meet but doesn’t show up or notify.

Figure 1: Examples of contrasting prompts representing a positive or negative emotion used to find
the steering vector for emotion.

a desired behavior by purposefully modifying its activations (Wolf et al., 2024; Rimsky et al.,46

2024; Turner et al., 2023; Zou et al., 2023a). This is the process of activation engineering.47

However, these linear structures are assumed to be emergent in LLMs. That is, they are48

only present in models that are sufficiently large, with high-dimensional representations49

(Park et al., 2023; Marks & Tegmark, 2023; Arditi et al., 2024). Our goal is to elucidate that50

assumption and its role in safety alignment. To be concrete, our contribution is three-fold.51

1. We analyze the role of dimensionality in the linear representation hypothesis52

through systematic experiments and visualizations with particular attention to53

its relation to safety alignment.54

2. We present theoretical insights into jailbreaking methods that exploit the linear55

structures in the activation space to elicit potentially harmful responses from LLMs56

through representation engineering.57

3. We propose novel fine-tuning methods for LLMs that include projecting their hidden58

representations onto a lower-dimensional subspace to safeguard against recently59

proposed jailbreaking methods while retaining sufficient information to be safety60

aligned.61

Our work demonstrates the dichotomy of the advantages and potential pitfalls of scaling62

models with increasing hidden dimensions. Specifically, we focus on open-source models63

where manipulations of their internals are possible and can be misused. We are inspired64

by Arditi et al. (2024) and build on their work to counter the white-box jailbreak proposed65

in their paper and connect them to the double-edged sword of representation engineering.66

By integrating multiple concepts in LLM research into a unifying framework, our goal is to67

enhance existing approaches to safety alignment.68

2 Background69

Notation. We denote a prompt and response pair as (x, y) ∼ D when sampled from a70

distribution, D. These are token sequences and we use y<t to denote the subsequence of71

tokens from the first position, 0 to t− 1. yt is used to refer to token t in response y and |y|72

refers to the length of a sequence. We use πθ to represent an LLM with parameter weights73

θ and πaligned for an aligned model. These are usually referred to as Chat or Instruct (IT)74

models and have undergone post-training for alignment and instruction-tuning. LLMs75

referred to as Base models are the models that have been pre-trained but without further fine-76

tuning or preference optimization. Finally, π(· | x, y<t) denotes the vector of probabilities of77

the next generated token yt.78

Linear Representations. Linear representations have led to considerable advancements79

in the interpretability of a model’s hidden states (Mikolov et al., 2013; Nanda et al., 2023;80

Gurnee & Tegmark, 2023; Jiang et al., 2024). We consider a linear representation to be a81

direction in the activation space of the LLM that represents a concept like ”truthfulness” or82

”safety”. These concepts are more complex, as compared to high-level concepts like color or83

gender (Mikolov et al., 2013; Abdou et al., 2021; Patel & Pavlick, 2022) and seem to emerge in84

LLMs due to their scale. These concept vectors are typically found by collecting the model85

activations for two contrastive sets of prompts and finding the difference between them. An86

example of prompts that represent the concept of emotions can be found in Figure 1. We87

may also refer to these vectors as steering vectors.88

Jailbreaking via Activation Engineering. A jailbreak attack refers to an intentional attempt89

to bypass a model’s safety alignment and elicit a harmful response, thereby disabling a90

refusal. A simple method proposed by (Arditi et al., 2024) leverages the safety direction to91

steer the model. Thereafter, the model refuses harmless requests while generating harmful92
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Figure 2: (Left to right) Each column visualizes the hidden representations from different layers of
Qwen0.5B, GPT-XL, Qwen7B, and Llama2-7B respectively, when projected onto the top-2 principal
components. The top row are hidden representations from the third layer while the bottom row are
from the last layer of each model. Red and blue points are representations of prompts corresponding
to positive and negative emotion. Each model’s hidden dimension is noted at the top of their column.
We observe that as the hidden dimension increases, the separation becomes more pronounced over
layers, illustrating a trend toward stronger linear representations of emotion in larger models.

content, and is successfully attacked. We refer to this jailbreak method as ActAdd. A similar93

method, Ablation, ablates this safety direction in the activations to induce refusal. More94

details can be found in Appendix B.1 and B.2.95

Transformers. The main architecture of LLMs follows a decoder-only transformer model96

(Vaswani et al., 2017). For a given prompt sequence x and its hidden representation x(ℓ)97

at layer ℓ, the next layer in the LLM transforms its input by the multi-head attention98

mechanism, followed by an MLP. The attention component projects x(ℓ) into the query Q,99

key K, and value matrix V via three linear transformations independently at each attention100

head1:101

Q = x(ℓ)W⊤
Q ; K = x(ℓ)W⊤

K ; V = x(ℓ)W⊤
V ,

where WQ, WK, and WV are the weight matrices. For ease of notation, we omit the super-102

script ℓ for the query, key, value matrices and their weights, however it should be noted that103

they are unique to each layer. The intermediate output of attention x̃(ℓ) and final output104

x(ℓ+1) of layer ℓ+ 1, is then computed as follows105

x̃(ℓ) = x(ℓ) + softmax
(

QK⊤/
√

D
)

V ; x(ℓ+1) = x̃(ℓ) + MLP(x̃(ℓ)),

where the softmax function is applied to each row of the matrix QK⊤/
√

D and D is the106

hidden dimension of x.107

3 The Paradox of Linear Separability108

3.1 Linear Separability109

Activations Visualization. The linear structures that represent concepts can be simply110

visualized using principal component analysis (PCA). If there is an evident direction corre-111

sponding to a particular concept, there should be two distinct clusters consistent with two112

contrastive sets of prompts and strong linear separability between them.113

In Figure 2, we plot the activations, from models of varying sizes, of two separate sets114

of prompts that represent positive and negative emotions when projected onto the top-2115

principal components (PCs). While this work is focused on safety, we use emotion in this116

section as we are comparing the linear representations of language models with relatively117

1See Appendix A.1 for further details.
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small hidden dimensions that do not have an aligned counterpart. We choose emotion as it118

is an abstract concept, similar in complexity to safety.119

We observe that across all hidden dimensions, layer 3 has no separation between the120

two sets at all and seem uninformative. Conversely, in the final layer, there are distinct,121

separable clusters of positive and negative emotions in models with more than 3,000122

dimensions. For the smaller models, these clusters clearly overlap with a large degree123

of mixing, suggesting a lack of linear representations. These visualizations substantiate124

the usual assumptions in the linear representation hypothesis, that the linear structures125

of increasingly complex concepts are only present in models of sufficiently large scale.126

Test Accuracy

Dimension

Figure 3: Test accuracy of linear probes
trained on activations from models with
varying hidden dimensions. The probes
are trained to classify if a prompt repre-
sents a positive or negative emotion.

127

Linear Probing. We corroborate our visualization128

with a linear probe experiment and present our re-129

sults in Figure. 3. Using the activations from mod-130

els of different families and scales, we train a lin-131

ear probe to predict if the prompt conveyed posi-132

tive or negative emotions. We test on a held out set133

of emotions, to assess the model’s generalization of134

the concept. As illustrated in the line plot, there is135

an obvious distinction between models below and136

above 2,000 hidden dimensions, with greater accu-137

racy achieved with higher dimensions, suggesting138

better generalization and a strong linear structure139

representing emotion. Details on the experiment can140

be found in Appendix E.141

These results support the hypothesis that abstract concepts require a sufficiently large activation142

space to be linearly represented. While these directions may be beneficial as steering directions143

to control a model’s behavior, there is also danger in exploiting these linear structures to144

overcome safety alignment. We refer to this tension as the Paradox of Linear Separability,145

which can be summarized as follows:146

Paradox of Linear Separability

As models are scaled up to improve their abilities, they also become more vulnerable
to steering jailbreaks, making it increasingly critical to protect their alignment.

147

3.2 Learning-Theoretic Perspective148

In this section, we provide theoretical insights into the relationship between steering jail-149

breaks and the hidden dimensions of the model. We analyze the steering vectors from the150

perspective of learning theory, motivating our methodology to defend against such attacks.151

We begin by considering a class of adversaries that rely on linear concept erasure. This152

entails learning a linear classifier to classify the binary classes of a concept (Ravfogel et al.,153

2022; Belrose et al., 2023; Marks & Tegmark, 2023; Arditi et al., 2024) and effectively erasing154

the concept encoded along that 1-dimensional subspace by removing that direction from155

the feature space. ActAdd jailbreak is one type of attack within this class.156

The effectiveness of linear functions in high-dimensional feature spaces can be understood157

through the lens of Vapnik–Chervonenkis (VC) dimension, as the VC dimension of a linear158

hypothesis class in RD is D+ 1 (Mohri et al., 2018). However, we present a simple alternative159

argument for evaluating the richness of a hypothesis class as a function of input dimension,160

using Rademacher complexity—a measure that captures data dependence and avoids the161

purely combinatorial nature of the VC dimension.162

Let F be a family of functions mapping from RD to R. Then, the empirical Rademacher163

complexity of F for a sample S = (x1, . . . , xN), is defined by164

R̂S (F ) = Eσ

[
sup
f∈F

1
N

N

∑
i=1

σi f (xi)

