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Abstract

User event modeling plays a central role in many machine learning applications,
with use cases spanning e-commerce, social media, finance, cybersecurity, and
other domains. User events can be broadly categorized into personal events,
which involve individual actions, and relational events, which involve interactions
between two users. These two types of events are typically modeled separately,
using sequence-based methods for personal events and graph-based methods
for relational events. Despite the need to capture both event types in real-world
systems, prior work has rarely considered them together. This is often due to the
convenient simplification that user behavior can be adequately represented by a
single formalization, either as a sequence or a graph. To address this gap, there is
a need for public datasets and prediction tasks that explicitly incorporate both per-
sonal and relational events. In this work, we introduce a collection of such datasets,
propose a unified formalization, and empirically show that models benefit from
incorporating both event types. Our results also indicate that current methods leave
a notable room for improvements. We release these resources to support further
research in unified user event modeling and encourage progress in this direction.

1 Introduction

Modeling user events is a central task in machine learning with broad applications across various
domains [1H3]]. In e-commerce, it is used to capture user preferences for personalized ranking
and product recommendation [4} [5]. In social media platforms, event modeling supports feed
optimization and engagement prediction by inferring user interests over time [6H8]]. Financial
systems leverage user behavior data for fraud detection, credit risk assessment, and behavioral
profiling [9H12]. Online services such as search and streaming platforms rely on user event sequences
for content recommendation under real-time constraints [[13H16]. In cybersecurity, modeling user
and system events is essential for detecting anomalies and preventing intrusions [17, [18]. These
applications demonstrate the importance of building models that can effectively capture complex,
context-dependent user behavior from event sequences.

User events can be broadly categorized into personal and relational events. Personal events involve
only a single user and reflect individual actions, such as searching for content, viewing items, or
posting updates. In contrast, relational events involve interactions between two or more users, such
as following another user, co-editing a document, or exchanging messages. Traditionally, these
two types of events are often modeled separately. Relational events are commonly modeled using
graph-based approaches that capture structural dependencies and interaction patterns among users
[19-22]. On the other hand, personal events are typically modeled as sequences using recurrent or
attention-based architectures to capture temporal dependencies in personal event histories [23H29]].
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sonal events. For example, commerce. Personal events involve a single user, such as login, search,
the formalization used in View, or purchase. Relational events involve interaction between two
the Temporal Graph Bench- users, such as sending a gift or commenting on another user’s review.
mark (TGB) papers [34}135]

defines a temporal graph as a stream of triplets consisting of source, destination, and timestamp.
Personal events that involve only a single entity cannot be directly represented under this formulation.
One workaround is to convert all personal events into nodes and define personal events as triplets
of user node, event node, and timestamp. However, this construction is not as straightforward for
capturing temporal dependencies in personal event histories compared to sequence-based modeling.

Going back to the personal and relational event category, in many application domains, the number
of personal events is typically much larger than that of relational events. For example, in e-commerce
platforms, as illustrated in Figure [T} users often view products, search for items, or add products
to their cart, whereas relational interactions, such as referrals, sending gifts, or socially engaged
reviews, are less frequent. In financial systems, customers routinely perform account queries, check
balances, or initiate transactions, while peer-to-peer interactions such as money transfers or joint
account actions are relatively infrequent. In cybersecurity systems, personal events may include
actions like logging in, accessing files, or executing processes, while relational events, such as remote
connections to other users, or file sharing between users, occur less frequently. Despite their higher
volume, personal events are often underrepresented in existing graph-based formulations, which
tend to prioritize relational structure. In practice, however, both personal and relational events carry
complementary signals, and many predictive tasks, such as item recommendation, fraud detection,
customer profiling, and behavior forecasting, benefit from capturing both types of information.

Even though there is a need to capture both personal and relational events in many application domains,
prior work has rarely considered them together. Practitioners often simplify the complexity of user
event modeling by adopting either a graph or a sequence formalization, as most machine learning
models are developed within one of these frameworks. As a result, one type of event—typically the
less convenient to represent—is often ignored entirely, leading to an incomplete view of user behavior.
To build a more comprehensive understanding of user event modeling, there is a need for public
datasets and benchmark tasks that explicitly incorporate both event types. Such resources would
provide a foundation for developing and evaluating models that integrate these complementary signals.

Summary of Contributions. In this work, we aim to support the study of user event modeling that
incorporates both personal and relational events. Our contributions are as follows:

* We curate, pre-process, and release a collection of public datasets and prediction tasks that
explicitly include both personal and relational events.

* We introduce a new formalization for user event modeling that captures both personal and
relational events.

* We empirically demonstrate that incorporating both personal and relational events improves
performance on a range of prediction tasks.

* We show that existing models, originally developed for either sequential or relational data,
are less well suited for this event modeling setting, leaving room for future improvements.

* We invite the research community to use these resources and help close the gap in unified
user event modeling.
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2 Related Works

Event sequence. Event sequence modeling is a broad topic that covers many different domains
which share a similar goal of predicting future events from past histories. Temporal point processes
(TPPs), such as the Poisson and Hawkes processes [36], model discrete events in continuous time
using intensity functions. Neural extensions [[37H39] incorporate RNNs or attention for more accurate
timestamp prediction and are applied in finance, healthcare, and user modeling. However, TPPs
often assume simple event structures and focus only on timing, which limits their ability to capture
dependencies across users or networks.

Sequential recommendation. A closely related application domain is sequential recommendation,
where the goal is to predict the next item a user will interact with based on their history. Early
methods used Markov chains or matrix factorization on time-slided data [40} 4 1], while recent models
such as GRU4Rec [42], SASRec [43]], and BERT4Rec [26] apply deep sequence encoders. These
models capture user preferences over time but typically treat users independently, without modeling
user-to-user interactions.

Graph models. In parallel, graph-based models have advanced user interaction modeling, especially
through GNNs. While static graphs lack temporal order, time-aware constructions such as time-
windowed graphs have been used to encode the the dynamics [44], enabling tasks such as link predic-
tion on constructed event graphs. GCN [45] introduced neighborhood aggregation, GraphSAGE [46]
enabled inductive learning through sampling. GAT [47] added attention mechanisms, and HGT [48]
extended GNNS to heterogeneous graphs. GNNs remain widely used for personal event modeling [[19].

Temporal graph. Temporal graph methods fall into two main categories: discrete-time and
continuous-time [49} 35]]. Discrete-time methods support both homogeneous [50]] and heterogeneous
data [S1H53]. Continuous-time methods preserve finer temporal detail and can be used to model event
sequences as timestamped edges [54]. TGN [32] generalizes this setting and includes DyRep [33]]
as a special case. HTGN-BTW [55] and STHN [56] extend TGN to heterogeneous graphs. Beyond
it, several methods have also been proposed for modeling temporal knowledge graphs [S7H59].

