
A Training Details

All proposed losses and baselines use the same training settings, which are described in detail here.

A.1 CIFAR

General training details. For all the results on the CIFAR datasets, we use a PreActResNet-34 with
a standard SGD optimizer with Nesterov momentum, and a batch size of 128. For the network, we
use three stacks of five residual blocks with 32, 64, and 128 filters for the layers in these stacks,
respectively. The learning rate is reduced by a factor of 10 at 50% and 75% of the total 400 epochs. For
data augmentation, we use RandAugment [32] with N = 1 and M = 3 using random cropping (size
32 with 4 pixels as padding), random horizontal flipping, normalization and lastly Cutout [33] with
length 16. We set random seeds for all methods to have the same network weight initialization, order
of data for the data loader, train-validation split, and noisy labels in the training set. We use a clean
validation set corresponding to 10% of the training data. A clean validation set is commonly provided
with real-world noisy datasets [28, 34]. Any potential gain from using a clean instead of a noisy
validation set is the same for all methods since all share the same setup.

JS and GJS implementation. We implement the Jensen-Shannon-based losses using the definitions
based on KL divergence, see Equation 2. To make sure the gradients are propagated through the
target argument, we do not use the KL divergence in PyTorch. Instead, we write our own based on
the official implementation.

Search for learning rate and weight decay. We do a separate hyperparameter search for learning
rate and weight decay on 40% noise using both asymmetric and symmetric noises on CIFAR datasets.
For CIFAR-10, we search for learning rates in [0.001, 0.005, 0.01, 0.05, 0.1] and weight decays in
[1e − 4, 5e − 4, 1e − 3]. The method-specific hyperparameters used for this search were 0.9, 0.7,
(0.1,1.0), 0.7, (1.0,1.0), 0.5, 0.5 for BS(β), LS(ε), SCE(α, β), GCE(q), NCE+RCE(α, β), JS(π1) and
GJS(π1), respectively. For CIFAR-100, we search for learning rates in [0.01, 0.05, 0.1, 0.2, 0.4] and
weight decays in [1e−5, 5e−5, 1e−4]. The method-specific hyperparameters used for this search were
0.9, 0.7, (6.0,0.1), 0.7, (10.0,0.1), 0.5, 0.5 for BS(β), LS(ε), SCE(α, β), GCE(q), NCE+RCE(α, β),
JS(π1) and GJS(π1), respectively. Note that, these fixed method-specific hyperparameters for both
CIFAR-10 and CIFAR-100 are taken from their corresponding papers for this initial search of learning
rate and weight decay but they will be further optimized systematically in the next steps.

Search for method-specific parameters. We fix the obtained best learning rate and weight decay
for all other noise rates, but then for each noise rate/type, we search for method-specific parameters.
For the methods with a single hyperparameter, BS (β), LS (ε), GCE (q), JS (π1), GJS (π1), we try
values in [0.1, 0.3, 0.5, 0.7, 0.9]. On the other hand, NCE+RCE and SCE have three hyperparameters,
i.e. α and β that scale the two loss terms, andA := log(0) for the RCE term. We setA = log (1e− 4)
and do a grid search for three values of α and two of beta β (six in total) around the best reported
parameters from each paper.4

Test evaluation. The best parameters are then used to train on the full training set with five different
seeds. The final parameters that were used to get the results in Table 1 are shown in Table 7.

For completeness, in Appendix B.5, we provide results for a less thorough hyperparameter
search(more similar to related work) which also use a noisy validation set.

A.2 WebVision

All methods train a randomly initialized ResNet-50 model from PyTorch using the SGD optimizer with
Nesterov momentum, and a batch size of 32 for GJS and 64 for CE and JS. For data augmentation, we
do a random resize crop of size 224, random horizontal flips, and color jitter (torchvision ColorJitter
transform with brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2). We use a fixed weight decay of
1e− 4 and do a grid search for the best learning rate in [0.1, 0.2, 0.4] and π1 ∈ [0.1, 0.3, 0.5, 0.7, 0.9].
The learning rate is reduced by a multiplicative factor of 0.97 every epoch, and we train for a total
of 300 epochs. The best starting learning rates were 0.4, 0.2, 0.1 for CE, JS and GJS, respectively.

4We also tried using β = 1− α, and mapping the best parameters from the papers to this range, combined
with a similar search as for the single parameter methods, but this resulted in worse performance.
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Table 7: Hyperparameters for CIFAR. A hyperparameter search over learning rates and weight
decays, was done for 40% noise on both symmetric and asymmetric noise for the CIFAR datasets.
The best parameters for each method are shown in this table, where the format is [learning rate, weight
decay]. The hyperparameters for zero percent noise uses the same settings as for the symmetric
noise. For the best learning rate and weight decay, another search is done for method-specific
hyperparameters, and the best values are shown here. For methods with a single hyperparameter, the
value correspond to their respective hyperparameter, i.e. BS (β), LS (ε), GCE (q), JS (π1), GJS (π1).
For NCE+RCE and SCE the value correspond to [α, β].

Dataset Method
Learning Rate & Weight Decay Method-specific Hyperparameters

Sym Noise Asym Noise No Noise Sym Noise Asym Noise

20-80% 20-40% 0% 20% 40% 60% 80% 20% 40%

CIFAR-10

CE [0.05, 1e-3] [0.1, 1e-3] - - - - - - -
BS [0.1, 1e-3] [0.1, 1e-3] 0.5 0.5 0.7 0.7 0.9 0.7 0.5
LS [0.1, 5e-4] [0.1, 1e-3] 0.1 0.5 0.9 0.7 0.1 0.1 0.1
SCE [0.01, 5e-4] [0.05, 1e-3] [0.2, 0.1] [0.05, 0.1] [0.1, 0.1] [0.2, 1.0] [0.1,1.0] [0.1, 0.1] [0.2, 1.0]
GCE [0.01, 5e-4] [0.1, 1e-3] 0.5 0.7 0.7 0.7 0.9 0.1 0.1
NCE+RCE [0.005, 1e-3] [0.05, 1e-4] [10, 0.1] [10, 0.1] [10, 0.1] [1.0, 0.1] [10,1.0] [10, 0.1] [1.0, 0.1]
JS [0.01, 5e-4] [0.1, 1e-3] 0.1 0.7 0.7 0.9 0.9 0.3 0.3
GJS [0.1, 5e-4] [0.1, 1e-3] 0.5 0.3 0.9 0.1 0.1 0.3 0.3

CIFAR-100

CE [0.4, 1e-4] [0.2, 1e-4] - - - - - - -
BS [0.4, 1e-4] [0.4, 1e-4] 0.7 0.5 0.5 0.5 0.9 0.3 0.3
LS [0.2, 5e-5] [0.4, 1e-4] 0.1 0.7 0.7 0.7 0.9 0.5 0.7
SCE [0.2, 1e-4] [0.4, 5e-5] [0.1, 0.1] [0.1, 0.1] [0.1, 0.1] [0.1, 1.0] [0.1,0.1] [0.1, 1.0] [0.1, 1.0]
GCE [0.4, 1e-5] [0.2, 1e-4] 0.5 0.5 0.5 0.7 0.7 0.7 0.7
NCE+RCE [0.2, 5e-5] [0.2, 5e-5] [20, 0.1] [20, 0.1] [20, 0.1] [20, 0.1] [20,0.1] [20, 0.1] [10, 0.1]
JS [0.2, 1e-4] [0.1, 1e-4] 0.1 0.1 0.3 0.5 0.3 0.5 0.5
GJS [0.2, 5e-5] [0.4, 1e-4] 0.3 0.3 0.5 0.9 0.1 0.5 0.1

Both JS and GJS used π1 = 0.1. With the best learning rate and π1, we ran four more runs with new
seeds for the network initialization and data loader.

B Additional Experiments and Insights

B.1 Instance-Dependent Synthetic Noise

In Section 4.1, we showed results on two types of synthetic noise: symmetric (η) and asymmet-
ric (η(y)). Although these noise types are simple to empirically and theoretically analyze, they might
be different from noise observed in real-world datasets. Recently, a new type of synthetic noise has
been proposed by Zhang et al. [25], where the risks of mislabeling an example of class i to class j
vary per example (ηij(x)). This type of noise is called instance-dependent and is more similar the
noise in real-world datasets.

In Table 8, we compare CE, Generalized CE (GCE) and GJS on three different types of 35% instance-
dependent noise on the CIFAR datasets. The training setup is the same as for the results in Table
1, described in detail in Section A.1. For all methods, we search for the best hyperparameters on
the Type-I noise and use the same settings for the other two types. For CIFAR-10, the optimal
hyperparameters (learning rate, weight decay, method-specific) were: (0.1, 1e-3, -), (0.005, 1e-3, 0.9),
(0.001, 5e-4, 0.5) for CE, GCE, and GJS, respectively. For CIFAR-100, they were: (0.1, 5e-4, -),
(0.4, 5e-5, 0.7), (0.1, 5e-4, 0.3) for CE, GCE, and GJS, respectively.

On the simpler CIFAR-10, GCE and GJS perform similarly, but on the more challenging CIFAR-100,
GJS significantly outperform GCE.