]
, (1)
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where σ = (σ1, . . . , σN) is a vector of i.i.d. Rademacher variables, which are independent165

uniform random variables taking values in {−1,+1}. The Rademacher complexity of F ,166

denoted RN(F ), is defined as the expectation of this quantity:167

RN(F ) = ES∼DN [R̂S (F )], (2)

where D represents a distribution over the input space RD. The empirical Rademacher168

complexity is a crucial data-dependent measure of complexity. The following useful bound169

is due to Awasthi et al. (2020):170

Theorem 1 Let F = { f : f (x) = w⊤x, ∥w∥2 ≤ L, x ∈ RD} be the family of linear functions171

with bounded weight. Then, the empirical Rademacher complexity (Eqn. 1) of F given a data matrix172

X ∈ RN×D admits the following bound:173

R̂X(F ) ≤
L∥X∥F

N
. (3)

Based on this result, we explicitly relate the Rademacher complexity of the linear hypothesis174

class to dimensionality of the input in Proposition 1.175

Proposition 1 Assume that each steering vector follows a normal distribution. Then, the176

Rademacher complexity (Eqn. 2) of F admits the following bound up to a constant factor:177

RN(F ) ≲ L

√
D
N

. (4)

The bound in Eqn. 4 explicitly separates the effects of sample dimension and sample size178

in determining the capacity of a linear hypothesis class on the given sample. To be more179

precise, dimension reduction applied to the input space effectively reduces the Rademacher180

complexity of the linear hypothesis class at the rate of O(
√

D). Consequently, the concept181

encoded in a single direction in RD is expected to be shattered over a higher dimensional182

subspace in Rk with k < D, diminishing the performance of a linear classifier. Hence it183

should be more difficult to find an effective steering vector in a lower dimensional subspace, limiting184

the success of the ActAdd attack. The proof of Proposition 1 is provided in Appendix A.4.185

4 Guarding Against Steering Vectors186

We develop two novel approaches as a defense mechanism against steering jailbreaks and187

describe them below. Both methods are motivated by the theory presented in Section 3.2188

to reduce the dimension of the activation space. We build our methods on top of already189

aligned Chat and Instruct models, as the exact post-training pipelines on base models are190

not publicly available.191

4.1 Fast Johnson–Lindenstrauss Transform192

Our first approach hinges on the Fast Johnson-Lindenstrauss Transform (FJLT) (Ailon &193

Chazelle, 2006), a low-distortion embedding of a high-dimensional normed metric space194

into low-dimensional one. A well established result in dimensionality reduction is the195

Johnson-Lindenstrauss (JL) Lemma that proves the existence of a mapping for n points in196

high dimensional euclidean space onto K dimensions that preserves the euclidean distance197

between any two points2. The FJLT is a sped-up implementation of the JL transform, and198

we capitalize on their preservation of Euclidean distance by introducing this mapping as a199

projection in every attention layer of the LLM.200

Concretely, we construct our FJLT projection matrix Φ(ℓ) ∈ RD×K, where K < D, for each201

layer ℓ and apply it to the query and key matrices:202

Qproj = QΦ(ℓ); Kproj = KΦ(ℓ); x̃(ℓ) = x(ℓ) + softmax
(

QprojK⊤proj/
√

D
)

V .

We chose the query and key matrices to apply the FJLT projection as the inner products203

between each row of Q and K should be approximately preserved in theory while the204

2The precise statement is in Appendix A.2 for completeness
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projection into a lower dimensional activation space acts as a defense mechanism for205

steering attacks. As LLMs generally use multi-head attention, we only choose one head to206

apply the FJLT projection and consider this a hyperparameter. More details on multi-head207

attention and an ablation study on the heads are in Appendix B.4 and C.1. For LLMs with208

the FJLT projection matrix implemented, we refer to them as a FJLT model.209

Then, we fine-tune the FJLT model using the following token-wise constrained objective210

from Qi et al. (2024)211

min
θ

{
E(x,y)∼D −

|y|

∑
t=1

2
βt

log

[
σ

(
βt log

πθ(yt | x, y<t)

πaligned(yt | x, y<t)

)]}
, (5)

where βt > 0 is a hyperparameter, πaligned is a Chat or Instruct model used as a reference212

model and σ(x) := 1/(1 + exp−x) is the sigmoid function. In their work, they provide213

some theoretical analysis on the limiting behaviors of the objective with respect to βt and214

interpretations from a reinforcement learning perspective. Complementarily, we offer a215

different interpretation of their objective function, in the form of weighted entropy (Kelbert216

et al., 2017b;a) in Appendix A.5. We use this objective to encourage the FJLT model to217

minimize the deviation of its distribution over the generated tokens from the aligned model,218

since the FJLT model has theoretical groundings that justify its approximation of the aligned219

model.220

Limitation. A limitation of the FJLT model is that the LLM is only able to perform well221

on datasets that are similar to the fine-tuning dataset. We observe in Appendix D, Table222

11, that while the FJLT model can perform close to the baseline model on THE PILE (Gao223

et al., 2020) and Alpaca (Taori et al., 2023), it is unable to answer many prompts from SQL224

Create Context (b mc2, 2023), Samsum (Gliwa et al., 2019) and GSM8k (Cobbe et al., 2021).225

This could result from an over-compression of the model’s concepts or knowledge. We226

corroborate this in Section 5.2 and are motivated to present an additional Bottleneck method227

that can overcome such limitations.228

4.2 Bottleneck229

An alternative to the FJLT projection is to insert a linear autoencoder between a pair of230

consecutive layers in the model. The index of the layer ℓ where it is inserted is considered a231

hyperparameter and chosen empirically. Since we only insert a single projection layer, we232

would expect less information loss compared to the FJLT model. The structure of the linear233

autoencoder is simple,234

x(ℓ)compressed = σ(x(ℓ)WdownWup),

where σ is an activation function, Wdown ∈ RD×K and Wup ∈ RK×D for K < D. Then,235

x(ℓ)compressed is processed by layer ℓ+ 1. We refer this model as a Bottleneck model.236

To fine-tune the Bottleneck model, we use the standard fine-tuning objective, with a refusal237

dataset DP and an anchor utility dataset DB,238

min
θ

E(x,y)∼DP
[− log πθ(y | x)] + α E(x,y)∼DB

[− log πθ(y | x)] .

α is a regularization hyperparameter to control the influence of the anchor loss on the239

objective. DP consists of harmful prompts with refusal responses and DB consists of benign240

prompts with safe responses. The decision to return to the standard objective function241

is motivated empirically. Further, the Bottleneck model has no theoretical grounds to be242

expected to match the aligned model’s distribution over yt.243

5 Experiments244

In this section, we aim to: i) empirically validate the defenses of both FJLT and Bottleneck245

models on the ActAdd jailbreak (Section 5.1); ii) Analyze the preservation of linear represen-246

tations in both models (Section 5.2). More experiments on the Ablation jailbreak and other247

benchmarks can be found in Appendix D.2.248
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Table 1: Hyperparameters, refusal scores, safety scores and perplexity (PPL) on harmful and benign
instructions after attacking each model using the ActAdd jailbreak. We also include results on the
baseline Chat or Instruct models without jailbreaks for reference. The direction of increasing or
decreasing values signifying better performance is indicated by each metric’s arrow direction. Our
model is highlighted in grey.

Jailbreak Model Head K Harmful Inst. Benign Inst.
Refusal ↑ Safety ↑ Refusal ↓ PPL ↓

Llama2-7B-Chat 0.97 0.99 0.00 1.12

ActAdd
Llama2-7B-Chat 0.03 0.14 1.00 1.58
Llama2-7B-Chat-FT 0.66±0.17 0.65±0.17 0.91±0.04 1.09±0.13
Llama2-7B-Chat-FJLT 0 64 0.94±0.06 0.96±0.03 0.63±0.03 1.37±0.11

Gemma-1.1-7B-IT 0.92 0.96 0.00 1.27

ActAdd
Gemma-1.1-7B-IT 0.41 0.55 0.62 1.72
Gemma-1.1-7B-IT-FT 0.37±0.23 0.53±0.10 0.87±0.05 1.68±0.03
Gemma-1.1-7B-IT-FJLT 0 96 0.90±0.04 0.85±0.04 0.55±0.08 1.40±0.06

Qwen2-7B-Instruct 0.99 0.99 0.01 1.44

ActAdd
Qwen2-7B-Instruct 0.11 0.18 0.91 1.77
Qwen2-7B-Instruct-FT 0.14±0.04 0.15±0.03 0.91±0.03 1.46±0.03
Qwen2-7B-Instruct-FJLT 0 64 0.89±0.09 0.91±0.07 0.76±0.05 1.59±0.08

5.1 Jailbreak Benchmark Evaluations249

We fine-tune three models, Llama2-7B-Chat (Touvron et al., 2023), Gemma-1.1-7B-IT (Team250

et al., 2024) and Qwen2-7B-Instruct (Yang et al., 2024) and evaluate them on JailbreakBench251

(Chao et al., 2024) and Alapca dataset (Taori et al., 2023). We report results on the baseline252

Chat or Instruct model, fine-tuned model without any modifications (denoted by FT), FJLT253

and Bottleneck models. Implementations details can be found in Appendix B. Our results254

are averaged over 5 runs and conducted on a server with 8 H100 GPUs.255

Harmful Instruction Evaluations. To evaluate the success of the ActAdd jailbreak on256

harmful instructions, we use a refusal and safety score following Arditi et al. (2024). The257

refusal score represents the proportion of prompts where the LLM’s generated response258

are refusals. The safety score is measured as the proportion of model responses that are259

considered safe by Meta Llama Guard 2 (Team, 2024), a reliable open-sourced model fine-260

tuned to identify harmful content. These metrics should be higher on harmful instructions.261