Benchmark datasets. Benchmarks have been proposed across related areas. Temporal graph
benchmarks include TGB [34]], its heterogeneous and knowledge graph extension TGB 2.0 [35]], and
TGB-Seq [60], which adds a more complex sequence of edge dynamics. For static graphs, OGB [61]]
and OGB-LSC [62] are widely used. In recommendation, large-scale interaction benchmarks include
MIND [63]], TenRec [[64]], NineRec [65], and BARS [66]. For event sequences and temporal point
processes, recent efforts include EBES [67]], EasyTPP [68], and HOTPP [69].

Other research on graph and sequence. Several studies have explored different settings involving
temporal and structural dynamics. Some models combine graph and time series data using
spatio-temporal graphs [[70573]. Others merge the outputs of graph and sequence models in various
application domains [[74-76l]. Recent works tokenize graphs and applies transformers or state space
models (SSMs) for graph learning [77H83]]. Additional efforts incorporate knowledge graphs into
language models [84-86] and apply graph-augmented retrieval in text generation tasks |87, [38].

3 Problem Formalization

Notations. In our Personal and Relational User Event Sequence (PRES) modeling, we have a
collection of event sequences, each representing the events that happen to a particular user (which
can also be a customer, account, etc.). We denote the set of users as U = {uy,uz,- - ,uy}, where
N is the number of users. Each user has their own sequence of events that occur over time. For
example, the sequence for user u; is denoted as Seq(u;) = [(e1,t1), (e2,t2), -+, (ens;, tar, )], where
e describes an event, ¢ describes the time at which the event occurs, and M; denotes the number of
events for user u;. Each user may have a different number of events in their event sequence. We
denote the set of all user sequences by S = {Seq(u) | u € U}.

An event may come from two different event sets: the personal event set and the relational event
set. The personal event set contains a set of events that can occur for an individual user; p € P £
{1,2,---,|P|}. The relational event set contains a set of all possible events 7 € R = {1,2,--- , |R|},
which involve a relation from one user to another. Thus, an event can be defined by a personal event
e = p, or a relational event tuple e = (r, v), where v is another user.
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Table 1: Dataset Statistics

Properties ‘ brightkite gowalla az-clothing az-electronics github
Personal Events check-in check-in  product rating product rating ~ github activity
Relational Events friendship  friendship co-review co-review collaboration
# Users 58,228 196,591 185,986 254,064 3,669,079
# Events 5,130,866 8,342,943 1,591,947 2,938,178 102,878,895
# Personal Events 4,702,710 6,442,289 1,573,869 2,281,128 95,974,149
# Relational Events 428,156 1,900,654 18,078 657,050 6,904,746
# Unique Events 628,519 1,169,154 846,052 529,198 24
# Unique Timestamps 4,506,822 5,561,957 3,464 5,373 2,675,990
# Users w. pers. events 51,406 107,092 185,986 254,064 3,669,079
# Users w. rel. events 58,228 196,591 5,017 49,852 441,958
# Users w. both events 51,406 107,092 5,017 49,852 441,958

Difference from other well-known formalizations.

Our formulation differs from graph-based

representations in several ways. Static graphs aggregate interactions into a single structure, discarding
temporal information. Temporal graphs introduce dynamic edges but focus on global structural
changes rather than user-specific event sequences. In both cases, personal events are often omitted
or encoded as nodes, limiting representational flexibility. In contrast, we model user-wise event
sequences with preserved temporal order, explicitly capturing both personal and relational events. Our
formulation also supports richer event representations, including decomposing events into sub-events,
as shown in our experiments.

The PRES formulation also differs from the standard sequence-based approaches. Event sequence
models typically treat user actions as flat sequences, without modeling interactions between users.
Sequential recommendation focuses on item sequences per user and does not account for user-to-user
interactions, while our formulation supports more flexible personal event representation, including
decomposed sub-events, and explicitly models relational events. Temporal point process models
capture event timing and types but are less suited for rich semantics or relational structure. In contrast,
our formulation models both personal and relational events with their content and temporal order.

4 Datasets and Prediction Tasks

4.1 Dataset Information

We curated user event datasets from multiple domains and processed each according to our formaliza-
tion in Section@ The data is stored in CSV format with the columns: uid, timestamp, event_set,
event, and other_uid (See Appendix [B|for details). The uid is a numerical user ID, whereas
event_set indicates whether the event is personal or relational. For relational events, other_uid
refers to the other user involved in the relation; for personal events, this column is null.

Dataset description. Here we describe each dataset in detail. Table|l|provides general statistics of
each dataset. More details on collection, processing, and dataset license are available in Appendix [A]

pres-brightkite. This dataset contains location check-ins and friendship history of Brightkite
users, a location-based social networking platform. It was originally collected by Cho et al. [89] and
published in the SNAP Dataset Repository [90]. Personal events consist of sequences of location
check-ins. We convert the original latitude and longitude coordinates into Geohash-8 representations
[91}192], short alphanumeric strings encoding geographic locations. Nearby locations share similar
geohash prefixes, while distant ones differ. Example geohashes include 9v6kpmr1, gcpwkeq6, and
uOyhxgmi. Relational events capture friendship connections among users. The dataset includes
58,228 users and 5,130,866 events. Only personal events have timestamps; relational events do not.

pres-gowalla. The dataset also contains the location check-in and friendship history of another
social network platform, Gowalla. It was also originally collected by Cho et al. [89] and published in
the SNAP Repository [90]]. We processed and formatted the data following the same approach used
for pres-brightkite. The dataset contains personal events from geohash check-ins and relational
events from friendship connections, totaling 8,342,943 events from 196,591 users.
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pres-amazon-clothing. The dataset contains Amazon product reviews and ratings in the Clothing,
Shoes and Jewelry category, spanning from May 1996 to July 2014. The raw data was originally
collected by McAuley et al. [93]]. In this dataset, we define personal events as sequences of product
IDs and ratings reviewed by a user, for example: BOOOMLDCZ2: 5 and BOO10E3FO08: 3. Relational
events represent co-review patterns, where two users have reviewed at least three of the same products.
The dataset contains event sequences from 185,986 users, with a total of 1,591,947 events.

pres-amazon-electronics. The dataset contains Amazon product reviews and ratings in the
Electronics category, originally collected by McAuley et al. [93]]. As in pres-amazon-clothing,
personal events are defined as sequences of product IDs and ratings, while relational events capture
co-review patterns. In total, the dataset contains 2,938,178 events from 254,064 users.

pres-github. This dataset contains GitHub user activity from January 2025, collected from the
GH Archive. Personal events include actions such as Push, CreateBranch, CreateRepository,
PullRequestOpened, IssuesOpened, and Fork. Relational events represent project collaboration,
where two users are linked if both contributed at least five commits or pull requests to the same
repository. The dataset includes 102,878,895 events from 3,669,079 users. Only personal events
include timestamps; relational events do not, similar to pres-brightkite and pres-gowalla.