B.2 Real-World Noise: ANIMAL-10N & Food-101N

Here, we evaluate GJS on two naturally-noisy datasets: ANIMAL-10N [30] and Food-101N [31].
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Table 8: Instance-Dependent Synthetic Noise Benchmark on CIFAR. We reimplement the Gen-
eralized CE (GCE) loss function into the same learning setup and a ResNet-34 network. We used
same hyperparameter optimization budget and mechanism for all methods. We evaluate on 35%
noise for the three types of instance-dependent synthetic noise proposed by Zhang et al. [25]. Mean
test accuracy and standard deviation are reported from five runs and the statistically-significant top
performers are boldfaced. As for the symmetric and asymmetric synthetic noise, the efficacy of GJS
is more evident on the more challenging CIFAR-100 dataset, where GJS significantly outperforms
the baselines.

Dataset Method
No Noise Instance-Dependent Noise

0% Type-I Type-II Type-III

CIFAR-10
CE 94.35 ± 0.10 83.16 ± 0.36 81.18 ± 0.38 81.80 ± 0.13
GCE 94.00 ± 0.08 86.50 ± 0.16 83.80 ± 0.26 84.85 ± 0.12
GJS 94.78 ± 0.06 85.98 ± 0.12 83.81 ± 0.12 84.83 ± 0.26

CIFAR-100
CE 77.60 ± 0.17 62.46 ± 0.31 63.51 ± 0.41 62.44 ± 0.47
GCE 77.65 ± 0.17 65.62 ± 0.32 65.84 ± 0.35 65.85 ± 0.32
GJS 79.27 ± 0.29 68.49 ± 0.14 69.21 ± 0.16 69.04 ± 0.16

Food-101N. The dataset contains 301k images classified as 101 different food recipes. The images
were collected using Google, Bing, Yelp, and TripAdvisor. The noise rate is estimated to be 20%.

We follow the same training setup as the recent label correction method called Progressive Label
Correction (PLC) [25], i.e. we use the same network architecture, augmentation strategy, optimizer,
batch size, number of epochs, and learning rate scheduling. We use an initial learning rate and weight
decay of 0.001, and π1 = 0.3.

ANIMAL-10N. The dataset contains 55k images of 10 classes. The 10 classes can be grouped into
5 pairs of similar classes that are more likely to be confused: (cat, lynx), (jaguar, cheetah), (wolf,
coyote), (chimpanzee, orangutan), (hamster, guinea pig). The images were collected using Google
and Bing. The noise rate is estimated to be 8%.

We use the same training setup(network, optimizer, number of epochs, learning rate scheduling, etc)
as PLC, but use cropping instead of random horizontal flipping as augmentation to reduce the risk of
both augmentations being equal for GJS. We use an initial learning rate of 0.05, a weight decay of
5e-4, and π1 = 0.5.

Results. The mean test accuracy and standard deviation from three runs for ANIMAL-10N and
Food-101N are in Table 9 and 10, respectively. The results for all baselines are from Zhang et al. [25].
Our GJS loss outperforms all other methods on both datasets.

Table 9: Real-world Noise: ANIMAL-10N.
Method Accuracy

CE 79.4± 0.14
SELFIE 81.8± 0.09
PLC 83.4± 0.43
GJS 84.2± 0.07

Table 10: Real-world Noise: Food-101N.
Method Accuracy

CE 81.67
CleanNet 83.95
PLC 85.28± 0.04
GJS 86.56± 0.13

B.3 Towards a better understanding of JS

In Proposition 2, we showed that JS is an important part of GJS, and therefore deserves attention.
Here, we make a systematic ablation study to empirically examine the contribution of the difference(s)
between JS loss and CE. We decompose the JS loss following the gradual construction of the Jensen-
Shannon divergence in the work of Lin [8]. This construction, interestingly, lends significant empirical
evidence to bounded losses’ robustness to noise, in connection to Theorem 1 and 2 and Proposition 3.

Let KL(p, q) denote the KL-divergence of a predictive distribution q ∈ ∆K−1 from a target
distribution p ∈ ∆K−1. KL divergence is neither symmetric nor bounded. K divergence, proposed
by Lin et al. [8], is a bounded version defined as K(p, q) := KL(p, (p + q)/2) = KL(p,m).
However, this divergence is not symmetric. A simple way to achieve symmetry is to take the average
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Table 11: Ablation Study of JS. A compari-
son of JS and other KL-based divergences and
their relationship to symmetry and boundedness.
The distributionm is the mean of p and q.

Method Formula Symmetric Bounded

KL KL(p, q)

KL’ KL(q,p)

Jeffrey’s (KL(p, q) + KL(q,p))/2 X
K KL(p,m) X
K’ KL(q,m) X
JS (KL(p,m)+KL(q,m))/2 X X
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Figure 7: Ablation Study of JS. Validation ac-
curacy of the divergences in Table 11 are plotted
during training with 40% symmetric noise on the
CIFAR-100 dataset. Notably, the only two losses
that show signs of overfitting (KL and Jeffrey’s) are
unbounded. Interestingly, K (bounded KL) makes
the learning slower, while K ′ (bounded KL′) con-
siderably improves the learning dynamics. Finally,
it can be seen that, JS, in contrast to its unbounded
version (Jeffrey’s), does not overfit to noise.

of forward and reverse versions of a divergence. For KL and K, this gives rise to Jeffrey’s divergence
and JS with π = [1

2 ,
1
2 ]T , respectively. Table 11 provides an overview of these divergences and

Figure 7 shows their validation accuracy during training on CIFAR-100 with 40% symmetric noise.

Bounded. Notably, the only two losses that show signs of overfitting (KL and Jeffrey’s) are
unbounded. Interestingly, K (bounded KL) makes the learning much slower, while K ′ (bounded
KL′) considerably improves the learning dynamics. Finally, it can be seen that, JS, in contrast to its
unbounded version (Jeffrey’s), does not overfit to noise.

Symmetry. The Jeffrey’s divergence performs better than either of its two constituent KL terms.
This is not as clear for JS, where K ′ is performing surprisingly well on its own. In the proof of
Proposition 1, we show that K ′ →MAE as π1 → 1, while K goes to zero, which could explain why
K ′ seems to be robust to noise. Furthermore, K ′, which is a component of JS, is reminiscent of label
smoothing.

Beside the bound and symmetry, other notable properties of JS and GJS are the connections to MAE
and consistency losses. Next section investigates the effect of hyperparameters that substantiates the
connection to MAE (Proposition 1).

B.4 Comparison between JS and GCE

We were pleasantly surprised by the finding in Proposition 1 that JS generalizes CE and MAE,
similarly to GCE. Here, we highlight differences between JS and GCE.

Theoretical properties. Our inspiration to study JS came from the symmetric loss function of SCE,
and the bounded loss of GCE. JS has both properties and a rich history in the field of information
theory. This is also one of the reasons we studied these properties in Section B.3. Finally, JS
generalizes naturally to more than two distributions.

Gradients. The gradients of CE/KL, GCE, JS and MAE with respect to logit zi of prediction
p = [p1, p2, . . . , pK ], given a label e(y), are of the form −∂py∂zi

g(py) with g(py) being 1
py

, 1

p1−qy
,

(1 − π1) log
(

π1

(1−π1)py
+ 1
)
/Z, and 1, for each of these losses respectively. Note that, q is the

hyperparameter of GCE and py denotes the yth component of p.
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Figure 8: Comparison between JS and GCE. A comparison of gradients scales between JS and
GCE. For each q of GCE, a corresponding π1 of JS is chosen such that the gradient scales are equal
at py = 1

2 .

In Figure 8, these gradients are compared by varying the hyperparameter of GCE, q ∈
[0.1, 0.3, 0.5, 0.7, 0.9], and finding the corresponding π for JSπ such that the two gradients are
equal at py = 1

2 .

Looking at the behaviour of the different losses at low-py regime, intuitively, a high gradient scale for
low py means a large parameter update for deviating from the given class. This can make noise free
learning faster by pushing the probability to the correct class, which is what CE does. However, if the
given class is incorrect (noisy) this can cause overfitting. The gradient scale of MAE induces same
update magnitude for py , which can give the network more freedom to deviate from noisy classes, at
the cost of slower learning for the correctly labeled examples.

Comparing GCE and JSπ in Figure 8, it can be seen that JSπ generally penalize lower probability in
the given class less than what GCE does. In this sense, JSπ behaves more like MAE.

For a derivation of the gradients of DJS, see Section C.6.

Label distributions. GCE requires the label distribution to be onehot which makes it harder to
incorporate GCE in many of the elaborate state-of-the-art methods that use “soft labels” e.g., Mixup,
co-training, or knowledge distillation.

B.5 Noisy Validation Set & Single Set of Parameters

Our systematic procedure to search for hyperparameters (A.1) is done to have a more conclusive
comparison to other methods. The most common procedure in related works is for each dataset,
all methods use the same learning rate and weight decay(chosen seemingly arbitrary), and each
method uses a single set of method-specific parameters for all noise rates and types. Baselines
typically use the same method-specific parameters as reported in their respective papers. First, using
the same learning rate and weight decay is problematic when comparing loss functions that have
different gradient magnitudes. Second, directly using the parameters reported for the baselines is
also problematic since the optimal hyperparameters depend on the training setup, which could be
different, e.g., network architecture, augmentation, learning rate schedule, etc. Third, using a fixed
method-specific parameter for all noise rates makes the results highly dependent on this choice. Lastly,
it is not possible to know if other methods would have performed better if a proper hyperparameter
search was done.