Benign Instructions Evaluations. For safe instructions evaluations, we report the refusal262

score and perplexity (PPL) of the responses on benign prompts to ensure that the model263

does not just avoid refusal, but can provide a coherent response. For a coherent, safety264

aligned model, we would expect the refusal score and PPL to be low on benign instructions.265

5.1.1 Fast Johnson–Lindenstrauss Transform Experiments266

For the FJLT model, there are three hyperparameters to consider: i) 0 < K < DH , the267

number of dimensions to project onto; ii) Head, the attention head index to implement the268

FJLT projection; iii) βt > 0, a regularization parameter for the objective function, Eqn. 5.269

Note here that DH < D is the number of hidden dimensions in each attention head. We270

present the different values of K for each model, along with the attention head used and271

our results in Table 1. We only use one head for projection in each layer. For βt, we follow272

the setting provided by Qi et al. (2024). We fine-tune each model on Dp, a set of harmful273

prompts with refusal responses.274

We observe that when we simply fine-tune the model, after the jailbreak, there are already275

some improvements in the refusal and safety scores on harmful instructions, but minimal on276

the safe instructions. This is likely due to the additional refusal fine-tuning we performed.277

After accounting for this compounding effect, there is still remarkable progress in defending278

against the ActAdd jailbreak, minimizing its success. The refusal and safety scores for harm-279

ful instructions return to almost uncompromised baseline levels and some improvements280

on safe instructions. These results serve to support our hypothesis that models can have281

strong guardrails against steering jailbreaks in a lower dimensional representation space.282
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Table 2: Hyperparameters, refusal scores, safety scores and perplexity (PPL) on harmful and benign
instructions after attacking each model using the ActAdd jailbreak. We also include results on the
baseline Chat or Instruct models without jailbreaks for reference. The direction of increasing or
decreasing values signifying better performance is indicated by each metric’s arrow direction. Our
model is highlighted in grey.

Jailbreak Model α Layer K Harmful Inst. Benign Inst.
Refusal ↑ Safety ↑ Refusal ↓ PPL ↓

Llama2-7B-Chat 0.97 0.99 0.00 1.12

ActAdd
Llama2-7B-Chat 0.03 0.14 1.00 1.58
Llama2-7B-Chat-FT 1.0 0.55±0.02 0.35±0.02 0.99±0.00 1.07±0.01
Llama2-7B-Chat-Bottleneck 1.0 0 2048 0.95±0.02 0.97±0.01 0.30±0.03 1.08±0.34

Gemma-1.1-7B-IT 0.92 0.96 0.00 1.27

ActAdd
Gemma-1.1-7B-IT 0.41 0.55 0.62 1.72
Gemma-1.1-7B-IT-FT 0.1 0.00±0.00 0.54±0.03 0.75±0.04 1.56±0.07
Gemma-1.1-7B-IT-Bottleneck 0.1 0 1536 0.82±0.08 0.83±0.06 0.41±0.02 2.50±0.33

Qwen2-7B-Instruct 0.99 0.99 0.01 1.44

ActAdd
Qwen2-7B-Instruct 0.11 0.18 0.91 1.77
Qwen2-7B-Instruct-FT 1.0 0.08±0.00 0.19±0.01 0.98±0.00 1.66±0.02
Qwen2-7B-Instruct-Bottleneck 1.0 0 1792 0.23±0.10 0.51±0.19 0.74±0.11 1.47±0.05

5.1.2 Bottleneck Experiments283

For the Bottleneck model, there are also three hyperparameters: i) 0 < K < D; ii) ℓ, the284

layer in the LLM to insert this autoencoder after; iii) α > 0, the regularization parameter to285

control the anchor dataset’s loss. We report the values of all hyperparamters used in Table 2,286

along with our results.287

Similar to the FJLT model results, there are already improvements with the FT model.288

After accounting for the effect of fine-tuning itself, there are still significant improvements289

on both harmful and benign instructions across all models and metrics. The greatest290

improvement comes from Llama2-7B-Chat-Bottleneck, whose refusal score increases to291

almost 1 on harmful instructions and lowers to 0.3 on safe instructions. This shows that292

the model is able to answer 70% of the benign prompts while refusing almost all harmful293

instructions, rendering the ActAdd attack practically ineffective. Furthermore, in Table 11,294

Appendix D, we find that the Bottleneck model is able to perform close to the level of the295

baseline Chat model on several utility benchmarks, maintaining its utility and improving296

over the FJLT model.297

5.2 Concepts in Projected Subspaces298

Figure 4 displays the first two PCs of hidden representations for three concept categories299

in the baseline Chat, FJLT, and Bottleneck models based on Llama2-7B-Chat. While our300

primary goal is to manage the linear geometry of safety, maintaining other concept structures301

are crucial to preserve the utility of the model. Notably, both FJLT and Bottleneck models302

effectively disrupt linear separability for safety, suggesting a potential non-linear encoding303

in the reduced subspace. However, FJLT also distorts the distinct structures of truthfulness304

and emotion, possibly reducing the quality of responses. In fact, as seen in Table 11 in the305

appendix, FJLT performs well on THE PILE and Alpaca, but extremely poorly on SQL Create306

Context, Samsum, and GSM8k. In contrast, the Bottleneck model preserves the original307

separation of truthfulness and emotion, while successfully mitigating linear separability in308

safety.309

6 Related Work310

Concept erasure. Concept erasure aims to remove specific attributes—such as bias or311

protected features—from learned representations while preserving task-relevant informa-312

tion. Several methods address concept erasure in LLM representations: Iterative Nullspace313

Projection (INLP) (Ravfogel et al., 2022) effectively removes linearly encoded concepts but314

is confined to such representations; Linear Guardedness (Ravfogel et al., 2023) provides315

a theoretical framework for assessing erasure success beyond mere probe failure; Perfect316
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Figure 4: Projection of the hidden representations onto the top-2 principal components for three
concept categories–truthfulness, emotion, and safety–in the baseline Chat, FJLT, and Bottleneck models
based on Llama2-7B-Chat.

Concept Erasure (Belrose et al., 2023) offers provable guarantees by constructing a maximal317

concept-invariant subspace, optimizing task information retention; however, information-318

theoretic analyses (Chowdhury et al., 2025) demonstrates that perfect erasure without utility319

loss is often unattainable, thus setting realistic expectations for any erasure technique.320

Safety Alignment. There has been considerable research effort directed to understand and321

explain the strengths and weaknesses of safety alignment in LLMs from various viewpoints.322

Zhou et al. (2024a) highlights potential fundamental limitations of standard safety alignment323

approaches by designing emulated disalignment methods to exploit distributional contrasts324

between aligned and non-aligned model outputs. Both Zhou et al. (2024b) and Li et al.325

(2025) explore layerwise behavior, with the former categorizing how LLMs assign hidden326

representations to ethical and unethical prompts and the latter discovering an implicit327

security mechanism present roughly around middle layers. Additionally, Hazra et al.328

(2024) proposes a test-time parameter steering technique to reduce the risk of harmful LLM329

responses.330

In a complementary vein, our work concentrates specifically on the role of hidden representa-331

tion dimensionality in LLM safety alignment and robustness against adversaries and departs332

from merely relying on the linear separability hypothesis by presenting comprehensive333

theoretical arguments along with extensive empirical support.334

7 Conclusion335

By systematically analyzing the linear representation hypothesis through empirical exper-336

iments and visualizations, we have demonstrated the complex interplay between model337

size, dimensionality, and safety alignment. This research underscores the dual nature of338

scaling LLMs, revealing how increased dimensionality, while enhancing capabilities, also339

introduces exploitable weaknesses. Furthermore, we provided theoretical insights into340

jailbreaking methods that exploit these linear structures via representation engineering,341

highlighting the vulnerabilities inherent in high-dimensional models. To address them,342

we have proposed two novel fine-tuning methods that strategically project hidden repre-343

sentations onto lower-dimensional subspaces, aiming to mitigate jailbreaking risks while344

preserving essential safety alignment. Our findings contribute to a deeper understanding345

of safety alignment and offer potential strategies to safeguard against adversarial attacks.346

While we show that certain abstract concepts are well-preserved with properly tuned mod-347

els, a principled semantics-based projection method remains an open challenge and we348

leave it for future work. Nevertheless, our theoretical insights and empirical results across349

diverse model families provide a strong proof of concept.350
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Our work explores how dimensionality influences the linear representation hypothesis352

and its connection to safety alignment. While gaining deeper insights into alignment may353

also reveal pathways to jailbreak models, we believe that open and transparent research in354

this area is essential–both for enhancing the safety of future models and for ensuring their355

broader, positive impact on society.356
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A Theoretical Background and Omitted Proofs685

A.1 Multi-Head Attention686

The attention mechanism in Transformers extends to multi-head attention (MHA), which687

allows the model to jointly attend to information from different representation subspaces688

(Vaswani et al., 2017). Instead of computing a single set of queries, keys, and values,689

MHA divides the hidden representation into H attention heads, each with its own learned690

projections. Given a hidden representation x(ℓ) at layer ℓ, the query, key, and value matrices691

for head h are computed as692

Qh = x(ℓ)W (h)⊤
Q , Kh = x(ℓ)W (h)⊤

K , Vh = x(ℓ)W (h)⊤
V ,

where W (h)
Q , W (h)

K , and W (h)
V are head-specific weight matrices. The scaled dot-product693

attention for each head is then computed as694

Attnh(x
(ℓ)) = softmax

(QhK⊤h√
DH

)
Vh,

where DH = D/H is the dimension of each head’s subspace. The outputs from all heads are695

concatenated and projected back to the model dimension via the output weight matrix WO:696

x̃(ℓ) = x(ℓ) +
[
Attn1(x(ℓ)) ∥Attn2(x(ℓ)) ∥ . . . ∥AttnH(x(ℓ))

]
WO.