Variability of the datasets. As shown in Table[l] the pres datasets vary significantly across multiple
aspects. The number of users ranges from around 58 thousand in pres-brightkite to more than
3.5 million in pres-github. The number of events also varies, from approximately 1.5 million in
pres-brightkite to over 100 million in pres-github. The ratio between relational and personal
events ranges from around 1:3 in pres-gowalla to approximately 1:80 in pres-amazon-clothing.
The number of unique events also differs widely, from just 24 in pres-github to more than 1
million in pres-gowalla. In addition, we observe variability in the number of users having personal
events, relational events, and both. Some datasets have more users with relational events than with
personal events (e.g., pres-brightkite, pres-gowalla), while others show the opposite trend
(e.g., pres-amazon-clothing, pres-amazon-electronics, pres-github). These differences
in dataset properties present distinct challenges for modeling user events in each dataset.

4.2 Prediction Tasks

From the pres datasets, we define two prediction tasks: one for relational events and one for personal
events. These tasks are designed to enable fair comparisons between graph-based, sequence-based,
and hybrid models. Relational event prediction focuses on predicting future or held-out subset of
user-to-user interactions, similar to link prediction. Personal event prediction aims to predict the
likelihood of future occurrence of personal events without requiring exact timestamps, for example,
predicting the next 20 personal events given a user’s first 100. In both tasks, observed events are
compared against negative samples drawn from events not associated with the user. For reproducibility,
pre-generated negative samples for validation and test sets are provided in the dataset repository.

Relational event prediction tasks. The corresponding tasks for pres-brightkite and
pres-gowalla involve friend recommendation. We construct the training data by randomly splitting
all relational events into 70% training, 10% validation, and 20% test sets. We also generate negative
samples for the validation and test sets. Following Gastinger et al. [35], we adopt a I-vs-1000
negative sampling scheme, in which 1,000 negative events are sampled for each relational event in
the prediction set. Negative samples are drawn via uniform random sampling of users, excluding
those who already have relational events with the target user in the training set.

For the pres-github dataset, the relational event prediction task is defined as collaboration pre-
diction, which involves predicting which users collaborate with a given user. The train, validation,
and test splits follow the same procedure as in pres-brightkite, including the sampling method.
However, due to the large size of the dataset, we adopt a /-vs-300 negative sampling scheme.

For the pres-amazon-clothing and pres-amazon-electronics datasets, the task is predicting
co-review relationships, i.e., which users share at least three products they reviewed. Co-review
patterns can reveal how one account may be related to another, which in some cases can help detect
fraudulent review syndicates. In these datasets, relational events have timestamp information, i.e., the
first time the co-review condition is met. As such, the train, validation, and test splits respect event
timestamps. Specifically, we split each user’s relational events by taking the last 20% for test, the pre-
vious 10% for validation, and the rest for training. To manage large histories of some users, we cap test
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and val sets at 20 and 10 events per user, respectively. Personal events are also split into ‘observed” and
‘unobserved’ sets based on the timestamp cut-off in the relational event split, with only the observed
set used for training. As in pres-brightkite, we adopt a /-vs-1000 negative sampling scheme.

Personal event prediction tasks. The task for pres-brightkite and pres-gowalla is to predict
the likelihood of a user checking in at a given geohash location in the future. We split each user’s per-
sonal events by taking the last 20% for test, the previous 10% for validation, and the rest for training.
We also cap the number of events in the test and validation sets to at most 20 and 10 per user, respec-
tively. Relational events are also split into ‘observed’ and ‘unobserved’ sets based on the timestamp
cutoff from the personal event split, with only the observed set used in training. Since personal events
are more frequent than relational ones, we adopt a /-vs-500 negative sampling scheme. As geohash
strings encode hierarchical spatial information (e.g., earlier characters represent broader regions), we
apply stratified hierarchical sampling. Specifically, negatives are stratified by shared geohash prefixes,
from matching the first five characters to none, ensuring a mix of nearby and distant locations.

For the pres-amazon datasets, the task is to predict future products a user will review and the
corresponding ratings, as denoted in their personal event data. We adopt the same train/val/test
split strategy as in pres-brightkite, along with a 7-vs-500 negative sampling scheme. Negative
samples for each personal event (e.g., BOO10E3F08: 3) are drawn from three sources: (1) the same
product with different ratings (e.g., BOO10E3F08:5); (2) other personal events not in the user’s
training data; and (3) samples from the second set with randomly perturbed ratings.

In the pres-github dataset, the number of unique events in the personal event set is only 24,
corresponding to the list of possible GitHub activities. Thus, the task construction used in the
previous datasets is not applicable to pres-github. We decided to omit this dataset from the set of
datasets used for creating personal event prediction tasks.

Full event sequence. In addition to the datasets containing prediction tasks described above, we
also publish a version of each dataset that includes all personal and relational events for all users,
without any assigned tasks, train/val/test splits, or pre-specified negative samples. This is intended to
facilitate future works that may wish to generate other prediction tasks not covered in this paper.

5 Experiments

5.1 Relational event prediction tasks

Experiment setup. We perform relational event prediction experiments on all five pres datasets,
following the task setup described earlier. We evaluate several sets of baseline methods:

1. In the first set, we use only relational event data. We construct a user graph where edges
represent relational events between two users, ignoring timestamp information. We then run
static graph methods, GCN [45] and GAT [47], on this graph.

2. In the second set, we use a sequence model, BERT [94], to encode each user’s last 100
personal events from the training set. The resulting user embedding is added as input to the
GCN and GAT models from the first set, denoted as GCN+S and GAT+S, respectively.

3. In the third set, we convert each unique personal event into a node and add it to the user
graph from the first set, creating edges between users and their personal event nodes. As
in the second set, we use only the last 100 personal events per user. We then run GCN and
GAT on this graph, denoted as GCN-RP and GAT-RP.

4. Lastly, based on the graph containing user and personal event nodes from the third set, we
add timestamp information to construct a temporal graph. For datasets that lack timestamps
for relational events, we inject these events randomly into the sequence of personal events.
We then run temporal graph models, TGN [32]] and DyRep [33]], on this graph.

The sequence model for capturing personal events in the second set is designed as a masked token pre-
diction task using a BERT model with a masking probability of 0.3. A key benefit of using transformer-
based models is flexibility in event tokenization. In pres-brightkite and pres-gowalla, personal
events are 8-character geohash strings (e.g., 998yyk8y | 9q8vzj5b|9q8vyzwk). Since geohashes
encode hierarchical geographic information, we apply hierarchical tokenization by splitting each
into four two-character tokens with added prefixes (e.g., gh12-9q, gh34-8y, gh12-yk, gh12-8y).
This roughly mimics hierarchical location modeling, such as identifying continent, country, city, and



Table 2: Performance results for relational event prediction tasks across various datasets.

