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Abstract

Many applications of text generation require incorporating different constraints
to control the semantics or style of generated text. These constraints can be hard
(e.g., ensuring certain keywords are included in the output) and soft (e.g., con-
textualizing the output with the left- or right-hand context). In this paper, we
present Energy-based Constrained Decoding with Langevin Dynamics (COLD), a
decoding framework which unifies constrained generation as specifying constraints
through an energy function, then performing efficient differentiable reasoning over
the constraints through gradient-based sampling. COLD decoding is a flexible
framework that can be applied directly to off-the-shelf left-to-right language mod-
els without the need for any task-specific fine-tuning, as demonstrated through
three challenging text generation applications: lexically-constrained generation,
abductive reasoning, and counterfactual reasoning. Our experiments on these con-
strained generation tasks point to the effectiveness of our approach, both in terms
of automatic and human evaluation.1

1 Introduction

Many text generation applications require producing text that is not only fluent, but also satisfies
various constraints which control the semantics or style of the generated text. For example (Figure 1),
for knowledge-grounded or keyword-guided generation, we might want to ensure that certain key-
words are included in the generated output as hard lexical constraints [29, 52]. For other types of text
generation, we often wish to incorporate soft topical constraints to contextualize the desired output,
e.g., abductively [43] reasoning about what happened in the middle of a story given the past and the
future story context [1]. Yet another class of text generation applications requires revising an input
based on a new counterfactual condition [13], which simultaneously requires semantic coherence as
well as minimal-edit constraints with respect to the input text [44].

The dominant paradigm to various text generation applications has been supervised learning with
task-specific training data. However, different applications require varied and potentially evolving
constraints, and annotating a large amount of task-specific training data for each different combination
of constraints can be costly. Recent work has explored incorporating constraints through energy-based
text modeling that alleviates the need of supervised data [23, 7, 41]. Yet those approaches still require
expensive training of specific generation models. In addition, training might not even be feasible with
recent models that are extreme in scale, like GPT-3 [3]. This motivates the need to enrich decoding
algorithms that can work directly with pretrained language models without task-specific fine-tuning,
and support complex combinations of hard and soft constraints to control the generated text on the fly.

∗ Work done while working at Allen Institute for AI.
1Code is available at https://github.com/qkaren/COLD_decoding
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Figure 1: Applying COLD to different constrained generation tasks amounts to specifying an energy
function E by plugging in relevant constraint functions. Text in grey boxes is the input, and text in
blue boxes is the output.

We propose a new constrained decoding approach that formulates decoding as sampling from an
energy-based model (EBM) [16, 27]. Constrained generation with our approach amounts to specifying
an energy function by plugging in arbitrary constraint functions that are suitable for the task at hand,
then sampling from its induced distribution. In particular, to overcome the longstanding challenges
of sampling discrete text from EBMs, we for the first time introduce Langevin dynamics [53] to
text-based EBMs for efficient gradient-based sampling. As a result, our approach, Constrained
Decoding with Langevin Dynamics (COLD), performs sampling by iteratively updating a continuous
relaxation of text using gradients of the energy function. The resulting continuous text samples are
then mapped back to the discrete space with a simple guided discretization approach, yielding text
sequences that are fluent and adhere to the constraints.

Our work makes unique contributions to a recent line of research investigating decoding algorithms
for incorporating different constraints [45, 6, 33, 26] in three distinct aspects. First, our formulation
unifies various constrained generation scenarios that involve hard lexical constraints and/or soft
contextual constraints: specifying an energy function, then sampling from its induced distribution.
Second, we propose a sampling method, which complements decoding algorithms that look for a
single optimal solution. Finally, we provide new empirical insights into the strengths and weaknesses
of existing approaches to discrete search and differentiable reasoning.

To test the flexibility and empirical performance of COLD decoding, we experiment with three chal-
lenging text generation tasks: lexically constrained generation [29, 18], abductive reasoning [1], and
counterfactual story generation [44]. COLD achieves better lexical coverage than NEUROLOGIC [33],
a beam-based discrete decoding algorithm specifically designed for lexically constrained generation,
while producing more coherent and higher quality text than DELOREAN [45], a state-of-the-art
gradient-based generation method for abductive reasoning and counterfactual reasoning. COLD
supports all three constrained generation settings under a unified framework – specifying an energy
function using a collection of fluency and task-specific constraints, then sampling from its induced
distribution and achieves strong performance on both automatic and human evaluation.

2 Background

Neural text generation. Neural text generation typically involves two stages: modeling a distribution
over text sequences, and using a decoding algorithm to generate sequences with the model. Let
y = (y1, . . . , yT ) denote a discrete sequence where each yt is a token from a vocabulary V . Common
neural language models (e.g., GPT-2/3 [46, 3]) factorize the probability of a sequence into the product
of per-token conditionals in left-to-right order, pθ(y) =

∏T
t=1 pθ(yt|y<t), with each conditional

parameterized by a shared neural network, such as transformer [50]. Popular decoding algorithms,
ranging from beam search or greedy decoding to sampling methods such as top-k [12] or nucleus [19]
sampling, produce text sequences y using the model pθ, often conditioned on a prompt x.

