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Abstract

User event modeling plays a central role in many machine learning applications,1

with use cases spanning e-commerce, social media, finance, cybersecurity, and2

other domains. User events can be broadly categorized into personal events,3

which involve individual actions, and relational events, which involve interactions4

between two users. These two types of events are typically modeled separately,5

using sequence-based methods for personal events and graph-based methods6

for relational events. Despite the need to capture both event types in real-world7

systems, prior work has rarely considered them together. This is often due to the8

convenient simplification that user behavior can be adequately represented by a9

single formalization, either as a sequence or a graph. To address this gap, there is10

a need for public datasets and prediction tasks that explicitly incorporate both per-11

sonal and relational events. In this work, we introduce a collection of such datasets,12

propose a unified formalization, and empirically show that models benefit from13

incorporating both event types. Our results also indicate that current methods leave14

a notable room for improvements. We release these resources to support further15

research in unified user event modeling and encourage progress in this direction.16

1 Introduction17

Modeling user events is a central task in machine learning with broad applications across various18

domains [1–3]. In e-commerce, it is used to capture user preferences for personalized ranking19

and product recommendation [4, 5]. In social media platforms, event modeling supports feed20

optimization and engagement prediction by inferring user interests over time [6–8]. Financial21

systems leverage user behavior data for fraud detection, credit risk assessment, and behavioral22

profiling [9–12]. Online services such as search and streaming platforms rely on user event sequences23

for content recommendation under real-time constraints [13–16]. In cybersecurity, modeling user24

and system events is essential for detecting anomalies and preventing intrusions [17, 18]. These25

applications demonstrate the importance of building models that can effectively capture complex,26

context-dependent user behavior from event sequences.27

User events can be broadly categorized into personal and relational events. Personal events involve28

only a single user and reflect individual actions, such as searching for content, viewing items, or29

posting updates. In contrast, relational events involve interactions between two or more users, such30

as following another user, co-editing a document, or exchanging messages. Traditionally, these31

two types of events are often modeled separately. Relational events are commonly modeled using32

graph-based approaches that capture structural dependencies and interaction patterns among users33

[19–22]. On the other hand, personal events are typically modeled as sequences using recurrent or34

attention-based architectures to capture temporal dependencies in personal event histories [23–29].35
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Figure 1: An illustration of personal and relational events in e-
commerce. Personal events involve a single user, such as login, search,
view, or purchase. Relational events involve interaction between two
users, such as sending a gift or commenting on another user’s review.

There have been efforts in36

the graph area to capture37

both structural and tem-38

poral dependencies using39

temporal graph formaliza-40

tions (such as CTDG [30])41

and models built on top of42

these formalizations (such43

as TGAT [31], TGN [32],44

and DyRep [33]). However,45

these approaches primarily46

focus on the temporal47

dependencies of relational48

events while neglecting per-49

sonal events. For example,50

the formalization used in51

the Temporal Graph Bench-52

mark (TGB) papers [34, 35]53

defines a temporal graph as a stream of triplets consisting of source, destination, and timestamp.54

Personal events that involve only a single entity cannot be directly represented under this formulation.55

One workaround is to convert all personal events into nodes and define personal events as triplets56

of user node, event node, and timestamp. However, this construction is not as straightforward for57

capturing temporal dependencies in personal event histories compared to sequence-based modeling.58

Going back to the personal and relational event category, in many application domains, the number59

of personal events is typically much larger than that of relational events. For example, in e-commerce60

platforms, as illustrated in Figure 1, users often view products, search for items, or add products61

to their cart, whereas relational interactions, such as referrals, sending gifts, or socially engaged62

reviews, are less frequent. In financial systems, customers routinely perform account queries, check63

balances, or initiate transactions, while peer-to-peer interactions such as money transfers or joint64

account actions are relatively infrequent. In cybersecurity systems, personal events may include65

actions like logging in, accessing files, or executing processes, while relational events, such as remote66

connections to other users, or file sharing between users, occur less frequently. Despite their higher67

volume, personal events are often underrepresented in existing graph-based formulations, which68

tend to prioritize relational structure. In practice, however, both personal and relational events carry69

complementary signals, and many predictive tasks, such as item recommendation, fraud detection,70

customer profiling, and behavior forecasting, benefit from capturing both types of information.71

Even though there is a need to capture both personal and relational events in many application domains,72

prior work has rarely considered them together. Practitioners often simplify the complexity of user73

event modeling by adopting either a graph or a sequence formalization, as most machine learning74

models are developed within one of these frameworks. As a result, one type of event—typically the75

less convenient to represent—is often ignored entirely, leading to an incomplete view of user behavior.76

To build a more comprehensive understanding of user event modeling, there is a need for public77

datasets and benchmark tasks that explicitly incorporate both event types. Such resources would78

provide a foundation for developing and evaluating models that integrate these complementary signals.79

Summary of Contributions. In this work, we aim to support the study of user event modeling that80

incorporates both personal and relational events. Our contributions are as follows:81

• We curate, pre-process, and release a collection of public datasets and prediction tasks that82

explicitly include both personal and relational events.83

• We introduce a new formalization for user event modeling that captures both personal and84

relational events.85

• We empirically demonstrate that incorporating both personal and relational events improves86

performance on a range of prediction tasks.87

• We show that existing models, originally developed for either sequential or relational data,88

are less well suited for this event modeling setting, leaving room for future improvements.89

• We invite the research community to use these resources and help close the gap in unified90

user event modeling.91
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2 Related Works92

Event sequence. Event sequence modeling is a broad topic that covers many different domains93

which share a similar goal of predicting future events from past histories. Temporal point processes94

(TPPs), such as the Poisson and Hawkes processes [36], model discrete events in continuous time95

using intensity functions. Neural extensions [37–39] incorporate RNNs or attention for more accurate96

timestamp prediction and are applied in finance, healthcare, and user modeling. However, TPPs97

often assume simple event structures and focus only on timing, which limits their ability to capture98

dependencies across users or networks.99

Sequential recommendation. A closely related application domain is sequential recommendation,100

where the goal is to predict the next item a user will interact with based on their history. Early101

methods used Markov chains or matrix factorization on time-slided data [40, 41], while recent models102

such as GRU4Rec [42], SASRec [43], and BERT4Rec [26] apply deep sequence encoders. These103

models capture user preferences over time but typically treat users independently, without modeling104

user-to-user interactions.105

Graph models. In parallel, graph-based models have advanced user interaction modeling, especially106

through GNNs. While static graphs lack temporal order, time-aware constructions such as time-107

windowed graphs have been used to encode the the dynamics [44], enabling tasks such as link predic-108

tion on constructed event graphs. GCN [45] introduced neighborhood aggregation, GraphSAGE [46]109

enabled inductive learning through sampling. GAT [47] added attention mechanisms, and HGT [48]110

extended GNNs to heterogeneous graphs. GNNs remain widely used for personal event modeling [19].111

Temporal graph. Temporal graph methods fall into two main categories: discrete-time and112

continuous-time [49, 35]. Discrete-time methods support both homogeneous [50] and heterogeneous113

data [51–53]. Continuous-time methods preserve finer temporal detail and can be used to model event114

sequences as timestamped edges [54]. TGN [32] generalizes this setting and includes DyRep [33]115

as a special case. HTGN-BTW [55] and STHN [56] extend TGN to heterogeneous graphs. Beyond116

it, several methods have also been proposed for modeling temporal knowledge graphs [57–59].117

Benchmark datasets. Benchmarks have been proposed across related areas. Temporal graph118

benchmarks include TGB [34], its heterogeneous and knowledge graph extension TGB 2.0 [35], and119

TGB-Seq [60], which adds a more complex sequence of edge dynamics. For static graphs, OGB [61]120

and OGB-LSC [62] are widely used. In recommendation, large-scale interaction benchmarks include121

MIND [63], TenRec [64], NineRec [65], and BARS [66]. For event sequences and temporal point122

processes, recent efforts include EBES [67], EasyTPP [68], and HOTPP [69].123

Other research on graph and sequence. Several studies have explored different settings involving124

temporal and structural dynamics. Some models combine graph and time series data using125

spatio-temporal graphs [70–73]. Others merge the outputs of graph and sequence models in various126

application domains [74–76]. Recent works tokenize graphs and applies transformers or state space127

models (SSMs) for graph learning [77–83]. Additional efforts incorporate knowledge graphs into128

language models [84–86] and apply graph-augmented retrieval in text generation tasks [87, 88].129