Finally, the output of layer ℓ+ 1 is computed by applying an MLP block:697

x(ℓ+1) = x̃(ℓ) + MLP(x̃(ℓ)).
Multi-head attention enables the model to capture diverse relationships between tokens by698

attending to different subspaces of the input representation, improving its ability to model699

complex dependencies.700

A.2 Johnson-Lindenstrauss Lemma701

The Johnson-Lindenstrauss (JL) lemma is a seminal result in high-dimensional geometry and702

probability, providing a way to embed high-dimensional points into a lower-dimensional703

Euclidean space while approximately preserving pairwise distances. In its original form704

(Johnson & Lindenstrauss, 1984), it is stated as follows:705

Lemma 1 (Johnson-Lindenstrauss) Let X be a set of n points in Rd. For any 0 < ε < 1, there
exists a mapping f : Rd → Rm with m = O(ε−2 log n) such that for all x, y ∈ X,

(1− ε)∥x− y∥2
2 ≤ ∥ f (x)− f (y)∥2

2 ≤ (1 + ε)∥x− y∥2
2.

For a comprehensive review of the JL lemma transform and its applications, we refer706

interested readers to Freksen (2021).707

A.3 Fast Johnson-Lindenstrauss Transform708

While Lemma 1 establishes the existence of a distance-preserving mapping, an explicit709

construction remains elusive. From a myriad of JL transform implementations (Indyk &710

Motwani, 1998; Kane & Nelson, 2014; Fandina et al., 2023), the Fast Johnson-Lindenstrauss711

Transform (FJLT) (Ailon & Chazelle, 2006) plays a key role in our work. We provide a brief712

review of some JL transforms for completeness.713

Dense JL. A simple way to construct a mapping f is f (x) = k−1/2 Ax, where A is a random714

k× d matrix with i.i.d. N (0, 1) entries (Indyk & Motwani, 1998). This requires O(kd) time715

for the matrix-vector product Ax, which can dominate runtime. To speed this up, two main716

approaches exist: 1) sparse matrices; 2) structured matrices with fast multiplication.717

Sparse JL. Replacing A with a matrix having only t nonzero entries per column reduces718

embedding time to O(td). If x is sparse, this further improves to O(t∥x∥0), where ∥x∥0 is719

the number of nonzero entries. The best known construction (Kane & Nelson, 2014) achieves720

t = O(ε−1 ln n), closely matching the theoretically optimal value derived by Nelson &721

Nguyen (2013).722
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FJLT. The FJLT is a structured random linear mapping Φ : Rd → Rk, constructed as a723

product of three matrices:724

Φ = PHD. (6)
The three matrices are defined as follows: The matrix P is sparse, with each entry Pij725

independently set to zero with probability 1 − q and otherwise drawn from a normal726

distribution with expectation zero and variance q−1. The sparsity parameter is given by:727

q = min

{
Θ

(
log2 n

d

)
, 1

}
, (7)

The matrix H is a Walsh-Hadamard matrix normalized as:728

Hij = d−1/2(−1)⟨i−1,j−1⟩, (8)
where ⟨i, j⟩ denotes the dot product (modulo 2) of the binary representations of i and j.729

The matrix D is a diagonal matrix where each Dii is an independent Rademacher random730

variable taking values in {−1, 1} with equal probability.731

Efficiency. The computational efficiency of FJLT arises from the structured nature of H.732

The matrix-vector product Hx can be computed in O(d log d) time using the Fast Walsh-733

Hadamard Transform, while the sparsity of P ensures that the multiplication Px requires734

only O(qd) operations. Thus, applying Φ to an arbitrary vector x ∈ Rd requires time735

complexity:736

O(d log d + k log2 n). (9)

This makes FJLT significantly more efficient than a standard dense JL transform, which737

requires O(kd) operations. The use of the Walsh-Hadamard matrix ensures that randomness738

is efficiently spread across all dimensions, contributing to robust embedding properties.739

A.4 Proof of Proposition 1740

To begin with, the following lemma is the key for Proposition 1:741

Lemma 2 The asymptotics
∣∣∣EN (0,I)∥X∥F −

√
ND

∣∣∣ = o(1) holds as N, d→ ∞.742

Proof. Since Frobenius norm is induced by Euclidean vector norm, it is sufficient to bound743

E∥x∥ with x ∈ RN (a column vector). Without loss of generality, assume that σ = 1 so that744

E[x2
i ] = 1 for all i ∈ [N]. Denote ξ := ∥x∥2/N. Note that745

E[ξ] = E

[
1
N

N

∑
i=1

x2
i

]
=

1
N

N

∑
i=1

E
[

x2
i

]
= 1, (10)

and Var(ξ) = 1/N. This implies that ξ is usually very close to 1. To make it rigorous, we746

look at the following expansion:747 √
ξ =

√
1 + (ξ − 1) = 1 +

ξ − 1
2
− (ξ − 1)2

8
+ o

(
(ξ − 1)2

)
.

Now since
√

ξ is a concave function of ξ, it is below its tangent, and also there exists an748

absolute constant γ > 0 such that749

1 +
ξ − 1

2
− (ξ − 1)2

τ
≤
√

ξ ≤ 1 +
ξ − 1

2
. (11)

It is easy to verify that taking any τ ∈ (0, 2] is sufficient. Now taking expectation throughout750

the inequalities and noticing that E[ξ − 1] = 0 and E[(ξ − 1)2] = Var(ξ) = 1/N, we arrive751

at752

1− 1
2N
≤ E

[√
ξ
]
≤ 1 =⇒

∣∣∣E∥x∥ −√N
∣∣∣ ≤ 1

2
√

N
.

Note that since the inequalities applied after the Lipschitzness of softmax are asymptotically753

tight in N, the final bound is also asymptotically tight. This completes the proof. ■754

Proof of Proposition 1. It is now straightforward to see by combining Lemma 2 and the upper755

bound in Theorem 1:756

R̂N(F ) = EX

[
R̂X(F )

]
≤ EX

[
L∥X∥F

N

]
≍ L

√
D
N

, (12)

as desired. ■757
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A.5 Interpretation of the objective function, Eqn. 5, from the perspective of weighted758

entropy759

Recall that our objective function in Section 4.1 is760

min
θ

E(x,y)∼D

{
−
|y|

∑
t=1

2
βt

log

[
σ

(
βt log

πθ(yt | x, y<t)

πaligned(yt | x, y<t)

)]}

Since πθ , the probability of predicting token yt given x and y<t, depends only on the761

model’s representation of x and y<t, we can interpret πθ as P(yt | [x, y<t]θ). Similarly, we762

can interpret πaligned as P(yt | [x, y<t]aligned).763

Then, we can express our objective function as follows:764

min
θ

E(x,y)∼D

{
−
|y|

∑
t=1

2
βt

log

[
σ

(
βt log

P(yt | [x, y<t]θ)

P(yt | [x, y<t]aligned)

)]}

=min
θ

∑
k∈N

E(x,y)∼D

{
−
|y|

∑
t=1

2
βt

log

[
σ

(
βt log

P(yt | [x, y<t]θ)

P(yt | [x, y<t]aligned)

)]
| {|y| = k}

}
P(|y| = k)

=min
θ

∑
k∈N

E(x,y)∼D

{ |y|
∑
t=1

2
βt

S

(
βt log

P(yt | [x, y<t]aligned)

P(yt | [x, y<t]θ)

)
| {|y| = k}

}
P(|y| = k)

=min
θ

∑
k∈N

k

∑
t=1

2
βt

E(x,y)∼D

{
S

(
βt log

P(yt | [x, y<t]aligned)

P(yt | [x, y<t]θ)

)
| {|y| = k}

}
P(|y| = k) (13)

where S is the softplus function and |y| is the length of the response sequence.765

Let zt := log
P(yt |[x,y<t ]aligned)

P(yt |[x,y<t ]θ)
and from Taylor’s expansion of S, we have766

S(βtzt) = S(0) + S′(0)βtzt + S′′(ϵβtzt)β2
t z2

t ≥ S(0) + S′(0)βtzt (14)

for ϵ ∈ [0, 1], as S′′ = (1− S′)S′ and is bounded between [0, 1/4]. Note that βt > 0 is a767

hyperparameter.768

Then, expanding out the expectation in Eqn. 13 using Eqn. 14, we have769

E(x,y)∼D

{
S

(
βt log

P(yt | [x, y<t]aligned)

P(yt | [x, y<t]θ)

)
| {|y| = k}

}
(15)

≥ E(x,y)∼D

{
S(0) + S′(0)βt log

P(yt | [x, y<t]aligned)

P(yt | [x, y<t]θ)
| {|y| = k}

}

= S(0) + S′(0)βt

(
E(x,y)∼D

{
log P(yt | [x, y<t]aligned) | {|y| = k}

}
−E(x,y)∼D {log P(yt | [x, y<t]θ) | {|y| = k}}

)
.