Constrained text generation. We view text generation as the problem of finding a sequence that
satisfies a collection of constraints. For instance, the scenario above amounts to generating a sequence
y = (y1, . . . , yT ) subject to a soft constraint that the continuation y should be fluent and logically
coherent with the prompt x. Other constrained generation problems impose additional constraints,
such as text infilling [60, 8] where coherence constraints move beyond a left-hand prefix, lexically
constrained generation in which hard constraints require the output to contain given tokens, and
various forms of semantically-constrained generation in which the output is softly constrained to be
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Figure 2: An overview of the COLD decoding procedure. Given an energy function E(ỹ) =∑
i λifi(ỹ) with various constraints, the procedure starts with a soft sequence ỹ(0) as a sample from

an initial energy-based distribution, and performs Langevin dynamics iterations using the gradient
∇ỹE(ỹ) (Eq.2). The resulting sequence ỹ(N) after N iterations is approximately a sample from
the desired constrained distribution. We then apply top-k filtering on the soft sequence to produce a
discrete text sequence y (Eq.6).

similar to another sequence. Since common decoding algorithms generate text monotonically, relying
on pθ(yt|y<t) for determining the next token, it is challenging to enforce these diverse constraints.

Energy-based models and Langevin dynamics. Given an energy function E(y) ∈ R, an energy-
based model (EBM) is defined as a Boltzmann distribution p(y) = exp{−E(y)}/Z, where Z =∑

y exp{−E(y)} is the normalizing factor (The sum is replaced with an integral if y is continuous).
EBMs are flexible, in that one can incorporate arbitrary functions such as constraints into the energy
function E(y). Recent work has thus made attempts to train text-based EBMs each for specific
tasks [21, 41, 7, 23]. As discussed earlier, we instead use the energy-based formulation to develop
an inference (decoding) procedure that enables off-the-shelf pretrained language models to perform
arbitrary constrained generation, without any fine-tuning.

Despite the flexibility, however, sampling from an EBM is particularly challenging, as computing
Z is intractable. Common gradient-free Markov chain Monte Carlo (MCMC) methods such as
Gibbs sampling [2] can be used, but they are often prohibitively slow [10, 38]. Langevin dynamics
[53, 37, 34], a gradient-based MCMC method, offers more efficient sampling by using the gradient
of the energy function ∇yE(y), enabling sampling in domains such as image generation [9, 48].
However, since text is discrete, the gradient ∇yE(y) is not well-defined, making it non-trivial to
apply Langevin dynamics for sampling text from an EBM. Our approach bridges this gap with
continuous relaxation of text, differentiable constraints, and guided discretization, as described below.

3 COLD Decoding with Langevin Dynamics

To enable flexible and diverse constrained generation in off-the-shelf language models, we develop
Constrained Decoding with Langevin Dynamics (COLD), a decoding approach that treats text gen-
eration as sampling from an energy-based distribution, allowing for flexibly composing constraints
based on the task at hand. COLD decoding generates text by sampling from an EBM defined over a
sequence of “soft” tokens using Langevin dynamics, then maps the continuous sample into discrete,
fluent text. We provide our formulation of constrained text generation (§3.1), present differentiable
constraints that can be composed into energy functions (§3.2) along with our discretization method
(§3.3), and discuss practical details of COLD decoding (§3.4). Figure 2 provides an overview.

3.1 Energy-based Decoding

Constrained text generation aims to produce text samples y that satisfy a set of constraints (usually
conditioned on an input x omitted for brevity). We assume each constraint can be captured by a
constraint function fi(y) ∈ R, where higher values of fi mean that the text y better satisfies the
constraint. For example, fi could measure the likelihood of y as a fluency constraint (more in §3.2),
while a hard constraint fi amounts to a large negative penalty when y does not satisfy the constraint.
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Figure 3: Illustrations of the differentiable constraints introduced in §3.2. (1) The soft fluency con-
straint (Eq.3) to encourage fluency of ỹt based on LM probabilities. (2) The future contextualization
constraint in Eq.(4) to encourage coherence w.r.t. the future context (has eight legs). (3)
The n-gram similarity constraint in Eq.(5), where the left figure shows the case of n = 1 which
encourages keywords (e.g., hand) to appear in the generation, and the right figure shows the case of
n > 1 which is typically used to encourage sequence similarity with a reference text y∗.

The set of constraints induces a distribution over text, written in an energy-based form as:

p(y) = exp
{∑

i
λifi(y)

}
/Z, (1)

where λi ≥ 0 is the weight of the ith constraint, Z is the normalizing factor. Here E(y) :=
−
∑

i λifi(y) is the energy function. This energy-based form is flexible, as one can plug in any
constraint functions required for a task of interest. Generating text under the constraints can then be
seen as sampling from the energy-based distribution y ∼ p(y). One can also draw multiple samples
and pick the best if only one sample is needed, as discussed later (§3.4).

As mentioned above, for efficient sampling from p(y) we want to use Langevin dynamics, which
makes use of the gradient ∇yE(y). However, in our case y is a discrete sequence and the gradient
∇yE(y) is not well-defined. As a result, we perform Langevin dynamics with an energy defined on
a sequence of continuous token vectors, described below.

Differentiable decoding with Langevin dynamics. Instead of defining the energy function on
discrete tokens, we define the energy function on a sequence of continuous vectors ỹ = (ỹ1, . . . , ỹT ),
which we call a soft sequence. Each position in the soft sequence is a vector ỹt ∈ RV , where V is
the vocabulary size, and each element ỹt(v) ∈ R corresponds to the logit of word v in the vocabulary.
Taking the softmax of ỹt yields a distribution over the vocabulary for position t, p̃τ

t = softmax(ỹt/τ).
As τ → 0, p̃τ

t becomes a one-hot vector, indicating a discrete token.