Here, for completeness, we use the same setup as in Section A.1, except we use the same learning
rate and weight decay for all methods and search for hyperparameters based on a noisy validation
set (more similar to related work).

The learning rate and weight decay for all methods are chosen based on noisy validation accuracy for
CE on 40% symmetric noise for each dataset. The optimal learning rates and weight decays([lr,wd])
were [0.05, 1e-3] and [0.4, 1e-4] for CIFAR-10 and CIFAR-100, respectively. The method-specific
parameters are found by a similar search as in Section A.1, except it is only done for 40% symmetric
noise and the optimal parameters are used for all other noise rates and types. For CIFAR-10, the
optimal method-specific hyperparameters were 0.5, 0.5, (0.1,0.1), 0.5, (10, 0.1), 0.5, 0.3 for BS(β),
LS(ε), SCE(α, β), GCE(q), NCE+RCE(α, β), JS(π1) and GJS(π1), respectively. For CIFAR-100, the
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Table 12: Synthetic Noise Benchmark on CIFAR. We reimplement other noise-robust loss func-
tions into the same learning setup and ResNet-34, including label smoothing (LS), Bootstrap (BS),
Symmetric CE (SCE), Generalized CE (GCE), and Normalized CE (NCE+RCE). We used same
hyperparameter optimization budget and mechanism for all the prior works and ours. All methods
use the same learning rate and weight decay and use the optimal method-specific parameters from a
search on 40% symmetric noise based on noisy validation accuracy. Mean test accuracy and standard
deviation are reported from five runs and the statistically-significant top performers are boldfaced.

Dataset Method
No Noise Symmetric Noise Rate Asymmetric Noise Rate

0% 20% 40% 60% 80% 20% 40%

CIFAR-10

CE 95.66 ± 0.18 91.47 ± 0.28 87.31 ± 0.29 81.96 ± 0.38 65.28 ± 0.90 92.80 ± 0.64 85.82 ± 0.42
BS 95.47 ± 0.11 93.65 ± 0.23 90.77 ± 0.30 49.80 ± 20.64 32.91 ± 5.43 93.86 ± 0.14 85.37 ± 1.07
LS 95.45 ± 0.15 93.52 ± 0.09 89.94 ± 0.17 84.13 ± 0.80 62.76 ± 2.00 92.71 ± 0.41 83.61 ± 1.21
SCE 94.92 ± 0.18 93.41 ± 0.20 90.99 ± 0.20 86.04 ± 0.31 41.04 ± 4.56 93.26 ± 0.13 84.46 ± 1.22
GCE 94.94 ± 0.09 93.79 ± 0.19 91.45 ± 0.17 86.00 ± 0.20 62.01 ± 2.54 93.23 ± 0.12 85.92 ± 0.61
NCE+RCE 94.31 ± 0.16 92.79 ± 0.16 90.31 ± 0.23 84.80 ± 0.47 34.47 ± 14.66 92.99 ± 0.15 87.00 ± 1.05
JS 94.74 ± 0.21 93.53 ± 0.23 91.57 ± 0.22 86.21 ± 0.48 65.87 ± 2.92 92.97 ± 0.26 86.42 ± 0.36
GJS 95.86 ± 0.10 95.20 ± 0.11 94.13 ± 0.19 89.65 ± 0.26 76.74 ± 0.75 94.81 ± 0.10 90.29 ± 0.26

CIFAR-100

CE 77.84 ± 0.17 65.74 ± 0.06 55.57 ± 0.55 44.60 ± 0.79 10.74 ± 5.11 66.61 ± 0.45 50.42 ± 0.44
BS 77.63 ± 0.25 73.01 ± 0.28 68.35 ± 0.43 54.07 ± 1.16 2.43 ± 0.49 69.75 ± 0.35 50.61 ± 0.32
LS 77.60 ± 0.28 74.22 ± 0.30 66.84 ± 0.28 54.09 ± 0.71 21.00 ± 2.14 73.30 ± 0.42 57.02 ± 0.57
SCE 77.46 ± 0.39 73.26 ± 0.29 66.96 ± 0.27 54.09 ± 0.49 13.26 ± 2.31 71.22 ± 0.33 49.91 ± 0.28
GCE 76.70 ± 0.39 74.14 ± 0.32 70.41 ± 0.40 62.14 ± 0.27 12.38 ± 3.74 69.40 ± 0.30 48.54 ± 0.30
NCE+RCE 73.23 ± 0.34 70.19 ± 0.27 65.61 ± 0.87 50.33 ± 1.58 5.55 ± 1.67 69.47 ± 0.25 56.32 ± 0.33
JS 77.20 ± 0.53 74.47 ± 0.25 70.12 ± 0.39 61.69 ± 0.63 27.77 ± 4.11 67.21 ± 0.37 49.39 ± 0.13
GJS 78.76 ± 0.32 77.14 ± 0.45 74.69 ± 0.12 64.06 ± 0.52 12.95 ± 2.40 74.44 ± 0.49 52.34 ± 0.81

optimal method-specific hyperparameters were 0.5, 0.7, (0.1, 0.1), 0.5, (20, 0.1), 0.1, 0.5 for BS(β),
LS(ε), SCE(α, β), GCE(q), NCE+RCE(α, β), JS(π1) and GJS(π1), respectively. The results with this
setup can be seen in Table 12.

B.6 Consistency Measure

In this section, we provide more details about the consistency measure used in Figure 1. To be
independent of any particular loss function, we considered a measure similar to standard Top-1
accuracy. We measure the ratio of samples that predict the same class on both the original image and
an augmented version of it

1

N

N∑
i=1

1
(

arg max
y

f(xi) = arg max
y

f(x̃i)
)

(4)

where the sum is over all the training examples, and 1 is the indicator function, the argmax is over
the predicted probability of K classes, and x̃i ∼ A(xi) is an augmented version of xi. Notably, this
measure does not depend on the labels.

In the experiment in Figure 1, the original images are only normalized, while the augmented images
use the same augmentation strategy as the benchmark experiments, see Section A.1.

B.7 Consistency of Trained Networks on CIFAR

In Table 13, we report the training consistency of the networks used for the main CIFAR results in
Table 1. We use the same consistency measure (Section B.6) as was used in Figure 1 and Figure 6.
When learning with noisy labels, the networks trained with GJS is significantly more consistent than
all the other methods. This is directly in line with Proposition 2, that shows how LGJS encourages
consistency.

In Table 1, we noticed better performance for CE compared to reported results in related work,
which we mainly attribute to our thorough hyperparameter search. In Table 13, we observe better
consistency for CE than in Figure 1, which we believe is for the same reason. Compared to Figure 1,
the networks trained with the CE loss in Table 13 use a higher learning rate and weight decay, both of
which have a regularizing effect, which could help against overfitting to noise.
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Table 13: Consistency of Trained Networks on CIFAR. The training consistency of the networks
from Table 1. Mean train consistency and standard deviation are reported from five runs and the
networks with significantly higher consistency are boldfaced. As observed in Figure 1, the consistency
is reduced for all methods for increasing noise rates. When learning with noisy labels, the networks
trained with GJS are the most consistent for all noise rates and datasets.

Dataset Method
No Noise Symmetric Noise Rate Asymmetric Noise Rate

0% 20% 40% 60% 80% 20% 40%

CIFAR-10

CE 94.35 ± 0.10 88.17 ± 0.19 82.66 ± 0.37 75.75 ± 0.29 64.28 ± 1.15 89.28 ± 0.20 85.26 ± 0.67
BS 91.18 ± 0.22 86.50 ± 0.24 82.90 ± 0.31 75.59 ± 0.51 70.68 ± 24.17 89.27 ± 0.12 85.77 ± 0.72
LS 94.22 ± 0.12 90.20 ± 0.18 84.42 ± 0.06 77.29 ± 0.17 62.16 ± 2.07 89.31 ± 0.22 85.76 ± 0.49
SCE 94.65 ± 0.18 91.11 ± 0.12 88.98 ± 0.14 84.70 ± 0.20 75.73 ± 0.20 90.16 ± 0.19 83.69 ± 0.36
GCE 94.00 ± 0.08 91.12 ± 0.07 89.00 ± 0.15 84.58 ± 0.17 75.86 ± 0.41 89.07 ± 0.27 84.88 ± 0.51
NCE+RCE 92.99 ± 0.16 91.15 ± 0.17 88.00 ± 0.15 82.01 ± 0.33 73.24 ± 0.69 91.09 ± 0.10 85.27 ± 0.37
JS 94.95 ± 0.06 91.46 ± 0.10 89.31 ± 0.09 84.77 ± 0.11 70.57 ± 0.68 87.47 ± 0.07 84.26 ± 0.21
GJS 94.78 ± 0.06 94.24 ± 0.12 91.21 ± 0.05 90.36 ± 0.08 78.42 ± 0.29 91.88 ± 0.17 89.08 ± 0.36