3 Problem Formalization130

Notations. In our Personal and Relational User Event Sequence (PRES) modeling, we have a131

collection of event sequences, each representing the events that happen to a particular user (which132

can also be a customer, account, etc.). We denote the set of users as U = {u1, u2, · · · , uN}, where133

N is the number of users. Each user has their own sequence of events that occur over time. For134

example, the sequence for user ui is denoted as Seq(ui) = [(e1, t1), (e2, t2), · · · , (eMi
, tMi

)], where135

e describes an event, t describes the time at which the event occurs, and Mi denotes the number of136

events for user ui. Each user may have a different number of events in their event sequence. We137

denote the set of all user sequences by S = {Seq(u) | u ∈ U}.138

An event may come from two different event sets: the personal event set and the relational event139

set. The personal event set contains a set of events that can occur for an individual user; p ∈ P ≜140

{1, 2, · · · , |P|}. The relational event set contains a set of all possible events r ∈ R ≜ {1, 2, · · · , |R|},141

which involve a relation from one user to another. Thus, an event can be defined by a personal event142

e = p, or a relational event tuple e = (r, v), where v is another user.143
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Table 1: Dataset Statistics
Properties brightkite gowalla az-clothing az-electronics github

Personal Events check-in check-in product rating product rating github activity
Relational Events friendship friendship co-review co-review collaboration

# Users 58,228 196,591 185,986 254,064 3,669,079
# Events 5,130,866 8,342,943 1,591,947 2,938,178 102,878,895
# Personal Events 4,702,710 6,442,289 1,573,869 2,281,128 95,974,149
# Relational Events 428,156 1,900,654 18,078 657,050 6,904,746

# Unique Events 628,519 1,169,154 846,052 529,198 24
# Unique Timestamps 4,506,822 5,561,957 3,464 5,373 2,675,990

# Users w. pers. events 51,406 107,092 185,986 254,064 3,669,079
# Users w. rel. events 58,228 196,591 5,017 49,852 441,958
# Users w. both events 51,406 107,092 5,017 49,852 441,958

Difference from other well-known formalizations. Our formulation differs from graph-based144

representations in several ways. Static graphs aggregate interactions into a single structure, discarding145

temporal information. Temporal graphs introduce dynamic edges but focus on global structural146

changes rather than user-specific event sequences. In both cases, personal events are often omitted147

or encoded as nodes, limiting representational flexibility. In contrast, we model user-wise event148

sequences with preserved temporal order, explicitly capturing both personal and relational events. Our149

formulation also supports richer event representations, including decomposing events into sub-events,150

as shown in our experiments.151

The PRES formulation also differs from the standard sequence-based approaches. Event sequence152

models typically treat user actions as flat sequences, without modeling interactions between users.153

Sequential recommendation focuses on item sequences per user and does not account for user-to-user154

interactions, while our formulation supports more flexible personal event representation, including155

decomposed sub-events, and explicitly models relational events. Temporal point process models156

capture event timing and types but are less suited for rich semantics or relational structure. In contrast,157

our formulation models both personal and relational events with their content and temporal order.158

4 Datasets and Prediction Tasks159

4.1 Dataset Information160

We curated user event datasets from multiple domains and processed each according to our formaliza-161

tion in Section 3. The data is stored in CSV format with the columns: uid, timestamp, event_set,162

event, and other_uid (See Appendix B for details). The uid is a numerical user ID, whereas163

event_set indicates whether the event is personal or relational. For relational events, other_uid164

refers to the other user involved in the relation; for personal events, this column is null.165

Dataset description. Here we describe each dataset in detail. Table 1 provides general statistics of166

each dataset. More details on collection, processing, and dataset license are available in Appendix A167

pres-brightkite. This dataset contains location check-ins and friendship history of Brightkite168

users, a location-based social networking platform. It was originally collected by Cho et al. [89] and169

published in the SNAP Dataset Repository [90]. Personal events consist of sequences of location170

check-ins. We convert the original latitude and longitude coordinates into Geohash-8 representations171

[91, 92], short alphanumeric strings encoding geographic locations. Nearby locations share similar172

geohash prefixes, while distant ones differ. Example geohashes include 9v6kpmr1, gcpwkeq6, and173

u0yhxgm1. Relational events capture friendship connections among users. The dataset includes174

58,228 users and 5,130,866 events. Only personal events have timestamps; relational events do not.175

pres-gowalla. The dataset also contains the location check-in and friendship history of another176

social network platform, Gowalla. It was also originally collected by Cho et al. [89] and published in177

the SNAP Repository [90]. We processed and formatted the data following the same approach used178

for pres-brightkite. The dataset contains personal events from geohash check-ins and relational179

events from friendship connections, totaling 8,342,943 events from 196,591 users.180

4

https://snap.stanford.edu/data/loc-brightkite.html
https://snap.stanford.edu/data/loc-Gowalla.html


pres-amazon-clothing. The dataset contains Amazon product reviews and ratings in the Clothing,181

Shoes and Jewelry category, spanning from May 1996 to July 2014. The raw data was originally182

collected by McAuley et al. [93]. In this dataset, we define personal events as sequences of product183

IDs and ratings reviewed by a user, for example: B000MLDCZ2:5 and B001OE3F08:3. Relational184

events represent co-review patterns, where two users have reviewed at least three of the same products.185

The dataset contains event sequences from 185,986 users, with a total of 1,591,947 events.186

pres-amazon-electronics. The dataset contains Amazon product reviews and ratings in the187

Electronics category, originally collected by McAuley et al. [93]. As in pres-amazon-clothing,188

personal events are defined as sequences of product IDs and ratings, while relational events capture189

co-review patterns. In total, the dataset contains 2,938,178 events from 254,064 users.190

pres-github. This dataset contains GitHub user activity from January 2025, collected from the191

GH Archive. Personal events include actions such as Push, CreateBranch, CreateRepository,192

PullRequestOpened, IssuesOpened, and Fork. Relational events represent project collaboration,193

where two users are linked if both contributed at least five commits or pull requests to the same194

repository. The dataset includes 102,878,895 events from 3,669,079 users. Only personal events195

include timestamps; relational events do not, similar to pres-brightkite and pres-gowalla.196

Variability of the datasets. As shown in Table 1, the pres datasets vary significantly across multiple197

aspects. The number of users ranges from around 58 thousand in pres-brightkite to more than198

3.5 million in pres-github. The number of events also varies, from approximately 1.5 million in199

pres-brightkite to over 100 million in pres-github. The ratio between relational and personal200

events ranges from around 1:3 in pres-gowalla to approximately 1:80 in pres-amazon-clothing.201

The number of unique events also differs widely, from just 24 in pres-github to more than 1202

million in pres-gowalla. In addition, we observe variability in the number of users having personal203

events, relational events, and both. Some datasets have more users with relational events than with204

personal events (e.g., pres-brightkite, pres-gowalla), while others show the opposite trend205

(e.g., pres-amazon-clothing, pres-amazon-electronics, pres-github). These differences206

in dataset properties present distinct challenges for modeling user events in each dataset.207

4.2 Prediction Tasks208

From the pres datasets, we define two prediction tasks: one for relational events and one for personal209

events. These tasks are designed to enable fair comparisons between graph-based, sequence-based,210

and hybrid models. Relational event prediction focuses on predicting future or held-out subset of211

user-to-user interactions, similar to link prediction. Personal event prediction aims to predict the212

likelihood of future occurrence of personal events without requiring exact timestamps, for example,213

predicting the next 20 personal events given a user’s first 100. In both tasks, observed events are214

compared against negative samples drawn from events not associated with the user. For reproducibility,215

pre-generated negative samples for validation and test sets are provided in the dataset repository.216

Relational event prediction tasks. The corresponding tasks for pres-brightkite and217

pres-gowalla involve friend recommendation. We construct the training data by randomly splitting218

all relational events into 70% training, 10% validation, and 20% test sets. We also generate negative219

samples for the validation and test sets. Following Gastinger et al. [35], we adopt a 1-vs-1000220

negative sampling scheme, in which 1,000 negative events are sampled for each relational event in221

the prediction set. Negative samples are drawn via uniform random sampling of users, excluding222

those who already have relational events with the target user in the training set.223

For the pres-github dataset, the relational event prediction task is defined as collaboration pre-224

diction, which involves predicting which users collaborate with a given user. The train, validation,225

and test splits follow the same procedure as in pres-brightkite, including the sampling method.226

However, due to the large size of the dataset, we adopt a 1-vs-300 negative sampling scheme.227