Method
Metric

pres-brightkite
MRR (%) H@5 (%) H@10 (%) H@50 (%) H@100 (%)

Static graph models on relational event graph
GCN 37.3+08 50.8+10 61.7+09  83.2+04 89.5+03 | 40.3+09 54.5+09 65.8408  86.5+04 92.0+02
GAT 36.2+14 487414 59.5+12  81.4+08 88.5+06 | 40.7+15 54.1+16 64.9+15  85.3+13 91.1+10

Static graph models on relational event graph + sequence embedding from personal event data
GCN+S | 43.9+07 57.8+08 67.8408  86.5+03 91.5+01 | 44.9+10 59.4+11 69.8+10  88.1+0s 92.8+0.3
GAT+S | 44.8+11 58.5+11 68.2+11  86.2+05 91.5+04 | 44.9+09 58.8+06 69.0+04  87.0+04 92.0+05

Static graph models on relational event graph + personal event nodes
GCN-RP| 8.7+09 11.0+12 15.7+17  35.6+37 49.8+45 17.0+09 22.1+12 29.8416 56.4+30 70.8+29
GAT-RP | 10.7+10 13.5+12 18.2+14  35.6+23 47.8+238 14.9+14 19.0416 25.8420  50.7+3.1 66.2+32

Temporal graph models on relational event graph + personal event nodes
TGN ‘ 12.2+07 159409 23.5+10 50.2+13 63.5+13 | 154+26 20.6+37 27.8+46  51.8+56 64.9+5.4

pres-gowalla

MRR (%) H@5 (%) H@10 (%) H@50 (%) H@100 (%)

DyRep 7.1+04  89+06  13.7+09  36.0+17 50.7+2.1 88+10 11.2+13  15.8+17  34.8+435 48.6+5.1
Method pres-amazon-clothing pres-amazon-electronics
Metric  |MRR (%) H@5 (%) H@10 (%) H@50 (%) H@100 (%) MRR (%) H@5 (%) H@10 (%) H@50 (%) H@100 (%)

Static graph models on relational event graph
GCN 6.1+16  7.4+21 10.0+25  23.4430 35.3+13 13.1+06 159407 21.5+06 459+13 60.6+1.6
GAT 72425  7.8427 10.2+29  23.8436 38.4+19 13.2+07 15.5409 20.7+10 452+12 61.0+15

Static graph models on relational event graph + sequence embedding from personal event data
GCN+S | 4.5+03  5.5+06 9.3+08 29.0+05 40.44+04 | 14.7+05 19.14+08 27.2+15  57.9+19 70.6+1.5
GAT+S | 7.7+21 8.5+21 12.0+1.8  31.3+13 46.3+0.6 14.4+17 16.7+18 21.6+14  43.6+25 58.4+34

Static graph models on relational event graph + personal event nodes
GCN-RP| 8.7+14 92414 10.5+14  18.1+12 25.8+25 7.5+06 8.3+06 109408 21.8+23 29.0+32
GAT-RP | 6.5+10 7.9+10 109+14  25.7+32 39.8+37 | 15.5+05 17.2404 20.5+07  35.5+30 46.9+3.6

Temporal graph models on relational event graph + personal event nodes
TGN 3.5+05  4l+12 6.9+12  23.7+08 39.0+13 | 13.8+03 19.2+06 26.4+09 48.8+09  61.5+07
DyRep 2.9+06  3.0+11 5.8+16 22.8+26 39.6+24 6.8+07  8.9+10 13.8+13 33.4+23 47.5+30

287 neighborhood. For the pres-amazon datasets, we apply similar tokenization by splitting each event
288 into three product tokens and one rating token. We do not apply token splitting for pres-github.

289 For performance evaluation, following Table 3: Relational event predictions on pres-github.
290 prior benchmarks [34} 135, 160], we use
291 ranking-based metrics: Mean Reciprocal ~Method |MRR (%) H@3 (%) H@S (%) H@10 (%) H@30 (%)
292 Rank (MRR) and Hits @k, evaluated at vari- GCN 540472 62.9+75 69.6451 752423 80.1+04
293 ous k depending on the number of negative GAT 69.3+31  73.6+22 76.1x13  78.1x04  80.4x03
294 samples. Each baseline is run five times GCN+S | 70.8+0s 75.1z02 76900 78.5x01  80.9x04

205 with different random seeds, and we report GAT+S | 74.2+06 77.0+04 78.7+03 80.6r01  84.5+02
206 the mean and standard deviation. GCN-RP| 22.3+26 233429 28.8+31  37.8+33 57.5+35
GAT-RP | 33.1+41 357454 43.9+56  57.2+45 76.7+0.7

207 Experiment results. Table 2]and Table[d] 5y
208 show the experiment results (additional re-  DyRep
200 sults are available in Appendix D). In each
300 table, bold numbers indicate the best-performing model on a given metric, and underlined numbers
301 indicate the second best. As each dataset has its own characteristics, the results vary across datasets.
302 However, there are some emerging patterns in the results that we highlight below.

Out of GPU Memory
Out of GPU Memory

303 * In all datasets and across all metrics, the best and second-best models incorporate both
304 relational and personal events as input to their architectures.

305 » The graph models with personal event sequence embeddings (GCN+S and GAT+S) consis-
306 tently perform well across all datasets and metrics. On pres-brightkite, pres-gowalla,
307 and pres-github, they clearly outperform other models, ranking either first or second in
308 all metrics. In pres-amazon-clothing, GAT+S performs best on Hits@F for larger & (10,
309 50, 100), and second-best on Hits@5 and MRR. Similarly, in pres-amazon-electronics,
310 GCN+S ranks first on Hits@ 10, Hits@50, and Hits@ 100, and second on Hits@5 and MRR.
311 * In many datasets, adding personal events as nodes into the relational event graph de-
312 creases predictive performance on the relational link prediction task, as shown by the
313 results of GCN-RP and GAT-RP. Notable exceptions are pres-amazon-clothing and
314 pres-amazon-electronics, where they perform relatively well on MRR and Hits@5,
315 but not on Hits @k metrics with larger k.
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Table 4: Performance results for personal event prediction tasks across various datasets.