CIFAR-100

CE 86.24 ± 0.49 71.33 ± 0.27 59.45 ± 0.51 46.67 ± 0.71 33.07 ± 1.96 78.26 ± 0.10 71.94 ± 0.30
BS 86.04 ± 0.32 77.59 ± 0.54 70.70 ± 0.50 65.44 ± 1.60 33.78 ± 1.77 76.45 ± 0.57 72.54 ± 0.74
LS 88.40 ± 0.07 80.83 ± 0.11 73.18 ± 0.09 59.11 ± 0.10 36.69 ± 0.39 78.78 ± 0.49 67.76 ± 0.37
SCE 85.72 ± 0.11 79.60 ± 0.20 71.50 ± 0.24 61.63 ± 0.80 39.98 ± 1.08 75.40 ± 0.70 63.66 ± 0.33
GCE 85.63 ± 0.19 82.22 ± 0.14 77.69 ± 0.13 68.00 ± 0.25 53.28 ± 0.83 76.32 ± 0.21 64.77 ± 0.43
NCE+RCE 78.14 ± 0.16 75.04 ± 0.19 70.59 ± 0.29 63.60 ± 0.41 43.63 ± 2.00 74.07 ± 0.31 64.47 ± 0.30
JS 85.99 ± 0.24 82.58 ± 0.28 75.92 ± 0.38 66.80 ± 0.58 48.09 ± 1.14 78.25 ± 0.14 66.94 ± 0.46
GJS 89.54 ± 0.10 87.73 ± 0.13 85.67 ± 0.15 79.09 ± 0.19 59.74 ± 0.70 84.52 ± 0.13 74.98 ± 0.25

C Proofs

C.1 JS’s Connection to CE and MAE

Proposition 1. Let p ∈ ∆K−1, then

lim
π1→0

LJS(e(y),p) = H(e(y),p), lim
π1→1

LJS(e(y),p) =
1

2
‖e(y) − p‖1

where H(e(y),p) is the cross entropy of e(y) relative to p.

Proof of Proposition 1. We want to show

lim
π1→0

LJS(e(y),p) = lim
π1→0

JSπ(e(y),p)

H(1− π1)
= H(e(y),p) (5)

lim
π1→1

LJS(e(y),p) = lim
π1→1

JSπ(e(y),p)

H(1− π1)
=

1

2
‖e(y) − p‖1 (6)

More specifically, we have JSπ(e(y),p) = π1DKL(e(y)‖m)+π2DKL(p‖m), wherem = π1e
(y) +

π2p, and

lim
π1→0

π1DKL(e(y)‖m)

H(1− π1)
= H(e(y),p) (7)

lim
π1→1

π2DKL(p‖m)

H(1− π1)
=

1

2
‖e(y) − p‖1 (8)

First, the we prove Equations 7 and 8, then show that the other two limits are zero.

Proof of Equation 7.

lim
π1→0

π1DKL(e(y)‖m)

H(1− π1)
= lim
π1→0

−π1 log (my)

−(1− π1) log (1− π1)
(9)

= lim
π1→0

log (my)
1

1− π1

π1

log (1− π1)
(10)

= lim
π1→0

log (my)
1

1− π1
· −(1− π1) (11)

= log py · 1 · −1 = H(e(y),p(2)) (12)

18



where we used L’Hôpital’s rule for limπ1→0
π1

log (1−π1) which is indeterminate of the form 0
0 .

Proof of Equation 8. Before taking the limit, we first rewrite the equation

π2DKL(p‖m)

H(1− π1)
= − 1

log (1− π1)

K∑
k=1

pk log
pk
mk

(13)

= − 1

log (1− π1)

[
py log

py
my

+

K∑
k 6=y

pk log
pk

(1− π1)pk

]
(14)

= − 1

log (1− π1)

[
py log

py
my
− log (1− π1)

K∑
k 6=y

pk

]
(15)

= − 1

log (1− π1)

[
py log

py
my
− log (1− π1)(1− py)

]
(16)

= −py log
py
my

1

log (1− π1)
+ 1− py (17)

Now, we take the limit

lim
π1→1

π2DKL(p‖m)

H(1− π1)
= lim
π1→1

−py log
py
my

1

log (1− π1)
+ 1− py (18)

= 0 · 0 + 1− py (19)

=
1

2
(1− py + 1− py) (20)

=
1

2
(1− py +

K∑
k 6=y

pk) (21)

=
1

2

K∑
k=1

∣∣∣e(y)
k − pk

∣∣∣ =
1

2
‖e(y) − p‖1 (22)

What is left to show is that the last two terms goes to zero in their respective limits.

lim
π1→1

π1DKL(e(y)‖m)

H(1− π1)
= lim
π1→1

−π1 log (my)

−(1− π1) log (1− π1)
(23)

= lim
π1→1

−π1 log (π1 + (1− π1)py)

−(1− π1) log (1− π1)
(24)

= lim
π1→1

π1

log (1− π1)

log (π1 + (1− π1)py)

1− π1
(25)

= 0 · (py − 1) = 0 (26)

Finally, the last term. Starting from Equation 17, we get

lim
π1→0

π2DKL(p(2)‖m)

H(1− π1)
= lim
π1→0

−py
log

py
my

log (1− π1)
+ 1− py (27)

= lim
π1→0

−py
(
− 1− py
π1 + (1− π1)py

· −(1− π1)
)

+ 1− py (28)

= lim
π1→0

−py
( (1− py)(1− π1)

π1 + (1− π1)py

)
+ 1− py (29)

= lim
π1→0

py

(−1 + π1 + (1− π1)py
π1 + (1− π1)py

)
+ 1− py (30)

= lim
π1→0

py

( −1

π1 + (1− π1)py
+ 1
)

+ 1− py (31)

= −1 + py + 1− py = 0 (32)
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where L’Hôpital’s rule was used for limπ1→0−py
log

py
my

log (1−π1) which is indeterminate of the form
0
0 .

C.2 GJS’s Connection to Consistency Regularization

Proposition 2. Let p(2), . . . ,p(M) ∈ ∆K−1 with M ≥ 3 and p̄>1 =
∑M
j=2 πjp

(j)

1−π1
, then

LGJS(e(y),p(2), . . . ,p(M)) = LJSπ′ (e
(y), p̄>1) + (1− π1)LGJSπ′′ (p

(2), . . . ,p(M))

where π′ = [π1, 1− π1]T and π′′ = [π2,...,πM ]T

(1−π1) .

Proof of Proposition 2. The Generalized Jensen-Shannon divergence can be simplified as below

GJSπ(e(y),p(2), . . . ,p(M)) = H(π1e
(y) + (1− π1)p̄>1)−

M∑
j=2

πjH(p(j)) (33)

= H(π1 + (1− π1)my) +

K∑
i 6=y

H((1− π1)mi)−
M∑
j=2

πjH(p(j)) (34)

= /H(π2pi) = piH(π2) + π2H(pi)/ (35)

= H(π1 + (1− π1)my) +

K∑
i 6=y

[miH(1− π1) + (1− π1)H(mi)]−
M∑
j=2

πjH(p(j)) (36)

= H(π1 + (1− π1)my) +

K∑
i 6=y

[miH(1− π1)]− (1− π1)H(my) (37)

+ (1− π1)
(
H(p̄>1)− 1

1− π1

M∑
j=2

πjH(p(j))
)

(38)

= H(π1 + (1− π1)my) +

K∑
i 6=y

[miH(1− π1) + (1− π1)(H(mi)−H(mi))] (39)

− (1− π1)H(my) + (1− π1)DGJSπ′′ (p
(2), . . . ,p(M)) (40)

= / Equation 35/ (41)

= H(π1 + (1− π1)my) +

K∑
i 6=y

H((1− π1)mi)− (1− π1)H(p̄>1) (42)

+ (1− π1)DGJSπ′′ (p
(2), . . . ,p(M)) (43)

= H(π1e
(y) + (1− π1)p̄>1)− (1− π1)H(p̄>1) + (1− π1)DGJSπ′′ (p

(2), . . . ,p(M)) (44)

= DJSπ′ (e
(y), p̄>1) + (1− π1)DGJSπ′′ (p

(2), . . . ,p(M)) (45)

where π′ = [π1, 1− π1] and π′′ = [π2, . . . , πM ]/(1− π1).

That is, when using onehot labels, the generalized Jensen-Shannon divergence is a combination of
two terms, one term encourages the mean prediction to be similar to the label and another term that
encourages consistency between the predictions. For M = 2, the consistency term is zero.

C.3 Noise Robustness

The proofs of the theorems in this sections are generalizations of the proofs in by Zhang et al. [3].
The original theorems are specific to their particular GCE loss and cannot directly be used for other
loss functions. We generalize the theorems to be useful for any loss function satisfying certain
conditions(bounded and conditions in Lemma 1). To be able to use the theorems for GJS, we also
generalize them to work for more than a single predictive distribution. Here, we use (x, y) to denote
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a sample from D and (x, ỹ) to denote a sample from Dη . Let ηij denote the probability that a sample
of class i was changed to class j due to noise.