For the pres-amazon-clothing and pres-amazon-electronics datasets, the task is predicting228

co-review relationships, i.e., which users share at least three products they reviewed. Co-review229

patterns can reveal how one account may be related to another, which in some cases can help detect230

fraudulent review syndicates. In these datasets, relational events have timestamp information, i.e., the231

first time the co-review condition is met. As such, the train, validation, and test splits respect event232

timestamps. Specifically, we split each user’s relational events by taking the last 20% for test, the pre-233

vious 10% for validation, and the rest for training. To manage large histories of some users, we cap test234
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and val sets at 20 and 10 events per user, respectively. Personal events are also split into ‘observed’ and235

‘unobserved’ sets based on the timestamp cut-off in the relational event split, with only the observed236

set used for training. As in pres-brightkite, we adopt a 1-vs-1000 negative sampling scheme.237

Personal event prediction tasks. The task for pres-brightkite and pres-gowalla is to predict238

the likelihood of a user checking in at a given geohash location in the future. We split each user’s per-239

sonal events by taking the last 20% for test, the previous 10% for validation, and the rest for training.240

We also cap the number of events in the test and validation sets to at most 20 and 10 per user, respec-241

tively. Relational events are also split into ‘observed’ and ‘unobserved’ sets based on the timestamp242

cutoff from the personal event split, with only the observed set used in training. Since personal events243

are more frequent than relational ones, we adopt a 1-vs-500 negative sampling scheme. As geohash244

strings encode hierarchical spatial information (e.g., earlier characters represent broader regions), we245

apply stratified hierarchical sampling. Specifically, negatives are stratified by shared geohash prefixes,246

from matching the first five characters to none, ensuring a mix of nearby and distant locations.247

For the pres-amazon datasets, the task is to predict future products a user will review and the248

corresponding ratings, as denoted in their personal event data. We adopt the same train/val/test249

split strategy as in pres-brightkite, along with a 1-vs-500 negative sampling scheme. Negative250

samples for each personal event (e.g., B001OE3F08:3) are drawn from three sources: (1) the same251

product with different ratings (e.g., B001OE3F08:5); (2) other personal events not in the user’s252

training data; and (3) samples from the second set with randomly perturbed ratings.253

In the pres-github dataset, the number of unique events in the personal event set is only 24,254

corresponding to the list of possible GitHub activities. Thus, the task construction used in the255

previous datasets is not applicable to pres-github. We decided to omit this dataset from the set of256

datasets used for creating personal event prediction tasks.257

Full event sequence. In addition to the datasets containing prediction tasks described above, we258

also publish a version of each dataset that includes all personal and relational events for all users,259

without any assigned tasks, train/val/test splits, or pre-specified negative samples. This is intended to260

facilitate future works that may wish to generate other prediction tasks not covered in this paper.261

5 Experiments262

5.1 Relational event prediction tasks263

Experiment setup. We perform relational event prediction experiments on all five pres datasets,264

following the task setup described earlier. We evaluate several sets of baseline methods:265

1. In the first set, we use only relational event data. We construct a user graph where edges266

represent relational events between two users, ignoring timestamp information. We then run267

static graph methods, GCN [45] and GAT [47], on this graph.268

2. In the second set, we use a sequence model, BERT [94], to encode each user’s last 100269

personal events from the training set. The resulting user embedding is added as input to the270

GCN and GAT models from the first set, denoted as GCN+S and GAT+S, respectively.271

3. In the third set, we convert each unique personal event into a node and add it to the user272

graph from the first set, creating edges between users and their personal event nodes. As273

in the second set, we use only the last 100 personal events per user. We then run GCN and274

GAT on this graph, denoted as GCN-RP and GAT-RP.275

4. Lastly, based on the graph containing user and personal event nodes from the third set, we276

add timestamp information to construct a temporal graph. For datasets that lack timestamps277

for relational events, we inject these events randomly into the sequence of personal events.278

We then run temporal graph models, TGN [32] and DyRep [33], on this graph.279

The sequence model for capturing personal events in the second set is designed as a masked token pre-280

diction task using a BERT model with a masking probability of 0.3. A key benefit of using transformer-281

based models is flexibility in event tokenization. In pres-brightkite and pres-gowalla, personal282

events are 8-character geohash strings (e.g., 9q8yyk8y|9q8vzj5b|9q8vyzwk). Since geohashes283

encode hierarchical geographic information, we apply hierarchical tokenization by splitting each284

into four two-character tokens with added prefixes (e.g., gh12-9q, gh34-8y, gh12-yk, gh12-8y).285

This roughly mimics hierarchical location modeling, such as identifying continent, country, city, and286
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Table 2: Performance results for relational event prediction tasks across various datasets.
Method pres-brightkite pres-gowalla
Metric MRR (%) H@5 (%) H@10 (%) H@50 (%) H@100 (%) MRR (%) H@5 (%) H@10 (%) H@50 (%) H@100 (%)

Static graph models on relational event graph
GCN 37.3±0.8 50.8±1.0 61.7±0.9 83.2±0.4 89.5±0.3 40.3±0.9 54.5±0.9 65.8±0.8 86.5±0.4 92.0±0.2

GAT 36.2±1.4 48.7±1.4 59.5±1.2 81.4±0.8 88.5±0.6 40.7±1.5 54.1±1.6 64.9±1.5 85.3±1.3 91.1±1.0

Static graph models on relational event graph + sequence embedding from personal event data
GCN+S 43.9±0.7 57.8±0.8 67.8±0.8 86.5±0.3 91.5±0.1 44.9±1.0 59.4±1.1 69.8±1.0 88.1±0.5 92.8±0.3
GAT+S 44.8±1.1 58.5±1.1 68.2±1.1 86.2±0.5 91.5±0.4 44.9±0.9 58.8±0.6 69.0±0.4 87.0±0.4 92.0±0.5

Static graph models on relational event graph + personal event nodes
GCN-RP 8.7±0.9 11.0±1.2 15.7±1.7 35.6±3.7 49.8±4.5 17.0±0.9 22.1±1.2 29.8±1.6 56.4±3.0 70.8±2.9

GAT-RP 10.7±1.0 13.5±1.2 18.2±1.4 35.6±2.3 47.8±2.8 14.9±1.4 19.0±1.6 25.8±2.0 50.7±3.1 66.2±3.2

Temporal graph models on relational event graph + personal event nodes
TGN 12.2±0.7 15.9±0.9 23.5±1.0 50.2±1.3 63.5±1.3 15.4±2.6 20.6±3.7 27.8±4.6 51.8±5.6 64.9±5.4

DyRep 7.1±0.4 8.9±0.6 13.7±0.9 36.0±1.7 50.7±2.1 8.8±1.0 11.2±1.3 15.8±1.7 34.8±3.5 48.6±5.1

Method pres-amazon-clothing pres-amazon-electronics
Metric MRR (%) H@5 (%) H@10 (%) H@50 (%) H@100 (%) MRR (%) H@5 (%) H@10 (%) H@50 (%) H@100 (%)

Static graph models on relational event graph
GCN 6.1±1.6 7.4±2.1 10.0±2.5 23.4±3.0 35.3±1.3 13.1±0.6 15.9±0.7 21.5±0.6 45.9±1.3 60.6±1.6

GAT 7.2±2.5 7.8±2.7 10.2±2.9 23.8±3.6 38.4±1.9 13.2±0.7 15.5±0.9 20.7±1.0 45.2±1.2 61.0±1.5

Static graph models on relational event graph + sequence embedding from personal event data
GCN+S 4.5±0.3 5.5±0.6 9.3±0.8 29.0±0.5 40.4±0.4 14.7±0.5 19.1±0.8 27.2±1.5 57.9±1.9 70.6±1.5
GAT+S 7.7±2.1 8.5±2.1 12.0±1.8 31.3±1.3 46.3±0.6 14.4±1.7 16.7±1.8 21.6±1.4 43.6±2.5 58.4±3.4

Static graph models on relational event graph + personal event nodes
GCN-RP 8.7±1.4 9.2±1.4 10.5±1.4 18.1±1.2 25.8±2.5 7.5±0.6 8.3±0.6 10.9±0.8 21.8±2.3 29.0±3.2

GAT-RP 6.5±1.0 7.9±1.0 10.9±1.4 25.7±3.2 39.8±3.7 15.5±0.5 17.2±0.4 20.5±0.7 35.5±3.0 46.9±3.6

Temporal graph models on relational event graph + personal event nodes
TGN 3.5±0.5 4.1±1.2 6.9±1.2 23.7±0.8 39.0±1.3 13.8±0.3 19.2±0.6 26.4±0.9 48.8±0.9 61.5±0.7

DyRep 2.9±0.6 3.0±1.1 5.8±1.6 22.8±2.6 39.6±2.4 6.8±0.7 8.9±1.0 13.8±1.3 33.4±2.3 47.5±3.0

neighborhood. For the pres-amazon datasets, we apply similar tokenization by splitting each event287

into three product tokens and one rating token. We do not apply token splitting for pres-github.288

Table 3: Relational event predictions on pres-github.