Method pres-brightkite pres-gowalla

Metric MRR (%) H@3 (%) H@5 (%) H@10 (%) H@50 (%) MRR (%) H@3 (%) H@5 (%) H@10 (%) H@50 (%)
Sequential models

BERT 342401 35.6+02 37.4+02 40.1+02  50.1+03 | 15.3+02 15.7403 18.6+03 23.4+03  43.1+03
BERT-n2v-p| 33.8+0.1 35.1+02 36.9+02 39.6+02 49.8+02 | 14.4+02 14.8+02 17.7+02 22.6+02 424402
BERT-n2v-i | 34.4+01 35.9+01 37.6+01 40.3+01 503402 | 15.0+03 15.4+03 18.3+03 23.2+03  42.7+03
Graph models on personal event only graph

GCN 249+12 27.1+15 31.8+17 38.8+19  55.8410 | 28.2432 29.7433 342430 41.5+23  63.8+09
GAT 19.0+14 20.3+17 24.9+19 32.1420 523416 | 154412 154414 20.0+15 28.4+16  59.3+1.1
TGN 23.5402 24.54+03 28.9+04 37.1x08 54.5+11 | 10.7+04 10.6+06 144411 21.5+18  42.7+49
DyRep 19.8+29 214432 26.5+25 35.4+16 572417 | 7.4+06  6.4+08 10.0+10 17.8+10 42.9+21
Graph models on personal and relational event graph

GCN-PR 254412 27.5413 31.9+15 382+17 54.7+16 | 30.3+51 32.0+54 36.8+52 442444  65.4+12
GAT-PR 18.8405 20.3+06 25.2+06 32.9+06 53.3+06 | 16.0+06 16.0+07 20.5+08 28.6+09  59.2+09
TGN-PR 29.5423 33.54+22 353422 36.0+24  36.14+24 | 14.0+20 15.7+22 17.0424 179425 18.2+26
DyRep-PR | 23.4+27 27.5+35 30.5+32 32.7+42  33.3+48 | 10.5+14 11.4+18 124422 13.1+28  13.6434
Method pres-amazon-clothing pres-amazon-electronics

Metric MRR (%) H@3 (%) H@5 (%) H@10 (%) H@50 (%) MRR (%) H@3 (%) H@5 (%) H@10 (%) H@50 (%)
Sequential models

BERT 33400 23+00  3.5+01 6.1+0.1 22.4+02 | 8.1+02  7.7402 10.7+03 16.1+03  38.1+02
BERT+n2v-p| 3.4+00 24+00 3.6+00  6.2+0.1 22.7+02 | 8.1x01  7.7+01 10.7+02 16.1+02  38.2+0.1
BERT+n2v-i | 3.3+00 2.3+00 3.5+01 6.1+0.1 22.6+02 | 8.1+0.1 7.8401  10.7+00 16.1+01  38.0+02
Graph models on personal event only graph

GCN 10.8+17 11.2420 14.1+17  19.0¢11  32.8+05 | 13.3+20 13.3+25 18.4+29 27.6+31  55.6+09
GAT 3.5+00 2.6+00 4.0+0.1 7.140.1 22.7+02 | 7.4+04 64404 9.6+05 16.1x07  44.0+038
TGN 9.3+09  8.0+08 12.8422 254468 44.4+34 | 162+16 17.4+20 22.6+18 30.8+12  54.2+08
DyRep 89+13 81424 13.5+41 25.1+67 43.5457 | 11.4+04 10.6+06 153408 25.8+10 55.1+08
Graph models on personal and relational event graph

GCN-PR 10.9+13 11.4+15 143413 19.1+08  32.8+06 | 16.6+15 17.3+19 22.2+21 30.6+20  56.3+0.8
GAT-PR 3.5+0.1 2.6+01  4.0+0.1 7.1+02 22.5+02 | 8.0+03  7.2404 10.5+05 17.2+07  44.8+06
TGN-PR 9.3+07  7.8+11 139433 304437 41.7+19 | 15.6+06 16.8+08 22.8+08 32.7+06 54.0+10
DyRep-PR 10.5+02  9.7+05 17.1+06 32.9+03 41.3+04 | 143+05 15.0t07 21.2+09 32.3+14  53.3+28

* The performance of temporal graph methods (TGN and DyRep) on the relational link
prediction task using graphs with personal event nodes is noticeably lower compared to static
graph models on nearly all datasets. A notable exception is pres-amazon-electronics,
where TGN performs relatively well. For the large dataset of pres-github, both TGN and
DyRep suffer from GPU out of memory error, even when using small batch size.

Although GCN+S and GAT+S perform relational event prediction in two stages, where they first
generate user embeddings from personal event sequences and then incorporate them into the graph
learning process, they still perform well across datasets. In contrast, TGN and DyRep use a single-step
approach that directly integrates temporal dynamics but operate on graph structures where personal
events are represented as nodes. These differences highlight an opportunity for future exploration on
how best to represent temporal dynamics of personal events within a user, while jointly modeling the
full structure that includes user-to-user relational events in an end-to-end fashion.

5.2 Personal event prediction tasks

Experiment setup. We perform personal event prediction experiments on all pres datasets except
pres-github. In these experiments, we evaluate several sets of baseline methods:

1. The first model is a sequential model that uses only personal event data. We use a BERT
architecture with a prediction head to compute the likelihood of a user having a particular
personal event in the future. For each user, we use the last 100 personal events in the training
set to predict the likelihood of future events.

2. In the second set, we use node2vec [93] to learn the graph structure of relational events
and generate a graph embedding for each user. We then incorporate the embedding into the
BERT sequence model. We evaluate two versions of the model: (a) incorporating the graph
embedding post transformer module and before the prediction head (BERT-n2v-p), and (b)
using the embedding as a special input token to the transformer module (BERT-n2v-1).
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3. In the third set, we use graph-based models on personal event—only data by creating a
bipartite graph of user nodes and personal event nodes, based on the last 100 personal events
per user. We run both static graph models (GCN and GAT) and temporal graph models
(TGN and DyRep) on this graph.

4. In the last set, we augment the graph in the third set with relational event data by adding
relational event edges between users. We then run GCN, GAT, TGN, and DyRep on this
graph, denoted as GCN-PR, GAT-PR, TGN-PR, and DyRep-PR, respectively.

Similar to the sequence embedding used in relational event prediction tasks, we apply split tokeniza-
tion for the BERT model in personal event prediction to allow more flexibility in modeling events.
We use the same tokenization scheme for each dataset as described earlier. For evaluation, we report
MRR and Hits @k at various values of k. Each baseline is run five times with different random seeds,
and we report the mean and standard deviation.

Experiment results. Table 4| shows the results for the personal event prediction task. As in the
relational event task, results vary across datasets due to their unique characteristics, with even more
variations in this setting. We discuss some of the results as follows.

* In most cases, the best models incorporate both personal and relational events as input to
their architectures.

* The sequence models perform well on pres-brightkite across all metrics. The base
BERT model, which uses only personal event data, already shows strong performance.
Adding relational event node2vec embeddings may either improve or degrade performance.
In pres-brightkite, adding the embedding after the transformer module reduces per-
formance, while using it as a special input token improves it. However, the changes
are relatively minor but sufficient to make BERT-n2v-i the best-performing model on
pres-brightkite. Similar minimal changes are observed in other datasets.

* The static graph model, GCN in particular, performs surprisingly well on pres-gowalla.
The best performance is achieved by the GCN-PR model, which is trained on data
containing both personal and relational events in a graph with user nodes and personal
event nodes. GCN-PR also performs relatively well on pres-amazon-clothing and
pres-amazon-electronics. However, the GAT-based models perform noticeably worse
than their GCN counterparts.