C.3.1 Symmetric Noise

Theorem 1. Under symmetric noise with η < K−1
K , if BL ≤

∑K
i=1 L(e(i),x, f) ≤ BU , ∀x, f is

satisfied for a loss L, then

0 ≤ RηL(f∗)−RηL(f∗η ) ≤ ηBU −BL
K − 1

, and − η(BU −BL)

K − 1− ηK
≤ RL(f∗)−RL(f∗η ) ≤ 0,

Proof of Theorem 1. For any function, f , mapping an input x ∈ X to ∆K−1, we have

RL(f) = ED[L(e(y),x, f)] = Ex,y[L(e(y),x, f)]

and for uniform noise with noise rate η, the probability of a class not changing label due to noise is
ηii = 1− η, while the probability of changing from one class to any other is ηij = η

K−1 . Therefore,

RηL(f) = EDη [L(e(ỹ),x, f)] = Ex,ỹ[L(e(ỹ),x, f)]

= ExEy|xEỹ|y,x[L(e(ỹ),x, f)]

= ExEy|x[(1− η)L(e(y),x, f) +
η

K − 1

K∑
i6=y

L(e(i),x, f)]

= ExEy|x

[
(1− η)L(e(y),x, f) +

η

K − 1

( K∑
i=1

L(e(i),x, f)− L(e(y),x, f)
)]

=
(

1− η − η

K − 1

)
RL(f) +

η

K − 1
ExEy|x

[
K∑
i=1

L(e(i),x, f)

]

=
(

1− ηK

K − 1

)
RL(f) +

η

K − 1
ExEy|x

[
K∑
i=1

L(e(i),x, f)

]
Using the bounds BL ≤

∑K
k=1 L(e(k),x, f) ≤ BU , we get:(

1− ηK

K − 1

)
RL(f) +

ηBL
K − 1

≤ RηL(f) ≤
(

1− ηK

K − 1

)
RL(f) +

ηBU
K − 1

With these bounds, the difference between RηL(f∗) and RηL(f∗η ) can be bounded as follows

RηL(f∗)−RηL(f∗η ) ≤
(

1− ηK

K − 1

)
RL(f∗) +

ηBU
K − 1

−

((
1− ηK

K − 1

)
RL(f∗η ) +

ηBL
K − 1

)
=

=
(

1− ηK

K − 1

)
(RL(f∗)−RL(f∗η )) +

η(BU −BL)

K − 1
≤ η(BU −BL)

K − 1

where the last inequality follows from the assumption on the noise rate, (1− ηK
K−1 ) > 0, and that f∗

is the minimizer of RL(f) so RL(f∗)−RL(f∗η ) ≤ 0. Similarly, since f∗η is the minimizer of RηL(f),
we have RηL(f∗)−RηL(f∗η ) ≥ 0, which is the lower bound.

C.3.2 Asymmetric Noise

Lemma 1. Consider the following conditions for a loss with label e(i), for any i ∈ {1, 2, . . . ,K}
and M-1 distributions p(2), . . . ,p(M) ∈ ∆K−1:

i) L(e(i),p(2), . . . ,p(M)) = 0 ⇐⇒ p(2), . . . ,p(M) = e(i),

ii) 0 ≤ L(e(i),p(2), . . . ,p(M)) ≤ C1,

iii) L(e(i), e(j), . . . , e(j)) = C2 ≤ C1, with i 6= j.

where C1, C2 are constants.
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Theorem 2. Let L be any loss function satisfying the conditions in Lemma 1. Under class dependent
noise, when the probability of the noise not changing label is larger than changing it to any other
class(ηyi < ηyy, for all i 6= y, with y being the true label), and if RηL(f∗) = 0, then

0 ≤ RηL(f∗)−RηL(f∗η ) ≤ (BU −BL)ED[ηyy] + (C1 − C2)ED[

K∑
i 6=y

(ηyy − ηyi)], (46)

where BL ≤
∑K
i=1 L(e(i),x, f) ≤ BU for all x and f , f∗ is the global minimizer of RL(f), and

f∗η is the global minimizer of RηL(f).

Proof of Theorem 2. For class dependent noisy(asymmetric) and any function, f , mapping an input
x ∈ X to ∆K−1, we have

RηL(f) = ED[ηyyL(e(y),x, f)] + ED[

K∑
i6=y

ηyiL(e(i),x, f)]

= ED[ηyy

( K∑
i=1

L(e(i),x, f)−
K∑
i6=y

L(e(i),x, f)
)

] + ED[

K∑
i 6=y

ηyiL(e(i),x, f)]

= ED[ηyy

K∑
i=1

L(e(i),x, f)]− ED[

K∑
i 6=y

(ηyy − ηyi)L(e(i),x, f)]

By using the bounds BL, BU we get

RηL(f) ≤ BUED[ηyy]− ED[

K∑
i 6=y

(ηyy − ηyi)L(e(i),x, f)]

RηL(f) ≥ BLED[ηyy]− ED[

K∑
i 6=y

(ηyy − ηyi)L(e(i),x, f)]

Hence,

RηL(f∗)−RηL(f∗η ) ≤ (BU −BL)ED[ηyy]+ (47)

+ ED[

K∑
i 6=y

(ηyy − ηyi)
(
L(e(i),x, f∗η )− L(e(i),x, f∗)

)
]

From the assumption that RL(f∗) = 0, we have L(e(y),x, f∗) = 0. Using the conditions on the
loss function from Lemma 1, for all i 6= y, we get

L(e(i),x, f∗η )− L(e(i),x, f∗) = / L(e(y),x, f∗) = 0 and i) /

= L(e(i),x, f∗η )− L(e(i), e(y))

= / iii) /

= L(e(i),x, f∗η )− C2

= / ii) /
≤ C1 − C2

By our assumption on the noise rates, we have ηyy − ηyi > 0. We have

RηL(f∗)−RηL(f∗η ) ≤ (BU −BL)ED[ηyy] + (C1 − C2)ED[

K∑
i6=y

(ηyy − ηyi)]

Since f∗η is the global minimizer of RηL(f) we have RηL(f∗) − RηL(f∗η ) ≥ 0, which is the lower
bound.

22



Remark 2. The generalized Jensen-Shannon Divergence satisfies the conditions in Lemma 1, with

C1 = H(π), C2 = H(π1) +H(1− π1).

Proof of Remark 2. i). Follows directly from Jensen’s inequality for the Shannon entropy. ii). The
lower bound follows directly from Jensen’s inequality for the non-negative Shannon entropy. The
upper bound is shown below

DGJSπ (p(1),p(2), . . . ,p(M)) =

M∑
j=1

πjDKL(p(j)‖m)

=

M∑
j=1

[
πj

K∑
l=1

p
(j)
l log

(p(j)
l

ml

)]

=

M∑
j=1

[
πj

K∑
l=1

p
(j)
l

(
log
(πjp(j)

l

ml

)
+ log

1

πj

)]

=
M∑
j=1

[
πj

K∑
l=1

[
p

(j)
l log

(πjp(j)
l

ml

)
− p(j)

l log πj

]]

=

M∑
j=1

[
− πj log πj + πj

K∑
l=1

p
(j)
l log

(πjp(j)
l

ml

)]

=

M∑
j=1

[
H(πj) + πj

K∑
l=1

p
(j)
l log

(πjp(j)
l

ml

)]

=

M∑
j=1

[
H(πj) + πj

K∑
l=1

p
(j)
l log

( p
(j)
l

p
(j)
l + 1

πj

∑M
i 6=j πip

(i)
l

)]

≤
M∑
j=1

H(πj) = H(π)

where the inequality holds with equality iff 1
πj

∑M
i 6=j πip

(i)
l = 0 when p

(j)
l > 0 for all j ∈

{1, 2, . . . ,M} and l ∈ {1, 2, . . . ,K}. Hence, GJS is bounded above by H(π).
iii). Let the label be e(i) and the other M-1 distributions be e(j) with i 6= j then

DGJSπ = H
(
π1e

(i) +

M∑
l=2

πle
(j))− π1H(e(i))−

M∑
l=2

πlH(e(j)) = H(π1e
(i) + (1− π1)e(j))

(48)

Notably, C1 = C2 for M = 2.

C.3.3 Improving GJS Risk Difference Bounds

Proposition 4. LJS and LGJS have the same risk bounds in Theorem 1 and 2 if
Ex[Lf

∗

GJSπ′′
(p(2), . . . ,p(M))] ≤ Ex[Lf

∗
η

GJSπ′′
(p(2), . . . ,p(M))], where LfGJSπ′′

(p(2), . . . ,p(M)) is
the consistency term from Proposition 2.