By specifying an energy E(ỹ) on the soft sequence ỹ, we can use Langevin dynamics to obtain a
sample. Specifically, the sampling is done by forming a Markov chain:

ỹ(n+1) ← ỹ(n) − η∇ỹE(ỹ(n)) + ϵ(n), (2)

where η > 0 is the step size, and ϵ(n) ∈ N (0, σ) is the noise at iteration n. As shown in Welling and
Teh [53], by adding the right amount of noise and annealing the step size, the procedure will converge
to samples from the true distribution. That is, if we let p(n) be the distribution such that ỹ(n) ∼ p(n),
then as n→∞ and σ → 0, we have p(n) → p(ỹ) := exp{−E(ỹ)}/Z. That is, the procedure ends
up generating samples from the distribution induced by the energy function.

Next, we describe constraint functions defined on the soft sequence ỹ that can be plugged in as
components of the energy function. Later in §3.3, we describe how to obtain a discrete sequence
from a soft sequence sample ỹ.

3.2 A Collection of COLD Constraints

COLD provides a flexible framework for plugging in a wide range of constraint functions for a task of
interest. We describe constraint functions that are useful in various constrained generation problems,
such as those we consider in the experiments (§4). The constraints include language model-based
fluency constraints, along with lexical and semantic constraints on the sequence content. More
generally, any differentiable function that outputs a goodness score of (soft) text can be used as a
constraint function, as long as it reflects the requirements of the target task.
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Algorithm 1 Constrained Decoding w/ Langevin Dynamics.
input Constraints {fi}, length T , iterations N .
output Sample sequence y.
ỹ
(0)
t ← init() for all position t // init soft-tokens

for n ∈ {1, . . . , N} do
E(n) ← E(ỹ(n); {fi}) // compute energy (§3.2)
ỹ
(n+1)
t ← ỹ

(n)
t − η∇ỹtE

(n) + ϵ
(n)
t for all t // update soft tokens (Eq.2)

end for
yt = argmaxv topk-filter

(
ỹ
(N)
t (v)

)
for all t // discretize (Eq.6)

return: y = (y1, . . . , yT )

Soft fluency constraint. Fluency is a common requirement for generated text. To promote fluency, we
use a constraint which favors soft sequences that receive high probability according to the underlying
left-to-right LM p→LM (e.g., GPT2):

f→LM(ỹ) =
∑T

t=1

∑
v∈V

p→LM(v|ỹ<t) log softmax (ỹt(v)) , (3)

where p→LM(·|ỹ<t) means the next-token distribution when providing the neural language model with
the preceding soft tokens ỹ<t (i.e., feeding the weighted average of word embeddings, with the
weights being softmax(ỹt′/τ) for t′ < t [20, 45]).

Intuitively, the constraint says that each token distribution in the soft sequence, softmax (ỹt), must
match the “reference” distribution p→LM(·|ỹ<t) predicted by the underlying language model. The
match is measured by the (negative) cross-entropy between the two distributions. The constraint thus
encourages fluency. In practice, if there is left-side context x for the generation to condition on, we
feed x to the LM to form the “reference” distribution p→LM(·|ỹ<t,x). As a result, ỹ is encouraged to
be fluent and coherent with the context x.

We can easily incorporate an additional reverse LM constraint, f←LM, using a right-to-left LM
p←LM(·|ỹ>t), as an additional fluency constraint. Flexibly leveraging multiple models in this way is
infeasible with conventional decoding methods such as beam search or nucleus sampling.

Future-token prediction constraint. Applications such as text infilling involve future input tokens
that remain fixed, but should contribute to updating past positions. For instance, consider updating
the second position of The __ has eight legs. A sample should be coherent with the tokens
xr on the right (i.e., has eight legs).

To this end, we use a constraint that adjusts soft tokens to maximize the likelihood of input tokens xr,

fpred(ỹ;xr) =
∑K

k=1
log p→LM(xr,k|ỹ,xr,<k), (4)

where K is the length of xr. In other words, the constraint adjusts the soft sequence ỹ such that the
underlying LM predicts the future tokens xr after seeing ỹ.

N-gram similarity constraint. Many constrained generation scenarios pose requirements on the
wording and expression of generated text sequences. For instance, lexically constrained generation
tasks [18] require certain keywords to be presented in the text samples, while counterfactual reasoning
[44] or text editing [15, 31] tasks require the text to retain the essence of a reference sequence.

We formulate these requirements as an n-gram similarity constraint which favors sequences that
overlap with a reference y∗ at the n-gram level,

fsim(ỹ;y∗) = ngram-match(ỹ,y∗), (5)

where ngram-match(·, ·) is a recent differentiable n-gram matching function [32] which can be
seen as a differentiable approximation to the BLEU-n metric [40]. When n = 1 and y∗ a sequence of
keywords, the constraint in effect enforces ỹ to assign higher values to the keywords (1-grams). When
n is larger and ỹ∗ is a reference sequence, the constraint encourages ỹ to resemble the reference by
assigning high values to tokens making up n-grams from y∗.