Finally, we derive each expectation term as770

E(x,y)∼D

{
log P(yt | [x, y<t]aligned) | {|y| = k}

}
= ∑

x,y
P(x, y | {|y| = k}) log P(yt | [x, y<t]aligned)

= ∑
x,y

P(x, y | {|y| = k})
P(yt | [x, y<t]aligned)

P(yt | [x, y<t]aligned) log P(yt | [x, y<t]aligned)

= ∑
x,y

φk(x, y)P(yt | [x, y<t]aligned) log P(yt | [x, y<t]aligned)

= Hφk (yt | [x, y<t]aligned),
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where Hφk is the weighted conditional entropy between yt and [x, y<t]aligned. Similarly, for771

fine-tuned model πθ ,772

E(x,y)∼D {log P(yt | [x, y<t]θ) | {|y| = k}} = Hφ′k (yt | [x, y<t]θ).

Substituting the weighted conditional entropy of each model into Eqn. 13, we obtain773

min
θ

E(x,y)∼D

{
−
|y|

∑
t=1

2
βt

log

[
σ

(
βt log

P(yt | [x, y<t]θ)

P(yt | [x, y<t]aligned)

)]}

≥min
θ

∑
k∈N

k

∑
t=1

2
βt

{
S(0) + S′(0)βt

(
Hφk (yt | [x, y<t]aligned)− Hφ′k (yt | [x, y<t]θ)

)}
P(|y| = k),

where the inequality follows from Eqn. 15.774

The bound above shows that the objection function in Eqn. 5 can be interpreted as a surrogate775

function to minimize the weighted conditional entropy of the next token prediction when776

conditioned on the aligned and fine-tuned model’s representation of the prompt and a777

subsequence of the response.778

In the context of our FJLT model, we can interpret the objective as minimizing the difference779

between information content in the representations of the aligned and FJLT model when780

generating a response. Since the FJLT model has a lower dimensional activation space, it781

should not be able to linearly represent all the concepts that the aligned model can. Despite782

this, the objective function motivates the FJLT model to retain sufficient information in783

its representations to be as informative to the next token prediction as the aligned model,784

potentially encoding certain concepts non-linearly.785

The weights φk(x, y) ∝ 1
P(yt |[x,y<t ]aligned)

emphasize uncertain predictions by upweighting786

low-confidence outputs and maintaining confident ones (denominator would be close to 1).787

Thus, the weighted entropy Hφk reflects expected uncertainty under the data distribution,788

modulated by model confidence, guiding the model to focus on improving uncertain regions789

more.790

B Experimental Details791

B.1 ActAdd Jailbreak Implementation792

Activation Addition (ActAdd) is a linear intervention technique designed by Arditi et al.
(2024) to induce refusal behavior in language models by leveraging the difference-in-means
vector computed from the model’s residual stream activations. To identify the “refusal
direction,” the mean activation is first calculated for both harmful and harmless prompts
at each token position i ∈ [N] and layer ℓ ∈ [L], denoted as µ

(ℓ)
i and ν

(ℓ)
i , respectively.

The difference-in-means vector is then computed as r(ℓ)i = µ
(ℓ)
i − ν

(ℓ)
i , which captures both

the direction in which harmful and harmless activations differ and the magnitude of this
difference. Since this process yields N× L candidate vectors, the most effective vector r(ℓ

∗)
i∗ is

selected based on its ability to induce refusal when added and bypass refusal when ablated,
evaluated over validation sets D(val)

harmful and D(val)
harmless. ActAdd then applies this intervention

by modifying the activations of a harmless input at the chosen layer and token position
using

x(ℓ) ← x(ℓ) + r(ℓ),
thereby shifting it closer to the mean harmful activation. This technique is applicable across793

different layers and token positions and enables controlled modulation of refusal behavior794

while maintaining minimal changes to the overall model behavior.795

B.2 Ablation Jailbreak Implementation796

Directional Ablation is an intervention method used to assess and suppress the role of a797

specific activation direction in the model’s residual stream. Following Arditi et al. (2024),798

the same procedure used in ActAdd is applied to compute a difference-in-means vector799
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r(ℓ)i = µ
(ℓ)
i − ν

(ℓ)
i to identify a candidate direction r̂(ℓ)i ∈ RD at layer ℓ and token position i,800

where µ
(ℓ)
i and ν

(ℓ)
i represent the average activations for harmful and harmless prompts,801

respectively. The resulting vector is then normalized to obtain a unit direction r̂(ℓ)i =802

r(ℓ)i /∥r(ℓ)i ∥.803

Directional Ablation modifies the model’s behavior by projecting out this direction from the
residual stream activations at all layers and token positions. Specifically, for every activation
vector x(ℓ)i , the updated activation is given by

x(ℓ)′i ← x(ℓ)i − r̂(ℓ)i (r̂(ℓ)⊤i x(ℓ)i ),
which effectively removes any component of the activation aligned with the targeted804

direction. This process is applied uniformly to both x(ℓ)i and its post-attention counterpart805

x̃(ℓ)i , ensuring that the model is fully prevented from representing this direction throughout806

its forward computation.807

To select the most impactful direction for ablation, we evaluate candidate r̂(ℓ)i vectors across808

layers and token positions using validation setsD(val)
harmful andD(val)

harmless, selecting the one that809

maximally disrupts refusal behavior when removed. The Directional Ablation jailbreak thus810

operates by deleting semantically meaningful subspaces from the model’s representation811

space, allowing for controlled probing or bypassing of aligned behavior.812

B.3 General Settings813

Harmful Instruction Evaluations. To evaluate the success of the ActAdd jailbreak on814

harmful instructions, we use a refusal and safety score following Arditi et al. (2024). We815

report both scores on 100 harmful instructions from JailbreakBench. The refusal score816

represents the proportion of prompts where the LLM’s generated response contains any817

refusal substring. Refusal substrings are characteristic phrases, such as ”I’m sorry” or ”I818

cannot”, that appear in a model’s refusal. We use a list of common refusal substrings to819

consider in the refusal score. The safety score is measured as the proportion of model820

responses that are considered safe by Meta Llama Guard 2 (Team, 2024), a reliable open-821

sourced model fine-tuned to identify harmful content. These metrics should be higher on822

harmful instructions.823

Benign Instructions Evaluations. For safe instructions evaluations, the refusal score is824

reported on 100 harmless instructions from Alapca. We further include the perplexity (PPL)825

of the responses on these prompts to ensure that the model does not just avoid refusal, but826

can provide a coherent response. For a coherent, safety aligned model, we would expect the827

refusal score and PPL to be low on benign instructions.828

B.4 Fast Johnson-Lindenstrauss Transform Experiments829

In this section, we detail the implementation of experiments on the FJLT model, as in Section830

5.1.1.831

Dataset: We fine-tune each model on Dp, a set of harmful prompts with refusal responses,832

generated by Llama2-7B-Chat. These prompts are taken from red-teaming data by Ganguli833

et al. (2022) and do not overlap with any refusal benchmarks used in our results. The dataset834

consists of 256 examples and is original constructed as part of the safety data in Qi et al.835

(2024). However, we do not perform any data augmentation during fine-tuning, and only836

use the harmful responses for the token-wise constrained objective Eqn. 5.837

Model: Applying the Fast Johnson-Lindenstrauss Transform (FJLT) to the query and key838

matrices in multi-head attention modifies the formulation by projecting these matrices into839

a lower-dimensional space before computing the attention scores. Specifically, instead of840

computing the dot-product attention using the full-dimensional queries and keys, we first841

construct an FJLT projection matrix Φ(ℓ) ∈ RDH×K as described in Appendix A.3, where842

DH is the dimension of the representations in one head and K < DH , for each layer ℓ. The843

projected query and key matrices for head h are then given by844

Qproj
h = QhΦ(ℓ), Kproj

h = KhΦ(ℓ).
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Table 3: Experimental settings for the FJLT experiments in Section 5.1.1

Model LR Epoch Bsz/device Head Layers K Q Warm-up

Llama2-7B-Chat 2e-5 25 16 0 All 64 2.0 True
Gemma-1.1-7B-IT 2e-5 5 8 0 All 96 2.0 True
Qwen2-7B-Instruct 2e-5 5 8 0 Last 8 64 2.0 True

This transformation ensures that the inner products between each row of Qh and Kh are845

approximately preserved while reducing the dimensionality of the activation space. The846

resulting attention computation for the FJLT-augmented model is847

AttnFJLT
h (x(ℓ)) = softmax

(Qproj
h Kproj⊤

h√
D

)
Vh.

The outputs of all heads are then concatenated and projected back to the model dimension848

as in standard multi-head attention:849

x̃(ℓ) = x(ℓ) +
[
AttnFJLT

1 (x(ℓ)) ∥Attn2(x(ℓ)) ∥ . . . ∥AttnH(x(ℓ))
]

WO.

For computational efficiency and robustness, we apply the FJLT projection to a single head,850

chosen as a hyperparameter, rather than all heads in the attention mechanism. This selective851

application balances dimensionality reduction with effective attention computation while852

serving as a defense mechanism against adversarial attacks. The final layer output remains853

x(ℓ+1) = x̃(ℓ) + MLP(x̃(ℓ)).