* The temporal graph models perform relatively well on the pres-amazon-clothing and
pres-amazon-electronics datasets, particularly on the Hits@5 and Hits@ 10 metrics.
TGN and DyRep perform better on graphs that include both personal and relational events.
A notable exception is the Hits @50 metric.

The results show that there is no single model that consistently performs best across all datasets.
Some models work well on certain datasets but not on others. The only consistent pattern is that the
best-performing models usually use both personal and relational events. This opens up opportunities
for designing better models that can effectively integrate both types of information.

6 Conclusions and Limitations

In this work, we aim to advance user event modeling by introducing a unified framework that captures
both personal and relational events. We curate and release a collection of public datasets with
corresponding prediction tasks, all aligned under a formalization that integrates both event types
to provide a more complete view of user behavior. Through empirical evaluation, we demonstrate
that models leveraging both event types consistently outperform those using only one. We also
show that existing methods, originally developed for either sequential or relational data, even with
some adaptations to handle both (e.g., temporal graph models), are less effective across many of our
prediction tasks. These findings highlight the need for further study of unified user event modeling.

A key challenge in this work is dataset curation, as many public datasets have already been collapsed
into either graph-only or sequence-only formats, often discarding personal or relational events in
the process. While we were able to gather and unify a set of datasets that include both event types,
they may not fully capture the diversity and complexity of user event modeling across domains.
Another limitation is that our current formulation does not support event-level or user-level features,
presenting an opportunity for future work to extend the framework toward feature-aware modeling.
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A Dataset Documentation

All datasets presented in this paper are intended for academic research purposes, and their corre-
sponding licenses are listed in this section. They are constructed from publicly available resources
described below. In all cases, we perform anonymization by removing any personally identifiable
information when appropriate. User IDs in the original data are replaced with auto-incremented 1D
numbers.

Download links. The datasets and tasks described in this paper are available for download from the
following links:

 Dataset and task website: https://redacted-for-double-blind-review/
* Dataset documentation: https://redacted-for-double-blind-review/
* Code for dataset preparation: https://redacted-for-double-blind-review/

* Code for running experiments: https://redacted-for-double-blind-review/

Dataset source and license information. Below, we describe how the source data was obtained
and provide license information for each dataset:

* pres-github. This dataset is based on GitHub data collected from the GH Archive web-
site (https://wuw.gharchive.org/) using its HTTP JSON download link. It contains
GitHub user activity from January 2025, and user IDs have been anonymized. Content from
GH Archive is released under the CC-BY-4.0 license, while the associated code is released
under the MIT license.

* pres-amazon-clothing and pres-amazon-electronics. These datasets contain Ama-
zon product reviews and ratings in their respective categories. Both are based on Amazon
review data collected by McAuley et al. [93]] and hosted at: https://cseweb.ucsd.edu/
~jmcauley/datasets/amazon/links.html. The Amazon review content is licensed
under the Amazon license:

By accessing the Amazon Customer Reviews Library ("Reviews Library"), you
agree that the Reviews Library is an Amazon Service subject to the Amazon.com
Conditions of Use and you agree to be bound by them, with the following addi-
tional conditions:

In addition to the license rights granted under the Conditions of Use, Amazon
or its content providers grant you a limited, non-exclusive, non-transferable,
non-sublicensable, revocable license to access and use the Reviews Library for
purposes of academic research. You may not resell, republish, or make any
commercial use of the Reviews Library or its contents, including use of the
Reviews Library for commercial research, such as research related to a funding
or consultancy contract, internship, or other relationship in which the results
are provided for a fee or delivered to a for-profit organization. You may not (a)
link or associate content in the Reviews Library with any personal information
(including Amazon customer accounts), or (b) attempt to determine the identity
of the author of any content in the Reviews Library. If you violate any of the
foregoing conditions, your license to access and use the Reviews Library will
automatically terminate without prejudice to any of the other rights or remedies
Amazon may have.

* pres-gowalla. This dataset contains user activity on the (now defunct) social network
Gowalla. It was originally collected by Cho et al. [89]] using the platform’s public API and
published in the SNAP Dataset Repository|[90] (https://snap.stanford.edu/data/
loc-Gowalla.html). No specific license information is provided by the curator.

* pres-brightkite. This dataset contains user activity on the (also now defunct) social
network Brightkite. It was also originally collected by Cho et al. [89] using the platform’s
public API and published in the SNAP Dataset Repository|[90] (https://snap.stanford|
edu/data/loc-brightkite.html). No specific license information is provided by the
curator.
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B Dataset Contents

Examples of dataset

relational events, showing how different types of user activity are represented in our format.

contents. To illustrate the structure of the curated datasets, we provide
examples of user event sequences from several pres datasets. Each table includes both personal and

* pres-brightkite and pres-gowalla

Table 5: Example of user event sequence in pres-brightkite and pres-gowalla

uid  timestamp event_set event other_uid
39 1206596784 personal 9x j6hwkm <NA>
39 1206596838 personal 9xj3fynm <NA>
39 1206596871 personal 9xj3fynm <NA>
39 1235862855 personal 9xj65423 <NA>
39 1250883230 personal 9xj65423 <NA>
39 1254535157 personal 9xj5skbn <NA>
39 1254535193 personal 9xj5sm00 <NA>
39 1283443369 personal 998yyyhs <NA>
39 <NA> relational friendship 0
39 <NA> relational friendship 30
39 <NA> relational friendship 105
39 <NA> relational friendship 1190

* pres-amazon-clothing and pres-amazon-electronics

Table 6: Example of user
pres-amazon-electronics

event sequence in pres-amazon-clothing

uid timestamp event_set event other_uid
254057 1375401600 personal BOOOA6PPOK:3 <NA>
254057 1377302400 personal BOO3TMPHOU: 5 <NA>
254057 1377302400 personal BO04A81PJI:4 <NA>
254057 1377302400 personal BOO54R4AXW:5 <NA>
254057 1377302400 personal BOO5CPGHAA:5 <NA>
254057 1377302400 personal BOO7FNXMEQ: 5 <NA>
254057 1377302400 personal BOO7IV7KRU:5 <NA>
254057 1377302400 personal BOO7WAWHD4 :5 <NA>
254057 1377302400 personal BOO8AST7R6:5 <NA>
254057 1377302400 personal BOO8R56H4S : 5 <NA>
254057 1404086400 relational co-review_product 107741

* pres-github

Table 7: Example of user event sequence in pres-github.

event

other_uid

uid timestamp event_set
3669059 1738288160 personal
3669059 1738288191 personal
3669059 1738288198 personal
3669059 1738288200 personal
3669059 1738288206 personal
3669059 1738288207 personal
3669059 1738288217 personal
3669059 1738288219 personal
3669059 <NA> relational
3669059 <NA> relational

PullRequestReviewCreated
PullRequestReviewCreated

PullRequestClosed

Push

PullRequestClosed

Push
DeleteBranch
DeleteBranch
collaborate
collaborate

824409
3126262

<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
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Figure 2: Histogram of the number of events per user in each dataset.