Proof of Proposition 4.
Symmetric Noise From the proof of Theorem 1, we have for any function, f , mapping an input
x ∈ X to ∆K−1

RηL(f) =
(

1− ηK

K − 1

)
RL(f) +

η

K − 1
ExEy|x

[
K∑
i=1

L(e(i),x, f)

]
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Using Proposition 2 for GJS, we get

RηLGJS
(f) =

(
1− ηK

K − 1

)
RLGJS(f) +

η

K − 1
ExEy|x

[
K∑
i=1

LfJSπ′
(e(i), p̄>1)

]

+ (1− π1)
ηK

K − 1
ExEy|x

[
LfGJSπ′′

(p(2), . . . ,p(M))

]

Let BJS
L , BJS

U be the lower and upper bound for JS (M=2) in Proposition 5. These bounds 5 holds for
any p(2) ∈ ∆K−1 and therefore also holds for p̄>1. Hence, we have

RηLGJS
(f) ≥

(
1− ηK

K − 1

)
RLGJS

(f) +
ηBJS

L

K − 1
+ (1− π1)

ηK

K − 1
ExEy|x

[
LfGJSπ′′

(p(2), . . . ,p(M))

]

RηLGJS
(f) ≤

(
1− ηK

K − 1

)
RLGJS

(f) +
ηBJS

U

K − 1
+ (1− π1)

ηK

K − 1
ExEy|x

[
LfGJSπ′′

(p(2), . . . ,p(M))

]

With these bounds, the difference between RηL(f∗) and RηL(f∗η ) can be bounded as follows

RηLGJS
(f∗)−RηLGJS

(f∗η ) ≤
(

1− ηK

K − 1

)
(RLGJS(f∗)−RLGJS(f∗η )) +

η(BJS
U −BJS

L )

K − 1

+
(1− π1)ηK

K − 1
ExEy|x

[
Lf
∗

GJSπ′′
(p(2), . . . ,p(M))− Lf

∗
η

GJSπ′′
(p(2), . . . ,p(M))

]

≤ η(BJS
U −BJS

L )

K − 1

where the last inequality follows from the assumption on the noise rate, (1− ηK
K−1 ) > 0, that f∗ is

the minimizer of RL(f) so RL(f∗)−RL(f∗η ) ≤ 0, and the assumption on the consistency of f∗ and
f∗η . Similarly, since f∗η is the minimizer of RηL(f), we have RηL(f∗) − RηL(f∗η ) ≥ 0, which is the
lower bound. Hence, we have shown that LJS and LGJS have the same bounds for the risk difference
for symmetric noise.

Asymmetric Noise For class dependent noisy(asymmetric) and any function, f , mapping
an input x ∈ X to ∆K−1, we have

RηLGJS
(f) = ED[

K∑
i=1

ηyiLGJS(e(i),x, f)]

= ED[ηyyLfJSπ′
(e(y), p̄>1) +

K∑
i 6=y

ηyiLfJSπ′
(e(i), p̄>1)

+ (1− π1)LfGJSπ′′
(p(2), . . . ,p(M))]

= ED[ηyy

( K∑
i=1

LfJSπ′
(e(i), p̄>1)−

K∑
i6=y

LfJSπ′
(e(i), p̄>1)

)
+

K∑
i 6=y

ηyiLfJSπ′
(e(i), p̄>1)

+ (1− π1)LfGJSπ′′
(p(2), . . . ,p(M))]

= ED[ηyy

K∑
i=1

LfJSπ′
(e(i), p̄>1)−

K∑
i6=y

(ηyy − ηyi)LfJSπ′
(e(i), p̄>1)

+ (1− π1)LfGJSπ′′
(p(2), . . . ,p(M))]
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where Proposition 2 was used to separate GJS into a JS and a consistency term. By using the bounds
BJS
L , BJS

U we get

RηLGJS
(f) ≤ ED[ηyyB

JS
U −

K∑
i6=y

(ηyy − ηyi)LfJSπ′
(e(i), p̄>1) + (1− π1)LfGJSπ′′

(p(2), . . . ,p(M))]

RηLGJS
(f) ≥ ED[ηyyB

JS
L −

K∑
i6=y

(ηyy − ηyi)LfJSπ′
(e(i), p̄>1) + (1− π1)LfGJSπ′′

(p(2), . . . ,p(M))]

Hence,

RηL(f∗)−RηL(f∗η ) ≤ (BJS
U −BJS

L )ED[ηyy]

+ ED[

K∑
i6=y

(ηyy − ηyi)
(
Lf
∗
η

JSπ′
(e(i), p̄>1)− Lf

∗

JSπ′
(e(i), p̄>1)

)
] (49)

+ (1− π1)
(
ED[Lf

∗

GJSπ′′
(p(2), . . . ,p(M))]− ED[Lf

∗
η

GJSπ′′
(p(2), . . . ,p(M))]

)
(50)

From the assumption that RLGJS(f∗) = 0, we have LGJS(e(y),x, f∗) = 0. Using the conditions on
the loss function from Lemma 1, for all i 6= y, we get

Lf
∗
η

JSπ′
(e(i), p̄>1)− Lf

∗

JSπ′
(e(i), p̄>1) = / LGJS(e(y),x, f∗) = 0 and i) /

= Lf
∗
η

JSπ′
(e(i), p̄>1)− Lf

∗

JSπ′
(e(i), e(y))

= / iii) and Remark 2 /

= Lf
∗
η

JSπ′
(e(i), p̄>1)− C1

≤ 0

From above and our assumption on the noise rates (ηyy − ηyi > 0), we have that the term in
Equation 49 is less or equal to zero. Due to the assumption on the consistency of f∗ and f∗η in
Proposition 4, this is also the case for the term in Equation 50. We have

RηLGJS
(f∗)−RηLGJS

(f∗η ) ≤ (BJS
U −BJS

L )ED[ηyy]

Since f∗η is the global minimizer of RηLGJS
(f) we have RηLGJS

(f∗)−RηLGJS
(f∗η ) ≥ 0, which is the

lower bound. Hence, we have shown that LJS and LGJS have the same bounds for the risk difference
for asymmetric noise.

C.4 Bounds

In this section, we first introduce some useful definitions and relate them to JS. Then, the bounds for
JS and GJS are proven.

C.4.1 Another Definition of Jensen-Shannon divergence

fπ1(t) :=
[
H(π1t+ 1− π1)− π1H(t)

]
, t > 0 (51)

fπ1
(0) := lim

t→0
fπ1

(t) (52)

0fπ1

(0

0

)
:= 0, (53)

0fπ1
(0) := 0 (54)

Remark 3. The Jensen-Shannon divergence can be rewritten using Equation 51 as follows

DJSπ (p(1),p(2)) =

K∑
k=1

p
(2)
k fπ1

(
p

(1)
k

p
(2)
k

)
(55)
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Proof of Remark 3.

K∑
k=1

p
(2)
k fπ1

(
p

(1)
k

p
(2)
k

)
=

K∑
k=1

p
(2)
k

[
π
p

(1)
k

p
(2)
k

log(
p

(1)
k

p
(2)
k

)− (π
p

(1)
k

p
(2)
k

+ 1− π) log(π
p

(1)
k

p
(2)
k

+ 1− π)
]

(56)

=

K∑
k=1

πp
(1)
k log(

p
(1)
k

p
(2)
k

)− (πp
(1)
k + (1− π)p

(2)
k ) log(

πp
(1)
k + (1− π)p

(2)
k

p
(2)
k

) (57)

=

K∑
k=1

πp
(1)
k log(

p
(1)
k

p
(2)
k

)− πp(1)
k log(

πp
(1)
k + (1− π)p

(2)
k

p
(2)
k

)− (1− π)p
(2)
k log(

πp
(1)
k + (1− π)p

(2)
k

p
(2)
k

)

(58)

=

K∑
k=1

πp
(1)
k log(

p
(1)
k

πp
(1)
k + (1− π)p

(2)
k

) + (1− π)p
(2)
k log(

p
(2)
k

πp
(1)
k + (1− π)p

(2)
k

) (59)

=

K∑
k=1

πDKL

(
p

(1)
k , πp

(1)
k + (1− π)p

(2)
k

)
+ (1− π)DKL

(
p

(2)
k , πp

(1)
k + (1− π)p

(2)
k

)
(60)

= DJSπ (p(1),p(2)) (61)

C.4.2 Bounds for JS

Proposition 5. LJS has BL ≤
∑K

k=1 LJS(e
(k), f(x)) ≤ BU with

BL =

K∑
k=1

LJS(e
(k),u), BU =

K∑
k=1

LJS(e
(k), e(1))

where u is the uniform distribution.

Proof of Proposition 5.
First we start with two observations: 1)

∑K
k=1 LJS(e(k),p) is strictly convex. 2)

∑K
k=1 LJS(e(k),p)

is invariant to permutations of the components of p.

First, we show Observation 1). This is done by using Remark 3 and showing that the second
derivatives are larger than zero

fπ1
(t) :=

[
H(π1t+ 1− π1)− π1H(t)

]
, t > 0 (62)

f ′π1
(t) =

[
π1(− log(π1t+ 1− π1) + log(t))

]
(63)

f ′′π1
(t) =

π1(1− π1)

π1t2 + t(1− π1)
(64)

Hence, fπ1
(t) is strictly convex, since π1 > 0 and t > 0, then f ′′π1

(t) > 0. With Remark 3, and
that the sum of strictly convex functions is also strictly convex, it follows that

∑K
k=1 LJS(e(k),p) is

strictly convex.
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Next, we show Observation 2), i.e. that
∑K
k=1 LJS(e(k),p) is invariant to permutations of p

K∑
k=1

DJS(e(k),p) =

K∑
k=1

[
H(π1e

(k) + π2p)− π2H(p)
]

(65)

=

K∑
k=1

[
H(π1 + π2pk) +

K∑
i6=k

H(π2pi)− π2H(p)
]

(66)

=

K∑
k=1

H(π1 + π2pk) +

K∑
k=1

K∑
i 6=k

H(π2pi)− π2KH(p) (67)

=

K∑
k=1

H(π1 + π2pk) +

K∑
k=1

[
H(π2p)−H(π2pk)

]
− π2KH(p) (68)

=

K∑
k=1

H(π1 + π2pk) + (K − 1)H(π2p)− π2KH(p) (69)

=

K∑
k=1

H(π1 + π2pk) + (K − 1)(H(π2) + π2H(p))− π2KH(p) (70)

=

K∑
k=1

H(π1 + π2pk) + (K − 1)H(π2)− π2H(p) (71)

Clearly, a permutation of the components of p does not change the first sum or H(p), since it would
simply reorder the summands. Hence,

∑K
k=1 LJS(e(k),p) is invariant to permutations of p.