Method MRR (%) H@3 (%) H@5 (%) H@10 (%) H@30 (%)

GCN 54.0±7.2 62.9±7.5 69.6±5.1 75.2±2.3 80.1±0.4

GAT 69.3±3.1 73.6±2.2 76.1±1.3 78.1±0.4 80.4±0.3

GCN+S 70.8±0.8 75.1±0.2 76.9±0.0 78.5±0.1 80.9±0.4

GAT+S 74.2±0.6 77.0±0.4 78.7±0.3 80.6±0.1 84.5±0.2

GCN-RP 22.3±2.6 23.3±2.9 28.8±3.1 37.8±3.3 57.5±3.5

GAT-RP 33.1±4.1 35.7±5.4 43.9±5.6 57.2±4.5 76.7±0.7

TGN Out of GPU Memory
DyRep Out of GPU Memory

For performance evaluation, following289

prior benchmarks [34, 35, 60], we use290

ranking-based metrics: Mean Reciprocal291

Rank (MRR) and Hits@k, evaluated at vari-292

ous k depending on the number of negative293

samples. Each baseline is run five times294

with different random seeds, and we report295

the mean and standard deviation.296

Experiment results. Table 2 and Table 3297

show the experiment results (additional re-298

sults are available in Appendix D). In each299

table, bold numbers indicate the best-performing model on a given metric, and underlined numbers300

indicate the second best. As each dataset has its own characteristics, the results vary across datasets.301

However, there are some emerging patterns in the results that we highlight below.302

• In all datasets and across all metrics, the best and second-best models incorporate both303

relational and personal events as input to their architectures.304

• The graph models with personal event sequence embeddings (GCN+S and GAT+S) consis-305

tently perform well across all datasets and metrics. On pres-brightkite, pres-gowalla,306

and pres-github, they clearly outperform other models, ranking either first or second in307

all metrics. In pres-amazon-clothing, GAT+S performs best on Hits@k for larger k (10,308

50, 100), and second-best on Hits@5 and MRR. Similarly, in pres-amazon-electronics,309

GCN+S ranks first on Hits@10, Hits@50, and Hits@100, and second on Hits@5 and MRR.310

• In many datasets, adding personal events as nodes into the relational event graph de-311

creases predictive performance on the relational link prediction task, as shown by the312

results of GCN-RP and GAT-RP. Notable exceptions are pres-amazon-clothing and313

pres-amazon-electronics, where they perform relatively well on MRR and Hits@5,314

but not on Hits@k metrics with larger k.315
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Table 4: Performance results for personal event prediction tasks across various datasets.
Method pres-brightkite pres-gowalla
Metric MRR (%) H@3 (%) H@5 (%) H@10 (%) H@50 (%) MRR (%) H@3 (%) H@5 (%) H@10 (%) H@50 (%)

Sequential models
BERT 34.2±0.1 35.6±0.2 37.4±0.2 40.1±0.2 50.1±0.3 15.3±0.2 15.7±0.3 18.6±0.3 23.4±0.3 43.1±0.3

BERT-n2v-p 33.8±0.1 35.1±0.2 36.9±0.2 39.6±0.2 49.8±0.2 14.4±0.2 14.8±0.2 17.7±0.2 22.6±0.2 42.4±0.2

BERT-n2v-i 34.4±0.1 35.9±0.1 37.6±0.1 40.3±0.1 50.3±0.2 15.0±0.3 15.4±0.3 18.3±0.3 23.2±0.3 42.7±0.3

Graph models on personal event only graph
GCN 24.9±1.2 27.1±1.5 31.8±1.7 38.8±1.9 55.8±1.0 28.2±3.2 29.7±3.3 34.2±3.0 41.5±2.3 63.8±0.9

GAT 19.0±1.4 20.3±1.7 24.9±1.9 32.1±2.0 52.3±1.6 15.4±1.2 15.4±1.4 20.0±1.5 28.4±1.6 59.3±1.1

TGN 23.5±0.2 24.5±0.3 28.9±0.4 37.1±0.8 54.5±1.1 10.7±0.4 10.6±0.6 14.4±1.1 21.5±1.8 42.7±4.9

DyRep 19.8±2.9 21.4±3.2 26.5±2.5 35.4±1.6 57.2±1.7 7.4±0.6 6.4±0.8 10.0±1.0 17.8±1.0 42.9±2.1

Graph models on personal and relational event graph
GCN-PR 25.4±1.2 27.5±1.3 31.9±1.5 38.2±1.7 54.7±1.6 30.3±5.1 32.0±5.4 36.8±5.2 44.2±4.4 65.4±1.2
GAT-PR 18.8±0.5 20.3±0.6 25.2±0.6 32.9±0.6 53.3±0.6 16.0±0.6 16.0±0.7 20.5±0.8 28.6±0.9 59.2±0.9

TGN-PR 29.5±2.3 33.5±2.2 35.3±2.2 36.0±2.4 36.1±2.4 14.0±2.0 15.7±2.2 17.0±2.4 17.9±2.5 18.2±2.6

DyRep-PR 23.4±2.7 27.5±3.5 30.5±3.2 32.7±4.2 33.3±4.8 10.5±1.4 11.4±1.8 12.4±2.2 13.1±2.8 13.6±3.4

Method pres-amazon-clothing pres-amazon-electronics
Metric MRR (%) H@3 (%) H@5 (%) H@10 (%) H@50 (%) MRR (%) H@3 (%) H@5 (%) H@10 (%) H@50 (%)

Sequential models
BERT 3.3±0.0 2.3±0.0 3.5±0.1 6.1±0.1 22.4±0.2 8.1±0.2 7.7±0.2 10.7±0.3 16.1±0.3 38.1±0.2

BERT+n2v-p 3.4±0.0 2.4±0.0 3.6±0.0 6.2±0.1 22.7±0.2 8.1±0.1 7.7±0.1 10.7±0.2 16.1±0.2 38.2±0.1

BERT+n2v-i 3.3±0.0 2.3±0.0 3.5±0.1 6.1±0.1 22.6±0.2 8.1±0.1 7.8±0.1 10.7±0.0 16.1±0.1 38.0±0.2

Graph models on personal event only graph
GCN 10.8±1.7 11.2±2.0 14.1±1.7 19.0±1.1 32.8±0.5 13.3±2.0 13.3±2.5 18.4±2.9 27.6±3.1 55.6±0.9

GAT 3.5±0.0 2.6±0.0 4.0±0.1 7.1±0.1 22.7±0.2 7.4±0.4 6.4±0.4 9.6±0.5 16.1±0.7 44.0±0.8

TGN 9.3±0.9 8.0±0.8 12.8±2.2 25.4±6.8 44.4±3.4 16.2±1.6 17.4±2.0 22.6±1.8 30.8±1.2 54.2±0.8

DyRep 8.9±1.3 8.1±2.4 13.5±4.1 25.1±6.7 43.5±5.7 11.4±0.4 10.6±0.6 15.3±0.8 25.8±1.0 55.1±0.8

Graph models on personal and relational event graph
GCN-PR 10.9±1.3 11.4±1.5 14.3±1.3 19.1±0.8 32.8±0.6 16.6±1.5 17.3±1.9 22.2±2.1 30.6±2.0 56.3±0.8
GAT-PR 3.5±0.1 2.6±0.1 4.0±0.1 7.1±0.2 22.5±0.2 8.0±0.3 7.2±0.4 10.5±0.5 17.2±0.7 44.8±0.6

TGN-PR 9.3±0.7 7.8±1.1 13.9±3.3 30.4±3.7 41.7±1.9 15.6±0.6 16.8±0.8 22.8±0.8 32.7±0.6 54.0±1.0

DyRep-PR 10.5±0.2 9.7±0.5 17.1±0.6 32.9±0.3 41.3±0.4 14.3±0.5 15.0±0.7 21.2±0.9 32.3±1.4 53.3±2.8

• The performance of temporal graph methods (TGN and DyRep) on the relational link316

prediction task using graphs with personal event nodes is noticeably lower compared to static317

graph models on nearly all datasets. A notable exception is pres-amazon-electronics,318

where TGN performs relatively well. For the large dataset of pres-github, both TGN and319