3.3 From Soft to Discrete and Fluent Text

After receiving a soft sequence sample ỹ from running Langevin dynamics (Eq. 2), we map the soft
sequence to a discrete text sequence which we consider as the output of COLD decoding. A simple
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Models
Automatic Eval Human Eval

BLEU4 ROUGE-L CIDEr BERTScore Grammar Left-coherence
(xly)

Right-coherence
(yxr)

Overall-coherence
(xlyxr)

LEFT-ONLY 0.88 16.26 3.49 38.48 4.57 3.95 2.68 2.70
DELOREAN 1.60 19.06 7.88 41.74 4.30 4.23 2.83 2.87
COLD (ours) 1.79 19.50 10.68 42.67 4.44 4.00 3.06 2.96

Table 1: Automatic and human evaluation of abductive reasoning (4.1). Our proposed method (COLD
decoding) outperforms DELOREAN, a recent decoding algorithm achieving strong results in this task.

method would be selecting the most-likely token at each position t, yt = argmaxv ỹt(v). However,
the resulting text can suffer from fluency issues even if the soft fluency constraint (Eq. 3) is used, due
to competing constraints that sacrifice fluency. To overcome this, we use the underlying LM (e.g.,
GPT2-XL) as a “guardian” for obtaining the discrete sequence. Specifically, at each position t, we
first use the LM to produce the top-k most-likely candidate tokens based on its generation distribution
conditioning on preceding tokens, which we denote as Vk

t . We then select from the top-k candidates
the most likely token based on the soft sample ỹ:

yt = argmaxv∈Vk
t
ỹt(v). (6)

We refer to this method as “top-k filtering”. The resulting text tends to be fluent because each token
is among the top-k most probable tokens from the LM [12]. In practice, to ease the satisfaction of
certain constraints (e.g. n-gram similarity), we expand the candidate set Vk

t to include constraint
tokens (e.g., in the tasks of abductive reasoning §4.1 and lexically constrained decoding §4.3).

Figure 2 illustrates the decoding procedure to get one output from COLD decoding. Algorithm 1
summarizes the algorithm. Next, we move to practical considerations of applying COLD.

3.4 Implementation of COLD Decoding

Sample-and-select. COLD decoding allows for drawing multiple text samples from the distribution
induced by the energy function E(ỹ). Depending on task requirements, we could either present the
set of samples as output, or select one from the set based on some criteria (e.g., different energy terms)
and return a single sequence, as in those tasks considered in the experiments (§4). This “sample-and-
select” approach differs from deterministic constrained decoding methods, which optimize only one
sequence [e.g., 33, 26], and is used widely in various generation settings [e.g., 28, 11, 4].

Initialization. We initialize the soft sequence ỹ by running greedy decoding with the LM pLM to
obtain output logits. In our preliminary experiments, the initialization strategy had limited influence
on the generation results.

Noise schedule. Each iteration of Langevin dynamics adds noise ϵ(n) ∼ N (0, σ(n)) to the gradient
(Eq. 2). We gradually decrease σ(n) across iterations, which intuitively transitions the decoding
procedure from exploration to optimization. In our experiments, we typically used the schedule
which sets/reduces σ to {1, 0.5, 0.1, 0.05, 0.01} at iterations {0, 50, 500, 1000, 1500}, respectively.

Long sequences. COLD decoding produces a fixed-length sequence y = (y1, . . . , yT ). To produce
longer sequences, e.g. in cases where yT is not the end of a sentence, we use pLM to produce a
continuation of y using greedy decoding.

4 Experiments

We evaluate COLD on three constrained generation tasks. Using COLD for each task amounts to
specifying a set of task-specific constraints (instances of those in §3.2). Our focus is enabling
constrained generation for settings in which fine-tuning is infeasible, through changing the decoding
method. Thus, our experiments (i) use off-the-shelf LMs without fine-tuning, and (ii) compare COLD
primarily against alternative decoding methods. As our base LM, we use GPT2-XL [46].

4.1 Abductive Reasoning

We study a specific formulation of abductive reasoning [43] as a language generation challenge.
Specifically, given a beginning sentence xl and an ending sentence xr, the abductive language

6



generation (αNLG) problem [1] consists of generating a bridge sentence y that fills in between the
two sentences and forms a coherent full story (see Figure 1 for example). The task is particularly
challenging for conventional monotonic left-to-right LMs (such as GPT-2 and GPT-3) since it requires
non-monotonic reasoning that not only conditions on the past context (xl, on the left), but also the
future story ending (xr, on the right).

4.1.1 The COLD Solution

COLD decoding can readily accommodate the abductive reasoning task by simply plugging in
appropriate constraints to specify an energy function. Specifically, the generated text needs to be (1)
fluent and consistent with the left context xl, and (2) coherent with the right context xr. Accordingly,
we compose an energy using relevant constraints from §3.2:

E(ỹ) = λlr
a f→LM(ỹ;xl) + λrl

a f←LM(ỹ;xr) + λbfpred(ỹ;xr) + λcfsim(ỹ; kw(xr)− kw(xl)). (7)

That is, we combine (a) a soft fluency constraint (Eq. 3) conditioning on the left sentence xl to enforce
fluency and consistency with the left context, and a reverse fluency constraint with a right-to-left
LM conditioning on xr to encourage coherence with the right context; (b) a future-token prediction
constraint (Eq. 4) that enforces consistency between the generation y and the story ending xr; (c)
a 1-gram similarity constraint (Eq. 5) between the generation y and keywords (non-stopwords) in
xr (excluding those in xl), i.e., kw(xr)− kw(xl), which intuitively promotes a ‘smooth transition’
between xl, y, and xr.