Lower bound:
The minimizer of a strictly convex function

(∑K
k=1 LJS(e(k),p)

)
over a compact convex

set
(

∆K−1
)

is unique. Since u is the only element of ∆K−1 that is the same under permutation, it is

the unique minimum of
∑K
k=1 LJS(e(k),p) for p ∈ ∆K−1.

Upper bound:
The maximizer of a strictly convex function

(∑K
k=1 LJS(e(k),p)

)
over a compact convex

set
(

∆K−1
)

is at its extreme points
(
e(i) for i ∈ {1, 2, . . . ,K}

)
. All extreme points have the

same value according to Observation 2).

C.4.3 Bounds for GJS

Proposition 3. GJS loss withM ≤ K+1 satisfiesBL ≤
∑K
k=1 LGJS(e(k),p(2), . . . ,p(M)) ≤ BU

for all p(2), . . . ,p(M) ∈ ∆K−1, with the following bounds

BL =

K∑
k=1

LGJS(e(k),u, . . . ,u), BU =

K∑
k=1

LGJS(e(k), e(1), . . . , e(M−1))

where u ∈ ∆K−1 is the uniform distribution.
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Proof of Proposition 3.
Lower bound: Using Proposition 2 to rewrite GJS into a JS and a consistency term, we get

K∑
k=1

DGJSπ (e(k),p(2), . . . ,p(M)) =

K∑
k=1

[
DJSπ′ (e

(k), p̄>1) + (1− π1)DGJSπ′′ (p
(2), . . . ,p(M))

]
(72)

=

K∑
k=1

DJSπ′ (e
(k), p̄>1) + (1− π1)KDGJSπ′′ (p

(2), . . . ,p(M)) (73)

≥
K∑
k=1

DJSπ′ (e
(k),u) + (1− π1)KDGJSπ′′ (p

(2), . . . ,p(M)) (74)

≥
K∑
k=1

DJSπ′ (e
(k),u) (75)

where the first inequality comes from the lower bound of Proposition 5, and the second inequality
comes from
(1− π1)KDGJSπ′′ (p

(2), . . . ,p(M)) being non-negative. The inequalities holds with equality if and
only if
p(2) = · · · = p(M) = u. Notably, the lower bound of JS is the same as that of GJS.

Upper bound:
Let’s denote A(p(2), . . . ,p(M)) =

∑K
k=1 LGJS(e(k),p(2), . . . ,p(M)). First we start by making 5

observations:
Observation 1: ∆K−1

M−1 = ∆K−1 ×∆K−1 × · · · ×∆K−1 is a compact convex set.
Observation 2: A is strictly convex over ∆K−1

M−1.
Observation 3: From Observations 1 and 2 we have that the maximizer of A should be at extreme
points of ∆K−1

M−1, i.e., a unit vector in every M − 1 individual ∆K−1 subspaces of ∆K−1
M−1.

Observation 4: A is symmetric w.r.t. permutations of the components of predictive distributions p(i).

Unlike for JS, the extreme points of ∆K−1
M−1 do not necessarily map to the same value of A. Hence,

what is left to show is that the set of extreme points with all predictive distributions being distinct
unit vectors maps to the maximum value of A.

Given Observation 3, all the M distributions are unit vectors, therefore the maximum is of the form
A(p(2), . . . ,p(M)) =

∑K
k=1H(π1e

(k) + (1 − π1)p̄>1), where p̄>1 :=
∑M
j=2 πjp

(j)/(1 − π1).
Furthermore, at most M − 1 components of p̄>1 are non-zero (if all predictions are distinct). From
Observation 4, we can WLOG permute p̄>1 such that the first M − 1 components are the largest
ones. Let p̄⊂>1 ∈ ∆M−2 denote the subset of these first M − 1 components of p̄>1 ∈ ∆K−1. Then,
for all predictive distributions being unit vectors, we have

A(p
(2)
, . . . ,p

(M)
) =

K∑
k=1

H(π1e
(k)

+ (1− π1)p̄>1) (76)

=

M−1∑
k=1

[
H(π1 + (1− π1)m>1,k) + (K − 1)H((1− π1)m>1,k)

]
+

K∑
k=M

H(π1) (77)

=

M−1∑
k=1

H(π1 + (1− π1)m>1,k) + (K − 1)H((1− π1)p̄
⊂
>1) +

K∑
k=M

H(π1) (78)

≤ (M − 1)H(
1

M − 1

M−1∑
k=1

[
π1 + (1− π1)m>1,k

]
) + (K − 1)H((1− π1))p̄

⊂
>1) +

K∑
k=M

H(π1)

(79)

= (M − 1)H(π1 +
1− π1

M − 1
) + (K − 1)H((1− π1)p̄

⊂
>1) +

K∑
k=M

H(π1) (80)

≤ (M − 1)H(π1 +
1− π1

M − 1
) + (K − 1)H((1− π1)u) +

K∑
k=M

H(π1) (81)
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The first inequality follows from Jensen’s inequality and the second from the uniform distribution
maximizes entropy. Both inequalities hold with equality iff m>1,1 = · · · = m>1,M−1. Hence,
the maximum is achieved if p̄⊂>1 = u ∈ ∆M−2, which is only possible if all M − 1 predictive
distributions are distinct unit vectors.

C.5 Robustness of Jensen-Shannon losses

In this section, we prove that the lower (BL) and upper (BU ) bounds become the same for JS and
GJS as π1 → 1 as stated in Remark 1.
Remark 1. LJS and LGJS are robust (BL = BU ) in the limit of π1 → 1.

Proof of Remark 1 for JS.
Lower bound:
K∑
k=1

DJSπ (e(y),u) =

K∑
k=1

H(π1e
(k) + π2u)− π2H(u) (82)

= K[H(π1e
(1) + π2u)− π2H(u)] (83)

= K[H(π1 + π2/K) + (K − 1)H(π2/K)−Kπ2H(
1

K
)] (84)

= /H(π2/K) = −π2/K(log π2 + log 1/K) =
1

K
H(π2) + π2H(1/K)/

(85)

= K[H(π1 + π2/K) + (K − 1)(
1

K
H(π2) + π2H(

1

K
))−Kπ2H(

1

K
)] (86)

= K[H(π1 + π2/K) + (K − 1)
1

K
H(π2)− π2H(

1

K
)] (87)

If one now normalize(Z = H(π2) = H(1− π1)) and take the limit as π1 → 1 we get:

lim
π1→1

K∑
k=1

LJS(e(y),u) = lim
π1→1

(K − 1) +K
H(π1 + π2/K)− π2H( 1

K )

H(π2)
(88)

= lim
π1→1

(K − 1) +K
−(K − 1)(1 + log (π1 + π2/K))/K − log (1/K)/K

log (1− π1) + 1
(89)

= lim
π1→1

(K − 1)− (K − 1)(1 + log (π1 + π2/K))− log (1/K)

log (1− π1) + 1
(90)

= lim
π1→1

(K − 1)− ((K − 1)(1 + log (π1 + π2/K))− log (1/K))
1

log (1− π1) + 1
(91)

= (K − 1)− (K − 1− log (1/K)) · 0 (92)
= K − 1 (93)

where L’Hôpital’s rule was used for the fraction in Equation 88 which is indeterminate of the form 0
0 .

Upper bound:

K∑
k=1

LJS(e(k), e(1)) =
1

H(π2)

K∑
k=1

H(π1e
(k) + π2e

(1)) (94)

=
1

H(π2
[(K − 1)H(π2) + (K − 1)H(π1) +H(π1 + π2)] (95)

= (K − 1)[1 +
H(π1)

H(π2)
] (96)

= (K − 1)

[
1 +

π1 log π1

(1− π1) log (1− π1)

]
(97)
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Taking the limit as π1 → 1 gives

lim
π1→1

K∑
k=1

LJS(e(k), e(1)) = lim
π1→1

(K − 1)

[
1 + π1

1

log (1− π1)

log π1

(1− π1)

]
(98)

= lim
π1→1

(K − 1)

[
1 + π1

1

log (1− π1)

1

π1

1

−1

]
(99)

= (K − 1)[1 + 1 · 0 · 1 · −1] (100)
= K − 1 (101)

where L’Hôpital’s rule was used for limπ1→1
log π1

(1−π1) which is indeterminate of the form 0
0 .

Hence, BL = BU = K − 1.

Next, we look at the robustness of the generalized Jensen-Shannon loss.

Proof of Remark 1 for GJS.
Proposition 2, shows that GJS can be rewritten as a JS term and a consistency term. From the proof
of Remark 1 for JS above, it follows that the JS term satisfies BL = BU as π1 approaches 1. Hence,
it is enough to show that the consistency term of GJS also becomes a constant in this limit. The
consistency term is the generalized Jensen-Shannon divergence

lim
π1→1

(1− π1)LGJSπ′′ (p
(2), . . . ,p(M)) = lim

π1→1

(1− π1)

H(1− π1)
DGJSπ′′ (p

(2), . . . ,p(M)) (102)

= lim
π1→1

− 1

log (1− π1)
DGJSπ′′ (p

(2), . . . ,p(M)) (103)

= 0 (104)

where π′′ = [π2, . . . , πM ]/(1− π1). DGJSπ′′ (p
(2), . . . ,p(M)) is bounded and − 1

log (1−π1) goes to
zero as π1 → 1, hence the limit of the product goes to zero.