DyRep suffer from GPU out of memory error, even when using small batch size.320

Although GCN+S and GAT+S perform relational event prediction in two stages, where they first321

generate user embeddings from personal event sequences and then incorporate them into the graph322

learning process, they still perform well across datasets. In contrast, TGN and DyRep use a single-step323

approach that directly integrates temporal dynamics but operate on graph structures where personal324

events are represented as nodes. These differences highlight an opportunity for future exploration on325

how best to represent temporal dynamics of personal events within a user, while jointly modeling the326

full structure that includes user-to-user relational events in an end-to-end fashion.327

5.2 Personal event prediction tasks328

Experiment setup. We perform personal event prediction experiments on all pres datasets except329

pres-github. In these experiments, we evaluate several sets of baseline methods:330

1. The first model is a sequential model that uses only personal event data. We use a BERT331

architecture with a prediction head to compute the likelihood of a user having a particular332

personal event in the future. For each user, we use the last 100 personal events in the training333

set to predict the likelihood of future events.334

2. In the second set, we use node2vec [95] to learn the graph structure of relational events335

and generate a graph embedding for each user. We then incorporate the embedding into the336

BERT sequence model. We evaluate two versions of the model: (a) incorporating the graph337

embedding post transformer module and before the prediction head (BERT-n2v-p), and (b)338

using the embedding as a special input token to the transformer module (BERT-n2v-i).339
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3. In the third set, we use graph-based models on personal event–only data by creating a340

bipartite graph of user nodes and personal event nodes, based on the last 100 personal events341

per user. We run both static graph models (GCN and GAT) and temporal graph models342

(TGN and DyRep) on this graph.343

4. In the last set, we augment the graph in the third set with relational event data by adding344

relational event edges between users. We then run GCN, GAT, TGN, and DyRep on this345

graph, denoted as GCN-PR, GAT-PR, TGN-PR, and DyRep-PR, respectively.346

Similar to the sequence embedding used in relational event prediction tasks, we apply split tokeniza-347

tion for the BERT model in personal event prediction to allow more flexibility in modeling events.348

We use the same tokenization scheme for each dataset as described earlier. For evaluation, we report349

MRR and Hits@k at various values of k. Each baseline is run five times with different random seeds,350

and we report the mean and standard deviation.351

Experiment results. Table 4 shows the results for the personal event prediction task. As in the352

relational event task, results vary across datasets due to their unique characteristics, with even more353

variations in this setting. We discuss some of the results as follows.354

• In most cases, the best models incorporate both personal and relational events as input to355

their architectures.356

• The sequence models perform well on pres-brightkite across all metrics. The base357

BERT model, which uses only personal event data, already shows strong performance.358

Adding relational event node2vec embeddings may either improve or degrade performance.359

In pres-brightkite, adding the embedding after the transformer module reduces per-360

formance, while using it as a special input token improves it. However, the changes361

are relatively minor but sufficient to make BERT-n2v-i the best-performing model on362

pres-brightkite. Similar minimal changes are observed in other datasets.363

• The static graph model, GCN in particular, performs surprisingly well on pres-gowalla.364

The best performance is achieved by the GCN-PR model, which is trained on data365

containing both personal and relational events in a graph with user nodes and personal366

event nodes. GCN-PR also performs relatively well on pres-amazon-clothing and367

pres-amazon-electronics. However, the GAT-based models perform noticeably worse368

than their GCN counterparts.369

• The temporal graph models perform relatively well on the pres-amazon-clothing and370

pres-amazon-electronics datasets, particularly on the Hits@5 and Hits@10 metrics.371

TGN and DyRep perform better on graphs that include both personal and relational events.372

A notable exception is the Hits@50 metric.373

The results show that there is no single model that consistently performs best across all datasets.374

Some models work well on certain datasets but not on others. The only consistent pattern is that the375

best-performing models usually use both personal and relational events. This opens up opportunities376

for designing better models that can effectively integrate both types of information.377

6 Conclusions and Limitations378

In this work, we aim to advance user event modeling by introducing a unified framework that captures379

both personal and relational events. We curate and release a collection of public datasets with380

corresponding prediction tasks, all aligned under a formalization that integrates both event types381

to provide a more complete view of user behavior. Through empirical evaluation, we demonstrate382

that models leveraging both event types consistently outperform those using only one. We also383

show that existing methods, originally developed for either sequential or relational data, even with384

some adaptations to handle both (e.g., temporal graph models), are less effective across many of our385

prediction tasks. These findings highlight the need for further study of unified user event modeling.386

A key challenge in this work is dataset curation, as many public datasets have already been collapsed387

into either graph-only or sequence-only formats, often discarding personal or relational events in388

the process. While we were able to gather and unify a set of datasets that include both event types,389

they may not fully capture the diversity and complexity of user event modeling across domains.390

Another limitation is that our current formulation does not support event-level or user-level features,391

presenting an opportunity for future work to extend the framework toward feature-aware modeling.392
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A Dataset Documentation659

All datasets presented in this paper are intended for academic research purposes, and their corre-660

sponding licenses are listed in this section. They are constructed from publicly available resources661

described below. In all cases, we perform anonymization by removing any personally identifiable662

information when appropriate. User IDs in the original data are replaced with auto-incremented ID663

numbers.664

Download links. The datasets and tasks described in this paper are available for download from the665

following links:666

• Dataset and task website: https://redacted-for-double-blind-review/667

• Dataset documentation: https://redacted-for-double-blind-review/668

• Code for dataset preparation: https://redacted-for-double-blind-review/669

• Code for running experiments: https://redacted-for-double-blind-review/670

Dataset source and license information. Below, we describe how the source data was obtained671

and provide license information for each dataset:672

• pres-github. This dataset is based on GitHub data collected from the GH Archive web-673

site (https://www.gharchive.org/) using its HTTP JSON download link. It contains674

GitHub user activity from January 2025, and user IDs have been anonymized. Content from675

GH Archive is released under the CC-BY-4.0 license, while the associated code is released676

under the MIT license.677

• pres-amazon-clothing and pres-amazon-electronics. These datasets contain Ama-678

zon product reviews and ratings in their respective categories. Both are based on Amazon679

review data collected by McAuley et al. [93] and hosted at: https://cseweb.ucsd.edu/680

~jmcauley/datasets/amazon/links.html. The Amazon review content is licensed681

under the Amazon license:682

By accessing the Amazon Customer Reviews Library ("Reviews Library"), you683

agree that the Reviews Library is an Amazon Service subject to the Amazon.com684

Conditions of Use and you agree to be bound by them, with the following addi-685

tional conditions:686

In addition to the license rights granted under the Conditions of Use, Amazon687

or its content providers grant you a limited, non-exclusive, non-transferable,688

non-sublicensable, revocable license to access and use the Reviews Library for689

purposes of academic research. You may not resell, republish, or make any690

commercial use of the Reviews Library or its contents, including use of the691

Reviews Library for commercial research, such as research related to a funding692

or consultancy contract, internship, or other relationship in which the results693

are provided for a fee or delivered to a for-profit organization. You may not (a)694

link or associate content in the Reviews Library with any personal information695

(including Amazon customer accounts), or (b) attempt to determine the identity696

of the author of any content in the Reviews Library. If you violate any of the697

foregoing conditions, your license to access and use the Reviews Library will698

automatically terminate without prejudice to any of the other rights or remedies699

Amazon may have.700

• pres-gowalla. This dataset contains user activity on the (now defunct) social network701

Gowalla. It was originally collected by Cho et al. [89] using the platform’s public API and702

published in the SNAP Dataset Repository [90] (https://snap.stanford.edu/data/703

loc-Gowalla.html). No specific license information is provided by the curator.704

• pres-brightkite. This dataset contains user activity on the (also now defunct) social705

network Brightkite. It was also originally collected by Cho et al. [89] using the platform’s706

public API and published in the SNAP Dataset Repository [90] (https://snap.stanford.707

edu/data/loc-brightkite.html). No specific license information is provided by the708

curator.709
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B Dataset Contents710

Examples of dataset contents. To illustrate the structure of the curated datasets, we provide711

examples of user event sequences from several pres datasets. Each table includes both personal and712

relational events, showing how different types of user activity are represented in our format.713

• pres-brightkite and pres-gowalla714

Table 5: Example of user event sequence in pres-brightkite and pres-gowalla.
uid timestamp event_set event other_uid

39 1206596784 personal 9xj6hwkm <NA>
39 1206596838 personal 9xj3fynm <NA>
39 1206596871 personal 9xj3fynm <NA>
39 1235862855 personal 9xj65423 <NA>
39 1250883230 personal 9xj65423 <NA>
39 1254535157 personal 9xj5skbn <NA>
39 1254535193 personal 9xj5sm00 <NA>
39 1283443369 personal 9q8yyyhs <NA>
39 <NA> relational friendship 0
39 <NA> relational friendship 30
39 <NA> relational friendship 105
39 <NA> relational friendship 1190