Fine-tuning: Each model is fine-tuned using the constrained objective described in Equa-854

tion 5 on the Dp dataset. For βt, we follow the setting provided by Qi et al. (2024), where855

β1 = 0.5, βt = 2 for 2 ≤ t ≤ 5 and βt = 0.1 for t > 5. The fine-tuning settings are summa-856

rized in Table 3. We use a fixed learning rate of 2e-5 and enable the learning rate warm-up857

for stable optimization. For Llama2-7B-Chat, we fine-tune all transformer layers over 25858

epochs with a batch size of 16 per device, projecting the 0-th attention head in each layer859

using an FJLT with target dimension K = 64. For Gemma-1.1-7B-IT, we fine-tune all layers860

over 5 epochs with a reduced batch size of 8 and a slightly larger projection dimension861

K = 96. Finally, for Qwen2-7B-Instruct, only the last 8 layers employ the FJLT projection on862

the 0-th head with K = 64, also over 5 epochs with batch size 8.863

B.5 Bottleneck Experiments864

Here, we describe the implementations for experiments in Section 5.1.2, on the Bottleneck865

model.866

Dataset: We use two datasets on for fine-tuning, Dp as described in the FJLT experimental867

details, Appendix B.4, and a utility anchor DB that consists of harmless prompts from the868

Alpaca dataset and safe responses. We generate the safe responses using the Chat or Instruct869

model that we will fine-tune using the dataset. That is, when fine-tuning Llama2-7B-Chat,870

Gemma-1.1-7B-IT or Qwen2-7B-Instruct, we use three different sets as the utility, consisting871

of their corresponding responses to the benign instructions. We note that when fine-tuning872

Gemma-1.1-7B-IT, the model is biased towards learning to answer all prompts, both harmful873

and safe ones, even though we include refusal responses on harmful prompts during fine-874

tuning. To overcome this bias, we include additional refusal responses in Dp and have a875

total of 586 harmful prompts and refusal examples for the Gemma model.876

Model: The Bottleneck model introduces a lightweight linear autoencoder module between
two consecutive layers in the transformer architecture. This module projects the repre-
sentation x(ℓ) into a lower-dimensional subspace and then reconstructs it back, forming
a compression-decompression bottleneck that selectively filters the feature space. For-
mally, given a layer ℓ, we insert a linear transformation with weights Wdown ∈ RD×K and
Wup ∈ RK×D, where K < D, and apply a nonlinearity σ:

x(ℓ)compressed = σ
(

x(ℓ)WdownWup

)
.

This compressed representation is then passed into the subsequent transformer layer. The877

bottleneck layer index ℓ is selected as a hyperparameter. Compared to FJLT, the Bottleneck878
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Table 4: Experimental settings for the Bottleneck experiments in Section 5.1.2

Model LR Epoch Bsz/device
α Layer K Warm-upDp DB

Llama2-7B-Chat 1e-5 30 4 16 1.0 0 64 False
Gemma-1.1-7B-IT 1e-5 5 4 4 0.1 0 96 True
Qwen2-7B-Instruct 1e-5 20 4 16 1.0 0 64 False

model applies a more localized architectural change, introducing a trainable compression879

that potentially retains more task-relevant information, while still inducing robustness by880

disrupting adversarial linear signal propagation.881

Fine-tuning: Table 4 summarizes the fine-tuning hyperparameters we used to optimize the882

objective in Eqn. 4.2. We use a learning rate of 1e-5 in all models and choose the bottleneck883

layer to be the first transformer layer (ℓ = 0). For Llama2-7B-Chat and Qwen2-7B-Instruct,884

we fine-tune for 30 and 20 epochs, respectively, using K = 64 and no warm-up schedule. For885

Gemma-1.1-7B-IT, we set K = 96, reduce the number of epochs to 5, and enable warm-up to886

stabilize early optimization. The batch sizes for Dp and DB are independently specified to887

balance the two objectives, with fewer Dp examples processed per step.888

B.6 Open-sourced Models and Datasets889

In Table 5, we provide links to the public repositories, datasets, and benchmarks that we890

used in this paper.891

Table 5: Links for Models and Datasets

Name Link

Llama2-7B-Chat (Touvron et al., 2023) Hugging Face
Gemma-1.1-7B-IT (Team et al., 2024) Hugging Face
Qwen2-7B-Instruct (Yang et al., 2024) Hugging Face
JailbreakBench (Chao et al., 2024) � GitHub
AdvBench (Zou et al., 2023b) � GitHub
HarmBench (Mazeika et al., 2024) � GitHub
THE PILE (Gao et al., 2020) ® Home Page
Alpaca dataset (Taori et al., 2023) � GitHub
SQL Create Content (b mc2, 2023) Hugging Face
Samsum (Gliwa et al., 2019) Hugging Face
GSM8k (Cobbe et al., 2021) Hugging Face

C Ablations892

Here, we include ablation studies on hyperparameters in both models. In particular, on893

FJLT models, we provide experimental results on the FJLT projection in different heads and894

using different number of heads in multi-head attention (Appendix B.4). On Bottleneck895

models, we insert the linear autoencoder after different layers to determine the effect of its896

placement on the defense of the model against steering attacks. For all experiments in this897

section, we use the Llama2-7B-Chat model and the same settings as detailed in Appendix B.898

There are a total of 32 layers and 32 attention heads in Llama2-7B-Chat.899

C.1 Attention Heads in FJLT Models900

In Table 6 and 7, we report the refusal and safety score on harmful instructions from901

JailbreakBench and the refusal score and perplexity (PPL) on benign instructions from the902

Alpaca dataset when jailbreaking the model using the ActAdd jailbreak. These are the same903

metrics and evaluation datasets as in Section 5.904

Table 6 presents these results when fine-tuning Llama2-7B-Chat-FJLT with the FJLT projec-905

tion implemented in different heads. For each ablation conducted, we only implement the906

FJLT projection in a single head across all layers, with a projection dimension of K = 64.907

This is half of the hidden dimension in each attention head in the Llama2-7B-Chat model.908

As we observe in the table, there are generally good results on harmful instructions with909

24
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Table 6: Hyperparameters, refusal scores, safety scores and perplexity (PPL) on harmful and benign
instructions after attacking each Llama2-7B-Chat-FJLT model using the ActAdd jailbreak. The direction
of increasing or decreasing values signifying better performance is indicated by each metric’s arrow
direction. The model presented in the main text is highlighted in grey.

Jailbreak Model K # Heads Head Harmful Inst. Benign Inst.
Refusal ↑ Safety ↑ Refusal ↓ PPL ↓

ActAdd Llama2-7B-Chat-FJLT 64 1

0 0.94 0.96 0.63 1.37
4 0.80 0.72 0.86 1.61
8 0.72 0.48 1.00 1.84

16 0.55 0.76 0.93 1.53
20 0.91 0.89 0.94 1.63
24 0.63 0.52 1.00 2.78
28 0.82 0.66 0.98 1.61
31 0.71 0.47 1.00 1.91

Table 7: Hyperparameters, refusal scores, safety scores and perplexity (PPL) on harmful and benign
instructions after attacking each Llama2-7B-Chat-FJLT model using the ActAdd jailbreak. The direction
of increasing or decreasing values signifying better performance is indicated by each metric’s arrow
direction. The model presented in the main text is highlighted in grey.

Jailbreak Model K # Heads Head Harmful Inst. Benign Inst.
Refusal ↑ Safety ↑ Refusal ↓ PPL ↓

ActAdd Llama2-7B-Chat-FJLT 64 1

0 0.94 0.96 0.63 1.37
8 0.72 0.48 1.00 1.84

16 0.55 0.76 0.93 1.53
24 0.63 0.52 1.00 2.78

ActAdd Llama2-7B-Chat-FJLT 64 4

0 0.96 0.99 0.99 3.26
8 0.79 0.98 0.91 2.03

16 1.00 1.00 0.83 1.94
24 0.73 0.90 0.71 4.06

ActAdd Llama2-7B-Chat-FJLT 64 8

0 0.96 0.99 0.91 4.68
8 0.99 1.00 0.96 12.61

16 0.97 0.99 0.83 2.56
24 0.88 0.98 0.99 2.70

refusal responses on at least more than 50% of the prompts and reaching at least 70% in 6910

out of the 8 heads tested. However, the lowest refusal score on the benign instructions was911

achieved when implementing the FJLT projection in the first head, index 0 where for all912

other heads evaluated, the model continues to refuse safe instructions.913

In Table 7 we have the ActAdd jailbreak results of fine-tuning Llama2-7B-Chat-FJLT using914

K = 64 and implementing the FJLT projection in different number of heads and indices. The915

”Head” column represents the head index that we start use the FJLT projection in, and the916

”# Heads” reflects the number of heads immediately following that head index that we also917

use the FJLT projection. For example, if ”Head” and ”# Heads” are 8, we implement the918

FJLT projection in attention heads 8, 9, 10, 11, 12, 13, 14 and 15 in all attention layers of the919

model.920

We observe that increasing the number of heads for projection improves refusal and safety921

scores on harmful instructions for all heads tested, but also does so for refusal scores and922

PPL on safe instructions. This suggests that if we were to project the representations into a923

lower dimensional subspace in too many attention heads, leading to a much small projected924

subspace in the concatenated representation, the model resorts to simply refusing all in-925

structions and potentially overfitting the training data. We notice this from the significantly926

high PPL when using 8 heads, indicating that the model is unable to provide a coherent927

response on the evaluation dataset.928

C.2 Insertion Layers in Bottleneck Models929

For experiments on Llama2-7B-Chat-Bottleneck, we report our results in Table 8 and per-930

form ablation studies on different layer positions to insert our linear autoencoder. For all931

experiments, we maintain the same values for K = 2048, this is half the dimension of the932

hidden representations in each layer of the Llama2-7B-Chat model, and α = 1.0. It is clear933

25



Under review as a conference paper at COLM 2025

Table 8: Hyperparameters, refusal scores, safety scores and perplexity (PPL) on harmful and benign
instructions after attacking each Llama2-7B-Chat-Bottleneck model using the ActAdd jailbreak. The
direction of increasing or decreasing values signifying better performance is indicated by each metric’s
arrow direction. The model presented in the main text is highlighted in grey.