C.6 Gradients of Jensen-Shannon Divergence

The partial derivative of the Jensen-Shannon divergence is

∂{H(m)− π1H(e(y))− (1− π1)H(p)}
∂zi

where m = π1e
(y) + π2p = π1e

(y) + (1 − π1)p, and pj = ezj/
∑K
k=1 e

zk . Note the difference
between ez which is the exponential function while e(y) is a onehot label. We take the partial
derivative of each term separately, but first the partial derivative of the jth component of a softmax
output with respect to the ith component of the corresponding logit

∂pj
∂zi

=
∂

∂zi

ezj∑K
k=1 e

zk
(105)

=
∂ezj

∂zi

∑K
k=1 e

zk − ezj ∂
∑K
k=1 e

zk

∂zi(∑K
k=1 e

zk

)2 (106)

=
1(i = j)ezj

∑K
k=1 e

zk − ezjezi(∑K
k=1 e

zk

)2 (107)

=
1(i = j)ezj − pjezi∑K

k=1 e
zk

(108)

= 1(i = j)pj − pjpi (109)
= pj(1(i = j)− pi) (110)

= pi(1(i = j)− pj) =
∂pi
∂zj

(111)
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where 1(i = j) is the indicator function, i.e. 1 when i = j and zero otherwise. Using the above, we
get

K∑
j=1

∂pj
∂zi

= pi

K∑
j=1

(1(i = j)− pj) = pi(1− 1) = 0 (112)

First, the partial derivative of H(p) wrt zi

∂H(p)

∂zi
= −

K∑
j=1

∂pj log pj
∂zi

(113)

= −
K∑
j=1

∂pj
∂zi

log pj + pj
∂ log pj
∂zi

(114)

= −
K∑
j=1

∂pj
∂zi

log pj + pj
1

pj

∂pj
∂zi

(115)

= −
K∑
j=1

∂pj
∂zi

(log pj + 1) (116)

= / Equation 112 / (117)

= −
K∑
j=1

∂pj
∂zi

log pj (118)

Next, the partial derivative of H(m) wrt zi
∂{H(m)}

∂zi
=
∂{π1H(e(y),m) + (1− π1)H(p,m)}

∂zi
(119)

= −
K∑
j=1

[
π1

e
(y)
j ∂ log (mj)

∂zi
+ (1− π1)

∂{pj log (mj)}
∂zi

]
(120)

= −
K∑
j=1

[
π1e

(y)
j

∂ log (mj)

∂zi
+ (1− π1)

(∂pj
∂zi

log (mj) + pj
∂ log (mj)

∂zi

)]
(121)

= −
K∑
j=1

[
mj

∂ log (mj)

∂zi
+ (1− π1)

∂pj
∂zi

log (mj)
]

(122)

= −
K∑
j=1

[
(1− π1)

∂pj
∂zi

+ (1− π1)
∂pj
∂zi

log (mj)
]

(123)

= −
K∑
j=1

(1− π1)
∂pj
∂zi

[
1 + log (mj)

]
= / Equation 112 / (124)

= −(1− π1)

K∑
j=1

∂pj
∂zi

log (mj) (125)

The partial derivative of the Jensen-Shannon divergence with respect to logit zi is

∂{H(m)− π1H(e(y))− (1− π1)H(p)}
∂zi

=
∂{H(m)− (1− π1)H(p)}

∂zi
(126)

= −(1− π1)

K∑
j=1

∂pj
∂zi

(
log (mj)− log pj

)
(127)

= −(1− π1)
[ K∑
j=1

∂pj
∂zi

log
mj

pj

]
(128)
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If we now make use of the fact that the label is e(y), we can write the partial derivative wrt to zi as
∂{H(m)− π1H(e(y))− (1− π1)H(p)}

∂zi
= (129)

= −(1− π1)
[ K∑
j=1

∂pj
∂zi

log

(
π1e

(y)
j

pj
+ (1− π1)

)]
(130)

= −(1− π1)
[∂py
∂zi

log

(
π1

py
+ (1− π1)

)
+

K∑
j 6=y

∂pj
∂zi

log

(
1− π1

)]
(131)

= −(1− π1)
[∂py
∂zi

log

(
π1

py
+ (1− π1)

)
+ log

(
1− π1

)
K∑
j 6=y

∂pj
∂zi

]
(132)

=

/
Eq 112⇔

K∑
j 6=y

∂pj
∂zi

= −∂py
∂zi

/
(133)

= −(1− π1)
∂py
∂zi

[
log

(
π1

py
+ (1− π1)

)
− log

(
1− π1

)]
(134)

= −(1− π1)
∂py
∂zi

log

(
π1

(1− π1)py
+ 1

)
(135)

D Extended Related Works

Most related to us is the avenue of handling noisy labels in deep learning via the identification and
construction of noise-robust loss functions [2, 3, 4, 5]. Ghosh et al. [2] derived sufficient conditions
for a loss function, in empirical risk minimization (ERM) settings, to be robust to various kinds
of sample-independent noise, including symmetric, symmetric non-uniform, and class-conditional.
They further argued that, while CE is not a robust loss function, mean absolute error (MAE) is a
loss that satisfies the robustness conditions and empirically demonstrated its effectiveness. On the
other hand, Zhang et al. [3] pointed out the challenges of training with MAE and proposed GCE
which generalizes both MAE and CE losses. Tuning for this trade-off, GCE alleviates MAE’s training
difficulties while retaining some desirable noise-robustness properties. In a similar fashion, symmetric
cross entropy (SCE) [4] spans the spectrum of reverse CE as a noise-robust loss function and the
standard CE. Recently, Ma et al. [5] proposed a normalization mechanism to make arbitrary loss
functions robust to noise. They, too, further combine two complementary loss functions to improve
the data fitting while keeping robust to noise. The current work extends on this line of works.

Several other directions are pursued to improve training of deep networks under noisy labeled datasets.
This includes methods to identify and remove noisy labels [35, 36] or identify and correct noisy labels
in a joint label-parameter optimization [37, 38] and those works that design an elaborate training
pipeline for dealing with noise [16, 39, 40]. In contrast to these directions, this work proposes a robust
loss function based on Jensen-Shannon divergence (JS) without altering other aspects of training. In
the following, we review the directions that are most related to this paper.

A close line of works to ours reweight a loss function by a known or estimated class-conditional
noise model [11]. This direction has been commonly studied for deep networks with a standard cross
entropy (CE) loss [12, 13, 14, 15]. Assuming a class-conditional noise model, loss correction is
theoretically well motivated.

A common regularization technique called label smoothing [41] has been recently proposed that
operates similarly to the loss correction methods. While its initial purpose was for deep networks
to avoid overfitting, label smoothing has been shown to have a noticeable effect when training with
noisy sets by alleviating the fit to the noise [23, 24].

Consistency regularization is a recently-developed technique that encourages smoothness in the learnt
decision boundary by requiring minimal shifts in the learnt function when small perturbations are
applied to an input sample. This technique has become increasingly common in the state-of-the-art
semi-supervised learning [42, 43, 44] and recently for dealing with noisy data [16]. These methods
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use various complicated pipelines to integrate consistency regularization in training. This work shows
that a multi-distribution generalization of JS can neatly incorporate such regularization.
Hendrycks et al. [6] recently proposed AugMix, a novel data augmentation strategy in combination
with a GJS consistency loss to improve uncertainty estimation and robustness to image corruptions at
test-time. Our work is orthogonal since we consider the task of learning under noisy labels at training
time and conduct the corresponding experiments. We also investigate and derive the theoretical
properties of the proposed loss functions. Finally, our losses are solely implemented based on JS/GJS
instead of a combination of CE and GJS in case of AugMix. However, we find it promising that GJS
improves robustness to both training-time label noise and test-time image corruption, which further
strengthens the significance of the JS-based loss functions.

Finally, recently, Xu et al. [18]; Wei & Liu [19] propose loss functions with information theory
motivations. Jensen-Shannon divergence, with inherent information theoretic interpretations, naturally
posits a strong connection of our work to those. Especially, the latter is a close concurrent work that
studies the general family of f -divergences but takes a different and complementary angle. In this
work, we analyze the role of π1, which they treat as a constant. Varying π1 is important because it
leads to:

• Better empirical performance. For our experiments on CIFAR, we provide the hyper-
parameters used in Table 7, from which we can see that the optimal is equal to their setting
(π1 = 0.5) in only 3/14 cases.

• Interesting theoretical connections to related work. In Proposition 1, we show that the
JS loss has CE and MAE as asymptotes when π1 goes to zero and one, respectively. This
causes an interesting trade-off between learnability and robustness as discussed in Section
4.3.

Furthermore, we consider the generalization to more than two distributions which have proved helpful
while Wei & Liu [19] only study two distributions.

In this work, we use a generalization of the Jensen-Shannon divergence to more than two distributions,
which was introduced by Lin [8]. Recently, another generalization of JS was presented by Nielsen [21],
where the arithmetic mean is generalized to abstract means. JS is also a special case of a general
family of divergences, the f-divergences [20].
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