• pres-amazon-clothing and pres-amazon-electronics715

Table 6: Example of user event sequence in pres-amazon-clothing and
pres-amazon-electronics.

uid timestamp event_set event other_uid

254057 1375401600 personal B000A6PPOK:3 <NA>
254057 1377302400 personal B003TMPHOU:5 <NA>
254057 1377302400 personal B004A81PJI:4 <NA>
254057 1377302400 personal B0054R4AXW:5 <NA>
254057 1377302400 personal B005CPGHAA:5 <NA>
254057 1377302400 personal B007FNXMEQ:5 <NA>
254057 1377302400 personal B007IV7KRU:5 <NA>
254057 1377302400 personal B007WAWHD4:5 <NA>
254057 1377302400 personal B008AST7R6:5 <NA>
254057 1377302400 personal B008R56H4S:5 <NA>
254057 1404086400 relational co-review_product 107741

• pres-github716

Table 7: Example of user event sequence in pres-github.
uid timestamp event_set event other_uid

3669059 1738288160 personal PullRequestReviewCreated <NA>
3669059 1738288191 personal PullRequestReviewCreated <NA>
3669059 1738288198 personal PullRequestClosed <NA>
3669059 1738288200 personal Push <NA>
3669059 1738288206 personal PullRequestClosed <NA>
3669059 1738288207 personal Push <NA>
3669059 1738288217 personal DeleteBranch <NA>
3669059 1738288219 personal DeleteBranch <NA>
3669059 <NA> relational collaborate 824409
3669059 <NA> relational collaborate 3126262
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(a) pres-brightkite (b) pres-gowalla

(c) pres-amazon-clothing (d) pres-amazon-electronics

Figure 2: Histogram of the number of events per user in each dataset.

Figure 3: Histogram of the number of event per
user in pres-github.

Event statistics. To characterize user events,717

we include histograms in Figure 2 and Figure 3718

showing the distribution of event counts per719

user in each dataset. These histograms are con-720

structed by computing the number of events as-721

sociated with each user and aggregating how722

many users fall into each count bucket. The723

y-axis is log-scaled to highlight the long-tailed724

nature of user behavior, where the majority of725

users generate only a small number of events,726

while a much smaller group contributes dispro-727

portionately large volumes of activity. This skew728

is common across datasets and presents both729

challenges and opportunities for modeling.730

C Experiment Details731

C.1 Hyperparameters732

Personal event prediction task. In Table 8, we present the hyperparameters used during the training733

of various models for personal event prediction tasks. We use the following notations: Emb Dim734

denotes the dimensionality of token embeddings; Heads is the number of attention heads; Layers735
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Table 8: Hyperparameter configurations for personal event prediction tasks

Model Name
Learning

Rate
Batch
Size Epochs

Emb
Dim Heads Layers Channels

Max
Events

Max
Examples

Num Neg
Samples

Num
Neighbors

BERT 3e-4 1024 10 64 4 4 – 100 50 10 –
BERT-n2v-p 3e-4 1024 10 64 4 4 – 100 50 10 –
BERT-n2v-i 3e-4 1024 10 64 4 4 – 100 50 10 –

GCN 1e-3 1024 10 128 – 2 128 100 – 5 10
GCN-PR 1e-3 1024 10 128 – 2 128 100 – 5 10

GAT 1e-3 1024 10 128 2 2 64 100 – 5 10
GAT-PR 1e-3 1024 10 128 2 2 64 100 – 5 10

TGN 1e-3 4096 10 16/32 – – – 100 – 5 10
TGN-PR 1e-3 4096 10 16/32 – – – 100 – 5 10

DyRep 1e-3 4096 10 32/64 – – – 100 – 5 10
DyRep-PR 1e-3 4096 10 32/64 – – – 100 – 5 10

refers to the number of hidden layers; Channels indicates the number of hidden channels per layer in736

GAT and GCN models; Max Examples is the maximum number of training samples generated per737

user; NumNeg Samples represents the number of negative samples for each (positive) sample;738

and NumNeighbors is the number of neighbors sampled per layer for GNN models. Additionally,739

due to GPU memory limitations, we reduce the embedding dimensions for the TGN and DyRep740

models to 16 and 32, respectively, for the pres-brightkite and pres-gowalla datasets, and to741

32 and 64 for pres-amazon-clothing and pres-amazon-electronics.742

Relational event prediction task. In Table 9, we present the hyperparameters used across all743

models for relational event prediction tasks. Due to memory and time constraints, batch size,744

number of epochs, and embedding dimensions were adjusted per dataset. All datasets used a745

batch size of 4096, except for pres-github, which used 512. The number of training epochs746

was set to 5 for pres-github, 20 for pres-gowalla and pres-amazon-electronics, 100 for747

pres-amazon-clothing, and 1000 for pres-brightkite. The model checkpoint with the best748

validation MRR was saved and used for testing. As shown in our results, TGN and DyRep could not749

be run on pres-github. For the remaining datasets, the embedding dimension for TGN and DyRep750

was 128, except for pres-gowalla, which used 64 to avoid GPU out-of-memory errors.751

Table 9: Hyperparameter configurations for relational event prediction tasks

Model Name
Learning

Rate
Batch
Size Epochs

Emb
Dim Heads Layers Channels

Num Neg
Samples

Num
Neighbors

GCN 1e-3 512/4096 5-1000 128 – 2 128 5 10
GCN-PR 1e-3 512/4096 5-1000 128 – 2 128 5 10
GCN+S 1e-3 512/4096 5-1000 128 – 2 128 5 10

GAT 1e-3 512/4096 5-1000 128 2 2 128 5 10
GAT-PR 1e-3 512/4096 5-1000 128 2 2 128 5 10
GAT+S 1e-3 512/4096 5-1000 128 2 2 128 5 10

TGN 1e-3 4096 20-1000 64/128 – – 128 5 10

DyRep 1e-3 4096 20-1000 64/128 – – 128 5 10

C.2 Computing Resources752

We conducted all experiments on a server equipped with 8 NVIDIA Ampere A10G GPUs (24753

GB each), 16 CPU cores, and a RAM upper limit of 512 GB. To fully leverage all resources, we754

parallelized the training runs so that each experiment used a single GPU. Each experiment is designed755

to be run on a single-GPU machine. Table 10 summarizes the average training time (in hours) and756

standard deviation for each model across five datasets, categorized by task type. For relational757

event prediction tasks, lightweight GCN and GAT variants exhibit minimal computational overhead,758

with training times generally under one hour except on the GitHub dataset. In contrast, temporally759

expressive models such as TGN and DyRep incur significantly higher costs, especially on large-scale760

datasets like Gowalla. In personal event prediction tasks, training times increase across the board,761
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Table 10: Computational Time (in hours) for Different Models and Datasets

Method Time (h)

amazon-clothing amazon-electronics brightkite gowalla github

Relational event prediction tasks

GCN 0.06±0.00 0.05±0.00 0.60±0.00 0.26±0.00 8.38±0.11
GCN-RP 0.10±0.01 0.17±0.00 0.40±0.00 1.98±0.03 7.39±0.06
GCN+S 0.07±0.00 0.05±0.00 0.61±0.00 0.29±0.00 8.58±0.12
GAT 0.07±0.01 0.08±0.02 0.61±0.00 0.29±0.00 8.41±0.12
GAT-RP 0.15±0.03 0.18±0.01 0.49±0.06 2.07±0.02 7.40±0.06
GAT+S 0.09±0.02 0.05±0.00 0.62±0.00 0.32±0.00 2.52±0.20
TGN 0.49±0.03 0.32±0.00 1.06±0.01 4.62±0.10 –
DyRep 0.49±0.02 0.31±0.00 1.03±0.01 4.43±0.07 –

Personal event prediction tasks

GCN 5.81±0.10 7.14±0.29 1.73±0.02 8.01±0.71 –
GCN-PR 5.80±0.11 7.21±0.29 1.73±0.03 7.45±1.82 –
GAT 5.83±0.10 7.17±0.28 1.73±0.03 7.33±1.82 –
GAT-PR 5.82±0.10 7.24±0.30 1.76±0.02 7.51±1.79 –
TGN 3.94±0.40 4.10±0.10 0.33±0.01 3.12±0.75 –
TGN-PR 4.38±0.39 5.75±0.19 0.81±0.03 7.89±1.78 –
DyRep 2.03±0.38 3.23±0.34 0.38±0.01 4.11±1.03 –
DyRep-PR 4.88±0.10 5.96±0.20 0.78±0.03 7.85±1.86 –
BERT 4.67±0.06 6.30±0.15 2.65±0.02 9.21±1.11 –
BERT+n2v-i 3.41±0.14 4.43±0.19 2.54±0.01 6.40±0.19 –
BERT+n2v-p 3.60±0.22 4.78±0.14 2.52±0.01 6.38±0.20 –

with most models exceeding 7 hours on larger datasets, again highlighting the computational demands762

of modeling fine-grained temporal dynamics.763
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Figure 4: Comparison of relational event predictions across different datasets.
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Figure 5: Comparison of personal event predictions across different datasets.