Event statistics. To characterize user events, Distribution of User Event Counts in pres-github
we include histograms in Figure [2]and Figure 3]
showing the distribution of event counts per
user in each dataset. These histograms are con-
structed by computing the number of events as-
sociated with each user and aggregating how
many users fall into each count bucket. The
y-axis is log-scaled to highlight the long-tailed
nature of user behavior, where the majority of
users generate only a small number of events,
while a much smaller group contributes dispro-
portionately large volumes of activity. This skew
is common across datasets and presents both
challenges and opportunities for modeling.

108

Number of Users (log scale)

4000 6000 10000
Event count

C Experiment Details Figure 3: Histogram of the number of event per

user in pres-github.
C.1 Hyperparameters

Personal event prediction task. In Table[8] we present the hyperparameters used during the training

of various models for personal event prediction tasks. We use the following notations: Emb Dim
denotes the dimensionality of token embeddings; Heads is the number of attention heads; Layers
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Table 8: Hyperparameter configurations for personal event prediction tasks

Learning Batch Emb Max Max Num Neg Num
Model Name Rate Size Epochs Dim Heads Layers Channels Events Examples Samples Neighbors

BERT 3e4 1024 10 64 4 4 - 100 50 10 -
BERT-n2v-p  3e-4 1024 10 64 4 4 - 100 50 10 -
BERT-n2v-i 3e-4d 1024 10 64 4 4 - 100 50 10 -
GCN le3 1024 10 128 - 2 128 100 - 5 10
GCN-PR le3 1024 10 128 - 2 128 100 - 5 10
GAT le3 1024 10 128 2 2 64 100 - 5 10
GAT-PR le3 1024 10 128 2 2 64 100 - 5 10
TGN le3 4096 10 16/32 - - - 100 - 5 10
TGN-PR le3 4096 10 16/32 - - - 100 - 5 10
DyRep le3 4096 10 32/64 - - - 100 - 5 10
DyRep-PR le-3 4096 10 32/64 - - - 100 - 5 10

refers to the number of hidden layers; Channels indicates the number of hidden channels per layer in
GAT and GCN models; Max Examples is the maximum number of training samples generated per
user; Num Neg Samples represents the number of negative samples for each (positive) sample;
and Num Neighbors is the number of neighbors sampled per layer for GNN models. Additionally,
due to GPU memory limitations, we reduce the embedding dimensions for the TGN and DyRep
models to 16 and 32, respectively, for the pres-brightkite and pres-gowalla datasets, and to
32 and 64 for pres-amazon-clothing and pres-amazon-electronics.

Relational event prediction task. In Table 9] we present the hyperparameters used across all
models for relational event prediction tasks. Due to memory and time constraints, batch size,
number of epochs, and embedding dimensions were adjusted per dataset. All datasets used a
batch size of 4096, except for pres-github, which used 512. The number of training epochs
was set to 5 for pres-github, 20 for pres-gowalla and pres-amazon-electronics, 100 for
pres-amazon-clothing, and 1000 for pres-brightkite. The model checkpoint with the best
validation MRR was saved and used for testing. As shown in our results, TGN and DyRep could not
be run on pres-github. For the remaining datasets, the embedding dimension for TGN and DyRep
was 128, except for pres-gowalla, which used 64 to avoid GPU out-of-memory errors.

Table 9: Hyperparameter configurations for relational event prediction tasks

Learning Batch Emb Num Neg Num
Model Name Rate Size Epochs Dim Heads Layers  Channels Samples Neighbors
GCN le-3 512/4096 5-1000 128 - 2 128 5 10
GCN-PR le-3 512/4096 5-1000 128 - 2 128 5 10
GCN+S le-3 512/4096 5-1000 128 - 2 128 5 10
GAT le-3 512/4096 5-1000 128 2 2 128 5 10
GAT-PR le-3 512/4096 5-1000 128 2 2 128 5 10
GAT+S le-3 512/4096 5-1000 128 2 2 128 5 10
TGN le-3 4096 20-1000  64/128 - - 128 5 10
DyRep le-3 4096 20-1000  64/128 - - 128 5 10

C.2 Computing Resources

We conducted all experiments on a server equipped with 8 NVIDIA Ampere A10G GPUs (24
GB each), 16 CPU cores, and a RAM upper limit of 512 GB. To fully leverage all resources, we
parallelized the training runs so that each experiment used a single GPU. Each experiment is designed
to be run on a single-GPU machine. Table [[0]summarizes the average training time (in hours) and
standard deviation for each model across five datasets, categorized by task type. For relational
event prediction tasks, lightweight GCN and GAT variants exhibit minimal computational overhead,
with training times generally under one hour except on the GitHub dataset. In contrast, temporally
expressive models such as TGN and DyRep incur significantly higher costs, especially on large-scale
datasets like Gowalla. In personal event prediction tasks, training times increase across the board,
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with most models exceeding 7 hours on larger datasets, again highlighting the computational demands

Table 10: Computational Time (in hours) for Different Models and Datasets

Method | Time ®)

| amazon-clothing  amazon-electronics  brightkite gowalla github
Relational event prediction tasks
GCN 0.0640.00 0.0540.00 0.6040.00 0.264+0.00  8.38+£0.11
GCN-RP 0.10£0.01 0.17£0.00 0.40=£0.00 1.98+0.03  7.39£0.06
GCN+S 0.07£0.00 0.05£0.00 0.61£0.00 0.29+£0.00  8.58+0.12
GAT 0.0740.01 0.0840.02 0.6140.00 0.2940.00  8.41£0.12
GAT-RP 0.1540.03 0.1840.01 0.4940.06 2.0740.02  7.40=£0.06
GAT+S 0.0940.02 0.0540.00 0.624-0.00 0.3240.00  2.52£0.20
TGN 0.49+0.03 0.32£0.00 1.06£0.01 4.62+0.10 -
DyRep 0.49+£0.02 0.31£0.00 1.03£0.01 4.4340.07 -
Personal event prediction tasks
GCN 5.81£0.10 7.14£0.29 1.73£0.02 8.01+0.71 -
GCN-PR 5.80+£0.11 7.21£0.29 1.73£0.03 7.45+£1.82 -
GAT 5.834+0.10 7.1740.28 1.7340.03 7.33+1.82 -
GAT-PR 5.8240.10 7.2440.30 1.7640.02 7.51£1.79 -
TGN 3.94+0.40 4.1040.10 0.3340.01 3.12+0.75 -
TGN-PR 4.38+0.39 5.75£0.19 0.81£0.03 7.89+£1.78 -
DyRep 2.034+0.38 3.23£0.34 0.3840.01 4.11+1.03 -
DyRep-PR 4.884+0.10 5.9640.20 0.7840.03 7.85+1.86 -
BERT 4.6710.06 6.3040.15 2.6540.02 9.21£1.11 -
BERT+n2v-i 3.41+0.14 4.4340.19 2.54+£0.01 6.40£0.19 -
BERT+n2v-p 3.60£0.22 4.78+0.14 2.52+0.01 6.38£0.20 -

of modeling fine-grained temporal dynamics.
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Figure 4: Comparison of relational event predictions across different datasets.
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Figure 5: Comparison of personal event predictions across different datasets.