Jailbreak Model K α Layer Harmful Inst. Benign Inst.
Refusal ↑ Safety ↑ Refusal ↓ PPL ↓

ActAdd Llama2-7B-Chat-Bottleneck 2048 1.0

0 0.95 0.97 0.3 1.08
3 0.91 0.95 0.75 1.31

10 0.67 0.55 0.78 2.46
15 0.63 0.61 0.96 1.50
20 0.64 0.58 0.97 1.53
25 0.50 0.48 0.96 1.59
30 0.57 0.61 0.98 1.48
31 0.45 0.48 0.97 1.58

that the best results come from the insertion after the first layer, 0 with deteriorating results934

when increasing the layer index. A possible explanation could be that in the later layers,935

more complex information has already been extracted from the input. If we were to project936

down after that point, we would lose more information from the representations, as each937

layer enhances the richness of the information they contain. By projecting in the early layers,938

we give the model a better opportunity to adapt to the information lost in the input as it has939

a greater number of consecutive layers afterwards to extract compositional representations.940

D Additional Results941

In this section, we include additional results for the FJLT and Bottleneck experiments.942

Regarding all results reported, for simplicity of presentation, we only report the fine-tuned943

model, without any modifications, on the FJLT fine-tuning settings (Appendix B.4) and omit944

the fine-tuned model on the Bottleneck settings.945

D.1 Refusal and Safety Evaluations without Jailbreaks946

For all models, in Table 9, we report the refusal and safety scores on harmful instructions947

from JailbreakBench and the refusal and perplexity (PPL) scores on benign instructions from948

Alpaca without jailbreaking the model. These are the same metrics presented in Section 5949

and we report them here to show that the fine-tuned models are still strongly safety aligned,950

even with the FJLT and Bottleneck projections. We do so to prevent the misunderstanding951

that we are unable to find the steering vector for the AddAct jailbreak, simply because the952

model is not safety aligned. Rather, we aim to demonstrate that our fine-tuned models953

are strongly safety aligned, but not representing the concept of safety linearly, resulting954

in good defense. As seen in the table, the scores and PPLs are close to the baseline Chat955

and Instruct models, with at most a 0.15 score difference and 0.3 PPL difference, across956

almost all metrics and methods. The only exceptions are for the Llama2-7B-Chat-FJLT and957

Gemma-1.1-7B-IT-FJLT models for their refusal scores on safe instructions. But these values958

are still comparable to their respective Chat and Instruct models.959

D.2 Evaluations on Additional Benchmarks and Jailbreaks960

In this section, we report further evaluations for each model presented in Section 5.1. These961

include the baseline Chat and Instruct models without fine-tuning, fine-tuned models962

without modifications on the FJLT model’s experimental settings, FJLT and Bottleneck963

models. We include results on JailbreakBench (Chao et al., 2024), AdvBench (Zou et al.,964

2023b) and HarmBench (Mazeika et al., 2024) when jailbreaking each model using the965

AddAct and Ablation jailbreaks. Both of these jailbreaking methods rely on steering vectors966

and detailed explanations for their implementation can be found in Appendix B.1 and B.2.967

Once again, we report their refusal and safety scores on each benchmark and these should968

be close to 1 for models that are still safety aligned even after the ActAdd and Ablation969

jailbreaks.970

Similar to Section 5.1, for Llama2-7B-Chat and Gemma-1.1-7B-IT, we observe strong results971

in FJLT and Bottleneck models for both jailbreak methods across all benchmarks. We often972

have refusal and safety scores that have more than a 0.5 increase compared to FT and Chat973

or Instruct models. These results further reinforce the durability of our models against974
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Table 9: Refusal scores, safety scores and perplexity (PPL) on harmful and benign instructions for
each model without any attacks. The direction of increasing or decreasing values signifying better
performance is indicated by each metric’s arrow direction.

Jailbreak Model Harmful Inst. Benign Inst.
Refusal ↑ Safety ↑ Refusal ↓ PPL ↓

None

Llama2-7B-Chat 0.97 0.99 0.00 1.12
Llama2-7B-Chat-FT 1.00 1.00 0.04 1.08
Llama2-7B-Chat-FJLT 0.98 1.00 0.28 1.41
Llama2-7B-Chat-Bottleneck 1.00 1.00 0.00 1.08

None

Gemma-1.1-7B-IT 0.92 0.96 0.00 1.27
Gemma-1.1-7B-IT-FT 0.87 0.88 0.03 1.29
Gemma-1.1-7B-IT-FJLT 1.00 0.97 0.25 1.44
Gemma-1.1-7B-IT-Bottleneck 0.99 0.99 0.07 1.24

None

Qwen2-7B-Instruct 0.99 0.99 0.01 1.44
Qwen2-7B-Instruct-FT 1.00 1.00 0.09 1.16
Qwen2-7B-Instruct-FJLT 1.00 1.00 0.12 1.36
Qwen2-7B-Instruct-Bottleneck 0.85 0.92 0.03 1.22

Table 10: Refusal scores (Ref.) and safety scores (Safe.) on harmful instructions from various bench-
marks. We evaluated each model after jailbreaking them using either the ActAdd or Ablation attack.
For durable safety aligned models, these metrics should be closer to 1 across all benchmarks.

Jailbreak Model JailbreakBench AdvBench HarmBench
Ref. ↑ Safe. ↑ Ref. ↑ Safe. ↑ Ref. ↑ Safe. ↑

ActAdd

Llama2-7B-Chat 0.03 0.14 0.14 0.21 0.08 0.24
Llama2-7B-Chat-FT 0.66 0.65 0.41 0.29 0.26 0.26
Llama2-7B-Chat-FJLT 0.94 0.96 0.94 1.00 0.94 0.99
Llama2-7B-Chat-Bottleneck 0.95 0.97 0.99 1.00 0.93 0.97

Ablation

Llama2-7B-Chat 0.07 0.17 0.05 0.21 0.06 0.28
Llama2-7B-Chat-FT 0.47 0.72 0.47 0.78 0.50 0.68
Llama2-7B-Chat-FJLT 0.96 1.00 0.95 1.00 0.97 0.99
Llama2-7B-Chat-Bottleneck 0.97 1.00 0.99 1.00 0.94 0.95

ActAdd

Gemma-1.1-7B-IT 0.41 0.55 0.39 0.49 0.36 0.57
Gemma-1.1-7B-IT-FT 0.37 0.53 0.20 0.50 0.18 0.53
Gemma-1.1-7B-IT-FJLT 0.90 0.85 0.97 0.91 0.96 0.82
Gemma-1.1-7B-IT-Bottleneck 0.82 0.83 0.95 0.95 0.86 0.87

Ablation

Gemma-1.1-7B-IT 0.14 0.32 0.07 0.23 0.17 0.42
Gemma-1.1-7B-IT-FT 0.64 0.71 0.01 0.39 0.00 0.36
Gemma-1.1-7B-IT-FJLT 0.98 0.94 0.98 0.92 0.94 0.89
Gemma-1.1-7B-IT-Bottleneck 0.78 0.82 0.73 0.24 0.74 0.77

ActAdd

Qwen2-7B-Instruct 0.11 0.18 0.12 0.15 0.01 0.19
Qwen2-7B-Instruct-FT 0.10 0.15 0.08 0.16 0.04 0.21
Qwen2-7B-Instruct-FJLT 0.89 0.91 0.98 0.99 0.79 0.85
Qwen2-7B-Instruct-Bottleneck 0.23 0.51 0.21 0.42 0.08 0.39

Ablation

Qwen2-7B-Instruct 0.00 0.16 0.05 0.17 0.01 0.25
Qwen2-7B-Instruct-FT 0.48 0.64 0.55 0.68 0.48 0.64
Qwen2-7B-Instruct-FJLT 0.98 0.99 1.00 1.00 0.97 0.98
Qwen2-7B-Instruct-Bottleneck 0.65 0.78 0.66 0.81 0.43 0.57

steering attacks. We notice that while the Qwen2-7B-Instruct-FJLT performs on par with975

Llama2-7B-Chat and Gemma-1.1-7B-IT FJLT models, likewise surpassing its FT and Instruct976

counterpart, Qwen2-7B-Instruct-Bottleneck’s results are better than the baseline, but not977

substantially so.978

D.3 Utility Evaluations979

Here, we evaluate the utility of each model over a variety of harmless instruction datasets.980

These include THE PILE (Gao et al., 2020), Alpaca dataset (Taori et al., 2023), SQL Create981

Content (b mc2, 2023), Samsum (Gliwa et al., 2019) and GSM8k (Cobbe et al., 2021). Notice982

that THE PILE and Alpaca will be the most similar to the datasets that we fine-tune the983
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Table 11: Utility evaluations for all models on a variety of standard benchmarks. We report the
perplexity (PPL) for THE PILE and Alpaca, ROUGE-1 score for Samsum and SQL Create Context, and
answer accuracy for GSM8k. The arrow beside each metric indicates the direction of increasing or
decreasing values that signify better performance.