For the energy function in Eq.(7), we select the constraint weights on the dev set. Throughout the
experiments, we set the number of Langevin dynamics steps to N = 2000, with a step size η = 0.1
(Eq. 2). We discuss more details of the configurations in the appendix.

Baselines. We compare with previous decoding approaches for this task. In particular, we compare
with DELOREAN [45] which outperformed a wide range of supervised and unsupervised methods on
the abductive reasoning task in Qin et al. [45]. Following Qin et al. [45], we also compare with a
LEFT-ONLY method that generates the continuation of xl without considering the right-side xr, i.e.,
y ∼ pLM(y|xl).

Evaluation. We perform both automatic and human evaluation. We adopt the standard automatic
metrics on the task [1] that measure the minimal edit between the generated text and the human-
written references on the test set, including BLEU [40], ROUGE [30], CIDEr [51], and BERTScore
[58]. For the human evaluation, we follow [45] and let crowdworkers from Amazon Mechanical Turk
rate the generations on 200 test examples. Workers were presented a pair of observations (xl and
xr) and a generated hypothesis y, and asked to rate the coherence of the hypothesis with respect to
the observation xl (i.e., xly), the observation xr (i.e., yxr), and both (i.e., xlyxr), as well as the
grammaticality of the hypothesis y itself, on a 5-point Likert scale. The average ordinal Krippendorff
alpha (0 ≤ α ≤ 1) [25] is 0.36, indicating a fair inner-annotator agreement.

4.1.2 Results

Table 1 shows the evaluation results on the abductive reasoning task. Under automatic evaluation
(the left panel), COLD consistently outperforms the previous best unsupervised decoding algorithm
DELOREAN, as well as the LEFT-ONLY method, in terms of both the lexical overlap metrics (BLEU,
ROUGE and CIDEr) and semantic similarity metric BERTScore. The human evaluation (the right
panel) provide more fine-grained insights. COLD achieves the best overall coherence, meaning that
the generated y from COLD fits best with both the left-side context xl and the right-side context xr

compared to the other methods. In contrast, DELOREAN excels only in terms of the left-side coherence
(with xl), with inferior right-coherence (with xr). We speculate this is because of DELOREAN’s
complex interleaving of forward and backward decoding passes that make it difficult to balance the
left- and right-coherence constraints. In terms of grammaticality, unsurprisingly, LEFT-ONLY obtains
the best score as it ignores any other constraints (and fails this task with low coherence scores).
More importantly, COLD achieves a high grammaticality score along with its high coherence,
substantially improving over DELOREAN. Example generations in Appendix Table 7 show how
COLD can reason with the right-hand context (e.g. ‘no heels’), while DELOREAN’s generations are
contradictory (‘red shoes’ vs. ‘white pair’) or equivalent to those from LEFT-ONLY.
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Models Min-Edit Coherence

Overlap Human BERTS. Human

LEFT-ONLY 50.56 1.21 73.83 2.30

Mix-Match [36] 85.07 – 65.20 –
Mix-MatchL [36] 84.79 – 66.03 –
DELOREAN 52.90 1.81 73.66 1.92
COLD (ours) 56.84 1.82 73.47 2.12

Table 2: Automatic and human evaluation of
counterfactual story rewriting. As a trivial
method, LEFT-ONLY is coherent but fails on
minimal-edit. COLD is superior to DELOREAN
in terms of most metrics, including human evalu-
ation.

Models Coverage Fluency

Count Percent PPL Human

TSMH 2.72 71.27 1545.15 1.72
NEUROLOGIC 3.30 91.00 28.61 2.53
COLD (ours) 4.24 94.50 54.98 2.07

Table 3: Results of lexically constrained decod-
ing (§4.3). For keyword coverage, we report
both the average number and average percent-
age of constraint words present in the generated
text. For language fluency, we use perplexity and
human judgement.

4.2 Counterfactual Story Rewriting

Next, we consider counterfactual story rewriting [44]. Given a story context xl with ending xr, the
task is to generate a new story ending y that is (i) similar to the original ending xr, yet (ii) consistent
with a new story context x′l (see Figure 1 for example). The task is challenging as it requires capturing
the aspects of future events that are invariant under the new (counterfactual) context, while only
making necessary edits for coherence.

4.2.1 The COLD Solution

To tackle this task, we use COLD with an energy composed of constraint functions that promote
coherence with the new context x′l, and minimal edits to the original ending xr:

E(ỹ) =λlr
a f→LM(ỹ;x

′
l) + λrl

a f←LM(ỹ) + λbfsim(ỹ;xr). (8)

These constraints combine: (a) a soft fluency constraint (Eq. 3) conditioned on x′l to promote
coherence between the generation y and the new (counterfactual) context x′l; a reverse LM constraint
to improve fluency; (b) a n-gram similarity constraint (Eq. 5, n = {2, 3}) to encourage generating an
ending ỹ that is close to the original ending xr. We largely follow the configurations in §4.1 with
some exceptions described in the appendix.