D Additional Experimental Results

In Figures @] and[5] we present the results from the main paper in a more visual format to facilitate
comparison across methods. In the relational event prediction tasks, across all datasets and metrics,
static GNNs augmented with personal event sequence embeddings (GCN+S and GAT+S) consistently
achieve the best or second-best results. This highlights the benefit of integrating both personal
and relational signals. Temporal methods (TGN-PR, DyRep-PR) underperform, particularly when
personal event nodes are included. For personal event prediction tasks, BERT+n2v-i offers slight
improvements over regular BERT. In particular, BERT-based models exhibit competitive performance
in some cases, most prominently on the Brightkite dataset, where they outperform GNN-based
counterparts at MMR and lower hit rate thresholds such as Hits@3, Hits@5, and Hits@ 10.

E Broader Impacts

Broader impact of our paper The datasets and prediction tasks we release may support future
research on user event modeling, particularly in settings that involve both personal and relational
events. Researchers can build models on top of these resources and evaluate them in a consistent
way. This can help accelerate empirical progress and facilitate more comparable results. This has
potential impact in a range of industry applications where modeling user behavior is critical, such as
recommendation, fraud detection, and user interaction analysis.

Potential negative impact The datasets we release may not cover all use cases of user event
modeling, and may reflect only a subset of real-world scenarios. This could introduce bias in model
development or evaluation, especially if models are tuned specifically for the structure or properties of
our datasets. As a result, there is a risk that future methods may overfit to our datasets and generalize
less effectively to other domains or applications.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We empirically verify the main claims stated in the abstract and introduction
(summary of contributions) through the experiments presented in the experiments section.
In addition, we openly release our datasets and formalization (used in the dataset format) as
part of our contributions.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitation of our work in the Conclusions and Limitations
section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

22



838
839

840

841

842

843
844
845
846
847
848
849
850
851

852

853

854
855
856

857

858
859
860
861

862

863

865
866
867
868

870
871
872
873
874
875

877
878
879
880
881
882
883
884
885
886
887
888
889
890
891

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide several components to ensure the reproducibility of our results.
First, we include pre-computed negative samples for the validation and test sets for every
task and dataset. We also provide experiment details in both the Experiments section and
Appendix [C] Lastly, we release the code for running all experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

» While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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892 some way (e.g., to registered users), but it should be possible for other researchers

893 to have some path to reproducing or verifying the results.

894 5. Open access to data and code

895 Question: Does the paper provide open access to the data and code, with sufficient instruc-
896 tions to faithfully reproduce the main experimental results, as described in supplemental
897 material?

898 Answer: [Yes]

899 Justification: We release the datasets and the experiment codes.

900 Guidelines:

901 » The answer NA means that paper does not include experiments requiring code.

902 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
903 public/guides/CodeSubmissionPolicy) for more details.

904 * While we encourage the release of code and data, we understand that this might not be
905 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
906 including code, unless this is central to the contribution (e.g., for a new open-source
907 benchmark).

908 * The instructions should contain the exact command and environment needed to run to
909 reproduce the results. See the NeurIPS code and data submission guidelines (https:
910 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

911 * The authors should provide instructions on data access and preparation, including how
912 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
913 * The authors should provide scripts to reproduce all experimental results for the new
914 proposed method and baselines. If only a subset of experiments are reproducible, they
915 should state which ones are omitted from the script and why.

916 * At submission time, to preserve anonymity, the authors should release anonymized
917 versions (if applicable).

918 * Providing as much information as possible in supplemental material (appended to the
919 paper) is recommended, but including URLSs to data and code is permitted.

920 6. Experimental setting/details

921 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
922 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
923 results?

924 Answer: [Yes]

925 Justification: The experiment details are available in the Experiments section and Ap-
926 pendix[C]

927 Guidelines:

928 » The answer NA means that the paper does not include experiments.

929 * The experimental setting should be presented in the core of the paper to a level of detail
930 that is necessary to appreciate the results and make sense of them.

931 ¢ The full details can be provided either with the code, in appendix, or as supplemental
932 material.

933 7. Experiment statistical significance

934 Question: Does the paper report error bars suitably and correctly defined or other appropriate
935 information about the statistical significance of the experiments?

936 Answer: [Yes]

937 Justification: We report the mean and standard deviation of our experimental results in all
938 result tables in the paper.

939 Guidelines:

940 » The answer NA means that the paper does not include experiments.

941 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
942 dence intervals, or statistical significance tests, at least for the experiments that support
943 the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The information about computing resources is available in Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the ethic code and make sure our research conform with the
code of ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts in Appendix [E]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not identify any potential misuse risks associated with our paper, code,
or datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We discuss the license of the source data in Appendix
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our pre-processed datasets are derived from publicly available source data, and
we discuss their licenses in Appendix[A] Our code for processing the datasets and running
experiments is released under the MIT license.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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1097 * Depending on the country in which research is conducted, IRB approval (or equivalent)

1098 may be required for any human subjects research. If you obtained IRB approval, you
1099 should clearly state this in the paper.

1100 * We recognize that the procedures for this may vary significantly between institutions
1101 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1102 guidelines for their institution.

1103 * For initial submissions, do not include any information that would break anonymity (if
1104 applicable), such as the institution conducting the review.

1105 16. Declaration of LLLM usage

1106 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1107 non-standard component of the core methods in this research? Note that if the LLM is used
1108 only for writing, editing, or formatting purposes and does not impact the core methodology,
1109 scientific rigorousness, or originality of the research, declaration is not required.

1110 Answer: [NA]

1111 Justification: The core method development in this research does not involve LLMs in any
1112 important, original, or non-standard components. We use LLMs only as writing and coding
1113 assistants.

1114 Guidelines:

1115 * The answer NA means that the core method development in this research does not
1116 involve LLMs as any important, original, or non-standard components.

117 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1118 for what should or should not be described.

28


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Problem Formalization
	Datasets and Prediction Tasks
	Dataset Information
	Prediction Tasks

	Experiments
	Relational event prediction tasks
	Personal event prediction tasks

	Conclusions and Limitations
	Dataset Documentation
	Dataset Contents
	Experiment Details
	Hyperparameters
	Computing Resources

	Additional Experimental Results
	Broader Impacts