D Additional Experimental Results764

In Figures 4 and 5, we present the results from the main paper in a more visual format to facilitate765

comparison across methods. In the relational event prediction tasks, across all datasets and metrics,766

static GNNs augmented with personal event sequence embeddings (GCN+S and GAT+S) consistently767

achieve the best or second-best results. This highlights the benefit of integrating both personal768

and relational signals. Temporal methods (TGN-PR, DyRep-PR) underperform, particularly when769

personal event nodes are included. For personal event prediction tasks, BERT+n2v-i offers slight770

improvements over regular BERT. In particular, BERT-based models exhibit competitive performance771

in some cases, most prominently on the Brightkite dataset, where they outperform GNN-based772

counterparts at MMR and lower hit rate thresholds such as Hits@3, Hits@5, and Hits@10.773

E Broader Impacts774

Broader impact of our paper The datasets and prediction tasks we release may support future775

research on user event modeling, particularly in settings that involve both personal and relational776

events. Researchers can build models on top of these resources and evaluate them in a consistent777

way. This can help accelerate empirical progress and facilitate more comparable results. This has778

potential impact in a range of industry applications where modeling user behavior is critical, such as779

recommendation, fraud detection, and user interaction analysis.780

Potential negative impact The datasets we release may not cover all use cases of user event781

modeling, and may reflect only a subset of real-world scenarios. This could introduce bias in model782

development or evaluation, especially if models are tuned specifically for the structure or properties of783

our datasets. As a result, there is a risk that future methods may overfit to our datasets and generalize784

less effectively to other domains or applications.785
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made in the paper.797
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contributions made in the paper and important assumptions and limitations. A No or799
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are not attained by the paper.804

2. Limitations805

Question: Does the paper discuss the limitations of the work performed by the authors?806

Answer: [Yes]807

Justification: We discuss the limitation of our work in the Conclusions and Limitations808

section.809
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• The answer NA means that the paper has no limitation while the answer No means that811

the paper has limitations, but those are not discussed in the paper.812
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violations of these assumptions (e.g., independence assumptions, noiseless settings,815

model well-specification, asymptotic approximations only holding locally). The authors816

should reflect on how these assumptions might be violated in practice and what the817

implications would be.818

• The authors should reflect on the scope of the claims made, e.g., if the approach was819

only tested on a few datasets or with a few runs. In general, empirical results often820
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• The authors should reflect on the factors that influence the performance of the approach.822

For example, a facial recognition algorithm may perform poorly when image resolution823

is low or images are taken in low lighting. Or a speech-to-text system might not be824

used reliably to provide closed captions for online lectures because it fails to handle825

technical jargon.826

• The authors should discuss the computational efficiency of the proposed algorithms827

and how they scale with dataset size.828

• If applicable, the authors should discuss possible limitations of their approach to829

address problems of privacy and fairness.830

• While the authors might fear that complete honesty about limitations might be used by831

reviewers as grounds for rejection, a worse outcome might be that reviewers discover832

limitations that aren’t acknowledged in the paper. The authors should use their best833

judgment and recognize that individual actions in favor of transparency play an impor-834

tant role in developing norms that preserve the integrity of the community. Reviewers835

will be specifically instructed to not penalize honesty concerning limitations.836

3. Theory assumptions and proofs837
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Question: For each theoretical result, does the paper provide the full set of assumptions and838

a complete (and correct) proof?839

Answer: [NA]840

Justification: The paper does not include theoretical results.841

Guidelines:842

• The answer NA means that the paper does not include theoretical results.843

• All the theorems, formulas, and proofs in the paper should be numbered and cross-844

referenced.845

• All assumptions should be clearly stated or referenced in the statement of any theorems.846

• The proofs can either appear in the main paper or the supplemental material, but if847

they appear in the supplemental material, the authors are encouraged to provide a short848

proof sketch to provide intuition.849

• Inversely, any informal proof provided in the core of the paper should be complemented850

by formal proofs provided in appendix or supplemental material.851

• Theorems and Lemmas that the proof relies upon should be properly referenced.852

4. Experimental result reproducibility853

Question: Does the paper fully disclose all the information needed to reproduce the main ex-854

perimental results of the paper to the extent that it affects the main claims and/or conclusions855

of the paper (regardless of whether the code and data are provided or not)?856

Answer: [Yes]857

Justification: We provide several components to ensure the reproducibility of our results.858

First, we include pre-computed negative samples for the validation and test sets for every859

task and dataset. We also provide experiment details in both the Experiments section and860

Appendix C. Lastly, we release the code for running all experiments.861

Guidelines:862

• The answer NA means that the paper does not include experiments.863

• If the paper includes experiments, a No answer to this question will not be perceived864

well by the reviewers: Making the paper reproducible is important, regardless of865

whether the code and data are provided or not.866

• If the contribution is a dataset and/or model, the authors should describe the steps taken867

to make their results reproducible or verifiable.868

• Depending on the contribution, reproducibility can be accomplished in various ways.869

For example, if the contribution is a novel architecture, describing the architecture fully870

might suffice, or if the contribution is a specific model and empirical evaluation, it may871

be necessary to either make it possible for others to replicate the model with the same872

dataset, or provide access to the model. In general. releasing code and data is often873

one good way to accomplish this, but reproducibility can also be provided via detailed874

instructions for how to replicate the results, access to a hosted model (e.g., in the case875

of a large language model), releasing of a model checkpoint, or other means that are876

appropriate to the research performed.877

• While NeurIPS does not require releasing code, the conference does require all submis-878

sions to provide some reasonable avenue for reproducibility, which may depend on the879

nature of the contribution. For example880

(a) If the contribution is primarily a new algorithm, the paper should make it clear how881

to reproduce that algorithm.882

(b) If the contribution is primarily a new model architecture, the paper should describe883

the architecture clearly and fully.884

(c) If the contribution is a new model (e.g., a large language model), then there should885

either be a way to access this model for reproducing the results or a way to reproduce886

the model (e.g., with an open-source dataset or instructions for how to construct887

the dataset).888

(d) We recognize that reproducibility may be tricky in some cases, in which case889

authors are welcome to describe the particular way they provide for reproducibility.890

In the case of closed-source models, it may be that access to the model is limited in891
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some way (e.g., to registered users), but it should be possible for other researchers892

to have some path to reproducing or verifying the results.893

5. Open access to data and code894

Question: Does the paper provide open access to the data and code, with sufficient instruc-895

tions to faithfully reproduce the main experimental results, as described in supplemental896

material?897

Answer: [Yes]898

Justification: We release the datasets and the experiment codes.899
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/902

public/guides/CodeSubmissionPolicy) for more details.903

• While we encourage the release of code and data, we understand that this might not be904

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not905

including code, unless this is central to the contribution (e.g., for a new open-source906

benchmark).907

• The instructions should contain the exact command and environment needed to run to908

reproduce the results. See the NeurIPS code and data submission guidelines (https:909

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.910

• The authors should provide instructions on data access and preparation, including how911

to access the raw data, preprocessed data, intermediate data, and generated data, etc.912

• The authors should provide scripts to reproduce all experimental results for the new913

proposed method and baselines. If only a subset of experiments are reproducible, they914

should state which ones are omitted from the script and why.915

• At submission time, to preserve anonymity, the authors should release anonymized916

versions (if applicable).917

• Providing as much information as possible in supplemental material (appended to the918

paper) is recommended, but including URLs to data and code is permitted.919

6. Experimental setting/details920

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-921

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the922

results?923

Answer: [Yes]924

Justification: The experiment details are available in the Experiments section and Ap-925

pendix C.926
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• The answer NA means that the paper does not include experiments.928