Baselines. Similar to the setup in §4.1, we compare with DELOREAN [45], a recent state-of-the-art
decoding algorithm. As a reference, we also report the performance of a trivial solution, LEFT-ONLY,
that generates a continuation of x′l without considering the minimal edit constraint with the original
ending xr. Thus the method is expected to generate a coherent ending which however does not
necessarily resemble the original ending. Finally, we compare with Mix-and-Match [36], a recent
energy-based decoding method with discrete MCMC sampling, using BERT-base and BERT-Large.

Evaluation. We use the benchmark dataset TIMETRAVEL [44]. The original data contains three
sentences in a story ending. Due to computation constraints, we use the first sentence as the original
ending and generate a new single-sentence ending accordingly. Following [44, 45] we conduct
both automatic and human evaluation. For automatic evaluation, we measure BERTScore [58], and
Minimal Edit which computes the overlap of text edits (insertion, deletion, replacement, etc.) [49]
needed to produce the gold ending y∗ and the generated ending y, starting from the original ending
xr. We do not use other common metrics such as BLEU since they were shown to be ineffective
[44]. For human evaluation, each crowdworker is presented with the original story (xl, xr), the
counterfactual condition x′l, and the generated ending y, and the worker is asked to rate (1) the
coherence of ỹ with respect to x′l and (2) the extent to which the generated ending y preserves the
details of the original ending xr (“minimal edit”), on a 3-point Likert scale for 200 test examples.
The average ordinal Krippendorff alpha is 0.52, indicating a moderate inner-annotator agreement. We
exclude Mix-and-Match from human evaluation given the significant performance gap in automated
evaluation.

4.2.2 Results

Table 2 shows the results of automatic and human evaluation in terms of both minimal-edit and
coherence. As expected, the reference method LEFT-ONLY that completely ignores the minimal edit
constraint can easily generate a new ending that is coherent with the new context x′l. Compared to
the baseline approach DELOREAN, our method COLD achieves overall superior performance, with
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substantially improved coherence score and comparable minimal-edit score by human evaluation.
Mix-and-Match, based on discrete MCMC sampling, performs poorly. Intuitively, its discrete
sampling tends to get stuck in a mode of the target distribution (i.e., the region surrounding the
original story ending), and struggles to explore further to find samples of interest. COLD’s gradient-
based sampling with continuous approximation leads to more efficient and effective exploration and
mixing, as evidenced by samples that better meet the task requirements. See Appendix for examples.

4.3 Lexically Constrained Decoding

Next, we use COLD for lexically constrained decoding. Given a set of wordsW , the task aims to
generate a coherent sentence that contains these words (Figure 1). The task is challenging as it
requires proper planning to coherently include the constraint words.

4.3.1 The COLD Solution

We specify an energy function of the following form:

E(ỹ) = λlr
a f→LM(ỹ) + λrl

a f←LM(ỹ) + λbfsim(ỹ;W) + λcfpred(ỹ; c(W)). (9)

Specifically, this energy function incorporates: (a) a soft fluency constraint (Eq. 3) and a reverse LM
fluency constraint as in the previous tasks; (b) a 1-gram similarity constraint (Eq. 5) between the
generation ỹ and the given wordsW; (c) a future-token prediction constraint, where we concatenate
the constraint words (in an arbitrary order), denoted as c(W), and use it as the right-side content xr

in Eq. (4). Again we use similar configurations as in §4.1. More details can be found in appendix.

Baselines. We compare with a recent state-of-the-art method NEUROLOGIC [33], a beam-search vari-
ant specifically designed for lexically constrained generation which outperformed many supervised
and unsupervised approaches in Lu et al. [33]. We also report the results of TSMH [57] as another
recent baseline which uses Monte-Carlo Tree Search [5].

Evaluation. We use the set of constraint words from the COMMONGEN corpus [29], but adopt
the canonical setting that the generated text must contain the exact constraint words (e.g., write)
instead of their variants (e.g., wrote) [18, 47]. Following previous works [18, 47, 57], we report a
measure of constraint words coverage as well as language fluency by evaluating the perplexity of the
text . We also ask crowdworkers to rate the text fluency on a 3-point Likert scale on 200 test examples.
The average ordinal Krippendorff alpha is 0.29, indicating a fair inner-annotator agreement.

4.3.2 Results

Table 3 shows the evaluation results for the lexically constrained decoding task. COLD, a general
constrained decoding method, is comparable to the state-of-the-art method NEUROLOGIC designed
specifically for dealing with lexical constraints. In particular, COLD achieves a higher coverage of
given keywords, at the expense of generating slightly less fluent language. COLD is also substantially
better than lexically constrained decoding method TSMH in terms of both coverage and fluency.

4.4 Additional Analysis

Models Gra-
mmar

Left-
coher.
(x-y)

Right-
coher.
(y-z)

Overall-
coher.

(x-y-z)

COLD (Full) 4.17 3.96 2.88 2.83
COLD −fsim 4.54 3.82 2.73 2.69
COLD −f←LM 4.35 3.97 2.84 2.80
COLD −fpred 4.61 4.07 2.75 2.77

Table 4: Ablation for the effect of different con-
straints in Eq.(7). We do human evaluation on
125 test examples. The best overall coherence is
achieved when all the constraints are present.