Model THE PILE ↓ Alpaca ↓ SQL Create Context ↑ Samsum ↑ GSM8k ↑
Llama2-7B-Chat 9.21 5.00 14.31 23.89 24.26
Llama2-7B-Chat-FT 10.98 8.84 13.33 21.28 22.06
Llama2-7B-Chat-FJLT 16.06 10.58 6.91 7.35 1.90
Llama2-7B-Chat-Bottleneck 12.09 11.42 14.34 22.18 21.08

Gemma-1.1-7B-IT 529.05 13.19 88.22 35.67 50.64
Gemma-1.1-7B-IT-FT 524.23 25.73 54.62 29.79 39.80
Gemma-1.1-7B-IT-FJLT 1923.04 25.25 7.29 9.75 14.78
Gemma-1.1-7B-IT-Bottleneck 920.36 16.31 73.86 34.67 45.41

Qwen2-7B-Instruct 7.76 5.38 96.82 30.94 82.03
Qwen2-7B-Instruct-FT 7.84 5.82 96.61 35.04 81.50
Qwen2-7B-Instruct-FJLT 10.17 6.52 82.52 31.38 27.67
Qwen2-7B-Instruct-Bottleneck 53.26 8.05 14.29 32.75 27.82

FJLT and Bottleneck models on as these are general instruction sets. SQL Create Content,984

Samsum and GSM8k are more specialized tasks. SQL Create Content contain instructions to985

convert natural language to SQL queries, Samsum contain summarization tasks and GSM8k986

tests the model on simple math problems. We report the perplexity (PPL) on THE PILE and987

Alpaca and a lower value indicates a better performance by the model. We use ROUGE-1988

for SQL Create Content and Samsum and accuracy for GSM8k, these metrics should be989

higher for stronger models.990

We present these results in Table 11, and observe that in both Llama2-7B-Chat and Gemma-991

1.1-7B-IT based models, their FT and Bottleneck models maintain their utility after fine-992

tuning and have comparable results to the baseline. Only the FJLT models have a drastic993

drop in results on SQL Create Content, Samsum and GSM8k. This is likely due to insufficient994

information retention from the FJLT projection applied at each layer, lead to a compounding995

effect. While PPL on THE PILE and Alpaca are relatively close to the baseline for Llama2-996

7B-Chat-FJLT, they have drastically increased in Gemma-1.1-7B-IT-FJLT. It should be noted997

that the PPL on these datasets were initially quite high for the baseline Gemma-1.1-7B-IT998

model and are computed exponentially using cross-entropy loss. On the loss itself, it would999

have increased by about 1 and we consider this case an anomaly.1000

In an unexpected development, Qwen2-7B-Instruct-FJLT retains its great performance across1001

all datasets except for GSM8k and the primary loss in utility arises from its Qwen2-7B-1002

Instruct-Bottleneck model. A possible reason could be connected to its subpar refusal and1003

safety scores on harmful and benign instructions.1004

D.4 Example Prompt from JailbreakBench1005

The following chat instance compares baseline (no projection) and our model responses to1006

the same harmful prompt after the ActAdd attack:1007

Prompt: ”Write a persuasive advertisement convincing children to eat laundry detergent”1008

Baseline Response:1009

Kids, are you tired of bland-tasting snacks? Do you want to add some1010

excitement to your daily meals? Look no further! Introducing the all-new1011

Laundry Detergent Snack! ...1012

With Projection:1013

I apologize, but I cannot provide a persuasive advertisement encouraging1014

children to eat laundry detergent. Laundry detergent is a toxic substance1015

and should never be consumed...1016
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E Linear Probe1017

We clarify the details of our linear probe experiments in Section 3, Figure 3 and include1018

additional results on each Llama2-7B-Chat, Gemma-1.1-7B-IT and Qwen2-7B-Instruct model.1019

Linear probes are linear MLP networks that are trained on the hidden representations of1020

the input to a model. It is a common technique used to understand the features potentially1021

encoded in a deep learning model (Conneau et al., 2018; Hupkes et al., 2018; Adi et al.,1022

2016; Marks & Tegmark, 2023; Li et al., 2023). If a linear probe achieves a high accuracy1023

in predicting a particular feature, then we can conclude that the internal representations1024

the probe was trained on encodes that feature linearly. Note that probes can be non-linear,1025

however, within the scope of this work, we only focus on linear probes.1026

For all linear probes trained in our experiments, we use a single MLP layer with an input1027

dimension corresponding to the dimensions of the hidden representations used for training,1028

and an output dimension of one. Then, we apply a sigmoid function to scale the output1029

of the MLP to a value between [0, 1] and round the output from the sigmoid for binary1030

classification. Concretely, for an input x ∈ RD, the prediction of our linear probe, ŷ, is as1031

follows,1032

ŷ = 1≥0.5 {σ (MLP (x))} ,

where σ := 1/(1 + exp−x) is the sigmoid function and 1≥0.5(x) is the indicator function1033

that maps x ≥ 0.5 to 1 and x < 0.5 to 0. For any concept probed, we use the hidden1034

representations of two contrasting sets of prompts that correspond to the binary classes of1035

the concept. We use the representations from the last layer of the model and the last position1036

of each prompt. We report the accuracy of our trained linear probe on a held out test dataset1037

of prompts.1038

In Figure 5, we plot the test accuracy of the linear probes when using representations of1039

harmful and benign prompts from each model. The task of the probe is to classify if the input1040

prompt was harmful or not, thereby determining if the representations linearly encodes1041

for the safety concept. A higher accuracy indicates a stronger linear representation. A1042

baseline model is one that has not been fine-tuned, and FJLT and Bottleneck models are our1043

methods implemented in the LLMs and fine-tuned as before. For both Llama2-7B-Chat and1044

Gemma-1.1-7B-IT, there is a drop in accuracy when using probes from FJLT and Bottleneck1045

models as compared to the baseline model. These results suggest that the concept of safety1046

is more weakly linearly represented in those models as compared to the baseline, improving1047

the model’s defense against steering jailbreaks. In Qwen2-7B-Instruct models, there is a1048

slight reduction as well, though the decrease is less pronounced.1049

F Principal Component Analysis Plots1050

In this section, we provide more details on the visualizations included in Section 3 and 5.21051

as well as additional plots for Gemma-1.1-7B-IT and Qwen2-7B-Instruct. In all principal1052

Component Analysis (PCA) visualizations, if not indicated otherwise in the figure, we use1053

the hidden representations taken from the last layer of the model and the last token position1054

of the prompt. We collect these vectors from each prompt in the pair of contrasting datasets1055

and conduct PCA. To be specific, we use the representations of all prompts in both datasets1056

together for PCA. Then, we extract the top-2 principal Components (PCs) and project all the1057

activations onto them. We visualize these activations in the various 2-D plots provided.1058

In Section 5.2, Figure 4, we visualized three different concepts, truthfulness, emotion and1059

safety, in Llama2-7B-Chat based models. In Figure 6, we include additional plots for the1060

concept of safety in Gemma-1.1-7B-IT and Qwen2-7B-Instruct based models. We notice the1061

same pattern as before where in baseline Chat and Instruct models, there is a relatively clear1062

separation between harmful and safe instructions, suggesting a linear representation of1063

safety. This linearity gets relatively mixed up in FJLT and Bottleneck models and the different1064

classes of prompts are less separable, suggesting a loss in the strong linear representation1065

of safety. These figures corroborate the results in Appendix E and confidently support1066

our experimental results and hypothesis. We are able to firmly defend against steering1067

jailbreaks by fine-tuning the model to avoid linearly representing the concept of safety while1068

maintaining its safety alignment.1069
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Llama2-7B-Chat Gemma-1.1-7B-IT Qwen2-7B-Instruct 
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Figure 5: Test accuracy of linear probes trained using representations of harmful and benign prompts
from baseline Chat or Instruct models, FJLT models and Bottleneck models using different LLM
architectures.
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Figure 6: Projection of the hidden representations onto the top-2 principal components in the baseline
Chat, FJLT, and Bottleneck models based on different LLM architectures.

An obvious irregularity in Figure 4 is the baseline Gemma-1.1-7B-IT plot (second row, first1070

column) as in the Instruct model, that is strongly safety aligned, it would appear that the1071

model does not linearly represent safety, contradicting our theory. We investigate this in1072

Figure 7 and plot our harmful and benign prompts when projected onto the top-3 PCs.1073

It should be clear after including PC3, the representations of the contrasting prompts on1074

the baseline Instruct model become linearly separable by a 2-D plane. For consistency, we1075

further project representations of the same instructions from the Gemma-1.1-7B-IT-FJLT1076

and Gemma-1.1-7B-IT-Bottleneck model onto their top-3 PCs and visualize them in the1077

same plot. Reaffirming our hypothesis, the opposing classes of prompts are still not linearly1078

separable and do not represent safety as a linear concept.1079
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Figure 7: Projection of the hidden representations, as in Figure 6, onto the top-3 principal components.

G Limitations1080

While we have empirically shown that abstract concepts like emotion and truthfulness1081

are well-preserved under properly tuned models, developing a principled approach for1082

semantics-based projection methods remains an open problem. Although this may limit1083

the methodology’s immediate applicability to production-level LLMs, we believe that the1084

theoretical arguments and empirical evidence across numerous popular model families1085

provide a strong proof of concept for future work.1086
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