• The experimental setting should be presented in the core of the paper to a level of detail929

that is necessary to appreciate the results and make sense of them.930

• The full details can be provided either with the code, in appendix, or as supplemental931

material.932

7. Experiment statistical significance933

Question: Does the paper report error bars suitably and correctly defined or other appropriate934

information about the statistical significance of the experiments?935

Answer: [Yes]936

Justification: We report the mean and standard deviation of our experimental results in all937

result tables in the paper.938
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• The answer NA means that the paper does not include experiments.940

• The authors should answer "Yes" if the results are accompanied by error bars, confi-941

dence intervals, or statistical significance tests, at least for the experiments that support942

the main claims of the paper.943
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• The factors of variability that the error bars are capturing should be clearly stated (for944

example, train/test split, initialization, random drawing of some parameter, or overall945

run with given experimental conditions).946

• The method for calculating the error bars should be explained (closed form formula,947

call to a library function, bootstrap, etc.)948

• The assumptions made should be given (e.g., Normally distributed errors).949

• It should be clear whether the error bar is the standard deviation or the standard error950

of the mean.951

• It is OK to report 1-sigma error bars, but one should state it. The authors should952

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis953

of Normality of errors is not verified.954

• For asymmetric distributions, the authors should be careful not to show in tables or955

figures symmetric error bars that would yield results that are out of range (e.g. negative956

error rates).957

• If error bars are reported in tables or plots, The authors should explain in the text how958

they were calculated and reference the corresponding figures or tables in the text.959

8. Experiments compute resources960

Question: For each experiment, does the paper provide sufficient information on the com-961

puter resources (type of compute workers, memory, time of execution) needed to reproduce962

the experiments?963

Answer: [Yes]964

Justification: The information about computing resources is available in Appendix C965

Guidelines:966

• The answer NA means that the paper does not include experiments.967

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,968

or cloud provider, including relevant memory and storage.969

• The paper should provide the amount of compute required for each of the individual970

experimental runs as well as estimate the total compute.971

• The paper should disclose whether the full research project required more compute972

than the experiments reported in the paper (e.g., preliminary or failed experiments that973

didn’t make it into the paper).974

9. Code of ethics975

Question: Does the research conducted in the paper conform, in every respect, with the976

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?977

Answer: [Yes]978

Justification: We have reviewed the ethic code and make sure our research conform with the979

code of ethics.980

Guidelines:981

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.982

• If the authors answer No, they should explain the special circumstances that require a983

deviation from the Code of Ethics.984

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-985

eration due to laws or regulations in their jurisdiction).986

10. Broader impacts987

Question: Does the paper discuss both potential positive societal impacts and negative988

societal impacts of the work performed?989

Answer: [Yes]990

Justification: We discuss the broader impacts in Appendix E991

Guidelines:992

• The answer NA means that there is no societal impact of the work performed.993
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• If the authors answer NA or No, they should explain why their work has no societal994

impact or why the paper does not address societal impact.995

• Examples of negative societal impacts include potential malicious or unintended uses996

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations997

(e.g., deployment of technologies that could make decisions that unfairly impact specific998

groups), privacy considerations, and security considerations.999

• The conference expects that many papers will be foundational research and not tied1000

to particular applications, let alone deployments. However, if there is a direct path to1001

any negative applications, the authors should point it out. For example, it is legitimate1002

to point out that an improvement in the quality of generative models could be used to1003

generate deepfakes for disinformation. On the other hand, it is not needed to point out1004

that a generic algorithm for optimizing neural networks could enable people to train1005

models that generate Deepfakes faster.1006

• The authors should consider possible harms that could arise when the technology is1007

being used as intended and functioning correctly, harms that could arise when the1008

technology is being used as intended but gives incorrect results, and harms following1009

from (intentional or unintentional) misuse of the technology.1010

• If there are negative societal impacts, the authors could also discuss possible mitigation1011

strategies (e.g., gated release of models, providing defenses in addition to attacks,1012

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1013

feedback over time, improving the efficiency and accessibility of ML).1014

11. Safeguards1015

Question: Does the paper describe safeguards that have been put in place for responsible1016

release of data or models that have a high risk for misuse (e.g., pretrained language models,1017

image generators, or scraped datasets)?1018

Answer: [NA]1019

Justification: We do not identify any potential misuse risks associated with our paper, code,1020

or datasets.1021

Guidelines:1022

• The answer NA means that the paper poses no such risks.1023

• Released models that have a high risk for misuse or dual-use should be released with1024

necessary safeguards to allow for controlled use of the model, for example by requiring1025

that users adhere to usage guidelines or restrictions to access the model or implementing1026

safety filters.1027

• Datasets that have been scraped from the Internet could pose safety risks. The authors1028

should describe how they avoided releasing unsafe images.1029

• We recognize that providing effective safeguards is challenging, and many papers do1030

not require this, but we encourage authors to take this into account and make a best1031

faith effort.1032

12. Licenses for existing assets1033

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1034

the paper, properly credited and are the license and terms of use explicitly mentioned and1035

properly respected?1036

Answer: [Yes]1037

Justification: We discuss the license of the source data in Appendix A1038

Guidelines:1039

• The answer NA means that the paper does not use existing assets.1040

• The authors should cite the original paper that produced the code package or dataset.1041

• The authors should state which version of the asset is used and, if possible, include a1042

URL.1043

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1044

• For scraped data from a particular source (e.g., website), the copyright and terms of1045

service of that source should be provided.1046
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• If assets are released, the license, copyright information, and terms of use in the1047

package should be provided. For popular datasets, paperswithcode.com/datasets1048

has curated licenses for some datasets. Their licensing guide can help determine the1049

license of a dataset.1050

• For existing datasets that are re-packaged, both the original license and the license of1051

the derived asset (if it has changed) should be provided.1052

• If this information is not available online, the authors are encouraged to reach out to1053

the asset’s creators.1054

13. New assets1055

Question: Are new assets introduced in the paper well documented and is the documentation1056

provided alongside the assets?1057

Answer: [Yes]1058

Justification: Our pre-processed datasets are derived from publicly available source data, and1059

we discuss their licenses in Appendix A. Our code for processing the datasets and running1060

experiments is released under the MIT license.1061

Guidelines:1062

• The answer NA means that the paper does not release new assets.1063

• Researchers should communicate the details of the dataset/code/model as part of their1064

submissions via structured templates. This includes details about training, license,1065

limitations, etc.1066

• The paper should discuss whether and how consent was obtained from people whose1067

asset is used.1068

• At submission time, remember to anonymize your assets (if applicable). You can either1069

create an anonymized URL or include an anonymized zip file.1070

14. Crowdsourcing and research with human subjects1071

Question: For crowdsourcing experiments and research with human subjects, does the paper1072

include the full text of instructions given to participants and screenshots, if applicable, as1073

well as details about compensation (if any)?1074

Answer: [NA]1075

Justification: The paper does not involve crowdsourcing nor research with human subjects.1076

Guidelines:1077

• The answer NA means that the paper does not involve crowdsourcing nor research with1078

human subjects.1079

• Including this information in the supplemental material is fine, but if the main contribu-1080

tion of the paper involves human subjects, then as much detail as possible should be1081

included in the main paper.1082

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1083

or other labor should be paid at least the minimum wage in the country of the data1084

collector.1085

15. Institutional review board (IRB) approvals or equivalent for research with human1086

subjects1087

Question: Does the paper describe potential risks incurred by study participants, whether1088

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1089

approvals (or an equivalent approval/review based on the requirements of your country or1090

institution) were obtained?1091

Answer: [NA]1092

Justification: The paper does not involve crowdsourcing nor research with human subjects.1093

Guidelines:1094

• The answer NA means that the paper does not involve crowdsourcing nor research with1095

human subjects.1096
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1097

may be required for any human subjects research. If you obtained IRB approval, you1098

should clearly state this in the paper.1099

• We recognize that the procedures for this may vary significantly between institutions1100

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1101

guidelines for their institution.1102

• For initial submissions, do not include any information that would break anonymity (if1103

applicable), such as the institution conducting the review.1104

16. Declaration of LLM usage1105

Question: Does the paper describe the usage of LLMs if it is an important, original, or1106

non-standard component of the core methods in this research? Note that if the LLM is used1107

only for writing, editing, or formatting purposes and does not impact the core methodology,1108

scientific rigorousness, or originality of the research, declaration is not required.1109

Answer: [NA]1110

Justification: The core method development in this research does not involve LLMs in any1111

important, original, or non-standard components. We use LLMs only as writing and coding1112

assistants.1113

Guidelines:1114

• The answer NA means that the core method development in this research does not1115

involve LLMs as any important, original, or non-standard components.1116

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1117

for what should or should not be described.1118
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