Ablation studies. We ablate two important
ingredients of our approach, namely the con-
straints and the top-k filtering. Due to space
limit, we report the results of constraints and de-
fer the results of top-k filtering to the appendix.
Table 5 shows the human evaluation results for
ablations of the constraints used on the abduc-
tive reasoning task (Eq. 7). The n-gram simi-
larity constraint fsim provides the largest con-
tribution to the overall coherence. The reverse
LM fluency constraint f←LM also to some extent
helps with the right-side coherence by condi-
tioning on the right-side content xr. Removing
the future-token prediction constraint similarly
causes inferior scores in terms of right-side and
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overall coherence, as expected. Removing the individual constraints leads to better grammaticality
due to less competition among different constraints, at the cost of coherence. Our uniform treatment
of all constraints as energy terms makes it straightforward to balance the different constraints by
controlling the constraint weights.

Method Runtime (s)

COLD (GPT2-XL, 1.5B) 33.6
COLD (GPT2-M, 355M) 22.7
Mix-and-Match (BERTLarge, 340M) 33.5

Table 5: COLD is more efficient than gradient-free
Mix-and-Match [36]. The runtime shown is sec-
onds per sample on Counterfactual Story Rewrit-
ing.

Efficiency of COLD. We report the average
runtime of generating one sample on the Coun-
terfactual Story Rewriting data. The table be-
low shows the results (on an NVIDIA Quadro
GV100 GPU, batch size=32). We compare with
Mix-and-Match [36], a recent energy-based de-
coding method with discrete MCMC sampling
(Metropolis-Hastings, in particular). COLD,
which uses gradient-based sampling, is faster
than the gradient-free Mix-and-Match: COLD
is 30% faster with base LMs of similar sizes
(GPT2-M and BERTLarge), and has roughly the
same time cost when using a much larger LM (GPT2-XL).

5 Related Work
Previous works proposed beam search variants for lexically constrained decoding [18, 42, 33] which
enforce constraints in a discrete space. Recent works consider constraint satisfaction by adjusting
vocabulary distributions using an additional discriminator or LM [6, 24, 56]. Differing from those
approaches that determine the generation token by token auto-regressively, Qin et al. [45] optimize
the whole (soft) token sequence via gradient propagation, which facilitates sequence-level semantic
constraints (e.g., right-coherence, minimal-edits). COLD also samples complete sequences, while
offering a principled and unified formulation based on energy-based modeling. Kumar et al. [26]
extend [17] by imposing constraints with a Lagrangian method and optimizing for a single output
with gradient descent. In contrast, our approach based on energy-based sampling (§3.1) allows for
generating samples for other utilities (e.g., rank-and-select §3.4, estimating expectations). We also
introduce components for more fluent generations such as the novel discretization procedure. Also, on
the empirical side, we explore a different class of problems and tackle them in the absence of labeled
data. The recent CGMH [35] and TSMH [57], followed by [36, 14], perform constrained decoding
with extended Gibbs sampling or Metropolis-Hastings sampling in the discrete text space. Our
energy-based formulation with gradient-based Langevin dynamics sampling produces substantially
better results than the discrete TSMH (§4.3). Sha [47] uses gradient information to guide generation,
which, however, is specifically designed for lexically constrained generation.

Energy-based models (EBMs) have been used for incorporating additional information to train text
generation models [7, 23, 41, 21]. In contrast, we focus on the constrained decoding (inference) that
can be directly applied to pretrained LMs without fine-tuning. Langevin dynamics is widely used on
EBMs of modalities with continuous values, like images [48, 9, 59], 3D shapes [55], latent features
[39], and audio sequences [22]. To our knowledge, we are the first to apply Langevin dynamics for
(constrained) discrete text generation (with a continuous approximation) for efficient sampling.

6 Conclusion
We introduce COLD decoding, an energy-based constrained text generation framework that can ex-
press various soft/hard constraints through an energy function, and sample using Langevin dynamics.
COLD can be applied directly to off-the-shelf LMs without task-specific fine-tuning. We showcase its
flexibility and strong performance on three distinct applications of constrained text generation.
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A Ethical Considerations

Automatic text generation, though powerful in generating fluent human-like language, could be potentially
used for malicious purposes, such as generating toxic, biased, offensive, or fake information. We hope that our
research, as a method to control language model generations by plugging in constraints, can provide a way for
steering and harnessing the LMs to alleviate those ethical issues.

B Experimental Configurations

Configurations of Abductive Reasoning. For the energy function in Eq.(7), we select the constraint weights
on the dev set. The overall weight of the fluency constraints is set to 0.5, wherein the f→LM and f←LM constraints
are balanced with a 6:4 ratio, leading to λlr

a = 0.3 and λrl
a = 0.2. The remaining weight 0.5 is assigned to

the constraints (b) and (c), with a ratio of 1:0.05, leading to λlr
c = 0.48 and λrl

a = 0.02. Throughout the
experiments, we set the number of Langevin dynamics steps to N = 2000, with a step size η = 0.1 (Eq. 2). The
text decoded by COLD is set to have length 10 and is completed by the base LM as described in §3.4. We set the
k = 2 for top-k filtering. For each (xl,xr), we generate 16 samples and pick the best one by first ranking by the
perplexity of the joint sequence xlyxr for overall coherence, and then from the top 5 candidates selecting the
best one in terms of the perplexity of yxr for enhanced coherence with the right context.

Configurations of Counterfactual Story Rewriting. The constraint weights in the energy function in Eq. (8)
are selected on the dev set. The weights of the constraints (a) and (b) are set to λlr

a + λrl
a = 0.8 and λb = 0.2,

respectively. For the LM and reverse LM fluency constraints in (a), we use a ratio of 8:2, leading to λlr
a = 0.64

and λrl
a = 0.16. We largely follow the algorithm configurations in §4.1 except that the text length is set to 20,

k = 5 for top-k filtering, and we generate 32 samples for each test example and pick the best one ranked by the
perplexity of x′ly.

Configurations of Lexically Constrained Decoding. The weights of the constraints in energy function Eq. (9)
are the same as those in the abductive reasoning task (§4.1) except for the ratio of the n-gram similarity constraint,
which is increased to 1:0.1 between constraints (b) and (c), leading to λb = 0.05 and λc = 0.45. We set the
k = 5 for top-k filtering. All other configurations are the same as those in §4.1.

Right-to-left language model. The right-to-left LM is publicly released by West et al. [54]. Specifically, the
LM was trained following GPT-2 using the OpenWebText training corpus (see section 2.4 in West et al. [54]).

Computing. All experiments were conducted using a server with 8 NVIDIA V100 GPUs.

C Human Evaluation Details

C.1 Instructions of Human Evaluation

We conduct human evaluation for 3 tasks: 1)Lexically Constrained Generation 2)Abductive Reasoning 3)Coun-
terfactual Reasoning. We sampled 200 prompts randomly from the corpus for each human evaluation. We shuffle
HITs to eliminate systematic bias of rater availability by time. Figures show the screenshot of instructions for
our human evaluation.

C.2 Human Evaluation Payment

Mean hourly pay was determined using a javascript timing tool to be $15/hr.

D Ablation Study: Top-k Filtering

top-k Grammar
Left-
coher.
(x-y)

Right-
coher.
(y-z)

Overall-
coher.

(x-y-z)

2 4.38 3.99 2.88 2.92
5 4.27 3.71 3.04 2.87

10 4.09 3.84 3.09 2.94
50 3.95 3.62 3.07 2.87

100 3.80 3.54 3.03 2.84

Table 6: Ablation for the effect of k in top-k filtering mechanism (§3.3). We use the same setting as Table 5.
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Figure 4: Screenshot of the mechanical turk interface used to gather human judgments for Lexically
Constrained Generation.

Figure 5: Screenshot of the mechanical turk interface used to gather human judgments for Abductive
Reasoning.

Figure 6: Screenshot of the mechanical turk interface used to gather human judgments for Counter-
factual Reasoning.
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We investigate the role of top-k filtering mechanism (§3.3). Specifically, we investigate its effect on the output
performance for different k values in Table 6. We can see that the grammar score tends to decrease as k increases.
This is expected since a larger k indicates more flexibility for the generation to satisfy other constraints, often at
the expense of fluency. The left coherence shows a similar relationship with the k value since it is also enforced
by the left-to-right LM through the soft fluency constraint (Eq.3). In contrast, the right and overall coherence
generally benefits from a larger k due to the increased flexibility for choosing the right words. Interestingly, with
a large k value (50, 100), the right/overall coherence no longer improves, probably due to the inferior fluency
that has affected the meaning and coherence of the generation.

E Generated Samples

Tables 7, 8, and 9 show generated samples for the abductive reasoning, counterfactual reasoning, and lexically
constrained decoding tasks, respectively.

Begin. xl I bought a great pair of red shoe at the shoe store.
End. xr I ended up getting a white pair with no heels.

LEFT-ONLY I was going to wear them to the beach, but I didn’t want to be the only one.
DELOREAN I was going to buy a pair of black shoes, but I decided to go with red shoes because I like red shoes.

COLD I was going to buy heels but they were out of stock.

Begin. xl Arnold was scared of cats.
End. xr Arnold dumped his girlfriend.

LEFT-ONLY He was afraid of the dark.
DELOREAN He was afraid of the dark.

COLD He had girlfriend who was a cat lover.

Table 7: Examples for abductive reasoning.

Orig. context xl Jon decided to go to the pawn store. He found a bornite-coated chalcopyrite crystal.
Orig. ending xr He bought it for three thousand dollars.

Counterfactual x′l He sold some antiques he had found.

LEFT-ONLY He bought a few books.
DELOREAN He bought it for three thousand dollars.

COLD He bought a thousand dollars’ worth of gold.

Orig. context xl Peyton and Tom played football often. Tom always won for many Year’s.
Orig. ending xr Peyton never gave up and kept practicing.

Counterfactual x′l Peyton always won for many years.

LEFT-ONLY Tom was a great quarterback.
DELOREAN Tom was a great quarterback.

COLD Tom never gave up and never gave in.

Table 8: Examples for counterfactual reasoning.

Keywords xl hand, sink, soap, wash

TSMH They wash with their hands they wash at the sinks soaps they wash
NEUROLOGIC I hand wash my clothes in the sink, soap and water.

COLD The sink soap is a hand wash soap made from natural ingredients.

Keywords xl cream, leg, put, shave

TSMH I creamed my bare legs and put.
NEUROLOGIC I put shave cream on my leg.

COLD The first time I ever put a leg in shave cream was when I was a kid.
Table 9: Examples for lexically constrained generation.
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